|  | /* | 
|  | * mm/mmap.c | 
|  | * | 
|  | * Written by obz. | 
|  | * | 
|  | * Address space accounting code	<alan@lxorguk.ukuu.org.uk> | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/vmacache.h> | 
|  | #include <linux/shm.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/personality.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/profile.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/mmu_notifier.h> | 
|  | #include <linux/mmdebug.h> | 
|  | #include <linux/perf_event.h> | 
|  | #include <linux/audit.h> | 
|  | #include <linux/khugepaged.h> | 
|  | #include <linux/uprobes.h> | 
|  | #include <linux/rbtree_augmented.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/memory.h> | 
|  | #include <linux/printk.h> | 
|  | #include <linux/userfaultfd_k.h> | 
|  | #include <linux/moduleparam.h> | 
|  | #include <linux/pkeys.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/mmu_context.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | #ifndef arch_mmap_check | 
|  | #define arch_mmap_check(addr, len, flags)	(0) | 
|  | #endif | 
|  |  | 
|  | #ifndef arch_rebalance_pgtables | 
|  | #define arch_rebalance_pgtables(addr, len)		(addr) | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS | 
|  | const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN; | 
|  | const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX; | 
|  | int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS; | 
|  | #endif | 
|  | #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS | 
|  | const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN; | 
|  | const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX; | 
|  | int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS; | 
|  | #endif | 
|  |  | 
|  | static bool ignore_rlimit_data = true; | 
|  | core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644); | 
|  |  | 
|  | static void unmap_region(struct mm_struct *mm, | 
|  | struct vm_area_struct *vma, struct vm_area_struct *prev, | 
|  | unsigned long start, unsigned long end); | 
|  |  | 
|  | /* description of effects of mapping type and prot in current implementation. | 
|  | * this is due to the limited x86 page protection hardware.  The expected | 
|  | * behavior is in parens: | 
|  | * | 
|  | * map_type	prot | 
|  | *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC | 
|  | * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes | 
|  | *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no | 
|  | *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes | 
|  | * | 
|  | * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes | 
|  | *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no | 
|  | *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes | 
|  | * | 
|  | */ | 
|  | pgprot_t protection_map[16] = { | 
|  | __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111, | 
|  | __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111 | 
|  | }; | 
|  |  | 
|  | pgprot_t vm_get_page_prot(unsigned long vm_flags) | 
|  | { | 
|  | return __pgprot(pgprot_val(protection_map[vm_flags & | 
|  | (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) | | 
|  | pgprot_val(arch_vm_get_page_prot(vm_flags))); | 
|  | } | 
|  | EXPORT_SYMBOL(vm_get_page_prot); | 
|  |  | 
|  | static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags) | 
|  | { | 
|  | return pgprot_modify(oldprot, vm_get_page_prot(vm_flags)); | 
|  | } | 
|  |  | 
|  | /* Update vma->vm_page_prot to reflect vma->vm_flags. */ | 
|  | void vma_set_page_prot(struct vm_area_struct *vma) | 
|  | { | 
|  | unsigned long vm_flags = vma->vm_flags; | 
|  |  | 
|  | vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags); | 
|  | if (vma_wants_writenotify(vma)) { | 
|  | vm_flags &= ~VM_SHARED; | 
|  | vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, | 
|  | vm_flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Requires inode->i_mapping->i_mmap_rwsem | 
|  | */ | 
|  | static void __remove_shared_vm_struct(struct vm_area_struct *vma, | 
|  | struct file *file, struct address_space *mapping) | 
|  | { | 
|  | if (vma->vm_flags & VM_DENYWRITE) | 
|  | atomic_inc(&file_inode(file)->i_writecount); | 
|  | if (vma->vm_flags & VM_SHARED) | 
|  | mapping_unmap_writable(mapping); | 
|  |  | 
|  | flush_dcache_mmap_lock(mapping); | 
|  | vma_interval_tree_remove(vma, &mapping->i_mmap); | 
|  | flush_dcache_mmap_unlock(mapping); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unlink a file-based vm structure from its interval tree, to hide | 
|  | * vma from rmap and vmtruncate before freeing its page tables. | 
|  | */ | 
|  | void unlink_file_vma(struct vm_area_struct *vma) | 
|  | { | 
|  | struct file *file = vma->vm_file; | 
|  |  | 
|  | if (file) { | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | i_mmap_lock_write(mapping); | 
|  | __remove_shared_vm_struct(vma, file, mapping); | 
|  | i_mmap_unlock_write(mapping); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Close a vm structure and free it, returning the next. | 
|  | */ | 
|  | static struct vm_area_struct *remove_vma(struct vm_area_struct *vma) | 
|  | { | 
|  | struct vm_area_struct *next = vma->vm_next; | 
|  |  | 
|  | might_sleep(); | 
|  | if (vma->vm_ops && vma->vm_ops->close) | 
|  | vma->vm_ops->close(vma); | 
|  | if (vma->vm_file) | 
|  | fput(vma->vm_file); | 
|  | mpol_put(vma_policy(vma)); | 
|  | kmem_cache_free(vm_area_cachep, vma); | 
|  | return next; | 
|  | } | 
|  |  | 
|  | static unsigned long do_brk(unsigned long addr, unsigned long len); | 
|  |  | 
|  | SYSCALL_DEFINE1(brk, unsigned long, brk) | 
|  | { | 
|  | unsigned long retval; | 
|  | unsigned long newbrk, oldbrk; | 
|  | struct mm_struct *mm = current->mm; | 
|  | unsigned long min_brk; | 
|  | bool populate; | 
|  |  | 
|  | down_write(&mm->mmap_sem); | 
|  |  | 
|  | #ifdef CONFIG_COMPAT_BRK | 
|  | /* | 
|  | * CONFIG_COMPAT_BRK can still be overridden by setting | 
|  | * randomize_va_space to 2, which will still cause mm->start_brk | 
|  | * to be arbitrarily shifted | 
|  | */ | 
|  | if (current->brk_randomized) | 
|  | min_brk = mm->start_brk; | 
|  | else | 
|  | min_brk = mm->end_data; | 
|  | #else | 
|  | min_brk = mm->start_brk; | 
|  | #endif | 
|  | if (brk < min_brk) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Check against rlimit here. If this check is done later after the test | 
|  | * of oldbrk with newbrk then it can escape the test and let the data | 
|  | * segment grow beyond its set limit the in case where the limit is | 
|  | * not page aligned -Ram Gupta | 
|  | */ | 
|  | if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk, | 
|  | mm->end_data, mm->start_data)) | 
|  | goto out; | 
|  |  | 
|  | newbrk = PAGE_ALIGN(brk); | 
|  | oldbrk = PAGE_ALIGN(mm->brk); | 
|  | if (oldbrk == newbrk) | 
|  | goto set_brk; | 
|  |  | 
|  | /* Always allow shrinking brk. */ | 
|  | if (brk <= mm->brk) { | 
|  | if (!do_munmap(mm, newbrk, oldbrk-newbrk)) | 
|  | goto set_brk; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Check against existing mmap mappings. */ | 
|  | if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE)) | 
|  | goto out; | 
|  |  | 
|  | /* Ok, looks good - let it rip. */ | 
|  | if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk) | 
|  | goto out; | 
|  |  | 
|  | set_brk: | 
|  | mm->brk = brk; | 
|  | populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0; | 
|  | up_write(&mm->mmap_sem); | 
|  | if (populate) | 
|  | mm_populate(oldbrk, newbrk - oldbrk); | 
|  | return brk; | 
|  |  | 
|  | out: | 
|  | retval = mm->brk; | 
|  | up_write(&mm->mmap_sem); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static long vma_compute_subtree_gap(struct vm_area_struct *vma) | 
|  | { | 
|  | unsigned long max, subtree_gap; | 
|  | max = vma->vm_start; | 
|  | if (vma->vm_prev) | 
|  | max -= vma->vm_prev->vm_end; | 
|  | if (vma->vm_rb.rb_left) { | 
|  | subtree_gap = rb_entry(vma->vm_rb.rb_left, | 
|  | struct vm_area_struct, vm_rb)->rb_subtree_gap; | 
|  | if (subtree_gap > max) | 
|  | max = subtree_gap; | 
|  | } | 
|  | if (vma->vm_rb.rb_right) { | 
|  | subtree_gap = rb_entry(vma->vm_rb.rb_right, | 
|  | struct vm_area_struct, vm_rb)->rb_subtree_gap; | 
|  | if (subtree_gap > max) | 
|  | max = subtree_gap; | 
|  | } | 
|  | return max; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_VM_RB | 
|  | static int browse_rb(struct mm_struct *mm) | 
|  | { | 
|  | struct rb_root *root = &mm->mm_rb; | 
|  | int i = 0, j, bug = 0; | 
|  | struct rb_node *nd, *pn = NULL; | 
|  | unsigned long prev = 0, pend = 0; | 
|  |  | 
|  | for (nd = rb_first(root); nd; nd = rb_next(nd)) { | 
|  | struct vm_area_struct *vma; | 
|  | vma = rb_entry(nd, struct vm_area_struct, vm_rb); | 
|  | if (vma->vm_start < prev) { | 
|  | pr_emerg("vm_start %lx < prev %lx\n", | 
|  | vma->vm_start, prev); | 
|  | bug = 1; | 
|  | } | 
|  | if (vma->vm_start < pend) { | 
|  | pr_emerg("vm_start %lx < pend %lx\n", | 
|  | vma->vm_start, pend); | 
|  | bug = 1; | 
|  | } | 
|  | if (vma->vm_start > vma->vm_end) { | 
|  | pr_emerg("vm_start %lx > vm_end %lx\n", | 
|  | vma->vm_start, vma->vm_end); | 
|  | bug = 1; | 
|  | } | 
|  | spin_lock(&mm->page_table_lock); | 
|  | if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) { | 
|  | pr_emerg("free gap %lx, correct %lx\n", | 
|  | vma->rb_subtree_gap, | 
|  | vma_compute_subtree_gap(vma)); | 
|  | bug = 1; | 
|  | } | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | i++; | 
|  | pn = nd; | 
|  | prev = vma->vm_start; | 
|  | pend = vma->vm_end; | 
|  | } | 
|  | j = 0; | 
|  | for (nd = pn; nd; nd = rb_prev(nd)) | 
|  | j++; | 
|  | if (i != j) { | 
|  | pr_emerg("backwards %d, forwards %d\n", j, i); | 
|  | bug = 1; | 
|  | } | 
|  | return bug ? -1 : i; | 
|  | } | 
|  |  | 
|  | static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore) | 
|  | { | 
|  | struct rb_node *nd; | 
|  |  | 
|  | for (nd = rb_first(root); nd; nd = rb_next(nd)) { | 
|  | struct vm_area_struct *vma; | 
|  | vma = rb_entry(nd, struct vm_area_struct, vm_rb); | 
|  | VM_BUG_ON_VMA(vma != ignore && | 
|  | vma->rb_subtree_gap != vma_compute_subtree_gap(vma), | 
|  | vma); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void validate_mm(struct mm_struct *mm) | 
|  | { | 
|  | int bug = 0; | 
|  | int i = 0; | 
|  | unsigned long highest_address = 0; | 
|  | struct vm_area_struct *vma = mm->mmap; | 
|  |  | 
|  | while (vma) { | 
|  | struct anon_vma *anon_vma = vma->anon_vma; | 
|  | struct anon_vma_chain *avc; | 
|  |  | 
|  | if (anon_vma) { | 
|  | anon_vma_lock_read(anon_vma); | 
|  | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) | 
|  | anon_vma_interval_tree_verify(avc); | 
|  | anon_vma_unlock_read(anon_vma); | 
|  | } | 
|  |  | 
|  | highest_address = vma->vm_end; | 
|  | vma = vma->vm_next; | 
|  | i++; | 
|  | } | 
|  | if (i != mm->map_count) { | 
|  | pr_emerg("map_count %d vm_next %d\n", mm->map_count, i); | 
|  | bug = 1; | 
|  | } | 
|  | if (highest_address != mm->highest_vm_end) { | 
|  | pr_emerg("mm->highest_vm_end %lx, found %lx\n", | 
|  | mm->highest_vm_end, highest_address); | 
|  | bug = 1; | 
|  | } | 
|  | i = browse_rb(mm); | 
|  | if (i != mm->map_count) { | 
|  | if (i != -1) | 
|  | pr_emerg("map_count %d rb %d\n", mm->map_count, i); | 
|  | bug = 1; | 
|  | } | 
|  | VM_BUG_ON_MM(bug, mm); | 
|  | } | 
|  | #else | 
|  | #define validate_mm_rb(root, ignore) do { } while (0) | 
|  | #define validate_mm(mm) do { } while (0) | 
|  | #endif | 
|  |  | 
|  | RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb, | 
|  | unsigned long, rb_subtree_gap, vma_compute_subtree_gap) | 
|  |  | 
|  | /* | 
|  | * Update augmented rbtree rb_subtree_gap values after vma->vm_start or | 
|  | * vma->vm_prev->vm_end values changed, without modifying the vma's position | 
|  | * in the rbtree. | 
|  | */ | 
|  | static void vma_gap_update(struct vm_area_struct *vma) | 
|  | { | 
|  | /* | 
|  | * As it turns out, RB_DECLARE_CALLBACKS() already created a callback | 
|  | * function that does exacltly what we want. | 
|  | */ | 
|  | vma_gap_callbacks_propagate(&vma->vm_rb, NULL); | 
|  | } | 
|  |  | 
|  | static inline void vma_rb_insert(struct vm_area_struct *vma, | 
|  | struct rb_root *root) | 
|  | { | 
|  | /* All rb_subtree_gap values must be consistent prior to insertion */ | 
|  | validate_mm_rb(root, NULL); | 
|  |  | 
|  | rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks); | 
|  | } | 
|  |  | 
|  | static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root) | 
|  | { | 
|  | /* | 
|  | * All rb_subtree_gap values must be consistent prior to erase, | 
|  | * with the possible exception of the vma being erased. | 
|  | */ | 
|  | validate_mm_rb(root, vma); | 
|  |  | 
|  | /* | 
|  | * Note rb_erase_augmented is a fairly large inline function, | 
|  | * so make sure we instantiate it only once with our desired | 
|  | * augmented rbtree callbacks. | 
|  | */ | 
|  | rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vma has some anon_vma assigned, and is already inserted on that | 
|  | * anon_vma's interval trees. | 
|  | * | 
|  | * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the | 
|  | * vma must be removed from the anon_vma's interval trees using | 
|  | * anon_vma_interval_tree_pre_update_vma(). | 
|  | * | 
|  | * After the update, the vma will be reinserted using | 
|  | * anon_vma_interval_tree_post_update_vma(). | 
|  | * | 
|  | * The entire update must be protected by exclusive mmap_sem and by | 
|  | * the root anon_vma's mutex. | 
|  | */ | 
|  | static inline void | 
|  | anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) | 
|  | { | 
|  | struct anon_vma_chain *avc; | 
|  |  | 
|  | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) | 
|  | anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) | 
|  | { | 
|  | struct anon_vma_chain *avc; | 
|  |  | 
|  | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) | 
|  | anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root); | 
|  | } | 
|  |  | 
|  | static int find_vma_links(struct mm_struct *mm, unsigned long addr, | 
|  | unsigned long end, struct vm_area_struct **pprev, | 
|  | struct rb_node ***rb_link, struct rb_node **rb_parent) | 
|  | { | 
|  | struct rb_node **__rb_link, *__rb_parent, *rb_prev; | 
|  |  | 
|  | __rb_link = &mm->mm_rb.rb_node; | 
|  | rb_prev = __rb_parent = NULL; | 
|  |  | 
|  | while (*__rb_link) { | 
|  | struct vm_area_struct *vma_tmp; | 
|  |  | 
|  | __rb_parent = *__rb_link; | 
|  | vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb); | 
|  |  | 
|  | if (vma_tmp->vm_end > addr) { | 
|  | /* Fail if an existing vma overlaps the area */ | 
|  | if (vma_tmp->vm_start < end) | 
|  | return -ENOMEM; | 
|  | __rb_link = &__rb_parent->rb_left; | 
|  | } else { | 
|  | rb_prev = __rb_parent; | 
|  | __rb_link = &__rb_parent->rb_right; | 
|  | } | 
|  | } | 
|  |  | 
|  | *pprev = NULL; | 
|  | if (rb_prev) | 
|  | *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); | 
|  | *rb_link = __rb_link; | 
|  | *rb_parent = __rb_parent; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned long count_vma_pages_range(struct mm_struct *mm, | 
|  | unsigned long addr, unsigned long end) | 
|  | { | 
|  | unsigned long nr_pages = 0; | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | /* Find first overlaping mapping */ | 
|  | vma = find_vma_intersection(mm, addr, end); | 
|  | if (!vma) | 
|  | return 0; | 
|  |  | 
|  | nr_pages = (min(end, vma->vm_end) - | 
|  | max(addr, vma->vm_start)) >> PAGE_SHIFT; | 
|  |  | 
|  | /* Iterate over the rest of the overlaps */ | 
|  | for (vma = vma->vm_next; vma; vma = vma->vm_next) { | 
|  | unsigned long overlap_len; | 
|  |  | 
|  | if (vma->vm_start > end) | 
|  | break; | 
|  |  | 
|  | overlap_len = min(end, vma->vm_end) - vma->vm_start; | 
|  | nr_pages += overlap_len >> PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | return nr_pages; | 
|  | } | 
|  |  | 
|  | void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | struct rb_node **rb_link, struct rb_node *rb_parent) | 
|  | { | 
|  | /* Update tracking information for the gap following the new vma. */ | 
|  | if (vma->vm_next) | 
|  | vma_gap_update(vma->vm_next); | 
|  | else | 
|  | mm->highest_vm_end = vma->vm_end; | 
|  |  | 
|  | /* | 
|  | * vma->vm_prev wasn't known when we followed the rbtree to find the | 
|  | * correct insertion point for that vma. As a result, we could not | 
|  | * update the vma vm_rb parents rb_subtree_gap values on the way down. | 
|  | * So, we first insert the vma with a zero rb_subtree_gap value | 
|  | * (to be consistent with what we did on the way down), and then | 
|  | * immediately update the gap to the correct value. Finally we | 
|  | * rebalance the rbtree after all augmented values have been set. | 
|  | */ | 
|  | rb_link_node(&vma->vm_rb, rb_parent, rb_link); | 
|  | vma->rb_subtree_gap = 0; | 
|  | vma_gap_update(vma); | 
|  | vma_rb_insert(vma, &mm->mm_rb); | 
|  | } | 
|  |  | 
|  | static void __vma_link_file(struct vm_area_struct *vma) | 
|  | { | 
|  | struct file *file; | 
|  |  | 
|  | file = vma->vm_file; | 
|  | if (file) { | 
|  | struct address_space *mapping = file->f_mapping; | 
|  |  | 
|  | if (vma->vm_flags & VM_DENYWRITE) | 
|  | atomic_dec(&file_inode(file)->i_writecount); | 
|  | if (vma->vm_flags & VM_SHARED) | 
|  | atomic_inc(&mapping->i_mmap_writable); | 
|  |  | 
|  | flush_dcache_mmap_lock(mapping); | 
|  | vma_interval_tree_insert(vma, &mapping->i_mmap); | 
|  | flush_dcache_mmap_unlock(mapping); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | __vma_link(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | struct vm_area_struct *prev, struct rb_node **rb_link, | 
|  | struct rb_node *rb_parent) | 
|  | { | 
|  | __vma_link_list(mm, vma, prev, rb_parent); | 
|  | __vma_link_rb(mm, vma, rb_link, rb_parent); | 
|  | } | 
|  |  | 
|  | static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | struct vm_area_struct *prev, struct rb_node **rb_link, | 
|  | struct rb_node *rb_parent) | 
|  | { | 
|  | struct address_space *mapping = NULL; | 
|  |  | 
|  | if (vma->vm_file) { | 
|  | mapping = vma->vm_file->f_mapping; | 
|  | i_mmap_lock_write(mapping); | 
|  | } | 
|  |  | 
|  | __vma_link(mm, vma, prev, rb_link, rb_parent); | 
|  | __vma_link_file(vma); | 
|  |  | 
|  | if (mapping) | 
|  | i_mmap_unlock_write(mapping); | 
|  |  | 
|  | mm->map_count++; | 
|  | validate_mm(mm); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper for vma_adjust() in the split_vma insert case: insert a vma into the | 
|  | * mm's list and rbtree.  It has already been inserted into the interval tree. | 
|  | */ | 
|  | static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) | 
|  | { | 
|  | struct vm_area_struct *prev; | 
|  | struct rb_node **rb_link, *rb_parent; | 
|  |  | 
|  | if (find_vma_links(mm, vma->vm_start, vma->vm_end, | 
|  | &prev, &rb_link, &rb_parent)) | 
|  | BUG(); | 
|  | __vma_link(mm, vma, prev, rb_link, rb_parent); | 
|  | mm->map_count++; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | struct vm_area_struct *prev) | 
|  | { | 
|  | struct vm_area_struct *next; | 
|  |  | 
|  | vma_rb_erase(vma, &mm->mm_rb); | 
|  | prev->vm_next = next = vma->vm_next; | 
|  | if (next) | 
|  | next->vm_prev = prev; | 
|  |  | 
|  | /* Kill the cache */ | 
|  | vmacache_invalidate(mm); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that | 
|  | * is already present in an i_mmap tree without adjusting the tree. | 
|  | * The following helper function should be used when such adjustments | 
|  | * are necessary.  The "insert" vma (if any) is to be inserted | 
|  | * before we drop the necessary locks. | 
|  | */ | 
|  | int vma_adjust(struct vm_area_struct *vma, unsigned long start, | 
|  | unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct vm_area_struct *next = vma->vm_next; | 
|  | struct vm_area_struct *importer = NULL; | 
|  | struct address_space *mapping = NULL; | 
|  | struct rb_root *root = NULL; | 
|  | struct anon_vma *anon_vma = NULL; | 
|  | struct file *file = vma->vm_file; | 
|  | bool start_changed = false, end_changed = false; | 
|  | long adjust_next = 0; | 
|  | int remove_next = 0; | 
|  |  | 
|  | if (next && !insert) { | 
|  | struct vm_area_struct *exporter = NULL; | 
|  |  | 
|  | if (end >= next->vm_end) { | 
|  | /* | 
|  | * vma expands, overlapping all the next, and | 
|  | * perhaps the one after too (mprotect case 6). | 
|  | */ | 
|  | again:			remove_next = 1 + (end > next->vm_end); | 
|  | end = next->vm_end; | 
|  | exporter = next; | 
|  | importer = vma; | 
|  | } else if (end > next->vm_start) { | 
|  | /* | 
|  | * vma expands, overlapping part of the next: | 
|  | * mprotect case 5 shifting the boundary up. | 
|  | */ | 
|  | adjust_next = (end - next->vm_start) >> PAGE_SHIFT; | 
|  | exporter = next; | 
|  | importer = vma; | 
|  | } else if (end < vma->vm_end) { | 
|  | /* | 
|  | * vma shrinks, and !insert tells it's not | 
|  | * split_vma inserting another: so it must be | 
|  | * mprotect case 4 shifting the boundary down. | 
|  | */ | 
|  | adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT); | 
|  | exporter = vma; | 
|  | importer = next; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Easily overlooked: when mprotect shifts the boundary, | 
|  | * make sure the expanding vma has anon_vma set if the | 
|  | * shrinking vma had, to cover any anon pages imported. | 
|  | */ | 
|  | if (exporter && exporter->anon_vma && !importer->anon_vma) { | 
|  | int error; | 
|  |  | 
|  | importer->anon_vma = exporter->anon_vma; | 
|  | error = anon_vma_clone(importer, exporter); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (file) { | 
|  | mapping = file->f_mapping; | 
|  | root = &mapping->i_mmap; | 
|  | uprobe_munmap(vma, vma->vm_start, vma->vm_end); | 
|  |  | 
|  | if (adjust_next) | 
|  | uprobe_munmap(next, next->vm_start, next->vm_end); | 
|  |  | 
|  | i_mmap_lock_write(mapping); | 
|  | if (insert) { | 
|  | /* | 
|  | * Put into interval tree now, so instantiated pages | 
|  | * are visible to arm/parisc __flush_dcache_page | 
|  | * throughout; but we cannot insert into address | 
|  | * space until vma start or end is updated. | 
|  | */ | 
|  | __vma_link_file(insert); | 
|  | } | 
|  | } | 
|  |  | 
|  | vma_adjust_trans_huge(vma, start, end, adjust_next); | 
|  |  | 
|  | anon_vma = vma->anon_vma; | 
|  | if (!anon_vma && adjust_next) | 
|  | anon_vma = next->anon_vma; | 
|  | if (anon_vma) { | 
|  | VM_BUG_ON_VMA(adjust_next && next->anon_vma && | 
|  | anon_vma != next->anon_vma, next); | 
|  | anon_vma_lock_write(anon_vma); | 
|  | anon_vma_interval_tree_pre_update_vma(vma); | 
|  | if (adjust_next) | 
|  | anon_vma_interval_tree_pre_update_vma(next); | 
|  | } | 
|  |  | 
|  | if (root) { | 
|  | flush_dcache_mmap_lock(mapping); | 
|  | vma_interval_tree_remove(vma, root); | 
|  | if (adjust_next) | 
|  | vma_interval_tree_remove(next, root); | 
|  | } | 
|  |  | 
|  | if (start != vma->vm_start) { | 
|  | vma->vm_start = start; | 
|  | start_changed = true; | 
|  | } | 
|  | if (end != vma->vm_end) { | 
|  | vma->vm_end = end; | 
|  | end_changed = true; | 
|  | } | 
|  | vma->vm_pgoff = pgoff; | 
|  | if (adjust_next) { | 
|  | next->vm_start += adjust_next << PAGE_SHIFT; | 
|  | next->vm_pgoff += adjust_next; | 
|  | } | 
|  |  | 
|  | if (root) { | 
|  | if (adjust_next) | 
|  | vma_interval_tree_insert(next, root); | 
|  | vma_interval_tree_insert(vma, root); | 
|  | flush_dcache_mmap_unlock(mapping); | 
|  | } | 
|  |  | 
|  | if (remove_next) { | 
|  | /* | 
|  | * vma_merge has merged next into vma, and needs | 
|  | * us to remove next before dropping the locks. | 
|  | */ | 
|  | __vma_unlink(mm, next, vma); | 
|  | if (file) | 
|  | __remove_shared_vm_struct(next, file, mapping); | 
|  | } else if (insert) { | 
|  | /* | 
|  | * split_vma has split insert from vma, and needs | 
|  | * us to insert it before dropping the locks | 
|  | * (it may either follow vma or precede it). | 
|  | */ | 
|  | __insert_vm_struct(mm, insert); | 
|  | } else { | 
|  | if (start_changed) | 
|  | vma_gap_update(vma); | 
|  | if (end_changed) { | 
|  | if (!next) | 
|  | mm->highest_vm_end = end; | 
|  | else if (!adjust_next) | 
|  | vma_gap_update(next); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (anon_vma) { | 
|  | anon_vma_interval_tree_post_update_vma(vma); | 
|  | if (adjust_next) | 
|  | anon_vma_interval_tree_post_update_vma(next); | 
|  | anon_vma_unlock_write(anon_vma); | 
|  | } | 
|  | if (mapping) | 
|  | i_mmap_unlock_write(mapping); | 
|  |  | 
|  | if (root) { | 
|  | uprobe_mmap(vma); | 
|  |  | 
|  | if (adjust_next) | 
|  | uprobe_mmap(next); | 
|  | } | 
|  |  | 
|  | if (remove_next) { | 
|  | if (file) { | 
|  | uprobe_munmap(next, next->vm_start, next->vm_end); | 
|  | fput(file); | 
|  | } | 
|  | if (next->anon_vma) | 
|  | anon_vma_merge(vma, next); | 
|  | mm->map_count--; | 
|  | mpol_put(vma_policy(next)); | 
|  | kmem_cache_free(vm_area_cachep, next); | 
|  | /* | 
|  | * In mprotect's case 6 (see comments on vma_merge), | 
|  | * we must remove another next too. It would clutter | 
|  | * up the code too much to do both in one go. | 
|  | */ | 
|  | next = vma->vm_next; | 
|  | if (remove_next == 2) | 
|  | goto again; | 
|  | else if (next) | 
|  | vma_gap_update(next); | 
|  | else | 
|  | mm->highest_vm_end = end; | 
|  | } | 
|  | if (insert && file) | 
|  | uprobe_mmap(insert); | 
|  |  | 
|  | validate_mm(mm); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the vma has a ->close operation then the driver probably needs to release | 
|  | * per-vma resources, so we don't attempt to merge those. | 
|  | */ | 
|  | static inline int is_mergeable_vma(struct vm_area_struct *vma, | 
|  | struct file *file, unsigned long vm_flags, | 
|  | struct vm_userfaultfd_ctx vm_userfaultfd_ctx) | 
|  | { | 
|  | /* | 
|  | * VM_SOFTDIRTY should not prevent from VMA merging, if we | 
|  | * match the flags but dirty bit -- the caller should mark | 
|  | * merged VMA as dirty. If dirty bit won't be excluded from | 
|  | * comparison, we increase pressue on the memory system forcing | 
|  | * the kernel to generate new VMAs when old one could be | 
|  | * extended instead. | 
|  | */ | 
|  | if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) | 
|  | return 0; | 
|  | if (vma->vm_file != file) | 
|  | return 0; | 
|  | if (vma->vm_ops && vma->vm_ops->close) | 
|  | return 0; | 
|  | if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx)) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1, | 
|  | struct anon_vma *anon_vma2, | 
|  | struct vm_area_struct *vma) | 
|  | { | 
|  | /* | 
|  | * The list_is_singular() test is to avoid merging VMA cloned from | 
|  | * parents. This can improve scalability caused by anon_vma lock. | 
|  | */ | 
|  | if ((!anon_vma1 || !anon_vma2) && (!vma || | 
|  | list_is_singular(&vma->anon_vma_chain))) | 
|  | return 1; | 
|  | return anon_vma1 == anon_vma2; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) | 
|  | * in front of (at a lower virtual address and file offset than) the vma. | 
|  | * | 
|  | * We cannot merge two vmas if they have differently assigned (non-NULL) | 
|  | * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. | 
|  | * | 
|  | * We don't check here for the merged mmap wrapping around the end of pagecache | 
|  | * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which | 
|  | * wrap, nor mmaps which cover the final page at index -1UL. | 
|  | */ | 
|  | static int | 
|  | can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags, | 
|  | struct anon_vma *anon_vma, struct file *file, | 
|  | pgoff_t vm_pgoff, | 
|  | struct vm_userfaultfd_ctx vm_userfaultfd_ctx) | 
|  | { | 
|  | if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && | 
|  | is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { | 
|  | if (vma->vm_pgoff == vm_pgoff) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) | 
|  | * beyond (at a higher virtual address and file offset than) the vma. | 
|  | * | 
|  | * We cannot merge two vmas if they have differently assigned (non-NULL) | 
|  | * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. | 
|  | */ | 
|  | static int | 
|  | can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags, | 
|  | struct anon_vma *anon_vma, struct file *file, | 
|  | pgoff_t vm_pgoff, | 
|  | struct vm_userfaultfd_ctx vm_userfaultfd_ctx) | 
|  | { | 
|  | if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) && | 
|  | is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) { | 
|  | pgoff_t vm_pglen; | 
|  | vm_pglen = vma_pages(vma); | 
|  | if (vma->vm_pgoff + vm_pglen == vm_pgoff) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out | 
|  | * whether that can be merged with its predecessor or its successor. | 
|  | * Or both (it neatly fills a hole). | 
|  | * | 
|  | * In most cases - when called for mmap, brk or mremap - [addr,end) is | 
|  | * certain not to be mapped by the time vma_merge is called; but when | 
|  | * called for mprotect, it is certain to be already mapped (either at | 
|  | * an offset within prev, or at the start of next), and the flags of | 
|  | * this area are about to be changed to vm_flags - and the no-change | 
|  | * case has already been eliminated. | 
|  | * | 
|  | * The following mprotect cases have to be considered, where AAAA is | 
|  | * the area passed down from mprotect_fixup, never extending beyond one | 
|  | * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after: | 
|  | * | 
|  | *     AAAA             AAAA                AAAA          AAAA | 
|  | *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX | 
|  | *    cannot merge    might become    might become    might become | 
|  | *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or | 
|  | *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or | 
|  | *    mremap move:                                    PPPPNNNNNNNN 8 | 
|  | *        AAAA | 
|  | *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN | 
|  | *    might become    case 1 below    case 2 below    case 3 below | 
|  | * | 
|  | * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX: | 
|  | * mprotect_fixup updates vm_flags & vm_page_prot on successful return. | 
|  | */ | 
|  | struct vm_area_struct *vma_merge(struct mm_struct *mm, | 
|  | struct vm_area_struct *prev, unsigned long addr, | 
|  | unsigned long end, unsigned long vm_flags, | 
|  | struct anon_vma *anon_vma, struct file *file, | 
|  | pgoff_t pgoff, struct mempolicy *policy, | 
|  | struct vm_userfaultfd_ctx vm_userfaultfd_ctx) | 
|  | { | 
|  | pgoff_t pglen = (end - addr) >> PAGE_SHIFT; | 
|  | struct vm_area_struct *area, *next; | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * We later require that vma->vm_flags == vm_flags, | 
|  | * so this tests vma->vm_flags & VM_SPECIAL, too. | 
|  | */ | 
|  | if (vm_flags & VM_SPECIAL) | 
|  | return NULL; | 
|  |  | 
|  | if (prev) | 
|  | next = prev->vm_next; | 
|  | else | 
|  | next = mm->mmap; | 
|  | area = next; | 
|  | if (next && next->vm_end == end)		/* cases 6, 7, 8 */ | 
|  | next = next->vm_next; | 
|  |  | 
|  | /* | 
|  | * Can it merge with the predecessor? | 
|  | */ | 
|  | if (prev && prev->vm_end == addr && | 
|  | mpol_equal(vma_policy(prev), policy) && | 
|  | can_vma_merge_after(prev, vm_flags, | 
|  | anon_vma, file, pgoff, | 
|  | vm_userfaultfd_ctx)) { | 
|  | /* | 
|  | * OK, it can.  Can we now merge in the successor as well? | 
|  | */ | 
|  | if (next && end == next->vm_start && | 
|  | mpol_equal(policy, vma_policy(next)) && | 
|  | can_vma_merge_before(next, vm_flags, | 
|  | anon_vma, file, | 
|  | pgoff+pglen, | 
|  | vm_userfaultfd_ctx) && | 
|  | is_mergeable_anon_vma(prev->anon_vma, | 
|  | next->anon_vma, NULL)) { | 
|  | /* cases 1, 6 */ | 
|  | err = vma_adjust(prev, prev->vm_start, | 
|  | next->vm_end, prev->vm_pgoff, NULL); | 
|  | } else					/* cases 2, 5, 7 */ | 
|  | err = vma_adjust(prev, prev->vm_start, | 
|  | end, prev->vm_pgoff, NULL); | 
|  | if (err) | 
|  | return NULL; | 
|  | khugepaged_enter_vma_merge(prev, vm_flags); | 
|  | return prev; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Can this new request be merged in front of next? | 
|  | */ | 
|  | if (next && end == next->vm_start && | 
|  | mpol_equal(policy, vma_policy(next)) && | 
|  | can_vma_merge_before(next, vm_flags, | 
|  | anon_vma, file, pgoff+pglen, | 
|  | vm_userfaultfd_ctx)) { | 
|  | if (prev && addr < prev->vm_end)	/* case 4 */ | 
|  | err = vma_adjust(prev, prev->vm_start, | 
|  | addr, prev->vm_pgoff, NULL); | 
|  | else					/* cases 3, 8 */ | 
|  | err = vma_adjust(area, addr, next->vm_end, | 
|  | next->vm_pgoff - pglen, NULL); | 
|  | if (err) | 
|  | return NULL; | 
|  | khugepaged_enter_vma_merge(area, vm_flags); | 
|  | return area; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Rough compatbility check to quickly see if it's even worth looking | 
|  | * at sharing an anon_vma. | 
|  | * | 
|  | * They need to have the same vm_file, and the flags can only differ | 
|  | * in things that mprotect may change. | 
|  | * | 
|  | * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that | 
|  | * we can merge the two vma's. For example, we refuse to merge a vma if | 
|  | * there is a vm_ops->close() function, because that indicates that the | 
|  | * driver is doing some kind of reference counting. But that doesn't | 
|  | * really matter for the anon_vma sharing case. | 
|  | */ | 
|  | static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) | 
|  | { | 
|  | return a->vm_end == b->vm_start && | 
|  | mpol_equal(vma_policy(a), vma_policy(b)) && | 
|  | a->vm_file == b->vm_file && | 
|  | !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && | 
|  | b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do some basic sanity checking to see if we can re-use the anon_vma | 
|  | * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be | 
|  | * the same as 'old', the other will be the new one that is trying | 
|  | * to share the anon_vma. | 
|  | * | 
|  | * NOTE! This runs with mm_sem held for reading, so it is possible that | 
|  | * the anon_vma of 'old' is concurrently in the process of being set up | 
|  | * by another page fault trying to merge _that_. But that's ok: if it | 
|  | * is being set up, that automatically means that it will be a singleton | 
|  | * acceptable for merging, so we can do all of this optimistically. But | 
|  | * we do that READ_ONCE() to make sure that we never re-load the pointer. | 
|  | * | 
|  | * IOW: that the "list_is_singular()" test on the anon_vma_chain only | 
|  | * matters for the 'stable anon_vma' case (ie the thing we want to avoid | 
|  | * is to return an anon_vma that is "complex" due to having gone through | 
|  | * a fork). | 
|  | * | 
|  | * We also make sure that the two vma's are compatible (adjacent, | 
|  | * and with the same memory policies). That's all stable, even with just | 
|  | * a read lock on the mm_sem. | 
|  | */ | 
|  | static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b) | 
|  | { | 
|  | if (anon_vma_compatible(a, b)) { | 
|  | struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); | 
|  |  | 
|  | if (anon_vma && list_is_singular(&old->anon_vma_chain)) | 
|  | return anon_vma; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find_mergeable_anon_vma is used by anon_vma_prepare, to check | 
|  | * neighbouring vmas for a suitable anon_vma, before it goes off | 
|  | * to allocate a new anon_vma.  It checks because a repetitive | 
|  | * sequence of mprotects and faults may otherwise lead to distinct | 
|  | * anon_vmas being allocated, preventing vma merge in subsequent | 
|  | * mprotect. | 
|  | */ | 
|  | struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) | 
|  | { | 
|  | struct anon_vma *anon_vma; | 
|  | struct vm_area_struct *near; | 
|  |  | 
|  | near = vma->vm_next; | 
|  | if (!near) | 
|  | goto try_prev; | 
|  |  | 
|  | anon_vma = reusable_anon_vma(near, vma, near); | 
|  | if (anon_vma) | 
|  | return anon_vma; | 
|  | try_prev: | 
|  | near = vma->vm_prev; | 
|  | if (!near) | 
|  | goto none; | 
|  |  | 
|  | anon_vma = reusable_anon_vma(near, near, vma); | 
|  | if (anon_vma) | 
|  | return anon_vma; | 
|  | none: | 
|  | /* | 
|  | * There's no absolute need to look only at touching neighbours: | 
|  | * we could search further afield for "compatible" anon_vmas. | 
|  | * But it would probably just be a waste of time searching, | 
|  | * or lead to too many vmas hanging off the same anon_vma. | 
|  | * We're trying to allow mprotect remerging later on, | 
|  | * not trying to minimize memory used for anon_vmas. | 
|  | */ | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If a hint addr is less than mmap_min_addr change hint to be as | 
|  | * low as possible but still greater than mmap_min_addr | 
|  | */ | 
|  | static inline unsigned long round_hint_to_min(unsigned long hint) | 
|  | { | 
|  | hint &= PAGE_MASK; | 
|  | if (((void *)hint != NULL) && | 
|  | (hint < mmap_min_addr)) | 
|  | return PAGE_ALIGN(mmap_min_addr); | 
|  | return hint; | 
|  | } | 
|  |  | 
|  | static inline int mlock_future_check(struct mm_struct *mm, | 
|  | unsigned long flags, | 
|  | unsigned long len) | 
|  | { | 
|  | unsigned long locked, lock_limit; | 
|  |  | 
|  | /*  mlock MCL_FUTURE? */ | 
|  | if (flags & VM_LOCKED) { | 
|  | locked = len >> PAGE_SHIFT; | 
|  | locked += mm->locked_vm; | 
|  | lock_limit = rlimit(RLIMIT_MEMLOCK); | 
|  | lock_limit >>= PAGE_SHIFT; | 
|  | if (locked > lock_limit && !capable(CAP_IPC_LOCK)) | 
|  | return -EAGAIN; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The caller must hold down_write(¤t->mm->mmap_sem). | 
|  | */ | 
|  | unsigned long do_mmap(struct file *file, unsigned long addr, | 
|  | unsigned long len, unsigned long prot, | 
|  | unsigned long flags, vm_flags_t vm_flags, | 
|  | unsigned long pgoff, unsigned long *populate) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | int pkey = 0; | 
|  |  | 
|  | *populate = 0; | 
|  |  | 
|  | if (!len) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Does the application expect PROT_READ to imply PROT_EXEC? | 
|  | * | 
|  | * (the exception is when the underlying filesystem is noexec | 
|  | *  mounted, in which case we dont add PROT_EXEC.) | 
|  | */ | 
|  | if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) | 
|  | if (!(file && path_noexec(&file->f_path))) | 
|  | prot |= PROT_EXEC; | 
|  |  | 
|  | if (!(flags & MAP_FIXED)) | 
|  | addr = round_hint_to_min(addr); | 
|  |  | 
|  | /* Careful about overflows.. */ | 
|  | len = PAGE_ALIGN(len); | 
|  | if (!len) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* offset overflow? */ | 
|  | if ((pgoff + (len >> PAGE_SHIFT)) < pgoff) | 
|  | return -EOVERFLOW; | 
|  |  | 
|  | /* Too many mappings? */ | 
|  | if (mm->map_count > sysctl_max_map_count) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Obtain the address to map to. we verify (or select) it and ensure | 
|  | * that it represents a valid section of the address space. | 
|  | */ | 
|  | addr = get_unmapped_area(file, addr, len, pgoff, flags); | 
|  | if (offset_in_page(addr)) | 
|  | return addr; | 
|  |  | 
|  | if (prot == PROT_EXEC) { | 
|  | pkey = execute_only_pkey(mm); | 
|  | if (pkey < 0) | 
|  | pkey = 0; | 
|  | } | 
|  |  | 
|  | /* Do simple checking here so the lower-level routines won't have | 
|  | * to. we assume access permissions have been handled by the open | 
|  | * of the memory object, so we don't do any here. | 
|  | */ | 
|  | vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) | | 
|  | mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; | 
|  |  | 
|  | if (flags & MAP_LOCKED) | 
|  | if (!can_do_mlock()) | 
|  | return -EPERM; | 
|  |  | 
|  | if (mlock_future_check(mm, vm_flags, len)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | if (file) { | 
|  | struct inode *inode = file_inode(file); | 
|  |  | 
|  | switch (flags & MAP_TYPE) { | 
|  | case MAP_SHARED: | 
|  | if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) | 
|  | return -EACCES; | 
|  |  | 
|  | /* | 
|  | * Make sure we don't allow writing to an append-only | 
|  | * file.. | 
|  | */ | 
|  | if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE)) | 
|  | return -EACCES; | 
|  |  | 
|  | /* | 
|  | * Make sure there are no mandatory locks on the file. | 
|  | */ | 
|  | if (locks_verify_locked(file)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | vm_flags |= VM_SHARED | VM_MAYSHARE; | 
|  | if (!(file->f_mode & FMODE_WRITE)) | 
|  | vm_flags &= ~(VM_MAYWRITE | VM_SHARED); | 
|  |  | 
|  | /* fall through */ | 
|  | case MAP_PRIVATE: | 
|  | if (!(file->f_mode & FMODE_READ)) | 
|  | return -EACCES; | 
|  | if (path_noexec(&file->f_path)) { | 
|  | if (vm_flags & VM_EXEC) | 
|  | return -EPERM; | 
|  | vm_flags &= ~VM_MAYEXEC; | 
|  | } | 
|  |  | 
|  | if (!file->f_op->mmap) | 
|  | return -ENODEV; | 
|  | if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) | 
|  | return -EINVAL; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } else { | 
|  | switch (flags & MAP_TYPE) { | 
|  | case MAP_SHARED: | 
|  | if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) | 
|  | return -EINVAL; | 
|  | /* | 
|  | * Ignore pgoff. | 
|  | */ | 
|  | pgoff = 0; | 
|  | vm_flags |= VM_SHARED | VM_MAYSHARE; | 
|  | break; | 
|  | case MAP_PRIVATE: | 
|  | /* | 
|  | * Set pgoff according to addr for anon_vma. | 
|  | */ | 
|  | pgoff = addr >> PAGE_SHIFT; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set 'VM_NORESERVE' if we should not account for the | 
|  | * memory use of this mapping. | 
|  | */ | 
|  | if (flags & MAP_NORESERVE) { | 
|  | /* We honor MAP_NORESERVE if allowed to overcommit */ | 
|  | if (sysctl_overcommit_memory != OVERCOMMIT_NEVER) | 
|  | vm_flags |= VM_NORESERVE; | 
|  |  | 
|  | /* hugetlb applies strict overcommit unless MAP_NORESERVE */ | 
|  | if (file && is_file_hugepages(file)) | 
|  | vm_flags |= VM_NORESERVE; | 
|  | } | 
|  |  | 
|  | addr = mmap_region(file, addr, len, vm_flags, pgoff); | 
|  | if (!IS_ERR_VALUE(addr) && | 
|  | ((vm_flags & VM_LOCKED) || | 
|  | (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE)) | 
|  | *populate = len; | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, | 
|  | unsigned long, prot, unsigned long, flags, | 
|  | unsigned long, fd, unsigned long, pgoff) | 
|  | { | 
|  | struct file *file = NULL; | 
|  | unsigned long retval; | 
|  |  | 
|  | if (!(flags & MAP_ANONYMOUS)) { | 
|  | audit_mmap_fd(fd, flags); | 
|  | file = fget(fd); | 
|  | if (!file) | 
|  | return -EBADF; | 
|  | if (is_file_hugepages(file)) | 
|  | len = ALIGN(len, huge_page_size(hstate_file(file))); | 
|  | retval = -EINVAL; | 
|  | if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) | 
|  | goto out_fput; | 
|  | } else if (flags & MAP_HUGETLB) { | 
|  | struct user_struct *user = NULL; | 
|  | struct hstate *hs; | 
|  |  | 
|  | hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK); | 
|  | if (!hs) | 
|  | return -EINVAL; | 
|  |  | 
|  | len = ALIGN(len, huge_page_size(hs)); | 
|  | /* | 
|  | * VM_NORESERVE is used because the reservations will be | 
|  | * taken when vm_ops->mmap() is called | 
|  | * A dummy user value is used because we are not locking | 
|  | * memory so no accounting is necessary | 
|  | */ | 
|  | file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, | 
|  | VM_NORESERVE, | 
|  | &user, HUGETLB_ANONHUGE_INODE, | 
|  | (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK); | 
|  | if (IS_ERR(file)) | 
|  | return PTR_ERR(file); | 
|  | } | 
|  |  | 
|  | flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); | 
|  |  | 
|  | retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); | 
|  | out_fput: | 
|  | if (file) | 
|  | fput(file); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_OLD_MMAP | 
|  | struct mmap_arg_struct { | 
|  | unsigned long addr; | 
|  | unsigned long len; | 
|  | unsigned long prot; | 
|  | unsigned long flags; | 
|  | unsigned long fd; | 
|  | unsigned long offset; | 
|  | }; | 
|  |  | 
|  | SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) | 
|  | { | 
|  | struct mmap_arg_struct a; | 
|  |  | 
|  | if (copy_from_user(&a, arg, sizeof(a))) | 
|  | return -EFAULT; | 
|  | if (offset_in_page(a.offset)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, | 
|  | a.offset >> PAGE_SHIFT); | 
|  | } | 
|  | #endif /* __ARCH_WANT_SYS_OLD_MMAP */ | 
|  |  | 
|  | /* | 
|  | * Some shared mappigns will want the pages marked read-only | 
|  | * to track write events. If so, we'll downgrade vm_page_prot | 
|  | * to the private version (using protection_map[] without the | 
|  | * VM_SHARED bit). | 
|  | */ | 
|  | int vma_wants_writenotify(struct vm_area_struct *vma) | 
|  | { | 
|  | vm_flags_t vm_flags = vma->vm_flags; | 
|  | const struct vm_operations_struct *vm_ops = vma->vm_ops; | 
|  |  | 
|  | /* If it was private or non-writable, the write bit is already clear */ | 
|  | if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) | 
|  | return 0; | 
|  |  | 
|  | /* The backer wishes to know when pages are first written to? */ | 
|  | if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite)) | 
|  | return 1; | 
|  |  | 
|  | /* The open routine did something to the protections that pgprot_modify | 
|  | * won't preserve? */ | 
|  | if (pgprot_val(vma->vm_page_prot) != | 
|  | pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags))) | 
|  | return 0; | 
|  |  | 
|  | /* Do we need to track softdirty? */ | 
|  | if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY)) | 
|  | return 1; | 
|  |  | 
|  | /* Specialty mapping? */ | 
|  | if (vm_flags & VM_PFNMAP) | 
|  | return 0; | 
|  |  | 
|  | /* Can the mapping track the dirty pages? */ | 
|  | return vma->vm_file && vma->vm_file->f_mapping && | 
|  | mapping_cap_account_dirty(vma->vm_file->f_mapping); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We account for memory if it's a private writeable mapping, | 
|  | * not hugepages and VM_NORESERVE wasn't set. | 
|  | */ | 
|  | static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags) | 
|  | { | 
|  | /* | 
|  | * hugetlb has its own accounting separate from the core VM | 
|  | * VM_HUGETLB may not be set yet so we cannot check for that flag. | 
|  | */ | 
|  | if (file && is_file_hugepages(file)) | 
|  | return 0; | 
|  |  | 
|  | return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; | 
|  | } | 
|  |  | 
|  | unsigned long mmap_region(struct file *file, unsigned long addr, | 
|  | unsigned long len, vm_flags_t vm_flags, unsigned long pgoff) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *vma, *prev; | 
|  | int error; | 
|  | struct rb_node **rb_link, *rb_parent; | 
|  | unsigned long charged = 0; | 
|  |  | 
|  | /* Check against address space limit. */ | 
|  | if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) { | 
|  | unsigned long nr_pages; | 
|  |  | 
|  | /* | 
|  | * MAP_FIXED may remove pages of mappings that intersects with | 
|  | * requested mapping. Account for the pages it would unmap. | 
|  | */ | 
|  | nr_pages = count_vma_pages_range(mm, addr, addr + len); | 
|  |  | 
|  | if (!may_expand_vm(mm, vm_flags, | 
|  | (len >> PAGE_SHIFT) - nr_pages)) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Clear old maps */ | 
|  | while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, | 
|  | &rb_parent)) { | 
|  | if (do_munmap(mm, addr, len)) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Private writable mapping: check memory availability | 
|  | */ | 
|  | if (accountable_mapping(file, vm_flags)) { | 
|  | charged = len >> PAGE_SHIFT; | 
|  | if (security_vm_enough_memory_mm(mm, charged)) | 
|  | return -ENOMEM; | 
|  | vm_flags |= VM_ACCOUNT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Can we just expand an old mapping? | 
|  | */ | 
|  | vma = vma_merge(mm, prev, addr, addr + len, vm_flags, | 
|  | NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX); | 
|  | if (vma) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Determine the object being mapped and call the appropriate | 
|  | * specific mapper. the address has already been validated, but | 
|  | * not unmapped, but the maps are removed from the list. | 
|  | */ | 
|  | vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); | 
|  | if (!vma) { | 
|  | error = -ENOMEM; | 
|  | goto unacct_error; | 
|  | } | 
|  |  | 
|  | vma->vm_mm = mm; | 
|  | vma->vm_start = addr; | 
|  | vma->vm_end = addr + len; | 
|  | vma->vm_flags = vm_flags; | 
|  | vma->vm_page_prot = vm_get_page_prot(vm_flags); | 
|  | vma->vm_pgoff = pgoff; | 
|  | INIT_LIST_HEAD(&vma->anon_vma_chain); | 
|  |  | 
|  | if (file) { | 
|  | if (vm_flags & VM_DENYWRITE) { | 
|  | error = deny_write_access(file); | 
|  | if (error) | 
|  | goto free_vma; | 
|  | } | 
|  | if (vm_flags & VM_SHARED) { | 
|  | error = mapping_map_writable(file->f_mapping); | 
|  | if (error) | 
|  | goto allow_write_and_free_vma; | 
|  | } | 
|  |  | 
|  | /* ->mmap() can change vma->vm_file, but must guarantee that | 
|  | * vma_link() below can deny write-access if VM_DENYWRITE is set | 
|  | * and map writably if VM_SHARED is set. This usually means the | 
|  | * new file must not have been exposed to user-space, yet. | 
|  | */ | 
|  | vma->vm_file = get_file(file); | 
|  | error = file->f_op->mmap(file, vma); | 
|  | if (error) | 
|  | goto unmap_and_free_vma; | 
|  |  | 
|  | /* Can addr have changed?? | 
|  | * | 
|  | * Answer: Yes, several device drivers can do it in their | 
|  | *         f_op->mmap method. -DaveM | 
|  | * Bug: If addr is changed, prev, rb_link, rb_parent should | 
|  | *      be updated for vma_link() | 
|  | */ | 
|  | WARN_ON_ONCE(addr != vma->vm_start); | 
|  |  | 
|  | addr = vma->vm_start; | 
|  | vm_flags = vma->vm_flags; | 
|  | } else if (vm_flags & VM_SHARED) { | 
|  | error = shmem_zero_setup(vma); | 
|  | if (error) | 
|  | goto free_vma; | 
|  | } | 
|  |  | 
|  | vma_link(mm, vma, prev, rb_link, rb_parent); | 
|  | /* Once vma denies write, undo our temporary denial count */ | 
|  | if (file) { | 
|  | if (vm_flags & VM_SHARED) | 
|  | mapping_unmap_writable(file->f_mapping); | 
|  | if (vm_flags & VM_DENYWRITE) | 
|  | allow_write_access(file); | 
|  | } | 
|  | file = vma->vm_file; | 
|  | out: | 
|  | perf_event_mmap(vma); | 
|  |  | 
|  | vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT); | 
|  | if (vm_flags & VM_LOCKED) { | 
|  | if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) || | 
|  | vma == get_gate_vma(current->mm))) | 
|  | mm->locked_vm += (len >> PAGE_SHIFT); | 
|  | else | 
|  | vma->vm_flags &= VM_LOCKED_CLEAR_MASK; | 
|  | } | 
|  |  | 
|  | if (file) | 
|  | uprobe_mmap(vma); | 
|  |  | 
|  | /* | 
|  | * New (or expanded) vma always get soft dirty status. | 
|  | * Otherwise user-space soft-dirty page tracker won't | 
|  | * be able to distinguish situation when vma area unmapped, | 
|  | * then new mapped in-place (which must be aimed as | 
|  | * a completely new data area). | 
|  | */ | 
|  | vma->vm_flags |= VM_SOFTDIRTY; | 
|  |  | 
|  | vma_set_page_prot(vma); | 
|  |  | 
|  | return addr; | 
|  |  | 
|  | unmap_and_free_vma: | 
|  | vma->vm_file = NULL; | 
|  | fput(file); | 
|  |  | 
|  | /* Undo any partial mapping done by a device driver. */ | 
|  | unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end); | 
|  | charged = 0; | 
|  | if (vm_flags & VM_SHARED) | 
|  | mapping_unmap_writable(file->f_mapping); | 
|  | allow_write_and_free_vma: | 
|  | if (vm_flags & VM_DENYWRITE) | 
|  | allow_write_access(file); | 
|  | free_vma: | 
|  | kmem_cache_free(vm_area_cachep, vma); | 
|  | unacct_error: | 
|  | if (charged) | 
|  | vm_unacct_memory(charged); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | unsigned long unmapped_area(struct vm_unmapped_area_info *info) | 
|  | { | 
|  | /* | 
|  | * We implement the search by looking for an rbtree node that | 
|  | * immediately follows a suitable gap. That is, | 
|  | * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length; | 
|  | * - gap_end   = vma->vm_start        >= info->low_limit  + length; | 
|  | * - gap_end - gap_start >= length | 
|  | */ | 
|  |  | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long length, low_limit, high_limit, gap_start, gap_end; | 
|  |  | 
|  | /* Adjust search length to account for worst case alignment overhead */ | 
|  | length = info->length + info->align_mask; | 
|  | if (length < info->length) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Adjust search limits by the desired length */ | 
|  | if (info->high_limit < length) | 
|  | return -ENOMEM; | 
|  | high_limit = info->high_limit - length; | 
|  |  | 
|  | if (info->low_limit > high_limit) | 
|  | return -ENOMEM; | 
|  | low_limit = info->low_limit + length; | 
|  |  | 
|  | /* Check if rbtree root looks promising */ | 
|  | if (RB_EMPTY_ROOT(&mm->mm_rb)) | 
|  | goto check_highest; | 
|  | vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); | 
|  | if (vma->rb_subtree_gap < length) | 
|  | goto check_highest; | 
|  |  | 
|  | while (true) { | 
|  | /* Visit left subtree if it looks promising */ | 
|  | gap_end = vma->vm_start; | 
|  | if (gap_end >= low_limit && vma->vm_rb.rb_left) { | 
|  | struct vm_area_struct *left = | 
|  | rb_entry(vma->vm_rb.rb_left, | 
|  | struct vm_area_struct, vm_rb); | 
|  | if (left->rb_subtree_gap >= length) { | 
|  | vma = left; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; | 
|  | check_current: | 
|  | /* Check if current node has a suitable gap */ | 
|  | if (gap_start > high_limit) | 
|  | return -ENOMEM; | 
|  | if (gap_end >= low_limit && gap_end - gap_start >= length) | 
|  | goto found; | 
|  |  | 
|  | /* Visit right subtree if it looks promising */ | 
|  | if (vma->vm_rb.rb_right) { | 
|  | struct vm_area_struct *right = | 
|  | rb_entry(vma->vm_rb.rb_right, | 
|  | struct vm_area_struct, vm_rb); | 
|  | if (right->rb_subtree_gap >= length) { | 
|  | vma = right; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Go back up the rbtree to find next candidate node */ | 
|  | while (true) { | 
|  | struct rb_node *prev = &vma->vm_rb; | 
|  | if (!rb_parent(prev)) | 
|  | goto check_highest; | 
|  | vma = rb_entry(rb_parent(prev), | 
|  | struct vm_area_struct, vm_rb); | 
|  | if (prev == vma->vm_rb.rb_left) { | 
|  | gap_start = vma->vm_prev->vm_end; | 
|  | gap_end = vma->vm_start; | 
|  | goto check_current; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | check_highest: | 
|  | /* Check highest gap, which does not precede any rbtree node */ | 
|  | gap_start = mm->highest_vm_end; | 
|  | gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */ | 
|  | if (gap_start > high_limit) | 
|  | return -ENOMEM; | 
|  |  | 
|  | found: | 
|  | /* We found a suitable gap. Clip it with the original low_limit. */ | 
|  | if (gap_start < info->low_limit) | 
|  | gap_start = info->low_limit; | 
|  |  | 
|  | /* Adjust gap address to the desired alignment */ | 
|  | gap_start += (info->align_offset - gap_start) & info->align_mask; | 
|  |  | 
|  | VM_BUG_ON(gap_start + info->length > info->high_limit); | 
|  | VM_BUG_ON(gap_start + info->length > gap_end); | 
|  | return gap_start; | 
|  | } | 
|  |  | 
|  | unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long length, low_limit, high_limit, gap_start, gap_end; | 
|  |  | 
|  | /* Adjust search length to account for worst case alignment overhead */ | 
|  | length = info->length + info->align_mask; | 
|  | if (length < info->length) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Adjust search limits by the desired length. | 
|  | * See implementation comment at top of unmapped_area(). | 
|  | */ | 
|  | gap_end = info->high_limit; | 
|  | if (gap_end < length) | 
|  | return -ENOMEM; | 
|  | high_limit = gap_end - length; | 
|  |  | 
|  | if (info->low_limit > high_limit) | 
|  | return -ENOMEM; | 
|  | low_limit = info->low_limit + length; | 
|  |  | 
|  | /* Check highest gap, which does not precede any rbtree node */ | 
|  | gap_start = mm->highest_vm_end; | 
|  | if (gap_start <= high_limit) | 
|  | goto found_highest; | 
|  |  | 
|  | /* Check if rbtree root looks promising */ | 
|  | if (RB_EMPTY_ROOT(&mm->mm_rb)) | 
|  | return -ENOMEM; | 
|  | vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb); | 
|  | if (vma->rb_subtree_gap < length) | 
|  | return -ENOMEM; | 
|  |  | 
|  | while (true) { | 
|  | /* Visit right subtree if it looks promising */ | 
|  | gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0; | 
|  | if (gap_start <= high_limit && vma->vm_rb.rb_right) { | 
|  | struct vm_area_struct *right = | 
|  | rb_entry(vma->vm_rb.rb_right, | 
|  | struct vm_area_struct, vm_rb); | 
|  | if (right->rb_subtree_gap >= length) { | 
|  | vma = right; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | check_current: | 
|  | /* Check if current node has a suitable gap */ | 
|  | gap_end = vma->vm_start; | 
|  | if (gap_end < low_limit) | 
|  | return -ENOMEM; | 
|  | if (gap_start <= high_limit && gap_end - gap_start >= length) | 
|  | goto found; | 
|  |  | 
|  | /* Visit left subtree if it looks promising */ | 
|  | if (vma->vm_rb.rb_left) { | 
|  | struct vm_area_struct *left = | 
|  | rb_entry(vma->vm_rb.rb_left, | 
|  | struct vm_area_struct, vm_rb); | 
|  | if (left->rb_subtree_gap >= length) { | 
|  | vma = left; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Go back up the rbtree to find next candidate node */ | 
|  | while (true) { | 
|  | struct rb_node *prev = &vma->vm_rb; | 
|  | if (!rb_parent(prev)) | 
|  | return -ENOMEM; | 
|  | vma = rb_entry(rb_parent(prev), | 
|  | struct vm_area_struct, vm_rb); | 
|  | if (prev == vma->vm_rb.rb_right) { | 
|  | gap_start = vma->vm_prev ? | 
|  | vma->vm_prev->vm_end : 0; | 
|  | goto check_current; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | found: | 
|  | /* We found a suitable gap. Clip it with the original high_limit. */ | 
|  | if (gap_end > info->high_limit) | 
|  | gap_end = info->high_limit; | 
|  |  | 
|  | found_highest: | 
|  | /* Compute highest gap address at the desired alignment */ | 
|  | gap_end -= info->length; | 
|  | gap_end -= (gap_end - info->align_offset) & info->align_mask; | 
|  |  | 
|  | VM_BUG_ON(gap_end < info->low_limit); | 
|  | VM_BUG_ON(gap_end < gap_start); | 
|  | return gap_end; | 
|  | } | 
|  |  | 
|  | /* Get an address range which is currently unmapped. | 
|  | * For shmat() with addr=0. | 
|  | * | 
|  | * Ugly calling convention alert: | 
|  | * Return value with the low bits set means error value, | 
|  | * ie | 
|  | *	if (ret & ~PAGE_MASK) | 
|  | *		error = ret; | 
|  | * | 
|  | * This function "knows" that -ENOMEM has the bits set. | 
|  | */ | 
|  | #ifndef HAVE_ARCH_UNMAPPED_AREA | 
|  | unsigned long | 
|  | arch_get_unmapped_area(struct file *filp, unsigned long addr, | 
|  | unsigned long len, unsigned long pgoff, unsigned long flags) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *vma; | 
|  | struct vm_unmapped_area_info info; | 
|  |  | 
|  | if (len > TASK_SIZE - mmap_min_addr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (flags & MAP_FIXED) | 
|  | return addr; | 
|  |  | 
|  | if (addr) { | 
|  | addr = PAGE_ALIGN(addr); | 
|  | vma = find_vma(mm, addr); | 
|  | if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && | 
|  | (!vma || addr + len <= vma->vm_start)) | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | info.flags = 0; | 
|  | info.length = len; | 
|  | info.low_limit = mm->mmap_base; | 
|  | info.high_limit = TASK_SIZE; | 
|  | info.align_mask = 0; | 
|  | return vm_unmapped_area(&info); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This mmap-allocator allocates new areas top-down from below the | 
|  | * stack's low limit (the base): | 
|  | */ | 
|  | #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN | 
|  | unsigned long | 
|  | arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, | 
|  | const unsigned long len, const unsigned long pgoff, | 
|  | const unsigned long flags) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | struct mm_struct *mm = current->mm; | 
|  | unsigned long addr = addr0; | 
|  | struct vm_unmapped_area_info info; | 
|  |  | 
|  | /* requested length too big for entire address space */ | 
|  | if (len > TASK_SIZE - mmap_min_addr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (flags & MAP_FIXED) | 
|  | return addr; | 
|  |  | 
|  | /* requesting a specific address */ | 
|  | if (addr) { | 
|  | addr = PAGE_ALIGN(addr); | 
|  | vma = find_vma(mm, addr); | 
|  | if (TASK_SIZE - len >= addr && addr >= mmap_min_addr && | 
|  | (!vma || addr + len <= vma->vm_start)) | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | info.flags = VM_UNMAPPED_AREA_TOPDOWN; | 
|  | info.length = len; | 
|  | info.low_limit = max(PAGE_SIZE, mmap_min_addr); | 
|  | info.high_limit = mm->mmap_base; | 
|  | info.align_mask = 0; | 
|  | addr = vm_unmapped_area(&info); | 
|  |  | 
|  | /* | 
|  | * A failed mmap() very likely causes application failure, | 
|  | * so fall back to the bottom-up function here. This scenario | 
|  | * can happen with large stack limits and large mmap() | 
|  | * allocations. | 
|  | */ | 
|  | if (offset_in_page(addr)) { | 
|  | VM_BUG_ON(addr != -ENOMEM); | 
|  | info.flags = 0; | 
|  | info.low_limit = TASK_UNMAPPED_BASE; | 
|  | info.high_limit = TASK_SIZE; | 
|  | addr = vm_unmapped_area(&info); | 
|  | } | 
|  |  | 
|  | return addr; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | unsigned long | 
|  | get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, | 
|  | unsigned long pgoff, unsigned long flags) | 
|  | { | 
|  | unsigned long (*get_area)(struct file *, unsigned long, | 
|  | unsigned long, unsigned long, unsigned long); | 
|  |  | 
|  | unsigned long error = arch_mmap_check(addr, len, flags); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* Careful about overflows.. */ | 
|  | if (len > TASK_SIZE) | 
|  | return -ENOMEM; | 
|  |  | 
|  | get_area = current->mm->get_unmapped_area; | 
|  | if (file && file->f_op->get_unmapped_area) | 
|  | get_area = file->f_op->get_unmapped_area; | 
|  | addr = get_area(file, addr, len, pgoff, flags); | 
|  | if (IS_ERR_VALUE(addr)) | 
|  | return addr; | 
|  |  | 
|  | if (addr > TASK_SIZE - len) | 
|  | return -ENOMEM; | 
|  | if (offset_in_page(addr)) | 
|  | return -EINVAL; | 
|  |  | 
|  | addr = arch_rebalance_pgtables(addr, len); | 
|  | error = security_mmap_addr(addr); | 
|  | return error ? error : addr; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(get_unmapped_area); | 
|  |  | 
|  | /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */ | 
|  | struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) | 
|  | { | 
|  | struct rb_node *rb_node; | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | /* Check the cache first. */ | 
|  | vma = vmacache_find(mm, addr); | 
|  | if (likely(vma)) | 
|  | return vma; | 
|  |  | 
|  | rb_node = mm->mm_rb.rb_node; | 
|  |  | 
|  | while (rb_node) { | 
|  | struct vm_area_struct *tmp; | 
|  |  | 
|  | tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb); | 
|  |  | 
|  | if (tmp->vm_end > addr) { | 
|  | vma = tmp; | 
|  | if (tmp->vm_start <= addr) | 
|  | break; | 
|  | rb_node = rb_node->rb_left; | 
|  | } else | 
|  | rb_node = rb_node->rb_right; | 
|  | } | 
|  |  | 
|  | if (vma) | 
|  | vmacache_update(addr, vma); | 
|  | return vma; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(find_vma); | 
|  |  | 
|  | /* | 
|  | * Same as find_vma, but also return a pointer to the previous VMA in *pprev. | 
|  | */ | 
|  | struct vm_area_struct * | 
|  | find_vma_prev(struct mm_struct *mm, unsigned long addr, | 
|  | struct vm_area_struct **pprev) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | vma = find_vma(mm, addr); | 
|  | if (vma) { | 
|  | *pprev = vma->vm_prev; | 
|  | } else { | 
|  | struct rb_node *rb_node = mm->mm_rb.rb_node; | 
|  | *pprev = NULL; | 
|  | while (rb_node) { | 
|  | *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb); | 
|  | rb_node = rb_node->rb_right; | 
|  | } | 
|  | } | 
|  | return vma; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Verify that the stack growth is acceptable and | 
|  | * update accounting. This is shared with both the | 
|  | * grow-up and grow-down cases. | 
|  | */ | 
|  | static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct rlimit *rlim = current->signal->rlim; | 
|  | unsigned long new_start, actual_size; | 
|  |  | 
|  | /* address space limit tests */ | 
|  | if (!may_expand_vm(mm, vma->vm_flags, grow)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Stack limit test */ | 
|  | actual_size = size; | 
|  | if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN))) | 
|  | actual_size -= PAGE_SIZE; | 
|  | if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* mlock limit tests */ | 
|  | if (vma->vm_flags & VM_LOCKED) { | 
|  | unsigned long locked; | 
|  | unsigned long limit; | 
|  | locked = mm->locked_vm + grow; | 
|  | limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur); | 
|  | limit >>= PAGE_SHIFT; | 
|  | if (locked > limit && !capable(CAP_IPC_LOCK)) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Check to ensure the stack will not grow into a hugetlb-only region */ | 
|  | new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : | 
|  | vma->vm_end - size; | 
|  | if (is_hugepage_only_range(vma->vm_mm, new_start, size)) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* | 
|  | * Overcommit..  This must be the final test, as it will | 
|  | * update security statistics. | 
|  | */ | 
|  | if (security_vm_enough_memory_mm(mm, grow)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) | 
|  | /* | 
|  | * PA-RISC uses this for its stack; IA64 for its Register Backing Store. | 
|  | * vma is the last one with address > vma->vm_end.  Have to extend vma. | 
|  | */ | 
|  | int expand_upwards(struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | int error = 0; | 
|  |  | 
|  | if (!(vma->vm_flags & VM_GROWSUP)) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* Guard against wrapping around to address 0. */ | 
|  | if (address < PAGE_ALIGN(address+4)) | 
|  | address = PAGE_ALIGN(address+4); | 
|  | else | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* We must make sure the anon_vma is allocated. */ | 
|  | if (unlikely(anon_vma_prepare(vma))) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * vma->vm_start/vm_end cannot change under us because the caller | 
|  | * is required to hold the mmap_sem in read mode.  We need the | 
|  | * anon_vma lock to serialize against concurrent expand_stacks. | 
|  | */ | 
|  | anon_vma_lock_write(vma->anon_vma); | 
|  |  | 
|  | /* Somebody else might have raced and expanded it already */ | 
|  | if (address > vma->vm_end) { | 
|  | unsigned long size, grow; | 
|  |  | 
|  | size = address - vma->vm_start; | 
|  | grow = (address - vma->vm_end) >> PAGE_SHIFT; | 
|  |  | 
|  | error = -ENOMEM; | 
|  | if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { | 
|  | error = acct_stack_growth(vma, size, grow); | 
|  | if (!error) { | 
|  | /* | 
|  | * vma_gap_update() doesn't support concurrent | 
|  | * updates, but we only hold a shared mmap_sem | 
|  | * lock here, so we need to protect against | 
|  | * concurrent vma expansions. | 
|  | * anon_vma_lock_write() doesn't help here, as | 
|  | * we don't guarantee that all growable vmas | 
|  | * in a mm share the same root anon vma. | 
|  | * So, we reuse mm->page_table_lock to guard | 
|  | * against concurrent vma expansions. | 
|  | */ | 
|  | spin_lock(&mm->page_table_lock); | 
|  | if (vma->vm_flags & VM_LOCKED) | 
|  | mm->locked_vm += grow; | 
|  | vm_stat_account(mm, vma->vm_flags, grow); | 
|  | anon_vma_interval_tree_pre_update_vma(vma); | 
|  | vma->vm_end = address; | 
|  | anon_vma_interval_tree_post_update_vma(vma); | 
|  | if (vma->vm_next) | 
|  | vma_gap_update(vma->vm_next); | 
|  | else | 
|  | mm->highest_vm_end = address; | 
|  | spin_unlock(&mm->page_table_lock); | 
|  |  | 
|  | perf_event_mmap(vma); | 
|  | } | 
|  | } | 
|  | } | 
|  | anon_vma_unlock_write(vma->anon_vma); | 
|  | khugepaged_enter_vma_merge(vma, vma->vm_flags); | 
|  | validate_mm(mm); | 
|  | return error; | 
|  | } | 
|  | #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ | 
|  |  | 
|  | /* | 
|  | * vma is the first one with address < vma->vm_start.  Have to extend vma. | 
|  | */ | 
|  | int expand_downwards(struct vm_area_struct *vma, | 
|  | unsigned long address) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | int error; | 
|  |  | 
|  | address &= PAGE_MASK; | 
|  | error = security_mmap_addr(address); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* We must make sure the anon_vma is allocated. */ | 
|  | if (unlikely(anon_vma_prepare(vma))) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * vma->vm_start/vm_end cannot change under us because the caller | 
|  | * is required to hold the mmap_sem in read mode.  We need the | 
|  | * anon_vma lock to serialize against concurrent expand_stacks. | 
|  | */ | 
|  | anon_vma_lock_write(vma->anon_vma); | 
|  |  | 
|  | /* Somebody else might have raced and expanded it already */ | 
|  | if (address < vma->vm_start) { | 
|  | unsigned long size, grow; | 
|  |  | 
|  | size = vma->vm_end - address; | 
|  | grow = (vma->vm_start - address) >> PAGE_SHIFT; | 
|  |  | 
|  | error = -ENOMEM; | 
|  | if (grow <= vma->vm_pgoff) { | 
|  | error = acct_stack_growth(vma, size, grow); | 
|  | if (!error) { | 
|  | /* | 
|  | * vma_gap_update() doesn't support concurrent | 
|  | * updates, but we only hold a shared mmap_sem | 
|  | * lock here, so we need to protect against | 
|  | * concurrent vma expansions. | 
|  | * anon_vma_lock_write() doesn't help here, as | 
|  | * we don't guarantee that all growable vmas | 
|  | * in a mm share the same root anon vma. | 
|  | * So, we reuse mm->page_table_lock to guard | 
|  | * against concurrent vma expansions. | 
|  | */ | 
|  | spin_lock(&mm->page_table_lock); | 
|  | if (vma->vm_flags & VM_LOCKED) | 
|  | mm->locked_vm += grow; | 
|  | vm_stat_account(mm, vma->vm_flags, grow); | 
|  | anon_vma_interval_tree_pre_update_vma(vma); | 
|  | vma->vm_start = address; | 
|  | vma->vm_pgoff -= grow; | 
|  | anon_vma_interval_tree_post_update_vma(vma); | 
|  | vma_gap_update(vma); | 
|  | spin_unlock(&mm->page_table_lock); | 
|  |  | 
|  | perf_event_mmap(vma); | 
|  | } | 
|  | } | 
|  | } | 
|  | anon_vma_unlock_write(vma->anon_vma); | 
|  | khugepaged_enter_vma_merge(vma, vma->vm_flags); | 
|  | validate_mm(mm); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note how expand_stack() refuses to expand the stack all the way to | 
|  | * abut the next virtual mapping, *unless* that mapping itself is also | 
|  | * a stack mapping. We want to leave room for a guard page, after all | 
|  | * (the guard page itself is not added here, that is done by the | 
|  | * actual page faulting logic) | 
|  | * | 
|  | * This matches the behavior of the guard page logic (see mm/memory.c: | 
|  | * check_stack_guard_page()), which only allows the guard page to be | 
|  | * removed under these circumstances. | 
|  | */ | 
|  | #ifdef CONFIG_STACK_GROWSUP | 
|  | int expand_stack(struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | struct vm_area_struct *next; | 
|  |  | 
|  | address &= PAGE_MASK; | 
|  | next = vma->vm_next; | 
|  | if (next && next->vm_start == address + PAGE_SIZE) { | 
|  | if (!(next->vm_flags & VM_GROWSUP)) | 
|  | return -ENOMEM; | 
|  | } | 
|  | return expand_upwards(vma, address); | 
|  | } | 
|  |  | 
|  | struct vm_area_struct * | 
|  | find_extend_vma(struct mm_struct *mm, unsigned long addr) | 
|  | { | 
|  | struct vm_area_struct *vma, *prev; | 
|  |  | 
|  | addr &= PAGE_MASK; | 
|  | vma = find_vma_prev(mm, addr, &prev); | 
|  | if (vma && (vma->vm_start <= addr)) | 
|  | return vma; | 
|  | if (!prev || expand_stack(prev, addr)) | 
|  | return NULL; | 
|  | if (prev->vm_flags & VM_LOCKED) | 
|  | populate_vma_page_range(prev, addr, prev->vm_end, NULL); | 
|  | return prev; | 
|  | } | 
|  | #else | 
|  | int expand_stack(struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | struct vm_area_struct *prev; | 
|  |  | 
|  | address &= PAGE_MASK; | 
|  | prev = vma->vm_prev; | 
|  | if (prev && prev->vm_end == address) { | 
|  | if (!(prev->vm_flags & VM_GROWSDOWN)) | 
|  | return -ENOMEM; | 
|  | } | 
|  | return expand_downwards(vma, address); | 
|  | } | 
|  |  | 
|  | struct vm_area_struct * | 
|  | find_extend_vma(struct mm_struct *mm, unsigned long addr) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long start; | 
|  |  | 
|  | addr &= PAGE_MASK; | 
|  | vma = find_vma(mm, addr); | 
|  | if (!vma) | 
|  | return NULL; | 
|  | if (vma->vm_start <= addr) | 
|  | return vma; | 
|  | if (!(vma->vm_flags & VM_GROWSDOWN)) | 
|  | return NULL; | 
|  | start = vma->vm_start; | 
|  | if (expand_stack(vma, addr)) | 
|  | return NULL; | 
|  | if (vma->vm_flags & VM_LOCKED) | 
|  | populate_vma_page_range(vma, addr, start, NULL); | 
|  | return vma; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(find_extend_vma); | 
|  |  | 
|  | /* | 
|  | * Ok - we have the memory areas we should free on the vma list, | 
|  | * so release them, and do the vma updates. | 
|  | * | 
|  | * Called with the mm semaphore held. | 
|  | */ | 
|  | static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma) | 
|  | { | 
|  | unsigned long nr_accounted = 0; | 
|  |  | 
|  | /* Update high watermark before we lower total_vm */ | 
|  | update_hiwater_vm(mm); | 
|  | do { | 
|  | long nrpages = vma_pages(vma); | 
|  |  | 
|  | if (vma->vm_flags & VM_ACCOUNT) | 
|  | nr_accounted += nrpages; | 
|  | vm_stat_account(mm, vma->vm_flags, -nrpages); | 
|  | vma = remove_vma(vma); | 
|  | } while (vma); | 
|  | vm_unacct_memory(nr_accounted); | 
|  | validate_mm(mm); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get rid of page table information in the indicated region. | 
|  | * | 
|  | * Called with the mm semaphore held. | 
|  | */ | 
|  | static void unmap_region(struct mm_struct *mm, | 
|  | struct vm_area_struct *vma, struct vm_area_struct *prev, | 
|  | unsigned long start, unsigned long end) | 
|  | { | 
|  | struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap; | 
|  | struct mmu_gather tlb; | 
|  |  | 
|  | lru_add_drain(); | 
|  | tlb_gather_mmu(&tlb, mm, start, end); | 
|  | update_hiwater_rss(mm); | 
|  | unmap_vmas(&tlb, vma, start, end); | 
|  | free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, | 
|  | next ? next->vm_start : USER_PGTABLES_CEILING); | 
|  | tlb_finish_mmu(&tlb, start, end); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create a list of vma's touched by the unmap, removing them from the mm's | 
|  | * vma list as we go.. | 
|  | */ | 
|  | static void | 
|  | detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | struct vm_area_struct *prev, unsigned long end) | 
|  | { | 
|  | struct vm_area_struct **insertion_point; | 
|  | struct vm_area_struct *tail_vma = NULL; | 
|  |  | 
|  | insertion_point = (prev ? &prev->vm_next : &mm->mmap); | 
|  | vma->vm_prev = NULL; | 
|  | do { | 
|  | vma_rb_erase(vma, &mm->mm_rb); | 
|  | mm->map_count--; | 
|  | tail_vma = vma; | 
|  | vma = vma->vm_next; | 
|  | } while (vma && vma->vm_start < end); | 
|  | *insertion_point = vma; | 
|  | if (vma) { | 
|  | vma->vm_prev = prev; | 
|  | vma_gap_update(vma); | 
|  | } else | 
|  | mm->highest_vm_end = prev ? prev->vm_end : 0; | 
|  | tail_vma->vm_next = NULL; | 
|  |  | 
|  | /* Kill the cache */ | 
|  | vmacache_invalidate(mm); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the | 
|  | * munmap path where it doesn't make sense to fail. | 
|  | */ | 
|  | static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long addr, int new_below) | 
|  | { | 
|  | struct vm_area_struct *new; | 
|  | int err; | 
|  |  | 
|  | if (is_vm_hugetlb_page(vma) && (addr & | 
|  | ~(huge_page_mask(hstate_vma(vma))))) | 
|  | return -EINVAL; | 
|  |  | 
|  | new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* most fields are the same, copy all, and then fixup */ | 
|  | *new = *vma; | 
|  |  | 
|  | INIT_LIST_HEAD(&new->anon_vma_chain); | 
|  |  | 
|  | if (new_below) | 
|  | new->vm_end = addr; | 
|  | else { | 
|  | new->vm_start = addr; | 
|  | new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | err = vma_dup_policy(vma, new); | 
|  | if (err) | 
|  | goto out_free_vma; | 
|  |  | 
|  | err = anon_vma_clone(new, vma); | 
|  | if (err) | 
|  | goto out_free_mpol; | 
|  |  | 
|  | if (new->vm_file) | 
|  | get_file(new->vm_file); | 
|  |  | 
|  | if (new->vm_ops && new->vm_ops->open) | 
|  | new->vm_ops->open(new); | 
|  |  | 
|  | if (new_below) | 
|  | err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff + | 
|  | ((addr - new->vm_start) >> PAGE_SHIFT), new); | 
|  | else | 
|  | err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new); | 
|  |  | 
|  | /* Success. */ | 
|  | if (!err) | 
|  | return 0; | 
|  |  | 
|  | /* Clean everything up if vma_adjust failed. */ | 
|  | if (new->vm_ops && new->vm_ops->close) | 
|  | new->vm_ops->close(new); | 
|  | if (new->vm_file) | 
|  | fput(new->vm_file); | 
|  | unlink_anon_vmas(new); | 
|  | out_free_mpol: | 
|  | mpol_put(vma_policy(new)); | 
|  | out_free_vma: | 
|  | kmem_cache_free(vm_area_cachep, new); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Split a vma into two pieces at address 'addr', a new vma is allocated | 
|  | * either for the first part or the tail. | 
|  | */ | 
|  | int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long addr, int new_below) | 
|  | { | 
|  | if (mm->map_count >= sysctl_max_map_count) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return __split_vma(mm, vma, addr, new_below); | 
|  | } | 
|  |  | 
|  | /* Munmap is split into 2 main parts -- this part which finds | 
|  | * what needs doing, and the areas themselves, which do the | 
|  | * work.  This now handles partial unmappings. | 
|  | * Jeremy Fitzhardinge <jeremy@goop.org> | 
|  | */ | 
|  | int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) | 
|  | { | 
|  | unsigned long end; | 
|  | struct vm_area_struct *vma, *prev, *last; | 
|  |  | 
|  | if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) | 
|  | return -EINVAL; | 
|  |  | 
|  | len = PAGE_ALIGN(len); | 
|  | if (len == 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Find the first overlapping VMA */ | 
|  | vma = find_vma(mm, start); | 
|  | if (!vma) | 
|  | return 0; | 
|  | prev = vma->vm_prev; | 
|  | /* we have  start < vma->vm_end  */ | 
|  |  | 
|  | /* if it doesn't overlap, we have nothing.. */ | 
|  | end = start + len; | 
|  | if (vma->vm_start >= end) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If we need to split any vma, do it now to save pain later. | 
|  | * | 
|  | * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially | 
|  | * unmapped vm_area_struct will remain in use: so lower split_vma | 
|  | * places tmp vma above, and higher split_vma places tmp vma below. | 
|  | */ | 
|  | if (start > vma->vm_start) { | 
|  | int error; | 
|  |  | 
|  | /* | 
|  | * Make sure that map_count on return from munmap() will | 
|  | * not exceed its limit; but let map_count go just above | 
|  | * its limit temporarily, to help free resources as expected. | 
|  | */ | 
|  | if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count) | 
|  | return -ENOMEM; | 
|  |  | 
|  | error = __split_vma(mm, vma, start, 0); | 
|  | if (error) | 
|  | return error; | 
|  | prev = vma; | 
|  | } | 
|  |  | 
|  | /* Does it split the last one? */ | 
|  | last = find_vma(mm, end); | 
|  | if (last && end > last->vm_start) { | 
|  | int error = __split_vma(mm, last, end, 1); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  | vma = prev ? prev->vm_next : mm->mmap; | 
|  |  | 
|  | /* | 
|  | * unlock any mlock()ed ranges before detaching vmas | 
|  | */ | 
|  | if (mm->locked_vm) { | 
|  | struct vm_area_struct *tmp = vma; | 
|  | while (tmp && tmp->vm_start < end) { | 
|  | if (tmp->vm_flags & VM_LOCKED) { | 
|  | mm->locked_vm -= vma_pages(tmp); | 
|  | munlock_vma_pages_all(tmp); | 
|  | } | 
|  | tmp = tmp->vm_next; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove the vma's, and unmap the actual pages | 
|  | */ | 
|  | detach_vmas_to_be_unmapped(mm, vma, prev, end); | 
|  | unmap_region(mm, vma, prev, start, end); | 
|  |  | 
|  | arch_unmap(mm, vma, start, end); | 
|  |  | 
|  | /* Fix up all other VM information */ | 
|  | remove_vma_list(mm, vma); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int vm_munmap(unsigned long start, size_t len) | 
|  | { | 
|  | int ret; | 
|  | struct mm_struct *mm = current->mm; | 
|  |  | 
|  | down_write(&mm->mmap_sem); | 
|  | ret = do_munmap(mm, start, len); | 
|  | up_write(&mm->mmap_sem); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(vm_munmap); | 
|  |  | 
|  | SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) | 
|  | { | 
|  | profile_munmap(addr); | 
|  | return vm_munmap(addr, len); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Emulation of deprecated remap_file_pages() syscall. | 
|  | */ | 
|  | SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size, | 
|  | unsigned long, prot, unsigned long, pgoff, unsigned long, flags) | 
|  | { | 
|  |  | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long populate = 0; | 
|  | unsigned long ret = -EINVAL; | 
|  | struct file *file; | 
|  |  | 
|  | pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n", | 
|  | current->comm, current->pid); | 
|  |  | 
|  | if (prot) | 
|  | return ret; | 
|  | start = start & PAGE_MASK; | 
|  | size = size & PAGE_MASK; | 
|  |  | 
|  | if (start + size <= start) | 
|  | return ret; | 
|  |  | 
|  | /* Does pgoff wrap? */ | 
|  | if (pgoff + (size >> PAGE_SHIFT) < pgoff) | 
|  | return ret; | 
|  |  | 
|  | down_write(&mm->mmap_sem); | 
|  | vma = find_vma(mm, start); | 
|  |  | 
|  | if (!vma || !(vma->vm_flags & VM_SHARED)) | 
|  | goto out; | 
|  |  | 
|  | if (start < vma->vm_start) | 
|  | goto out; | 
|  |  | 
|  | if (start + size > vma->vm_end) { | 
|  | struct vm_area_struct *next; | 
|  |  | 
|  | for (next = vma->vm_next; next; next = next->vm_next) { | 
|  | /* hole between vmas ? */ | 
|  | if (next->vm_start != next->vm_prev->vm_end) | 
|  | goto out; | 
|  |  | 
|  | if (next->vm_file != vma->vm_file) | 
|  | goto out; | 
|  |  | 
|  | if (next->vm_flags != vma->vm_flags) | 
|  | goto out; | 
|  |  | 
|  | if (start + size <= next->vm_end) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!next) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | prot |= vma->vm_flags & VM_READ ? PROT_READ : 0; | 
|  | prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0; | 
|  | prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0; | 
|  |  | 
|  | flags &= MAP_NONBLOCK; | 
|  | flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE; | 
|  | if (vma->vm_flags & VM_LOCKED) { | 
|  | struct vm_area_struct *tmp; | 
|  | flags |= MAP_LOCKED; | 
|  |  | 
|  | /* drop PG_Mlocked flag for over-mapped range */ | 
|  | for (tmp = vma; tmp->vm_start >= start + size; | 
|  | tmp = tmp->vm_next) { | 
|  | munlock_vma_pages_range(tmp, | 
|  | max(tmp->vm_start, start), | 
|  | min(tmp->vm_end, start + size)); | 
|  | } | 
|  | } | 
|  |  | 
|  | file = get_file(vma->vm_file); | 
|  | ret = do_mmap_pgoff(vma->vm_file, start, size, | 
|  | prot, flags, pgoff, &populate); | 
|  | fput(file); | 
|  | out: | 
|  | up_write(&mm->mmap_sem); | 
|  | if (populate) | 
|  | mm_populate(ret, populate); | 
|  | if (!IS_ERR_VALUE(ret)) | 
|  | ret = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline void verify_mm_writelocked(struct mm_struct *mm) | 
|  | { | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | if (unlikely(down_read_trylock(&mm->mmap_sem))) { | 
|  | WARN_ON(1); | 
|  | up_read(&mm->mmap_sem); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  this is really a simplified "do_mmap".  it only handles | 
|  | *  anonymous maps.  eventually we may be able to do some | 
|  | *  brk-specific accounting here. | 
|  | */ | 
|  | static unsigned long do_brk(unsigned long addr, unsigned long len) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *vma, *prev; | 
|  | unsigned long flags; | 
|  | struct rb_node **rb_link, *rb_parent; | 
|  | pgoff_t pgoff = addr >> PAGE_SHIFT; | 
|  | int error; | 
|  |  | 
|  | len = PAGE_ALIGN(len); | 
|  | if (!len) | 
|  | return addr; | 
|  |  | 
|  | flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; | 
|  |  | 
|  | error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED); | 
|  | if (offset_in_page(error)) | 
|  | return error; | 
|  |  | 
|  | error = mlock_future_check(mm, mm->def_flags, len); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* | 
|  | * mm->mmap_sem is required to protect against another thread | 
|  | * changing the mappings in case we sleep. | 
|  | */ | 
|  | verify_mm_writelocked(mm); | 
|  |  | 
|  | /* | 
|  | * Clear old maps.  this also does some error checking for us | 
|  | */ | 
|  | while (find_vma_links(mm, addr, addr + len, &prev, &rb_link, | 
|  | &rb_parent)) { | 
|  | if (do_munmap(mm, addr, len)) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Check against address space limits *after* clearing old maps... */ | 
|  | if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (mm->map_count > sysctl_max_map_count) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Can we just expand an old private anonymous mapping? */ | 
|  | vma = vma_merge(mm, prev, addr, addr + len, flags, | 
|  | NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX); | 
|  | if (vma) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * create a vma struct for an anonymous mapping | 
|  | */ | 
|  | vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); | 
|  | if (!vma) { | 
|  | vm_unacct_memory(len >> PAGE_SHIFT); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | INIT_LIST_HEAD(&vma->anon_vma_chain); | 
|  | vma->vm_mm = mm; | 
|  | vma->vm_start = addr; | 
|  | vma->vm_end = addr + len; | 
|  | vma->vm_pgoff = pgoff; | 
|  | vma->vm_flags = flags; | 
|  | vma->vm_page_prot = vm_get_page_prot(flags); | 
|  | vma_link(mm, vma, prev, rb_link, rb_parent); | 
|  | out: | 
|  | perf_event_mmap(vma); | 
|  | mm->total_vm += len >> PAGE_SHIFT; | 
|  | mm->data_vm += len >> PAGE_SHIFT; | 
|  | if (flags & VM_LOCKED) | 
|  | mm->locked_vm += (len >> PAGE_SHIFT); | 
|  | vma->vm_flags |= VM_SOFTDIRTY; | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | unsigned long vm_brk(unsigned long addr, unsigned long len) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | unsigned long ret; | 
|  | bool populate; | 
|  |  | 
|  | down_write(&mm->mmap_sem); | 
|  | ret = do_brk(addr, len); | 
|  | populate = ((mm->def_flags & VM_LOCKED) != 0); | 
|  | up_write(&mm->mmap_sem); | 
|  | if (populate) | 
|  | mm_populate(addr, len); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(vm_brk); | 
|  |  | 
|  | /* Release all mmaps. */ | 
|  | void exit_mmap(struct mm_struct *mm) | 
|  | { | 
|  | struct mmu_gather tlb; | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long nr_accounted = 0; | 
|  |  | 
|  | /* mm's last user has gone, and its about to be pulled down */ | 
|  | mmu_notifier_release(mm); | 
|  |  | 
|  | if (mm->locked_vm) { | 
|  | vma = mm->mmap; | 
|  | while (vma) { | 
|  | if (vma->vm_flags & VM_LOCKED) | 
|  | munlock_vma_pages_all(vma); | 
|  | vma = vma->vm_next; | 
|  | } | 
|  | } | 
|  |  | 
|  | arch_exit_mmap(mm); | 
|  |  | 
|  | vma = mm->mmap; | 
|  | if (!vma)	/* Can happen if dup_mmap() received an OOM */ | 
|  | return; | 
|  |  | 
|  | lru_add_drain(); | 
|  | flush_cache_mm(mm); | 
|  | tlb_gather_mmu(&tlb, mm, 0, -1); | 
|  | /* update_hiwater_rss(mm) here? but nobody should be looking */ | 
|  | /* Use -1 here to ensure all VMAs in the mm are unmapped */ | 
|  | unmap_vmas(&tlb, vma, 0, -1); | 
|  |  | 
|  | free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING); | 
|  | tlb_finish_mmu(&tlb, 0, -1); | 
|  |  | 
|  | /* | 
|  | * Walk the list again, actually closing and freeing it, | 
|  | * with preemption enabled, without holding any MM locks. | 
|  | */ | 
|  | while (vma) { | 
|  | if (vma->vm_flags & VM_ACCOUNT) | 
|  | nr_accounted += vma_pages(vma); | 
|  | vma = remove_vma(vma); | 
|  | } | 
|  | vm_unacct_memory(nr_accounted); | 
|  | } | 
|  |  | 
|  | /* Insert vm structure into process list sorted by address | 
|  | * and into the inode's i_mmap tree.  If vm_file is non-NULL | 
|  | * then i_mmap_rwsem is taken here. | 
|  | */ | 
|  | int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) | 
|  | { | 
|  | struct vm_area_struct *prev; | 
|  | struct rb_node **rb_link, *rb_parent; | 
|  |  | 
|  | if (find_vma_links(mm, vma->vm_start, vma->vm_end, | 
|  | &prev, &rb_link, &rb_parent)) | 
|  | return -ENOMEM; | 
|  | if ((vma->vm_flags & VM_ACCOUNT) && | 
|  | security_vm_enough_memory_mm(mm, vma_pages(vma))) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * The vm_pgoff of a purely anonymous vma should be irrelevant | 
|  | * until its first write fault, when page's anon_vma and index | 
|  | * are set.  But now set the vm_pgoff it will almost certainly | 
|  | * end up with (unless mremap moves it elsewhere before that | 
|  | * first wfault), so /proc/pid/maps tells a consistent story. | 
|  | * | 
|  | * By setting it to reflect the virtual start address of the | 
|  | * vma, merges and splits can happen in a seamless way, just | 
|  | * using the existing file pgoff checks and manipulations. | 
|  | * Similarly in do_mmap_pgoff and in do_brk. | 
|  | */ | 
|  | if (vma_is_anonymous(vma)) { | 
|  | BUG_ON(vma->anon_vma); | 
|  | vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | vma_link(mm, vma, prev, rb_link, rb_parent); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy the vma structure to a new location in the same mm, | 
|  | * prior to moving page table entries, to effect an mremap move. | 
|  | */ | 
|  | struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, | 
|  | unsigned long addr, unsigned long len, pgoff_t pgoff, | 
|  | bool *need_rmap_locks) | 
|  | { | 
|  | struct vm_area_struct *vma = *vmap; | 
|  | unsigned long vma_start = vma->vm_start; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct vm_area_struct *new_vma, *prev; | 
|  | struct rb_node **rb_link, *rb_parent; | 
|  | bool faulted_in_anon_vma = true; | 
|  |  | 
|  | /* | 
|  | * If anonymous vma has not yet been faulted, update new pgoff | 
|  | * to match new location, to increase its chance of merging. | 
|  | */ | 
|  | if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { | 
|  | pgoff = addr >> PAGE_SHIFT; | 
|  | faulted_in_anon_vma = false; | 
|  | } | 
|  |  | 
|  | if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) | 
|  | return NULL;	/* should never get here */ | 
|  | new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags, | 
|  | vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma), | 
|  | vma->vm_userfaultfd_ctx); | 
|  | if (new_vma) { | 
|  | /* | 
|  | * Source vma may have been merged into new_vma | 
|  | */ | 
|  | if (unlikely(vma_start >= new_vma->vm_start && | 
|  | vma_start < new_vma->vm_end)) { | 
|  | /* | 
|  | * The only way we can get a vma_merge with | 
|  | * self during an mremap is if the vma hasn't | 
|  | * been faulted in yet and we were allowed to | 
|  | * reset the dst vma->vm_pgoff to the | 
|  | * destination address of the mremap to allow | 
|  | * the merge to happen. mremap must change the | 
|  | * vm_pgoff linearity between src and dst vmas | 
|  | * (in turn preventing a vma_merge) to be | 
|  | * safe. It is only safe to keep the vm_pgoff | 
|  | * linear if there are no pages mapped yet. | 
|  | */ | 
|  | VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); | 
|  | *vmap = vma = new_vma; | 
|  | } | 
|  | *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); | 
|  | } else { | 
|  | new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); | 
|  | if (!new_vma) | 
|  | goto out; | 
|  | *new_vma = *vma; | 
|  | new_vma->vm_start = addr; | 
|  | new_vma->vm_end = addr + len; | 
|  | new_vma->vm_pgoff = pgoff; | 
|  | if (vma_dup_policy(vma, new_vma)) | 
|  | goto out_free_vma; | 
|  | INIT_LIST_HEAD(&new_vma->anon_vma_chain); | 
|  | if (anon_vma_clone(new_vma, vma)) | 
|  | goto out_free_mempol; | 
|  | if (new_vma->vm_file) | 
|  | get_file(new_vma->vm_file); | 
|  | if (new_vma->vm_ops && new_vma->vm_ops->open) | 
|  | new_vma->vm_ops->open(new_vma); | 
|  | vma_link(mm, new_vma, prev, rb_link, rb_parent); | 
|  | *need_rmap_locks = false; | 
|  | } | 
|  | return new_vma; | 
|  |  | 
|  | out_free_mempol: | 
|  | mpol_put(vma_policy(new_vma)); | 
|  | out_free_vma: | 
|  | kmem_cache_free(vm_area_cachep, new_vma); | 
|  | out: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if the calling process may expand its vm space by the passed | 
|  | * number of pages | 
|  | */ | 
|  | bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages) | 
|  | { | 
|  | if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT) | 
|  | return false; | 
|  |  | 
|  | if (is_data_mapping(flags) && | 
|  | mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) { | 
|  | if (ignore_rlimit_data) | 
|  | pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Will be forbidden soon.\n", | 
|  | current->comm, current->pid, | 
|  | (mm->data_vm + npages) << PAGE_SHIFT, | 
|  | rlimit(RLIMIT_DATA)); | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages) | 
|  | { | 
|  | mm->total_vm += npages; | 
|  |  | 
|  | if (is_exec_mapping(flags)) | 
|  | mm->exec_vm += npages; | 
|  | else if (is_stack_mapping(flags)) | 
|  | mm->stack_vm += npages; | 
|  | else if (is_data_mapping(flags)) | 
|  | mm->data_vm += npages; | 
|  | } | 
|  |  | 
|  | static int special_mapping_fault(struct vm_area_struct *vma, | 
|  | struct vm_fault *vmf); | 
|  |  | 
|  | /* | 
|  | * Having a close hook prevents vma merging regardless of flags. | 
|  | */ | 
|  | static void special_mapping_close(struct vm_area_struct *vma) | 
|  | { | 
|  | } | 
|  |  | 
|  | static const char *special_mapping_name(struct vm_area_struct *vma) | 
|  | { | 
|  | return ((struct vm_special_mapping *)vma->vm_private_data)->name; | 
|  | } | 
|  |  | 
|  | static const struct vm_operations_struct special_mapping_vmops = { | 
|  | .close = special_mapping_close, | 
|  | .fault = special_mapping_fault, | 
|  | .name = special_mapping_name, | 
|  | }; | 
|  |  | 
|  | static const struct vm_operations_struct legacy_special_mapping_vmops = { | 
|  | .close = special_mapping_close, | 
|  | .fault = special_mapping_fault, | 
|  | }; | 
|  |  | 
|  | static int special_mapping_fault(struct vm_area_struct *vma, | 
|  | struct vm_fault *vmf) | 
|  | { | 
|  | pgoff_t pgoff; | 
|  | struct page **pages; | 
|  |  | 
|  | if (vma->vm_ops == &legacy_special_mapping_vmops) { | 
|  | pages = vma->vm_private_data; | 
|  | } else { | 
|  | struct vm_special_mapping *sm = vma->vm_private_data; | 
|  |  | 
|  | if (sm->fault) | 
|  | return sm->fault(sm, vma, vmf); | 
|  |  | 
|  | pages = sm->pages; | 
|  | } | 
|  |  | 
|  | for (pgoff = vmf->pgoff; pgoff && *pages; ++pages) | 
|  | pgoff--; | 
|  |  | 
|  | if (*pages) { | 
|  | struct page *page = *pages; | 
|  | get_page(page); | 
|  | vmf->page = page; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return VM_FAULT_SIGBUS; | 
|  | } | 
|  |  | 
|  | static struct vm_area_struct *__install_special_mapping( | 
|  | struct mm_struct *mm, | 
|  | unsigned long addr, unsigned long len, | 
|  | unsigned long vm_flags, void *priv, | 
|  | const struct vm_operations_struct *ops) | 
|  | { | 
|  | int ret; | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); | 
|  | if (unlikely(vma == NULL)) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | INIT_LIST_HEAD(&vma->anon_vma_chain); | 
|  | vma->vm_mm = mm; | 
|  | vma->vm_start = addr; | 
|  | vma->vm_end = addr + len; | 
|  |  | 
|  | vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; | 
|  | vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); | 
|  |  | 
|  | vma->vm_ops = ops; | 
|  | vma->vm_private_data = priv; | 
|  |  | 
|  | ret = insert_vm_struct(mm, vma); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT); | 
|  |  | 
|  | perf_event_mmap(vma); | 
|  |  | 
|  | return vma; | 
|  |  | 
|  | out: | 
|  | kmem_cache_free(vm_area_cachep, vma); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called with mm->mmap_sem held for writing. | 
|  | * Insert a new vma covering the given region, with the given flags. | 
|  | * Its pages are supplied by the given array of struct page *. | 
|  | * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated. | 
|  | * The region past the last page supplied will always produce SIGBUS. | 
|  | * The array pointer and the pages it points to are assumed to stay alive | 
|  | * for as long as this mapping might exist. | 
|  | */ | 
|  | struct vm_area_struct *_install_special_mapping( | 
|  | struct mm_struct *mm, | 
|  | unsigned long addr, unsigned long len, | 
|  | unsigned long vm_flags, const struct vm_special_mapping *spec) | 
|  | { | 
|  | return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec, | 
|  | &special_mapping_vmops); | 
|  | } | 
|  |  | 
|  | int install_special_mapping(struct mm_struct *mm, | 
|  | unsigned long addr, unsigned long len, | 
|  | unsigned long vm_flags, struct page **pages) | 
|  | { | 
|  | struct vm_area_struct *vma = __install_special_mapping( | 
|  | mm, addr, len, vm_flags, (void *)pages, | 
|  | &legacy_special_mapping_vmops); | 
|  |  | 
|  | return PTR_ERR_OR_ZERO(vma); | 
|  | } | 
|  |  | 
|  | static DEFINE_MUTEX(mm_all_locks_mutex); | 
|  |  | 
|  | static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) | 
|  | { | 
|  | if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { | 
|  | /* | 
|  | * The LSB of head.next can't change from under us | 
|  | * because we hold the mm_all_locks_mutex. | 
|  | */ | 
|  | down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem); | 
|  | /* | 
|  | * We can safely modify head.next after taking the | 
|  | * anon_vma->root->rwsem. If some other vma in this mm shares | 
|  | * the same anon_vma we won't take it again. | 
|  | * | 
|  | * No need of atomic instructions here, head.next | 
|  | * can't change from under us thanks to the | 
|  | * anon_vma->root->rwsem. | 
|  | */ | 
|  | if (__test_and_set_bit(0, (unsigned long *) | 
|  | &anon_vma->root->rb_root.rb_node)) | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) | 
|  | { | 
|  | if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { | 
|  | /* | 
|  | * AS_MM_ALL_LOCKS can't change from under us because | 
|  | * we hold the mm_all_locks_mutex. | 
|  | * | 
|  | * Operations on ->flags have to be atomic because | 
|  | * even if AS_MM_ALL_LOCKS is stable thanks to the | 
|  | * mm_all_locks_mutex, there may be other cpus | 
|  | * changing other bitflags in parallel to us. | 
|  | */ | 
|  | if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags)) | 
|  | BUG(); | 
|  | down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This operation locks against the VM for all pte/vma/mm related | 
|  | * operations that could ever happen on a certain mm. This includes | 
|  | * vmtruncate, try_to_unmap, and all page faults. | 
|  | * | 
|  | * The caller must take the mmap_sem in write mode before calling | 
|  | * mm_take_all_locks(). The caller isn't allowed to release the | 
|  | * mmap_sem until mm_drop_all_locks() returns. | 
|  | * | 
|  | * mmap_sem in write mode is required in order to block all operations | 
|  | * that could modify pagetables and free pages without need of | 
|  | * altering the vma layout. It's also needed in write mode to avoid new | 
|  | * anon_vmas to be associated with existing vmas. | 
|  | * | 
|  | * A single task can't take more than one mm_take_all_locks() in a row | 
|  | * or it would deadlock. | 
|  | * | 
|  | * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in | 
|  | * mapping->flags avoid to take the same lock twice, if more than one | 
|  | * vma in this mm is backed by the same anon_vma or address_space. | 
|  | * | 
|  | * We take locks in following order, accordingly to comment at beginning | 
|  | * of mm/rmap.c: | 
|  | *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for | 
|  | *     hugetlb mapping); | 
|  | *   - all i_mmap_rwsem locks; | 
|  | *   - all anon_vma->rwseml | 
|  | * | 
|  | * We can take all locks within these types randomly because the VM code | 
|  | * doesn't nest them and we protected from parallel mm_take_all_locks() by | 
|  | * mm_all_locks_mutex. | 
|  | * | 
|  | * mm_take_all_locks() and mm_drop_all_locks are expensive operations | 
|  | * that may have to take thousand of locks. | 
|  | * | 
|  | * mm_take_all_locks() can fail if it's interrupted by signals. | 
|  | */ | 
|  | int mm_take_all_locks(struct mm_struct *mm) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | struct anon_vma_chain *avc; | 
|  |  | 
|  | BUG_ON(down_read_trylock(&mm->mmap_sem)); | 
|  |  | 
|  | mutex_lock(&mm_all_locks_mutex); | 
|  |  | 
|  | for (vma = mm->mmap; vma; vma = vma->vm_next) { | 
|  | if (signal_pending(current)) | 
|  | goto out_unlock; | 
|  | if (vma->vm_file && vma->vm_file->f_mapping && | 
|  | is_vm_hugetlb_page(vma)) | 
|  | vm_lock_mapping(mm, vma->vm_file->f_mapping); | 
|  | } | 
|  |  | 
|  | for (vma = mm->mmap; vma; vma = vma->vm_next) { | 
|  | if (signal_pending(current)) | 
|  | goto out_unlock; | 
|  | if (vma->vm_file && vma->vm_file->f_mapping && | 
|  | !is_vm_hugetlb_page(vma)) | 
|  | vm_lock_mapping(mm, vma->vm_file->f_mapping); | 
|  | } | 
|  |  | 
|  | for (vma = mm->mmap; vma; vma = vma->vm_next) { | 
|  | if (signal_pending(current)) | 
|  | goto out_unlock; | 
|  | if (vma->anon_vma) | 
|  | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) | 
|  | vm_lock_anon_vma(mm, avc->anon_vma); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_unlock: | 
|  | mm_drop_all_locks(mm); | 
|  | return -EINTR; | 
|  | } | 
|  |  | 
|  | static void vm_unlock_anon_vma(struct anon_vma *anon_vma) | 
|  | { | 
|  | if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) { | 
|  | /* | 
|  | * The LSB of head.next can't change to 0 from under | 
|  | * us because we hold the mm_all_locks_mutex. | 
|  | * | 
|  | * We must however clear the bitflag before unlocking | 
|  | * the vma so the users using the anon_vma->rb_root will | 
|  | * never see our bitflag. | 
|  | * | 
|  | * No need of atomic instructions here, head.next | 
|  | * can't change from under us until we release the | 
|  | * anon_vma->root->rwsem. | 
|  | */ | 
|  | if (!__test_and_clear_bit(0, (unsigned long *) | 
|  | &anon_vma->root->rb_root.rb_node)) | 
|  | BUG(); | 
|  | anon_vma_unlock_write(anon_vma); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vm_unlock_mapping(struct address_space *mapping) | 
|  | { | 
|  | if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { | 
|  | /* | 
|  | * AS_MM_ALL_LOCKS can't change to 0 from under us | 
|  | * because we hold the mm_all_locks_mutex. | 
|  | */ | 
|  | i_mmap_unlock_write(mapping); | 
|  | if (!test_and_clear_bit(AS_MM_ALL_LOCKS, | 
|  | &mapping->flags)) | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The mmap_sem cannot be released by the caller until | 
|  | * mm_drop_all_locks() returns. | 
|  | */ | 
|  | void mm_drop_all_locks(struct mm_struct *mm) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | struct anon_vma_chain *avc; | 
|  |  | 
|  | BUG_ON(down_read_trylock(&mm->mmap_sem)); | 
|  | BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); | 
|  |  | 
|  | for (vma = mm->mmap; vma; vma = vma->vm_next) { | 
|  | if (vma->anon_vma) | 
|  | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) | 
|  | vm_unlock_anon_vma(avc->anon_vma); | 
|  | if (vma->vm_file && vma->vm_file->f_mapping) | 
|  | vm_unlock_mapping(vma->vm_file->f_mapping); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&mm_all_locks_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * initialise the VMA slab | 
|  | */ | 
|  | void __init mmap_init(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL); | 
|  | VM_BUG_ON(ret); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialise sysctl_user_reserve_kbytes. | 
|  | * | 
|  | * This is intended to prevent a user from starting a single memory hogging | 
|  | * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER | 
|  | * mode. | 
|  | * | 
|  | * The default value is min(3% of free memory, 128MB) | 
|  | * 128MB is enough to recover with sshd/login, bash, and top/kill. | 
|  | */ | 
|  | static int init_user_reserve(void) | 
|  | { | 
|  | unsigned long free_kbytes; | 
|  |  | 
|  | free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); | 
|  |  | 
|  | sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); | 
|  | return 0; | 
|  | } | 
|  | subsys_initcall(init_user_reserve); | 
|  |  | 
|  | /* | 
|  | * Initialise sysctl_admin_reserve_kbytes. | 
|  | * | 
|  | * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin | 
|  | * to log in and kill a memory hogging process. | 
|  | * | 
|  | * Systems with more than 256MB will reserve 8MB, enough to recover | 
|  | * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will | 
|  | * only reserve 3% of free pages by default. | 
|  | */ | 
|  | static int init_admin_reserve(void) | 
|  | { | 
|  | unsigned long free_kbytes; | 
|  |  | 
|  | free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); | 
|  |  | 
|  | sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); | 
|  | return 0; | 
|  | } | 
|  | subsys_initcall(init_admin_reserve); | 
|  |  | 
|  | /* | 
|  | * Reinititalise user and admin reserves if memory is added or removed. | 
|  | * | 
|  | * The default user reserve max is 128MB, and the default max for the | 
|  | * admin reserve is 8MB. These are usually, but not always, enough to | 
|  | * enable recovery from a memory hogging process using login/sshd, a shell, | 
|  | * and tools like top. It may make sense to increase or even disable the | 
|  | * reserve depending on the existence of swap or variations in the recovery | 
|  | * tools. So, the admin may have changed them. | 
|  | * | 
|  | * If memory is added and the reserves have been eliminated or increased above | 
|  | * the default max, then we'll trust the admin. | 
|  | * | 
|  | * If memory is removed and there isn't enough free memory, then we | 
|  | * need to reset the reserves. | 
|  | * | 
|  | * Otherwise keep the reserve set by the admin. | 
|  | */ | 
|  | static int reserve_mem_notifier(struct notifier_block *nb, | 
|  | unsigned long action, void *data) | 
|  | { | 
|  | unsigned long tmp, free_kbytes; | 
|  |  | 
|  | switch (action) { | 
|  | case MEM_ONLINE: | 
|  | /* Default max is 128MB. Leave alone if modified by operator. */ | 
|  | tmp = sysctl_user_reserve_kbytes; | 
|  | if (0 < tmp && tmp < (1UL << 17)) | 
|  | init_user_reserve(); | 
|  |  | 
|  | /* Default max is 8MB.  Leave alone if modified by operator. */ | 
|  | tmp = sysctl_admin_reserve_kbytes; | 
|  | if (0 < tmp && tmp < (1UL << 13)) | 
|  | init_admin_reserve(); | 
|  |  | 
|  | break; | 
|  | case MEM_OFFLINE: | 
|  | free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); | 
|  |  | 
|  | if (sysctl_user_reserve_kbytes > free_kbytes) { | 
|  | init_user_reserve(); | 
|  | pr_info("vm.user_reserve_kbytes reset to %lu\n", | 
|  | sysctl_user_reserve_kbytes); | 
|  | } | 
|  |  | 
|  | if (sysctl_admin_reserve_kbytes > free_kbytes) { | 
|  | init_admin_reserve(); | 
|  | pr_info("vm.admin_reserve_kbytes reset to %lu\n", | 
|  | sysctl_admin_reserve_kbytes); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static struct notifier_block reserve_mem_nb = { | 
|  | .notifier_call = reserve_mem_notifier, | 
|  | }; | 
|  |  | 
|  | static int __meminit init_reserve_notifier(void) | 
|  | { | 
|  | if (register_hotmemory_notifier(&reserve_mem_nb)) | 
|  | pr_err("Failed registering memory add/remove notifier for admin reserve\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | subsys_initcall(init_reserve_notifier); |