|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | *  Copyright (C) 2009  Red Hat, Inc. | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/coredump.h> | 
|  | #include <linux/sched/numa_balancing.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/mmu_notifier.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/shrinker.h> | 
|  | #include <linux/mm_inline.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/dax.h> | 
|  | #include <linux/khugepaged.h> | 
|  | #include <linux/freezer.h> | 
|  | #include <linux/pfn_t.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/memremap.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/hashtable.h> | 
|  | #include <linux/userfaultfd_k.h> | 
|  | #include <linux/page_idle.h> | 
|  | #include <linux/shmem_fs.h> | 
|  | #include <linux/oom.h> | 
|  | #include <linux/numa.h> | 
|  | #include <linux/page_owner.h> | 
|  |  | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include "internal.h" | 
|  |  | 
|  | /* | 
|  | * By default, transparent hugepage support is disabled in order to avoid | 
|  | * risking an increased memory footprint for applications that are not | 
|  | * guaranteed to benefit from it. When transparent hugepage support is | 
|  | * enabled, it is for all mappings, and khugepaged scans all mappings. | 
|  | * Defrag is invoked by khugepaged hugepage allocations and by page faults | 
|  | * for all hugepage allocations. | 
|  | */ | 
|  | unsigned long transparent_hugepage_flags __read_mostly = | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS | 
|  | (1<<TRANSPARENT_HUGEPAGE_FLAG)| | 
|  | #endif | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE | 
|  | (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| | 
|  | #endif | 
|  | (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| | 
|  | (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| | 
|  | (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); | 
|  |  | 
|  | static struct shrinker deferred_split_shrinker; | 
|  |  | 
|  | static atomic_t huge_zero_refcount; | 
|  | struct page *huge_zero_page __read_mostly; | 
|  |  | 
|  | bool transparent_hugepage_enabled(struct vm_area_struct *vma) | 
|  | { | 
|  | /* The addr is used to check if the vma size fits */ | 
|  | unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE; | 
|  |  | 
|  | if (!transhuge_vma_suitable(vma, addr)) | 
|  | return false; | 
|  | if (vma_is_anonymous(vma)) | 
|  | return __transparent_hugepage_enabled(vma); | 
|  | if (vma_is_shmem(vma)) | 
|  | return shmem_huge_enabled(vma); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static struct page *get_huge_zero_page(void) | 
|  | { | 
|  | struct page *zero_page; | 
|  | retry: | 
|  | if (likely(atomic_inc_not_zero(&huge_zero_refcount))) | 
|  | return READ_ONCE(huge_zero_page); | 
|  |  | 
|  | zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, | 
|  | HPAGE_PMD_ORDER); | 
|  | if (!zero_page) { | 
|  | count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); | 
|  | return NULL; | 
|  | } | 
|  | count_vm_event(THP_ZERO_PAGE_ALLOC); | 
|  | preempt_disable(); | 
|  | if (cmpxchg(&huge_zero_page, NULL, zero_page)) { | 
|  | preempt_enable(); | 
|  | __free_pages(zero_page, compound_order(zero_page)); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | /* We take additional reference here. It will be put back by shrinker */ | 
|  | atomic_set(&huge_zero_refcount, 2); | 
|  | preempt_enable(); | 
|  | return READ_ONCE(huge_zero_page); | 
|  | } | 
|  |  | 
|  | static void put_huge_zero_page(void) | 
|  | { | 
|  | /* | 
|  | * Counter should never go to zero here. Only shrinker can put | 
|  | * last reference. | 
|  | */ | 
|  | BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); | 
|  | } | 
|  |  | 
|  | struct page *mm_get_huge_zero_page(struct mm_struct *mm) | 
|  | { | 
|  | if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) | 
|  | return READ_ONCE(huge_zero_page); | 
|  |  | 
|  | if (!get_huge_zero_page()) | 
|  | return NULL; | 
|  |  | 
|  | if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) | 
|  | put_huge_zero_page(); | 
|  |  | 
|  | return READ_ONCE(huge_zero_page); | 
|  | } | 
|  |  | 
|  | void mm_put_huge_zero_page(struct mm_struct *mm) | 
|  | { | 
|  | if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) | 
|  | put_huge_zero_page(); | 
|  | } | 
|  |  | 
|  | static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, | 
|  | struct shrink_control *sc) | 
|  | { | 
|  | /* we can free zero page only if last reference remains */ | 
|  | return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; | 
|  | } | 
|  |  | 
|  | static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, | 
|  | struct shrink_control *sc) | 
|  | { | 
|  | if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { | 
|  | struct page *zero_page = xchg(&huge_zero_page, NULL); | 
|  | BUG_ON(zero_page == NULL); | 
|  | __free_pages(zero_page, compound_order(zero_page)); | 
|  | return HPAGE_PMD_NR; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct shrinker huge_zero_page_shrinker = { | 
|  | .count_objects = shrink_huge_zero_page_count, | 
|  | .scan_objects = shrink_huge_zero_page_scan, | 
|  | .seeks = DEFAULT_SEEKS, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_SYSFS | 
|  | static ssize_t enabled_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) | 
|  | return sprintf(buf, "[always] madvise never\n"); | 
|  | else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags)) | 
|  | return sprintf(buf, "always [madvise] never\n"); | 
|  | else | 
|  | return sprintf(buf, "always madvise [never]\n"); | 
|  | } | 
|  |  | 
|  | static ssize_t enabled_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | ssize_t ret = count; | 
|  |  | 
|  | if (sysfs_streq(buf, "always")) { | 
|  | clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); | 
|  | set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); | 
|  | } else if (sysfs_streq(buf, "madvise")) { | 
|  | clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); | 
|  | set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); | 
|  | } else if (sysfs_streq(buf, "never")) { | 
|  | clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); | 
|  | clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); | 
|  | } else | 
|  | ret = -EINVAL; | 
|  |  | 
|  | if (ret > 0) { | 
|  | int err = start_stop_khugepaged(); | 
|  | if (err) | 
|  | ret = err; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | static struct kobj_attribute enabled_attr = | 
|  | __ATTR(enabled, 0644, enabled_show, enabled_store); | 
|  |  | 
|  | ssize_t single_hugepage_flag_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf, | 
|  | enum transparent_hugepage_flag flag) | 
|  | { | 
|  | return sprintf(buf, "%d\n", | 
|  | !!test_bit(flag, &transparent_hugepage_flags)); | 
|  | } | 
|  |  | 
|  | ssize_t single_hugepage_flag_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count, | 
|  | enum transparent_hugepage_flag flag) | 
|  | { | 
|  | unsigned long value; | 
|  | int ret; | 
|  |  | 
|  | ret = kstrtoul(buf, 10, &value); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (value > 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (value) | 
|  | set_bit(flag, &transparent_hugepage_flags); | 
|  | else | 
|  | clear_bit(flag, &transparent_hugepage_flags); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t defrag_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) | 
|  | return sprintf(buf, "[always] defer defer+madvise madvise never\n"); | 
|  | if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) | 
|  | return sprintf(buf, "always [defer] defer+madvise madvise never\n"); | 
|  | if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) | 
|  | return sprintf(buf, "always defer [defer+madvise] madvise never\n"); | 
|  | if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) | 
|  | return sprintf(buf, "always defer defer+madvise [madvise] never\n"); | 
|  | return sprintf(buf, "always defer defer+madvise madvise [never]\n"); | 
|  | } | 
|  |  | 
|  | static ssize_t defrag_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | if (sysfs_streq(buf, "always")) { | 
|  | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); | 
|  | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); | 
|  | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); | 
|  | set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); | 
|  | } else if (sysfs_streq(buf, "defer+madvise")) { | 
|  | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); | 
|  | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); | 
|  | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); | 
|  | set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); | 
|  | } else if (sysfs_streq(buf, "defer")) { | 
|  | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); | 
|  | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); | 
|  | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); | 
|  | set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); | 
|  | } else if (sysfs_streq(buf, "madvise")) { | 
|  | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); | 
|  | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); | 
|  | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); | 
|  | set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); | 
|  | } else if (sysfs_streq(buf, "never")) { | 
|  | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); | 
|  | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); | 
|  | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); | 
|  | clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); | 
|  | } else | 
|  | return -EINVAL; | 
|  |  | 
|  | return count; | 
|  | } | 
|  | static struct kobj_attribute defrag_attr = | 
|  | __ATTR(defrag, 0644, defrag_show, defrag_store); | 
|  |  | 
|  | static ssize_t use_zero_page_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | return single_hugepage_flag_show(kobj, attr, buf, | 
|  | TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); | 
|  | } | 
|  | static ssize_t use_zero_page_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, const char *buf, size_t count) | 
|  | { | 
|  | return single_hugepage_flag_store(kobj, attr, buf, count, | 
|  | TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); | 
|  | } | 
|  | static struct kobj_attribute use_zero_page_attr = | 
|  | __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); | 
|  |  | 
|  | static ssize_t hpage_pmd_size_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE); | 
|  | } | 
|  | static struct kobj_attribute hpage_pmd_size_attr = | 
|  | __ATTR_RO(hpage_pmd_size); | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | static ssize_t debug_cow_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | return single_hugepage_flag_show(kobj, attr, buf, | 
|  | TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); | 
|  | } | 
|  | static ssize_t debug_cow_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | return single_hugepage_flag_store(kobj, attr, buf, count, | 
|  | TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); | 
|  | } | 
|  | static struct kobj_attribute debug_cow_attr = | 
|  | __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); | 
|  | #endif /* CONFIG_DEBUG_VM */ | 
|  |  | 
|  | static struct attribute *hugepage_attr[] = { | 
|  | &enabled_attr.attr, | 
|  | &defrag_attr.attr, | 
|  | &use_zero_page_attr.attr, | 
|  | &hpage_pmd_size_attr.attr, | 
|  | #ifdef CONFIG_SHMEM | 
|  | &shmem_enabled_attr.attr, | 
|  | #endif | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | &debug_cow_attr.attr, | 
|  | #endif | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static const struct attribute_group hugepage_attr_group = { | 
|  | .attrs = hugepage_attr, | 
|  | }; | 
|  |  | 
|  | static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); | 
|  | if (unlikely(!*hugepage_kobj)) { | 
|  | pr_err("failed to create transparent hugepage kobject\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); | 
|  | if (err) { | 
|  | pr_err("failed to register transparent hugepage group\n"); | 
|  | goto delete_obj; | 
|  | } | 
|  |  | 
|  | err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); | 
|  | if (err) { | 
|  | pr_err("failed to register transparent hugepage group\n"); | 
|  | goto remove_hp_group; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | remove_hp_group: | 
|  | sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); | 
|  | delete_obj: | 
|  | kobject_put(*hugepage_kobj); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) | 
|  | { | 
|  | sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); | 
|  | sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); | 
|  | kobject_put(hugepage_kobj); | 
|  | } | 
|  | #else | 
|  | static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_SYSFS */ | 
|  |  | 
|  | static int __init hugepage_init(void) | 
|  | { | 
|  | int err; | 
|  | struct kobject *hugepage_kobj; | 
|  |  | 
|  | if (!has_transparent_hugepage()) { | 
|  | transparent_hugepage_flags = 0; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hugepages can't be allocated by the buddy allocator | 
|  | */ | 
|  | MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER); | 
|  | /* | 
|  | * we use page->mapping and page->index in second tail page | 
|  | * as list_head: assuming THP order >= 2 | 
|  | */ | 
|  | MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); | 
|  |  | 
|  | err = hugepage_init_sysfs(&hugepage_kobj); | 
|  | if (err) | 
|  | goto err_sysfs; | 
|  |  | 
|  | err = khugepaged_init(); | 
|  | if (err) | 
|  | goto err_slab; | 
|  |  | 
|  | err = register_shrinker(&huge_zero_page_shrinker); | 
|  | if (err) | 
|  | goto err_hzp_shrinker; | 
|  | err = register_shrinker(&deferred_split_shrinker); | 
|  | if (err) | 
|  | goto err_split_shrinker; | 
|  |  | 
|  | /* | 
|  | * By default disable transparent hugepages on smaller systems, | 
|  | * where the extra memory used could hurt more than TLB overhead | 
|  | * is likely to save.  The admin can still enable it through /sys. | 
|  | */ | 
|  | if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { | 
|  | transparent_hugepage_flags = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | err = start_stop_khugepaged(); | 
|  | if (err) | 
|  | goto err_khugepaged; | 
|  |  | 
|  | return 0; | 
|  | err_khugepaged: | 
|  | unregister_shrinker(&deferred_split_shrinker); | 
|  | err_split_shrinker: | 
|  | unregister_shrinker(&huge_zero_page_shrinker); | 
|  | err_hzp_shrinker: | 
|  | khugepaged_destroy(); | 
|  | err_slab: | 
|  | hugepage_exit_sysfs(hugepage_kobj); | 
|  | err_sysfs: | 
|  | return err; | 
|  | } | 
|  | subsys_initcall(hugepage_init); | 
|  |  | 
|  | static int __init setup_transparent_hugepage(char *str) | 
|  | { | 
|  | int ret = 0; | 
|  | if (!str) | 
|  | goto out; | 
|  | if (!strcmp(str, "always")) { | 
|  | set_bit(TRANSPARENT_HUGEPAGE_FLAG, | 
|  | &transparent_hugepage_flags); | 
|  | clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, | 
|  | &transparent_hugepage_flags); | 
|  | ret = 1; | 
|  | } else if (!strcmp(str, "madvise")) { | 
|  | clear_bit(TRANSPARENT_HUGEPAGE_FLAG, | 
|  | &transparent_hugepage_flags); | 
|  | set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, | 
|  | &transparent_hugepage_flags); | 
|  | ret = 1; | 
|  | } else if (!strcmp(str, "never")) { | 
|  | clear_bit(TRANSPARENT_HUGEPAGE_FLAG, | 
|  | &transparent_hugepage_flags); | 
|  | clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, | 
|  | &transparent_hugepage_flags); | 
|  | ret = 1; | 
|  | } | 
|  | out: | 
|  | if (!ret) | 
|  | pr_warn("transparent_hugepage= cannot parse, ignored\n"); | 
|  | return ret; | 
|  | } | 
|  | __setup("transparent_hugepage=", setup_transparent_hugepage); | 
|  |  | 
|  | pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) | 
|  | { | 
|  | if (likely(vma->vm_flags & VM_WRITE)) | 
|  | pmd = pmd_mkwrite(pmd); | 
|  | return pmd; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMCG | 
|  | static inline struct deferred_split *get_deferred_split_queue(struct page *page) | 
|  | { | 
|  | struct mem_cgroup *memcg = compound_head(page)->mem_cgroup; | 
|  | struct pglist_data *pgdat = NODE_DATA(page_to_nid(page)); | 
|  |  | 
|  | if (memcg) | 
|  | return &memcg->deferred_split_queue; | 
|  | else | 
|  | return &pgdat->deferred_split_queue; | 
|  | } | 
|  | #else | 
|  | static inline struct deferred_split *get_deferred_split_queue(struct page *page) | 
|  | { | 
|  | struct pglist_data *pgdat = NODE_DATA(page_to_nid(page)); | 
|  |  | 
|  | return &pgdat->deferred_split_queue; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void prep_transhuge_page(struct page *page) | 
|  | { | 
|  | /* | 
|  | * we use page->mapping and page->indexlru in second tail page | 
|  | * as list_head: assuming THP order >= 2 | 
|  | */ | 
|  |  | 
|  | INIT_LIST_HEAD(page_deferred_list(page)); | 
|  | set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR); | 
|  | } | 
|  |  | 
|  | bool is_transparent_hugepage(struct page *page) | 
|  | { | 
|  | if (!PageCompound(page)) | 
|  | return false; | 
|  |  | 
|  | page = compound_head(page); | 
|  | return is_huge_zero_page(page) || | 
|  | page[1].compound_dtor == TRANSHUGE_PAGE_DTOR; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(is_transparent_hugepage); | 
|  |  | 
|  | static unsigned long __thp_get_unmapped_area(struct file *filp, | 
|  | unsigned long addr, unsigned long len, | 
|  | loff_t off, unsigned long flags, unsigned long size) | 
|  | { | 
|  | loff_t off_end = off + len; | 
|  | loff_t off_align = round_up(off, size); | 
|  | unsigned long len_pad, ret; | 
|  |  | 
|  | if (off_end <= off_align || (off_end - off_align) < size) | 
|  | return 0; | 
|  |  | 
|  | len_pad = len + size; | 
|  | if (len_pad < len || (off + len_pad) < off) | 
|  | return 0; | 
|  |  | 
|  | ret = current->mm->get_unmapped_area(filp, addr, len_pad, | 
|  | off >> PAGE_SHIFT, flags); | 
|  |  | 
|  | /* | 
|  | * The failure might be due to length padding. The caller will retry | 
|  | * without the padding. | 
|  | */ | 
|  | if (IS_ERR_VALUE(ret)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Do not try to align to THP boundary if allocation at the address | 
|  | * hint succeeds. | 
|  | */ | 
|  | if (ret == addr) | 
|  | return addr; | 
|  |  | 
|  | ret += (off - ret) & (size - 1); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, | 
|  | unsigned long len, unsigned long pgoff, unsigned long flags) | 
|  | { | 
|  | unsigned long ret; | 
|  | loff_t off = (loff_t)pgoff << PAGE_SHIFT; | 
|  |  | 
|  | if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD)) | 
|  | goto out; | 
|  |  | 
|  | ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE); | 
|  | if (ret) | 
|  | return ret; | 
|  | out: | 
|  | return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(thp_get_unmapped_area); | 
|  |  | 
|  | static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf, | 
|  | struct page *page, gfp_t gfp) | 
|  | { | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  | pgtable_t pgtable; | 
|  | unsigned long haddr = vmf->address & HPAGE_PMD_MASK; | 
|  | vm_fault_t ret = 0; | 
|  |  | 
|  | VM_BUG_ON_PAGE(!PageCompound(page), page); | 
|  |  | 
|  | if (mem_cgroup_charge(page, vma->vm_mm, gfp)) { | 
|  | put_page(page); | 
|  | count_vm_event(THP_FAULT_FALLBACK); | 
|  | count_vm_event(THP_FAULT_FALLBACK_CHARGE); | 
|  | return VM_FAULT_FALLBACK; | 
|  | } | 
|  | cgroup_throttle_swaprate(page, gfp); | 
|  |  | 
|  | pgtable = pte_alloc_one(vma->vm_mm); | 
|  | if (unlikely(!pgtable)) { | 
|  | ret = VM_FAULT_OOM; | 
|  | goto release; | 
|  | } | 
|  |  | 
|  | clear_huge_page(page, vmf->address, HPAGE_PMD_NR); | 
|  | /* | 
|  | * The memory barrier inside __SetPageUptodate makes sure that | 
|  | * clear_huge_page writes become visible before the set_pmd_at() | 
|  | * write. | 
|  | */ | 
|  | __SetPageUptodate(page); | 
|  |  | 
|  | vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); | 
|  | if (unlikely(!pmd_none(*vmf->pmd))) { | 
|  | goto unlock_release; | 
|  | } else { | 
|  | pmd_t entry; | 
|  |  | 
|  | ret = check_stable_address_space(vma->vm_mm); | 
|  | if (ret) | 
|  | goto unlock_release; | 
|  |  | 
|  | /* Deliver the page fault to userland */ | 
|  | if (userfaultfd_missing(vma)) { | 
|  | vm_fault_t ret2; | 
|  |  | 
|  | spin_unlock(vmf->ptl); | 
|  | put_page(page); | 
|  | pte_free(vma->vm_mm, pgtable); | 
|  | ret2 = handle_userfault(vmf, VM_UFFD_MISSING); | 
|  | VM_BUG_ON(ret2 & VM_FAULT_FALLBACK); | 
|  | return ret2; | 
|  | } | 
|  |  | 
|  | entry = mk_huge_pmd(page, vma->vm_page_prot); | 
|  | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); | 
|  | page_add_new_anon_rmap(page, vma, haddr, true); | 
|  | lru_cache_add_active_or_unevictable(page, vma); | 
|  | pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); | 
|  | set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); | 
|  | add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); | 
|  | mm_inc_nr_ptes(vma->vm_mm); | 
|  | spin_unlock(vmf->ptl); | 
|  | count_vm_event(THP_FAULT_ALLOC); | 
|  | count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | unlock_release: | 
|  | spin_unlock(vmf->ptl); | 
|  | release: | 
|  | if (pgtable) | 
|  | pte_free(vma->vm_mm, pgtable); | 
|  | put_page(page); | 
|  | return ret; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * always: directly stall for all thp allocations | 
|  | * defer: wake kswapd and fail if not immediately available | 
|  | * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise | 
|  | *		  fail if not immediately available | 
|  | * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately | 
|  | *	    available | 
|  | * never: never stall for any thp allocation | 
|  | */ | 
|  | static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma) | 
|  | { | 
|  | const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE); | 
|  |  | 
|  | /* Always do synchronous compaction */ | 
|  | if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) | 
|  | return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); | 
|  |  | 
|  | /* Kick kcompactd and fail quickly */ | 
|  | if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) | 
|  | return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; | 
|  |  | 
|  | /* Synchronous compaction if madvised, otherwise kick kcompactd */ | 
|  | if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) | 
|  | return GFP_TRANSHUGE_LIGHT | | 
|  | (vma_madvised ? __GFP_DIRECT_RECLAIM : | 
|  | __GFP_KSWAPD_RECLAIM); | 
|  |  | 
|  | /* Only do synchronous compaction if madvised */ | 
|  | if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) | 
|  | return GFP_TRANSHUGE_LIGHT | | 
|  | (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); | 
|  |  | 
|  | return GFP_TRANSHUGE_LIGHT; | 
|  | } | 
|  |  | 
|  | /* Caller must hold page table lock. */ | 
|  | static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, | 
|  | struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, | 
|  | struct page *zero_page) | 
|  | { | 
|  | pmd_t entry; | 
|  | if (!pmd_none(*pmd)) | 
|  | return false; | 
|  | entry = mk_pmd(zero_page, vma->vm_page_prot); | 
|  | entry = pmd_mkhuge(entry); | 
|  | if (pgtable) | 
|  | pgtable_trans_huge_deposit(mm, pmd, pgtable); | 
|  | set_pmd_at(mm, haddr, pmd, entry); | 
|  | mm_inc_nr_ptes(mm); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) | 
|  | { | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  | gfp_t gfp; | 
|  | struct page *page; | 
|  | unsigned long haddr = vmf->address & HPAGE_PMD_MASK; | 
|  |  | 
|  | if (!transhuge_vma_suitable(vma, haddr)) | 
|  | return VM_FAULT_FALLBACK; | 
|  | if (unlikely(anon_vma_prepare(vma))) | 
|  | return VM_FAULT_OOM; | 
|  | if (unlikely(khugepaged_enter(vma, vma->vm_flags))) | 
|  | return VM_FAULT_OOM; | 
|  | if (!(vmf->flags & FAULT_FLAG_WRITE) && | 
|  | !mm_forbids_zeropage(vma->vm_mm) && | 
|  | transparent_hugepage_use_zero_page()) { | 
|  | pgtable_t pgtable; | 
|  | struct page *zero_page; | 
|  | bool set; | 
|  | vm_fault_t ret; | 
|  | pgtable = pte_alloc_one(vma->vm_mm); | 
|  | if (unlikely(!pgtable)) | 
|  | return VM_FAULT_OOM; | 
|  | zero_page = mm_get_huge_zero_page(vma->vm_mm); | 
|  | if (unlikely(!zero_page)) { | 
|  | pte_free(vma->vm_mm, pgtable); | 
|  | count_vm_event(THP_FAULT_FALLBACK); | 
|  | return VM_FAULT_FALLBACK; | 
|  | } | 
|  | vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); | 
|  | ret = 0; | 
|  | set = false; | 
|  | if (pmd_none(*vmf->pmd)) { | 
|  | ret = check_stable_address_space(vma->vm_mm); | 
|  | if (ret) { | 
|  | spin_unlock(vmf->ptl); | 
|  | } else if (userfaultfd_missing(vma)) { | 
|  | spin_unlock(vmf->ptl); | 
|  | ret = handle_userfault(vmf, VM_UFFD_MISSING); | 
|  | VM_BUG_ON(ret & VM_FAULT_FALLBACK); | 
|  | } else { | 
|  | set_huge_zero_page(pgtable, vma->vm_mm, vma, | 
|  | haddr, vmf->pmd, zero_page); | 
|  | spin_unlock(vmf->ptl); | 
|  | set = true; | 
|  | } | 
|  | } else | 
|  | spin_unlock(vmf->ptl); | 
|  | if (!set) | 
|  | pte_free(vma->vm_mm, pgtable); | 
|  | return ret; | 
|  | } | 
|  | gfp = alloc_hugepage_direct_gfpmask(vma); | 
|  | page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); | 
|  | if (unlikely(!page)) { | 
|  | count_vm_event(THP_FAULT_FALLBACK); | 
|  | return VM_FAULT_FALLBACK; | 
|  | } | 
|  | prep_transhuge_page(page); | 
|  | return __do_huge_pmd_anonymous_page(vmf, page, gfp); | 
|  | } | 
|  |  | 
|  | static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, | 
|  | pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, | 
|  | pgtable_t pgtable) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | pmd_t entry; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | ptl = pmd_lock(mm, pmd); | 
|  | if (!pmd_none(*pmd)) { | 
|  | if (write) { | 
|  | if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) { | 
|  | WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); | 
|  | goto out_unlock; | 
|  | } | 
|  | entry = pmd_mkyoung(*pmd); | 
|  | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); | 
|  | if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) | 
|  | update_mmu_cache_pmd(vma, addr, pmd); | 
|  | } | 
|  |  | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); | 
|  | if (pfn_t_devmap(pfn)) | 
|  | entry = pmd_mkdevmap(entry); | 
|  | if (write) { | 
|  | entry = pmd_mkyoung(pmd_mkdirty(entry)); | 
|  | entry = maybe_pmd_mkwrite(entry, vma); | 
|  | } | 
|  |  | 
|  | if (pgtable) { | 
|  | pgtable_trans_huge_deposit(mm, pmd, pgtable); | 
|  | mm_inc_nr_ptes(mm); | 
|  | pgtable = NULL; | 
|  | } | 
|  |  | 
|  | set_pmd_at(mm, addr, pmd, entry); | 
|  | update_mmu_cache_pmd(vma, addr, pmd); | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock(ptl); | 
|  | if (pgtable) | 
|  | pte_free(mm, pgtable); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vmf_insert_pfn_pmd_prot - insert a pmd size pfn | 
|  | * @vmf: Structure describing the fault | 
|  | * @pfn: pfn to insert | 
|  | * @pgprot: page protection to use | 
|  | * @write: whether it's a write fault | 
|  | * | 
|  | * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and | 
|  | * also consult the vmf_insert_mixed_prot() documentation when | 
|  | * @pgprot != @vmf->vma->vm_page_prot. | 
|  | * | 
|  | * Return: vm_fault_t value. | 
|  | */ | 
|  | vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn, | 
|  | pgprot_t pgprot, bool write) | 
|  | { | 
|  | unsigned long addr = vmf->address & PMD_MASK; | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  | pgtable_t pgtable = NULL; | 
|  |  | 
|  | /* | 
|  | * If we had pmd_special, we could avoid all these restrictions, | 
|  | * but we need to be consistent with PTEs and architectures that | 
|  | * can't support a 'special' bit. | 
|  | */ | 
|  | BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && | 
|  | !pfn_t_devmap(pfn)); | 
|  | BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == | 
|  | (VM_PFNMAP|VM_MIXEDMAP)); | 
|  | BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); | 
|  |  | 
|  | if (addr < vma->vm_start || addr >= vma->vm_end) | 
|  | return VM_FAULT_SIGBUS; | 
|  |  | 
|  | if (arch_needs_pgtable_deposit()) { | 
|  | pgtable = pte_alloc_one(vma->vm_mm); | 
|  | if (!pgtable) | 
|  | return VM_FAULT_OOM; | 
|  | } | 
|  |  | 
|  | track_pfn_insert(vma, &pgprot, pfn); | 
|  |  | 
|  | insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable); | 
|  | return VM_FAULT_NOPAGE; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot); | 
|  |  | 
|  | #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD | 
|  | static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) | 
|  | { | 
|  | if (likely(vma->vm_flags & VM_WRITE)) | 
|  | pud = pud_mkwrite(pud); | 
|  | return pud; | 
|  | } | 
|  |  | 
|  | static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, | 
|  | pud_t *pud, pfn_t pfn, pgprot_t prot, bool write) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | pud_t entry; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | ptl = pud_lock(mm, pud); | 
|  | if (!pud_none(*pud)) { | 
|  | if (write) { | 
|  | if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) { | 
|  | WARN_ON_ONCE(!is_huge_zero_pud(*pud)); | 
|  | goto out_unlock; | 
|  | } | 
|  | entry = pud_mkyoung(*pud); | 
|  | entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); | 
|  | if (pudp_set_access_flags(vma, addr, pud, entry, 1)) | 
|  | update_mmu_cache_pud(vma, addr, pud); | 
|  | } | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | entry = pud_mkhuge(pfn_t_pud(pfn, prot)); | 
|  | if (pfn_t_devmap(pfn)) | 
|  | entry = pud_mkdevmap(entry); | 
|  | if (write) { | 
|  | entry = pud_mkyoung(pud_mkdirty(entry)); | 
|  | entry = maybe_pud_mkwrite(entry, vma); | 
|  | } | 
|  | set_pud_at(mm, addr, pud, entry); | 
|  | update_mmu_cache_pud(vma, addr, pud); | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock(ptl); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * vmf_insert_pfn_pud_prot - insert a pud size pfn | 
|  | * @vmf: Structure describing the fault | 
|  | * @pfn: pfn to insert | 
|  | * @pgprot: page protection to use | 
|  | * @write: whether it's a write fault | 
|  | * | 
|  | * Insert a pud size pfn. See vmf_insert_pfn() for additional info and | 
|  | * also consult the vmf_insert_mixed_prot() documentation when | 
|  | * @pgprot != @vmf->vma->vm_page_prot. | 
|  | * | 
|  | * Return: vm_fault_t value. | 
|  | */ | 
|  | vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn, | 
|  | pgprot_t pgprot, bool write) | 
|  | { | 
|  | unsigned long addr = vmf->address & PUD_MASK; | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  |  | 
|  | /* | 
|  | * If we had pud_special, we could avoid all these restrictions, | 
|  | * but we need to be consistent with PTEs and architectures that | 
|  | * can't support a 'special' bit. | 
|  | */ | 
|  | BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && | 
|  | !pfn_t_devmap(pfn)); | 
|  | BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == | 
|  | (VM_PFNMAP|VM_MIXEDMAP)); | 
|  | BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); | 
|  |  | 
|  | if (addr < vma->vm_start || addr >= vma->vm_end) | 
|  | return VM_FAULT_SIGBUS; | 
|  |  | 
|  | track_pfn_insert(vma, &pgprot, pfn); | 
|  |  | 
|  | insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write); | 
|  | return VM_FAULT_NOPAGE; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot); | 
|  | #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ | 
|  |  | 
|  | static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, | 
|  | pmd_t *pmd, int flags) | 
|  | { | 
|  | pmd_t _pmd; | 
|  |  | 
|  | _pmd = pmd_mkyoung(*pmd); | 
|  | if (flags & FOLL_WRITE) | 
|  | _pmd = pmd_mkdirty(_pmd); | 
|  | if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, | 
|  | pmd, _pmd, flags & FOLL_WRITE)) | 
|  | update_mmu_cache_pmd(vma, addr, pmd); | 
|  | } | 
|  |  | 
|  | struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, | 
|  | pmd_t *pmd, int flags, struct dev_pagemap **pgmap) | 
|  | { | 
|  | unsigned long pfn = pmd_pfn(*pmd); | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct page *page; | 
|  |  | 
|  | assert_spin_locked(pmd_lockptr(mm, pmd)); | 
|  |  | 
|  | /* | 
|  | * When we COW a devmap PMD entry, we split it into PTEs, so we should | 
|  | * not be in this function with `flags & FOLL_COW` set. | 
|  | */ | 
|  | WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set"); | 
|  |  | 
|  | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ | 
|  | if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == | 
|  | (FOLL_PIN | FOLL_GET))) | 
|  | return NULL; | 
|  |  | 
|  | if (flags & FOLL_WRITE && !pmd_write(*pmd)) | 
|  | return NULL; | 
|  |  | 
|  | if (pmd_present(*pmd) && pmd_devmap(*pmd)) | 
|  | /* pass */; | 
|  | else | 
|  | return NULL; | 
|  |  | 
|  | if (flags & FOLL_TOUCH) | 
|  | touch_pmd(vma, addr, pmd, flags); | 
|  |  | 
|  | /* | 
|  | * device mapped pages can only be returned if the | 
|  | * caller will manage the page reference count. | 
|  | */ | 
|  | if (!(flags & (FOLL_GET | FOLL_PIN))) | 
|  | return ERR_PTR(-EEXIST); | 
|  |  | 
|  | pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; | 
|  | *pgmap = get_dev_pagemap(pfn, *pgmap); | 
|  | if (!*pgmap) | 
|  | return ERR_PTR(-EFAULT); | 
|  | page = pfn_to_page(pfn); | 
|  | if (!try_grab_page(page, flags)) | 
|  | page = ERR_PTR(-ENOMEM); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
|  | pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, | 
|  | struct vm_area_struct *vma) | 
|  | { | 
|  | spinlock_t *dst_ptl, *src_ptl; | 
|  | struct page *src_page; | 
|  | pmd_t pmd; | 
|  | pgtable_t pgtable = NULL; | 
|  | int ret = -ENOMEM; | 
|  |  | 
|  | /* Skip if can be re-fill on fault */ | 
|  | if (!vma_is_anonymous(vma)) | 
|  | return 0; | 
|  |  | 
|  | pgtable = pte_alloc_one(dst_mm); | 
|  | if (unlikely(!pgtable)) | 
|  | goto out; | 
|  |  | 
|  | dst_ptl = pmd_lock(dst_mm, dst_pmd); | 
|  | src_ptl = pmd_lockptr(src_mm, src_pmd); | 
|  | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); | 
|  |  | 
|  | ret = -EAGAIN; | 
|  | pmd = *src_pmd; | 
|  |  | 
|  | /* | 
|  | * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA | 
|  | * does not have the VM_UFFD_WP, which means that the uffd | 
|  | * fork event is not enabled. | 
|  | */ | 
|  | if (!(vma->vm_flags & VM_UFFD_WP)) | 
|  | pmd = pmd_clear_uffd_wp(pmd); | 
|  |  | 
|  | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION | 
|  | if (unlikely(is_swap_pmd(pmd))) { | 
|  | swp_entry_t entry = pmd_to_swp_entry(pmd); | 
|  |  | 
|  | VM_BUG_ON(!is_pmd_migration_entry(pmd)); | 
|  | if (is_write_migration_entry(entry)) { | 
|  | make_migration_entry_read(&entry); | 
|  | pmd = swp_entry_to_pmd(entry); | 
|  | if (pmd_swp_soft_dirty(*src_pmd)) | 
|  | pmd = pmd_swp_mksoft_dirty(pmd); | 
|  | set_pmd_at(src_mm, addr, src_pmd, pmd); | 
|  | } | 
|  | add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); | 
|  | mm_inc_nr_ptes(dst_mm); | 
|  | pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); | 
|  | set_pmd_at(dst_mm, addr, dst_pmd, pmd); | 
|  | ret = 0; | 
|  | goto out_unlock; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (unlikely(!pmd_trans_huge(pmd))) { | 
|  | pte_free(dst_mm, pgtable); | 
|  | goto out_unlock; | 
|  | } | 
|  | /* | 
|  | * When page table lock is held, the huge zero pmd should not be | 
|  | * under splitting since we don't split the page itself, only pmd to | 
|  | * a page table. | 
|  | */ | 
|  | if (is_huge_zero_pmd(pmd)) { | 
|  | struct page *zero_page; | 
|  | /* | 
|  | * get_huge_zero_page() will never allocate a new page here, | 
|  | * since we already have a zero page to copy. It just takes a | 
|  | * reference. | 
|  | */ | 
|  | zero_page = mm_get_huge_zero_page(dst_mm); | 
|  | set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, | 
|  | zero_page); | 
|  | ret = 0; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | src_page = pmd_page(pmd); | 
|  | VM_BUG_ON_PAGE(!PageHead(src_page), src_page); | 
|  | get_page(src_page); | 
|  | page_dup_rmap(src_page, true); | 
|  | add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); | 
|  | mm_inc_nr_ptes(dst_mm); | 
|  | pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); | 
|  |  | 
|  | pmdp_set_wrprotect(src_mm, addr, src_pmd); | 
|  | pmd = pmd_mkold(pmd_wrprotect(pmd)); | 
|  | set_pmd_at(dst_mm, addr, dst_pmd, pmd); | 
|  |  | 
|  | ret = 0; | 
|  | out_unlock: | 
|  | spin_unlock(src_ptl); | 
|  | spin_unlock(dst_ptl); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD | 
|  | static void touch_pud(struct vm_area_struct *vma, unsigned long addr, | 
|  | pud_t *pud, int flags) | 
|  | { | 
|  | pud_t _pud; | 
|  |  | 
|  | _pud = pud_mkyoung(*pud); | 
|  | if (flags & FOLL_WRITE) | 
|  | _pud = pud_mkdirty(_pud); | 
|  | if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, | 
|  | pud, _pud, flags & FOLL_WRITE)) | 
|  | update_mmu_cache_pud(vma, addr, pud); | 
|  | } | 
|  |  | 
|  | struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, | 
|  | pud_t *pud, int flags, struct dev_pagemap **pgmap) | 
|  | { | 
|  | unsigned long pfn = pud_pfn(*pud); | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct page *page; | 
|  |  | 
|  | assert_spin_locked(pud_lockptr(mm, pud)); | 
|  |  | 
|  | if (flags & FOLL_WRITE && !pud_write(*pud)) | 
|  | return NULL; | 
|  |  | 
|  | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ | 
|  | if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == | 
|  | (FOLL_PIN | FOLL_GET))) | 
|  | return NULL; | 
|  |  | 
|  | if (pud_present(*pud) && pud_devmap(*pud)) | 
|  | /* pass */; | 
|  | else | 
|  | return NULL; | 
|  |  | 
|  | if (flags & FOLL_TOUCH) | 
|  | touch_pud(vma, addr, pud, flags); | 
|  |  | 
|  | /* | 
|  | * device mapped pages can only be returned if the | 
|  | * caller will manage the page reference count. | 
|  | * | 
|  | * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here: | 
|  | */ | 
|  | if (!(flags & (FOLL_GET | FOLL_PIN))) | 
|  | return ERR_PTR(-EEXIST); | 
|  |  | 
|  | pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; | 
|  | *pgmap = get_dev_pagemap(pfn, *pgmap); | 
|  | if (!*pgmap) | 
|  | return ERR_PTR(-EFAULT); | 
|  | page = pfn_to_page(pfn); | 
|  | if (!try_grab_page(page, flags)) | 
|  | page = ERR_PTR(-ENOMEM); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
|  | pud_t *dst_pud, pud_t *src_pud, unsigned long addr, | 
|  | struct vm_area_struct *vma) | 
|  | { | 
|  | spinlock_t *dst_ptl, *src_ptl; | 
|  | pud_t pud; | 
|  | int ret; | 
|  |  | 
|  | dst_ptl = pud_lock(dst_mm, dst_pud); | 
|  | src_ptl = pud_lockptr(src_mm, src_pud); | 
|  | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); | 
|  |  | 
|  | ret = -EAGAIN; | 
|  | pud = *src_pud; | 
|  | if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* | 
|  | * When page table lock is held, the huge zero pud should not be | 
|  | * under splitting since we don't split the page itself, only pud to | 
|  | * a page table. | 
|  | */ | 
|  | if (is_huge_zero_pud(pud)) { | 
|  | /* No huge zero pud yet */ | 
|  | } | 
|  |  | 
|  | pudp_set_wrprotect(src_mm, addr, src_pud); | 
|  | pud = pud_mkold(pud_wrprotect(pud)); | 
|  | set_pud_at(dst_mm, addr, dst_pud, pud); | 
|  |  | 
|  | ret = 0; | 
|  | out_unlock: | 
|  | spin_unlock(src_ptl); | 
|  | spin_unlock(dst_ptl); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) | 
|  | { | 
|  | pud_t entry; | 
|  | unsigned long haddr; | 
|  | bool write = vmf->flags & FAULT_FLAG_WRITE; | 
|  |  | 
|  | vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); | 
|  | if (unlikely(!pud_same(*vmf->pud, orig_pud))) | 
|  | goto unlock; | 
|  |  | 
|  | entry = pud_mkyoung(orig_pud); | 
|  | if (write) | 
|  | entry = pud_mkdirty(entry); | 
|  | haddr = vmf->address & HPAGE_PUD_MASK; | 
|  | if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write)) | 
|  | update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud); | 
|  |  | 
|  | unlock: | 
|  | spin_unlock(vmf->ptl); | 
|  | } | 
|  | #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ | 
|  |  | 
|  | void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd) | 
|  | { | 
|  | pmd_t entry; | 
|  | unsigned long haddr; | 
|  | bool write = vmf->flags & FAULT_FLAG_WRITE; | 
|  |  | 
|  | vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); | 
|  | if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) | 
|  | goto unlock; | 
|  |  | 
|  | entry = pmd_mkyoung(orig_pmd); | 
|  | if (write) | 
|  | entry = pmd_mkdirty(entry); | 
|  | haddr = vmf->address & HPAGE_PMD_MASK; | 
|  | if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write)) | 
|  | update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd); | 
|  |  | 
|  | unlock: | 
|  | spin_unlock(vmf->ptl); | 
|  | } | 
|  |  | 
|  | vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd) | 
|  | { | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  | struct page *page; | 
|  | unsigned long haddr = vmf->address & HPAGE_PMD_MASK; | 
|  |  | 
|  | vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); | 
|  | VM_BUG_ON_VMA(!vma->anon_vma, vma); | 
|  |  | 
|  | if (is_huge_zero_pmd(orig_pmd)) | 
|  | goto fallback; | 
|  |  | 
|  | spin_lock(vmf->ptl); | 
|  |  | 
|  | if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { | 
|  | spin_unlock(vmf->ptl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | page = pmd_page(orig_pmd); | 
|  | VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page); | 
|  |  | 
|  | /* Lock page for reuse_swap_page() */ | 
|  | if (!trylock_page(page)) { | 
|  | get_page(page); | 
|  | spin_unlock(vmf->ptl); | 
|  | lock_page(page); | 
|  | spin_lock(vmf->ptl); | 
|  | if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { | 
|  | spin_unlock(vmf->ptl); | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | return 0; | 
|  | } | 
|  | put_page(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We can only reuse the page if nobody else maps the huge page or it's | 
|  | * part. | 
|  | */ | 
|  | if (reuse_swap_page(page, NULL)) { | 
|  | pmd_t entry; | 
|  | entry = pmd_mkyoung(orig_pmd); | 
|  | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); | 
|  | if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) | 
|  | update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); | 
|  | unlock_page(page); | 
|  | spin_unlock(vmf->ptl); | 
|  | return VM_FAULT_WRITE; | 
|  | } | 
|  |  | 
|  | unlock_page(page); | 
|  | spin_unlock(vmf->ptl); | 
|  | fallback: | 
|  | __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); | 
|  | return VM_FAULT_FALLBACK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * FOLL_FORCE or a forced COW break can write even to unwritable pmd's, | 
|  | * but only after we've gone through a COW cycle and they are dirty. | 
|  | */ | 
|  | static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags) | 
|  | { | 
|  | return pmd_write(pmd) || ((flags & FOLL_COW) && pmd_dirty(pmd)); | 
|  | } | 
|  |  | 
|  | struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, | 
|  | unsigned long addr, | 
|  | pmd_t *pmd, | 
|  | unsigned int flags) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct page *page = NULL; | 
|  |  | 
|  | assert_spin_locked(pmd_lockptr(mm, pmd)); | 
|  |  | 
|  | if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags)) | 
|  | goto out; | 
|  |  | 
|  | /* Avoid dumping huge zero page */ | 
|  | if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) | 
|  | return ERR_PTR(-EFAULT); | 
|  |  | 
|  | /* Full NUMA hinting faults to serialise migration in fault paths */ | 
|  | if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) | 
|  | goto out; | 
|  |  | 
|  | page = pmd_page(*pmd); | 
|  | VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); | 
|  |  | 
|  | if (!try_grab_page(page, flags)) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | if (flags & FOLL_TOUCH) | 
|  | touch_pmd(vma, addr, pmd, flags); | 
|  |  | 
|  | if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { | 
|  | /* | 
|  | * We don't mlock() pte-mapped THPs. This way we can avoid | 
|  | * leaking mlocked pages into non-VM_LOCKED VMAs. | 
|  | * | 
|  | * For anon THP: | 
|  | * | 
|  | * In most cases the pmd is the only mapping of the page as we | 
|  | * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for | 
|  | * writable private mappings in populate_vma_page_range(). | 
|  | * | 
|  | * The only scenario when we have the page shared here is if we | 
|  | * mlocking read-only mapping shared over fork(). We skip | 
|  | * mlocking such pages. | 
|  | * | 
|  | * For file THP: | 
|  | * | 
|  | * We can expect PageDoubleMap() to be stable under page lock: | 
|  | * for file pages we set it in page_add_file_rmap(), which | 
|  | * requires page to be locked. | 
|  | */ | 
|  |  | 
|  | if (PageAnon(page) && compound_mapcount(page) != 1) | 
|  | goto skip_mlock; | 
|  | if (PageDoubleMap(page) || !page->mapping) | 
|  | goto skip_mlock; | 
|  | if (!trylock_page(page)) | 
|  | goto skip_mlock; | 
|  | if (page->mapping && !PageDoubleMap(page)) | 
|  | mlock_vma_page(page); | 
|  | unlock_page(page); | 
|  | } | 
|  | skip_mlock: | 
|  | page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; | 
|  | VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); | 
|  |  | 
|  | out: | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* NUMA hinting page fault entry point for trans huge pmds */ | 
|  | vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd) | 
|  | { | 
|  | struct vm_area_struct *vma = vmf->vma; | 
|  | struct anon_vma *anon_vma = NULL; | 
|  | struct page *page; | 
|  | unsigned long haddr = vmf->address & HPAGE_PMD_MASK; | 
|  | int page_nid = NUMA_NO_NODE, this_nid = numa_node_id(); | 
|  | int target_nid, last_cpupid = -1; | 
|  | bool page_locked; | 
|  | bool migrated = false; | 
|  | bool was_writable; | 
|  | int flags = 0; | 
|  |  | 
|  | vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); | 
|  | if (unlikely(!pmd_same(pmd, *vmf->pmd))) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* | 
|  | * If there are potential migrations, wait for completion and retry | 
|  | * without disrupting NUMA hinting information. Do not relock and | 
|  | * check_same as the page may no longer be mapped. | 
|  | */ | 
|  | if (unlikely(pmd_trans_migrating(*vmf->pmd))) { | 
|  | page = pmd_page(*vmf->pmd); | 
|  | if (!get_page_unless_zero(page)) | 
|  | goto out_unlock; | 
|  | spin_unlock(vmf->ptl); | 
|  | put_and_wait_on_page_locked(page); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | page = pmd_page(pmd); | 
|  | BUG_ON(is_huge_zero_page(page)); | 
|  | page_nid = page_to_nid(page); | 
|  | last_cpupid = page_cpupid_last(page); | 
|  | count_vm_numa_event(NUMA_HINT_FAULTS); | 
|  | if (page_nid == this_nid) { | 
|  | count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); | 
|  | flags |= TNF_FAULT_LOCAL; | 
|  | } | 
|  |  | 
|  | /* See similar comment in do_numa_page for explanation */ | 
|  | if (!pmd_savedwrite(pmd)) | 
|  | flags |= TNF_NO_GROUP; | 
|  |  | 
|  | /* | 
|  | * Acquire the page lock to serialise THP migrations but avoid dropping | 
|  | * page_table_lock if at all possible | 
|  | */ | 
|  | page_locked = trylock_page(page); | 
|  | target_nid = mpol_misplaced(page, vma, haddr); | 
|  | if (target_nid == NUMA_NO_NODE) { | 
|  | /* If the page was locked, there are no parallel migrations */ | 
|  | if (page_locked) | 
|  | goto clear_pmdnuma; | 
|  | } | 
|  |  | 
|  | /* Migration could have started since the pmd_trans_migrating check */ | 
|  | if (!page_locked) { | 
|  | page_nid = NUMA_NO_NODE; | 
|  | if (!get_page_unless_zero(page)) | 
|  | goto out_unlock; | 
|  | spin_unlock(vmf->ptl); | 
|  | put_and_wait_on_page_locked(page); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Page is misplaced. Page lock serialises migrations. Acquire anon_vma | 
|  | * to serialises splits | 
|  | */ | 
|  | get_page(page); | 
|  | spin_unlock(vmf->ptl); | 
|  | anon_vma = page_lock_anon_vma_read(page); | 
|  |  | 
|  | /* Confirm the PMD did not change while page_table_lock was released */ | 
|  | spin_lock(vmf->ptl); | 
|  | if (unlikely(!pmd_same(pmd, *vmf->pmd))) { | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | page_nid = NUMA_NO_NODE; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* Bail if we fail to protect against THP splits for any reason */ | 
|  | if (unlikely(!anon_vma)) { | 
|  | put_page(page); | 
|  | page_nid = NUMA_NO_NODE; | 
|  | goto clear_pmdnuma; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Since we took the NUMA fault, we must have observed the !accessible | 
|  | * bit. Make sure all other CPUs agree with that, to avoid them | 
|  | * modifying the page we're about to migrate. | 
|  | * | 
|  | * Must be done under PTL such that we'll observe the relevant | 
|  | * inc_tlb_flush_pending(). | 
|  | * | 
|  | * We are not sure a pending tlb flush here is for a huge page | 
|  | * mapping or not. Hence use the tlb range variant | 
|  | */ | 
|  | if (mm_tlb_flush_pending(vma->vm_mm)) { | 
|  | flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE); | 
|  | /* | 
|  | * change_huge_pmd() released the pmd lock before | 
|  | * invalidating the secondary MMUs sharing the primary | 
|  | * MMU pagetables (with ->invalidate_range()). The | 
|  | * mmu_notifier_invalidate_range_end() (which | 
|  | * internally calls ->invalidate_range()) in | 
|  | * change_pmd_range() will run after us, so we can't | 
|  | * rely on it here and we need an explicit invalidate. | 
|  | */ | 
|  | mmu_notifier_invalidate_range(vma->vm_mm, haddr, | 
|  | haddr + HPAGE_PMD_SIZE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Migrate the THP to the requested node, returns with page unlocked | 
|  | * and access rights restored. | 
|  | */ | 
|  | spin_unlock(vmf->ptl); | 
|  |  | 
|  | migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma, | 
|  | vmf->pmd, pmd, vmf->address, page, target_nid); | 
|  | if (migrated) { | 
|  | flags |= TNF_MIGRATED; | 
|  | page_nid = target_nid; | 
|  | } else | 
|  | flags |= TNF_MIGRATE_FAIL; | 
|  |  | 
|  | goto out; | 
|  | clear_pmdnuma: | 
|  | BUG_ON(!PageLocked(page)); | 
|  | was_writable = pmd_savedwrite(pmd); | 
|  | pmd = pmd_modify(pmd, vma->vm_page_prot); | 
|  | pmd = pmd_mkyoung(pmd); | 
|  | if (was_writable) | 
|  | pmd = pmd_mkwrite(pmd); | 
|  | set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); | 
|  | update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); | 
|  | unlock_page(page); | 
|  | out_unlock: | 
|  | spin_unlock(vmf->ptl); | 
|  |  | 
|  | out: | 
|  | if (anon_vma) | 
|  | page_unlock_anon_vma_read(anon_vma); | 
|  |  | 
|  | if (page_nid != NUMA_NO_NODE) | 
|  | task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, | 
|  | flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if we do MADV_FREE successfully on entire pmd page. | 
|  | * Otherwise, return false. | 
|  | */ | 
|  | bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, | 
|  | pmd_t *pmd, unsigned long addr, unsigned long next) | 
|  | { | 
|  | spinlock_t *ptl; | 
|  | pmd_t orig_pmd; | 
|  | struct page *page; | 
|  | struct mm_struct *mm = tlb->mm; | 
|  | bool ret = false; | 
|  |  | 
|  | tlb_change_page_size(tlb, HPAGE_PMD_SIZE); | 
|  |  | 
|  | ptl = pmd_trans_huge_lock(pmd, vma); | 
|  | if (!ptl) | 
|  | goto out_unlocked; | 
|  |  | 
|  | orig_pmd = *pmd; | 
|  | if (is_huge_zero_pmd(orig_pmd)) | 
|  | goto out; | 
|  |  | 
|  | if (unlikely(!pmd_present(orig_pmd))) { | 
|  | VM_BUG_ON(thp_migration_supported() && | 
|  | !is_pmd_migration_entry(orig_pmd)); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | page = pmd_page(orig_pmd); | 
|  | /* | 
|  | * If other processes are mapping this page, we couldn't discard | 
|  | * the page unless they all do MADV_FREE so let's skip the page. | 
|  | */ | 
|  | if (page_mapcount(page) != 1) | 
|  | goto out; | 
|  |  | 
|  | if (!trylock_page(page)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * If user want to discard part-pages of THP, split it so MADV_FREE | 
|  | * will deactivate only them. | 
|  | */ | 
|  | if (next - addr != HPAGE_PMD_SIZE) { | 
|  | get_page(page); | 
|  | spin_unlock(ptl); | 
|  | split_huge_page(page); | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | goto out_unlocked; | 
|  | } | 
|  |  | 
|  | if (PageDirty(page)) | 
|  | ClearPageDirty(page); | 
|  | unlock_page(page); | 
|  |  | 
|  | if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { | 
|  | pmdp_invalidate(vma, addr, pmd); | 
|  | orig_pmd = pmd_mkold(orig_pmd); | 
|  | orig_pmd = pmd_mkclean(orig_pmd); | 
|  |  | 
|  | set_pmd_at(mm, addr, pmd, orig_pmd); | 
|  | tlb_remove_pmd_tlb_entry(tlb, pmd, addr); | 
|  | } | 
|  |  | 
|  | mark_page_lazyfree(page); | 
|  | ret = true; | 
|  | out: | 
|  | spin_unlock(ptl); | 
|  | out_unlocked: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) | 
|  | { | 
|  | pgtable_t pgtable; | 
|  |  | 
|  | pgtable = pgtable_trans_huge_withdraw(mm, pmd); | 
|  | pte_free(mm, pgtable); | 
|  | mm_dec_nr_ptes(mm); | 
|  | } | 
|  |  | 
|  | int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, | 
|  | pmd_t *pmd, unsigned long addr) | 
|  | { | 
|  | pmd_t orig_pmd; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | tlb_change_page_size(tlb, HPAGE_PMD_SIZE); | 
|  |  | 
|  | ptl = __pmd_trans_huge_lock(pmd, vma); | 
|  | if (!ptl) | 
|  | return 0; | 
|  | /* | 
|  | * For architectures like ppc64 we look at deposited pgtable | 
|  | * when calling pmdp_huge_get_and_clear. So do the | 
|  | * pgtable_trans_huge_withdraw after finishing pmdp related | 
|  | * operations. | 
|  | */ | 
|  | orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd, | 
|  | tlb->fullmm); | 
|  | tlb_remove_pmd_tlb_entry(tlb, pmd, addr); | 
|  | if (vma_is_special_huge(vma)) { | 
|  | if (arch_needs_pgtable_deposit()) | 
|  | zap_deposited_table(tlb->mm, pmd); | 
|  | spin_unlock(ptl); | 
|  | if (is_huge_zero_pmd(orig_pmd)) | 
|  | tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); | 
|  | } else if (is_huge_zero_pmd(orig_pmd)) { | 
|  | zap_deposited_table(tlb->mm, pmd); | 
|  | spin_unlock(ptl); | 
|  | tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); | 
|  | } else { | 
|  | struct page *page = NULL; | 
|  | int flush_needed = 1; | 
|  |  | 
|  | if (pmd_present(orig_pmd)) { | 
|  | page = pmd_page(orig_pmd); | 
|  | page_remove_rmap(page, true); | 
|  | VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); | 
|  | VM_BUG_ON_PAGE(!PageHead(page), page); | 
|  | } else if (thp_migration_supported()) { | 
|  | swp_entry_t entry; | 
|  |  | 
|  | VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); | 
|  | entry = pmd_to_swp_entry(orig_pmd); | 
|  | page = pfn_to_page(swp_offset(entry)); | 
|  | flush_needed = 0; | 
|  | } else | 
|  | WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); | 
|  |  | 
|  | if (PageAnon(page)) { | 
|  | zap_deposited_table(tlb->mm, pmd); | 
|  | add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); | 
|  | } else { | 
|  | if (arch_needs_pgtable_deposit()) | 
|  | zap_deposited_table(tlb->mm, pmd); | 
|  | add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR); | 
|  | } | 
|  |  | 
|  | spin_unlock(ptl); | 
|  | if (flush_needed) | 
|  | tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #ifndef pmd_move_must_withdraw | 
|  | static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, | 
|  | spinlock_t *old_pmd_ptl, | 
|  | struct vm_area_struct *vma) | 
|  | { | 
|  | /* | 
|  | * With split pmd lock we also need to move preallocated | 
|  | * PTE page table if new_pmd is on different PMD page table. | 
|  | * | 
|  | * We also don't deposit and withdraw tables for file pages. | 
|  | */ | 
|  | return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static pmd_t move_soft_dirty_pmd(pmd_t pmd) | 
|  | { | 
|  | #ifdef CONFIG_MEM_SOFT_DIRTY | 
|  | if (unlikely(is_pmd_migration_entry(pmd))) | 
|  | pmd = pmd_swp_mksoft_dirty(pmd); | 
|  | else if (pmd_present(pmd)) | 
|  | pmd = pmd_mksoft_dirty(pmd); | 
|  | #endif | 
|  | return pmd; | 
|  | } | 
|  |  | 
|  | bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, | 
|  | unsigned long new_addr, unsigned long old_end, | 
|  | pmd_t *old_pmd, pmd_t *new_pmd) | 
|  | { | 
|  | spinlock_t *old_ptl, *new_ptl; | 
|  | pmd_t pmd; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | bool force_flush = false; | 
|  |  | 
|  | if ((old_addr & ~HPAGE_PMD_MASK) || | 
|  | (new_addr & ~HPAGE_PMD_MASK) || | 
|  | old_end - old_addr < HPAGE_PMD_SIZE) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * The destination pmd shouldn't be established, free_pgtables() | 
|  | * should have release it. | 
|  | */ | 
|  | if (WARN_ON(!pmd_none(*new_pmd))) { | 
|  | VM_BUG_ON(pmd_trans_huge(*new_pmd)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We don't have to worry about the ordering of src and dst | 
|  | * ptlocks because exclusive mmap_lock prevents deadlock. | 
|  | */ | 
|  | old_ptl = __pmd_trans_huge_lock(old_pmd, vma); | 
|  | if (old_ptl) { | 
|  | new_ptl = pmd_lockptr(mm, new_pmd); | 
|  | if (new_ptl != old_ptl) | 
|  | spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); | 
|  | pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); | 
|  | if (pmd_present(pmd)) | 
|  | force_flush = true; | 
|  | VM_BUG_ON(!pmd_none(*new_pmd)); | 
|  |  | 
|  | if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { | 
|  | pgtable_t pgtable; | 
|  | pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); | 
|  | pgtable_trans_huge_deposit(mm, new_pmd, pgtable); | 
|  | } | 
|  | pmd = move_soft_dirty_pmd(pmd); | 
|  | set_pmd_at(mm, new_addr, new_pmd, pmd); | 
|  | if (force_flush) | 
|  | flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); | 
|  | if (new_ptl != old_ptl) | 
|  | spin_unlock(new_ptl); | 
|  | spin_unlock(old_ptl); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns | 
|  | *  - 0 if PMD could not be locked | 
|  | *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary | 
|  | *  - HPAGE_PMD_NR is protections changed and TLB flush necessary | 
|  | */ | 
|  | int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, | 
|  | unsigned long addr, pgprot_t newprot, unsigned long cp_flags) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | spinlock_t *ptl; | 
|  | pmd_t entry; | 
|  | bool preserve_write; | 
|  | int ret; | 
|  | bool prot_numa = cp_flags & MM_CP_PROT_NUMA; | 
|  | bool uffd_wp = cp_flags & MM_CP_UFFD_WP; | 
|  | bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; | 
|  |  | 
|  | ptl = __pmd_trans_huge_lock(pmd, vma); | 
|  | if (!ptl) | 
|  | return 0; | 
|  |  | 
|  | preserve_write = prot_numa && pmd_write(*pmd); | 
|  | ret = 1; | 
|  |  | 
|  | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION | 
|  | if (is_swap_pmd(*pmd)) { | 
|  | swp_entry_t entry = pmd_to_swp_entry(*pmd); | 
|  |  | 
|  | VM_BUG_ON(!is_pmd_migration_entry(*pmd)); | 
|  | if (is_write_migration_entry(entry)) { | 
|  | pmd_t newpmd; | 
|  | /* | 
|  | * A protection check is difficult so | 
|  | * just be safe and disable write | 
|  | */ | 
|  | make_migration_entry_read(&entry); | 
|  | newpmd = swp_entry_to_pmd(entry); | 
|  | if (pmd_swp_soft_dirty(*pmd)) | 
|  | newpmd = pmd_swp_mksoft_dirty(newpmd); | 
|  | set_pmd_at(mm, addr, pmd, newpmd); | 
|  | } | 
|  | goto unlock; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Avoid trapping faults against the zero page. The read-only | 
|  | * data is likely to be read-cached on the local CPU and | 
|  | * local/remote hits to the zero page are not interesting. | 
|  | */ | 
|  | if (prot_numa && is_huge_zero_pmd(*pmd)) | 
|  | goto unlock; | 
|  |  | 
|  | if (prot_numa && pmd_protnone(*pmd)) | 
|  | goto unlock; | 
|  |  | 
|  | /* | 
|  | * In case prot_numa, we are under mmap_read_lock(mm). It's critical | 
|  | * to not clear pmd intermittently to avoid race with MADV_DONTNEED | 
|  | * which is also under mmap_read_lock(mm): | 
|  | * | 
|  | *	CPU0:				CPU1: | 
|  | *				change_huge_pmd(prot_numa=1) | 
|  | *				 pmdp_huge_get_and_clear_notify() | 
|  | * madvise_dontneed() | 
|  | *  zap_pmd_range() | 
|  | *   pmd_trans_huge(*pmd) == 0 (without ptl) | 
|  | *   // skip the pmd | 
|  | *				 set_pmd_at(); | 
|  | *				 // pmd is re-established | 
|  | * | 
|  | * The race makes MADV_DONTNEED miss the huge pmd and don't clear it | 
|  | * which may break userspace. | 
|  | * | 
|  | * pmdp_invalidate() is required to make sure we don't miss | 
|  | * dirty/young flags set by hardware. | 
|  | */ | 
|  | entry = pmdp_invalidate(vma, addr, pmd); | 
|  |  | 
|  | entry = pmd_modify(entry, newprot); | 
|  | if (preserve_write) | 
|  | entry = pmd_mk_savedwrite(entry); | 
|  | if (uffd_wp) { | 
|  | entry = pmd_wrprotect(entry); | 
|  | entry = pmd_mkuffd_wp(entry); | 
|  | } else if (uffd_wp_resolve) { | 
|  | /* | 
|  | * Leave the write bit to be handled by PF interrupt | 
|  | * handler, then things like COW could be properly | 
|  | * handled. | 
|  | */ | 
|  | entry = pmd_clear_uffd_wp(entry); | 
|  | } | 
|  | ret = HPAGE_PMD_NR; | 
|  | set_pmd_at(mm, addr, pmd, entry); | 
|  | BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry)); | 
|  | unlock: | 
|  | spin_unlock(ptl); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. | 
|  | * | 
|  | * Note that if it returns page table lock pointer, this routine returns without | 
|  | * unlocking page table lock. So callers must unlock it. | 
|  | */ | 
|  | spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) | 
|  | { | 
|  | spinlock_t *ptl; | 
|  | ptl = pmd_lock(vma->vm_mm, pmd); | 
|  | if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || | 
|  | pmd_devmap(*pmd))) | 
|  | return ptl; | 
|  | spin_unlock(ptl); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns true if a given pud maps a thp, false otherwise. | 
|  | * | 
|  | * Note that if it returns true, this routine returns without unlocking page | 
|  | * table lock. So callers must unlock it. | 
|  | */ | 
|  | spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) | 
|  | { | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | ptl = pud_lock(vma->vm_mm, pud); | 
|  | if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) | 
|  | return ptl; | 
|  | spin_unlock(ptl); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD | 
|  | int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, | 
|  | pud_t *pud, unsigned long addr) | 
|  | { | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | ptl = __pud_trans_huge_lock(pud, vma); | 
|  | if (!ptl) | 
|  | return 0; | 
|  | /* | 
|  | * For architectures like ppc64 we look at deposited pgtable | 
|  | * when calling pudp_huge_get_and_clear. So do the | 
|  | * pgtable_trans_huge_withdraw after finishing pudp related | 
|  | * operations. | 
|  | */ | 
|  | pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm); | 
|  | tlb_remove_pud_tlb_entry(tlb, pud, addr); | 
|  | if (vma_is_special_huge(vma)) { | 
|  | spin_unlock(ptl); | 
|  | /* No zero page support yet */ | 
|  | } else { | 
|  | /* No support for anonymous PUD pages yet */ | 
|  | BUG(); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, | 
|  | unsigned long haddr) | 
|  | { | 
|  | VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); | 
|  | VM_BUG_ON_VMA(vma->vm_start > haddr, vma); | 
|  | VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); | 
|  | VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); | 
|  |  | 
|  | count_vm_event(THP_SPLIT_PUD); | 
|  |  | 
|  | pudp_huge_clear_flush_notify(vma, haddr, pud); | 
|  | } | 
|  |  | 
|  | void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, | 
|  | unsigned long address) | 
|  | { | 
|  | spinlock_t *ptl; | 
|  | struct mmu_notifier_range range; | 
|  |  | 
|  | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, | 
|  | address & HPAGE_PUD_MASK, | 
|  | (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); | 
|  | mmu_notifier_invalidate_range_start(&range); | 
|  | ptl = pud_lock(vma->vm_mm, pud); | 
|  | if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) | 
|  | goto out; | 
|  | __split_huge_pud_locked(vma, pud, range.start); | 
|  |  | 
|  | out: | 
|  | spin_unlock(ptl); | 
|  | /* | 
|  | * No need to double call mmu_notifier->invalidate_range() callback as | 
|  | * the above pudp_huge_clear_flush_notify() did already call it. | 
|  | */ | 
|  | mmu_notifier_invalidate_range_only_end(&range); | 
|  | } | 
|  | #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ | 
|  |  | 
|  | static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, | 
|  | unsigned long haddr, pmd_t *pmd) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | pgtable_t pgtable; | 
|  | pmd_t _pmd; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * Leave pmd empty until pte is filled note that it is fine to delay | 
|  | * notification until mmu_notifier_invalidate_range_end() as we are | 
|  | * replacing a zero pmd write protected page with a zero pte write | 
|  | * protected page. | 
|  | * | 
|  | * See Documentation/vm/mmu_notifier.rst | 
|  | */ | 
|  | pmdp_huge_clear_flush(vma, haddr, pmd); | 
|  |  | 
|  | pgtable = pgtable_trans_huge_withdraw(mm, pmd); | 
|  | pmd_populate(mm, &_pmd, pgtable); | 
|  |  | 
|  | for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { | 
|  | pte_t *pte, entry; | 
|  | entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); | 
|  | entry = pte_mkspecial(entry); | 
|  | pte = pte_offset_map(&_pmd, haddr); | 
|  | VM_BUG_ON(!pte_none(*pte)); | 
|  | set_pte_at(mm, haddr, pte, entry); | 
|  | pte_unmap(pte); | 
|  | } | 
|  | smp_wmb(); /* make pte visible before pmd */ | 
|  | pmd_populate(mm, pmd, pgtable); | 
|  | } | 
|  |  | 
|  | static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, | 
|  | unsigned long haddr, bool freeze) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct page *page; | 
|  | pgtable_t pgtable; | 
|  | pmd_t old_pmd, _pmd; | 
|  | bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false; | 
|  | unsigned long addr; | 
|  | int i; | 
|  |  | 
|  | VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); | 
|  | VM_BUG_ON_VMA(vma->vm_start > haddr, vma); | 
|  | VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); | 
|  | VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) | 
|  | && !pmd_devmap(*pmd)); | 
|  |  | 
|  | count_vm_event(THP_SPLIT_PMD); | 
|  |  | 
|  | if (!vma_is_anonymous(vma)) { | 
|  | _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd); | 
|  | /* | 
|  | * We are going to unmap this huge page. So | 
|  | * just go ahead and zap it | 
|  | */ | 
|  | if (arch_needs_pgtable_deposit()) | 
|  | zap_deposited_table(mm, pmd); | 
|  | if (vma_is_special_huge(vma)) | 
|  | return; | 
|  | page = pmd_page(_pmd); | 
|  | if (!PageDirty(page) && pmd_dirty(_pmd)) | 
|  | set_page_dirty(page); | 
|  | if (!PageReferenced(page) && pmd_young(_pmd)) | 
|  | SetPageReferenced(page); | 
|  | page_remove_rmap(page, true); | 
|  | put_page(page); | 
|  | add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR); | 
|  | return; | 
|  | } else if (is_huge_zero_pmd(*pmd)) { | 
|  | /* | 
|  | * FIXME: Do we want to invalidate secondary mmu by calling | 
|  | * mmu_notifier_invalidate_range() see comments below inside | 
|  | * __split_huge_pmd() ? | 
|  | * | 
|  | * We are going from a zero huge page write protected to zero | 
|  | * small page also write protected so it does not seems useful | 
|  | * to invalidate secondary mmu at this time. | 
|  | */ | 
|  | return __split_huge_zero_page_pmd(vma, haddr, pmd); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Up to this point the pmd is present and huge and userland has the | 
|  | * whole access to the hugepage during the split (which happens in | 
|  | * place). If we overwrite the pmd with the not-huge version pointing | 
|  | * to the pte here (which of course we could if all CPUs were bug | 
|  | * free), userland could trigger a small page size TLB miss on the | 
|  | * small sized TLB while the hugepage TLB entry is still established in | 
|  | * the huge TLB. Some CPU doesn't like that. | 
|  | * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum | 
|  | * 383 on page 93. Intel should be safe but is also warns that it's | 
|  | * only safe if the permission and cache attributes of the two entries | 
|  | * loaded in the two TLB is identical (which should be the case here). | 
|  | * But it is generally safer to never allow small and huge TLB entries | 
|  | * for the same virtual address to be loaded simultaneously. So instead | 
|  | * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the | 
|  | * current pmd notpresent (atomically because here the pmd_trans_huge | 
|  | * must remain set at all times on the pmd until the split is complete | 
|  | * for this pmd), then we flush the SMP TLB and finally we write the | 
|  | * non-huge version of the pmd entry with pmd_populate. | 
|  | */ | 
|  | old_pmd = pmdp_invalidate(vma, haddr, pmd); | 
|  |  | 
|  | pmd_migration = is_pmd_migration_entry(old_pmd); | 
|  | if (unlikely(pmd_migration)) { | 
|  | swp_entry_t entry; | 
|  |  | 
|  | entry = pmd_to_swp_entry(old_pmd); | 
|  | page = pfn_to_page(swp_offset(entry)); | 
|  | write = is_write_migration_entry(entry); | 
|  | young = false; | 
|  | soft_dirty = pmd_swp_soft_dirty(old_pmd); | 
|  | uffd_wp = pmd_swp_uffd_wp(old_pmd); | 
|  | } else { | 
|  | page = pmd_page(old_pmd); | 
|  | if (pmd_dirty(old_pmd)) | 
|  | SetPageDirty(page); | 
|  | write = pmd_write(old_pmd); | 
|  | young = pmd_young(old_pmd); | 
|  | soft_dirty = pmd_soft_dirty(old_pmd); | 
|  | uffd_wp = pmd_uffd_wp(old_pmd); | 
|  | } | 
|  | VM_BUG_ON_PAGE(!page_count(page), page); | 
|  | page_ref_add(page, HPAGE_PMD_NR - 1); | 
|  |  | 
|  | /* | 
|  | * Withdraw the table only after we mark the pmd entry invalid. | 
|  | * This's critical for some architectures (Power). | 
|  | */ | 
|  | pgtable = pgtable_trans_huge_withdraw(mm, pmd); | 
|  | pmd_populate(mm, &_pmd, pgtable); | 
|  |  | 
|  | for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { | 
|  | pte_t entry, *pte; | 
|  | /* | 
|  | * Note that NUMA hinting access restrictions are not | 
|  | * transferred to avoid any possibility of altering | 
|  | * permissions across VMAs. | 
|  | */ | 
|  | if (freeze || pmd_migration) { | 
|  | swp_entry_t swp_entry; | 
|  | swp_entry = make_migration_entry(page + i, write); | 
|  | entry = swp_entry_to_pte(swp_entry); | 
|  | if (soft_dirty) | 
|  | entry = pte_swp_mksoft_dirty(entry); | 
|  | if (uffd_wp) | 
|  | entry = pte_swp_mkuffd_wp(entry); | 
|  | } else { | 
|  | entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); | 
|  | entry = maybe_mkwrite(entry, vma); | 
|  | if (!write) | 
|  | entry = pte_wrprotect(entry); | 
|  | if (!young) | 
|  | entry = pte_mkold(entry); | 
|  | if (soft_dirty) | 
|  | entry = pte_mksoft_dirty(entry); | 
|  | if (uffd_wp) | 
|  | entry = pte_mkuffd_wp(entry); | 
|  | } | 
|  | pte = pte_offset_map(&_pmd, addr); | 
|  | BUG_ON(!pte_none(*pte)); | 
|  | set_pte_at(mm, addr, pte, entry); | 
|  | atomic_inc(&page[i]._mapcount); | 
|  | pte_unmap(pte); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set PG_double_map before dropping compound_mapcount to avoid | 
|  | * false-negative page_mapped(). | 
|  | */ | 
|  | if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) { | 
|  | for (i = 0; i < HPAGE_PMD_NR; i++) | 
|  | atomic_inc(&page[i]._mapcount); | 
|  | } | 
|  |  | 
|  | lock_page_memcg(page); | 
|  | if (atomic_add_negative(-1, compound_mapcount_ptr(page))) { | 
|  | /* Last compound_mapcount is gone. */ | 
|  | __dec_lruvec_page_state(page, NR_ANON_THPS); | 
|  | if (TestClearPageDoubleMap(page)) { | 
|  | /* No need in mapcount reference anymore */ | 
|  | for (i = 0; i < HPAGE_PMD_NR; i++) | 
|  | atomic_dec(&page[i]._mapcount); | 
|  | } | 
|  | } | 
|  | unlock_page_memcg(page); | 
|  |  | 
|  | smp_wmb(); /* make pte visible before pmd */ | 
|  | pmd_populate(mm, pmd, pgtable); | 
|  |  | 
|  | if (freeze) { | 
|  | for (i = 0; i < HPAGE_PMD_NR; i++) { | 
|  | page_remove_rmap(page + i, false); | 
|  | put_page(page + i); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, | 
|  | unsigned long address, bool freeze, struct page *page) | 
|  | { | 
|  | spinlock_t *ptl; | 
|  | struct mmu_notifier_range range; | 
|  | bool was_locked = false; | 
|  | pmd_t _pmd; | 
|  |  | 
|  | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, | 
|  | address & HPAGE_PMD_MASK, | 
|  | (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); | 
|  | mmu_notifier_invalidate_range_start(&range); | 
|  | ptl = pmd_lock(vma->vm_mm, pmd); | 
|  |  | 
|  | /* | 
|  | * If caller asks to setup a migration entries, we need a page to check | 
|  | * pmd against. Otherwise we can end up replacing wrong page. | 
|  | */ | 
|  | VM_BUG_ON(freeze && !page); | 
|  | if (page) { | 
|  | VM_WARN_ON_ONCE(!PageLocked(page)); | 
|  | was_locked = true; | 
|  | if (page != pmd_page(*pmd)) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | repeat: | 
|  | if (pmd_trans_huge(*pmd)) { | 
|  | if (!page) { | 
|  | page = pmd_page(*pmd); | 
|  | if (unlikely(!trylock_page(page))) { | 
|  | get_page(page); | 
|  | _pmd = *pmd; | 
|  | spin_unlock(ptl); | 
|  | lock_page(page); | 
|  | spin_lock(ptl); | 
|  | if (unlikely(!pmd_same(*pmd, _pmd))) { | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | page = NULL; | 
|  | goto repeat; | 
|  | } | 
|  | put_page(page); | 
|  | } | 
|  | } | 
|  | if (PageMlocked(page)) | 
|  | clear_page_mlock(page); | 
|  | } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd))) | 
|  | goto out; | 
|  | __split_huge_pmd_locked(vma, pmd, range.start, freeze); | 
|  | out: | 
|  | spin_unlock(ptl); | 
|  | if (!was_locked && page) | 
|  | unlock_page(page); | 
|  | /* | 
|  | * No need to double call mmu_notifier->invalidate_range() callback. | 
|  | * They are 3 cases to consider inside __split_huge_pmd_locked(): | 
|  | *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious | 
|  | *  2) __split_huge_zero_page_pmd() read only zero page and any write | 
|  | *    fault will trigger a flush_notify before pointing to a new page | 
|  | *    (it is fine if the secondary mmu keeps pointing to the old zero | 
|  | *    page in the meantime) | 
|  | *  3) Split a huge pmd into pte pointing to the same page. No need | 
|  | *     to invalidate secondary tlb entry they are all still valid. | 
|  | *     any further changes to individual pte will notify. So no need | 
|  | *     to call mmu_notifier->invalidate_range() | 
|  | */ | 
|  | mmu_notifier_invalidate_range_only_end(&range); | 
|  | } | 
|  |  | 
|  | void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, | 
|  | bool freeze, struct page *page) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | p4d_t *p4d; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  |  | 
|  | pgd = pgd_offset(vma->vm_mm, address); | 
|  | if (!pgd_present(*pgd)) | 
|  | return; | 
|  |  | 
|  | p4d = p4d_offset(pgd, address); | 
|  | if (!p4d_present(*p4d)) | 
|  | return; | 
|  |  | 
|  | pud = pud_offset(p4d, address); | 
|  | if (!pud_present(*pud)) | 
|  | return; | 
|  |  | 
|  | pmd = pmd_offset(pud, address); | 
|  |  | 
|  | __split_huge_pmd(vma, pmd, address, freeze, page); | 
|  | } | 
|  |  | 
|  | void vma_adjust_trans_huge(struct vm_area_struct *vma, | 
|  | unsigned long start, | 
|  | unsigned long end, | 
|  | long adjust_next) | 
|  | { | 
|  | /* | 
|  | * If the new start address isn't hpage aligned and it could | 
|  | * previously contain an hugepage: check if we need to split | 
|  | * an huge pmd. | 
|  | */ | 
|  | if (start & ~HPAGE_PMD_MASK && | 
|  | (start & HPAGE_PMD_MASK) >= vma->vm_start && | 
|  | (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) | 
|  | split_huge_pmd_address(vma, start, false, NULL); | 
|  |  | 
|  | /* | 
|  | * If the new end address isn't hpage aligned and it could | 
|  | * previously contain an hugepage: check if we need to split | 
|  | * an huge pmd. | 
|  | */ | 
|  | if (end & ~HPAGE_PMD_MASK && | 
|  | (end & HPAGE_PMD_MASK) >= vma->vm_start && | 
|  | (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) | 
|  | split_huge_pmd_address(vma, end, false, NULL); | 
|  |  | 
|  | /* | 
|  | * If we're also updating the vma->vm_next->vm_start, if the new | 
|  | * vm_next->vm_start isn't page aligned and it could previously | 
|  | * contain an hugepage: check if we need to split an huge pmd. | 
|  | */ | 
|  | if (adjust_next > 0) { | 
|  | struct vm_area_struct *next = vma->vm_next; | 
|  | unsigned long nstart = next->vm_start; | 
|  | nstart += adjust_next << PAGE_SHIFT; | 
|  | if (nstart & ~HPAGE_PMD_MASK && | 
|  | (nstart & HPAGE_PMD_MASK) >= next->vm_start && | 
|  | (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) | 
|  | split_huge_pmd_address(next, nstart, false, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void unmap_page(struct page *page) | 
|  | { | 
|  | enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS | | 
|  | TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD; | 
|  | bool unmap_success; | 
|  |  | 
|  | VM_BUG_ON_PAGE(!PageHead(page), page); | 
|  |  | 
|  | if (PageAnon(page)) | 
|  | ttu_flags |= TTU_SPLIT_FREEZE; | 
|  |  | 
|  | unmap_success = try_to_unmap(page, ttu_flags); | 
|  | VM_BUG_ON_PAGE(!unmap_success, page); | 
|  | } | 
|  |  | 
|  | static void remap_page(struct page *page) | 
|  | { | 
|  | int i; | 
|  | if (PageTransHuge(page)) { | 
|  | remove_migration_ptes(page, page, true); | 
|  | } else { | 
|  | for (i = 0; i < HPAGE_PMD_NR; i++) | 
|  | remove_migration_ptes(page + i, page + i, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __split_huge_page_tail(struct page *head, int tail, | 
|  | struct lruvec *lruvec, struct list_head *list) | 
|  | { | 
|  | struct page *page_tail = head + tail; | 
|  |  | 
|  | VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); | 
|  |  | 
|  | /* | 
|  | * Clone page flags before unfreezing refcount. | 
|  | * | 
|  | * After successful get_page_unless_zero() might follow flags change, | 
|  | * for exmaple lock_page() which set PG_waiters. | 
|  | */ | 
|  | page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; | 
|  | page_tail->flags |= (head->flags & | 
|  | ((1L << PG_referenced) | | 
|  | (1L << PG_swapbacked) | | 
|  | (1L << PG_swapcache) | | 
|  | (1L << PG_mlocked) | | 
|  | (1L << PG_uptodate) | | 
|  | (1L << PG_active) | | 
|  | (1L << PG_workingset) | | 
|  | (1L << PG_locked) | | 
|  | (1L << PG_unevictable) | | 
|  | (1L << PG_dirty))); | 
|  |  | 
|  | /* ->mapping in first tail page is compound_mapcount */ | 
|  | VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, | 
|  | page_tail); | 
|  | page_tail->mapping = head->mapping; | 
|  | page_tail->index = head->index + tail; | 
|  |  | 
|  | /* Page flags must be visible before we make the page non-compound. */ | 
|  | smp_wmb(); | 
|  |  | 
|  | /* | 
|  | * Clear PageTail before unfreezing page refcount. | 
|  | * | 
|  | * After successful get_page_unless_zero() might follow put_page() | 
|  | * which needs correct compound_head(). | 
|  | */ | 
|  | clear_compound_head(page_tail); | 
|  |  | 
|  | /* Finally unfreeze refcount. Additional reference from page cache. */ | 
|  | page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) || | 
|  | PageSwapCache(head))); | 
|  |  | 
|  | if (page_is_young(head)) | 
|  | set_page_young(page_tail); | 
|  | if (page_is_idle(head)) | 
|  | set_page_idle(page_tail); | 
|  |  | 
|  | page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); | 
|  |  | 
|  | /* | 
|  | * always add to the tail because some iterators expect new | 
|  | * pages to show after the currently processed elements - e.g. | 
|  | * migrate_pages | 
|  | */ | 
|  | lru_add_page_tail(head, page_tail, lruvec, list); | 
|  | } | 
|  |  | 
|  | static void __split_huge_page(struct page *page, struct list_head *list, | 
|  | pgoff_t end, unsigned long flags) | 
|  | { | 
|  | struct page *head = compound_head(page); | 
|  | pg_data_t *pgdat = page_pgdat(head); | 
|  | struct lruvec *lruvec; | 
|  | struct address_space *swap_cache = NULL; | 
|  | unsigned long offset = 0; | 
|  | int i; | 
|  |  | 
|  | lruvec = mem_cgroup_page_lruvec(head, pgdat); | 
|  |  | 
|  | /* complete memcg works before add pages to LRU */ | 
|  | mem_cgroup_split_huge_fixup(head); | 
|  |  | 
|  | if (PageAnon(head) && PageSwapCache(head)) { | 
|  | swp_entry_t entry = { .val = page_private(head) }; | 
|  |  | 
|  | offset = swp_offset(entry); | 
|  | swap_cache = swap_address_space(entry); | 
|  | xa_lock(&swap_cache->i_pages); | 
|  | } | 
|  |  | 
|  | for (i = HPAGE_PMD_NR - 1; i >= 1; i--) { | 
|  | __split_huge_page_tail(head, i, lruvec, list); | 
|  | /* Some pages can be beyond i_size: drop them from page cache */ | 
|  | if (head[i].index >= end) { | 
|  | ClearPageDirty(head + i); | 
|  | __delete_from_page_cache(head + i, NULL); | 
|  | if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head)) | 
|  | shmem_uncharge(head->mapping->host, 1); | 
|  | put_page(head + i); | 
|  | } else if (!PageAnon(page)) { | 
|  | __xa_store(&head->mapping->i_pages, head[i].index, | 
|  | head + i, 0); | 
|  | } else if (swap_cache) { | 
|  | __xa_store(&swap_cache->i_pages, offset + i, | 
|  | head + i, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | ClearPageCompound(head); | 
|  |  | 
|  | split_page_owner(head, HPAGE_PMD_ORDER); | 
|  |  | 
|  | /* See comment in __split_huge_page_tail() */ | 
|  | if (PageAnon(head)) { | 
|  | /* Additional pin to swap cache */ | 
|  | if (PageSwapCache(head)) { | 
|  | page_ref_add(head, 2); | 
|  | xa_unlock(&swap_cache->i_pages); | 
|  | } else { | 
|  | page_ref_inc(head); | 
|  | } | 
|  | } else { | 
|  | /* Additional pin to page cache */ | 
|  | page_ref_add(head, 2); | 
|  | xa_unlock(&head->mapping->i_pages); | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&pgdat->lru_lock, flags); | 
|  |  | 
|  | remap_page(head); | 
|  |  | 
|  | for (i = 0; i < HPAGE_PMD_NR; i++) { | 
|  | struct page *subpage = head + i; | 
|  | if (subpage == page) | 
|  | continue; | 
|  | unlock_page(subpage); | 
|  |  | 
|  | /* | 
|  | * Subpages may be freed if there wasn't any mapping | 
|  | * like if add_to_swap() is running on a lru page that | 
|  | * had its mapping zapped. And freeing these pages | 
|  | * requires taking the lru_lock so we do the put_page | 
|  | * of the tail pages after the split is complete. | 
|  | */ | 
|  | put_page(subpage); | 
|  | } | 
|  | } | 
|  |  | 
|  | int total_mapcount(struct page *page) | 
|  | { | 
|  | int i, compound, ret; | 
|  |  | 
|  | VM_BUG_ON_PAGE(PageTail(page), page); | 
|  |  | 
|  | if (likely(!PageCompound(page))) | 
|  | return atomic_read(&page->_mapcount) + 1; | 
|  |  | 
|  | compound = compound_mapcount(page); | 
|  | if (PageHuge(page)) | 
|  | return compound; | 
|  | ret = compound; | 
|  | for (i = 0; i < HPAGE_PMD_NR; i++) | 
|  | ret += atomic_read(&page[i]._mapcount) + 1; | 
|  | /* File pages has compound_mapcount included in _mapcount */ | 
|  | if (!PageAnon(page)) | 
|  | return ret - compound * HPAGE_PMD_NR; | 
|  | if (PageDoubleMap(page)) | 
|  | ret -= HPAGE_PMD_NR; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This calculates accurately how many mappings a transparent hugepage | 
|  | * has (unlike page_mapcount() which isn't fully accurate). This full | 
|  | * accuracy is primarily needed to know if copy-on-write faults can | 
|  | * reuse the page and change the mapping to read-write instead of | 
|  | * copying them. At the same time this returns the total_mapcount too. | 
|  | * | 
|  | * The function returns the highest mapcount any one of the subpages | 
|  | * has. If the return value is one, even if different processes are | 
|  | * mapping different subpages of the transparent hugepage, they can | 
|  | * all reuse it, because each process is reusing a different subpage. | 
|  | * | 
|  | * The total_mapcount is instead counting all virtual mappings of the | 
|  | * subpages. If the total_mapcount is equal to "one", it tells the | 
|  | * caller all mappings belong to the same "mm" and in turn the | 
|  | * anon_vma of the transparent hugepage can become the vma->anon_vma | 
|  | * local one as no other process may be mapping any of the subpages. | 
|  | * | 
|  | * It would be more accurate to replace page_mapcount() with | 
|  | * page_trans_huge_mapcount(), however we only use | 
|  | * page_trans_huge_mapcount() in the copy-on-write faults where we | 
|  | * need full accuracy to avoid breaking page pinning, because | 
|  | * page_trans_huge_mapcount() is slower than page_mapcount(). | 
|  | */ | 
|  | int page_trans_huge_mapcount(struct page *page, int *total_mapcount) | 
|  | { | 
|  | int i, ret, _total_mapcount, mapcount; | 
|  |  | 
|  | /* hugetlbfs shouldn't call it */ | 
|  | VM_BUG_ON_PAGE(PageHuge(page), page); | 
|  |  | 
|  | if (likely(!PageTransCompound(page))) { | 
|  | mapcount = atomic_read(&page->_mapcount) + 1; | 
|  | if (total_mapcount) | 
|  | *total_mapcount = mapcount; | 
|  | return mapcount; | 
|  | } | 
|  |  | 
|  | page = compound_head(page); | 
|  |  | 
|  | _total_mapcount = ret = 0; | 
|  | for (i = 0; i < HPAGE_PMD_NR; i++) { | 
|  | mapcount = atomic_read(&page[i]._mapcount) + 1; | 
|  | ret = max(ret, mapcount); | 
|  | _total_mapcount += mapcount; | 
|  | } | 
|  | if (PageDoubleMap(page)) { | 
|  | ret -= 1; | 
|  | _total_mapcount -= HPAGE_PMD_NR; | 
|  | } | 
|  | mapcount = compound_mapcount(page); | 
|  | ret += mapcount; | 
|  | _total_mapcount += mapcount; | 
|  | if (total_mapcount) | 
|  | *total_mapcount = _total_mapcount; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Racy check whether the huge page can be split */ | 
|  | bool can_split_huge_page(struct page *page, int *pextra_pins) | 
|  | { | 
|  | int extra_pins; | 
|  |  | 
|  | /* Additional pins from page cache */ | 
|  | if (PageAnon(page)) | 
|  | extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0; | 
|  | else | 
|  | extra_pins = HPAGE_PMD_NR; | 
|  | if (pextra_pins) | 
|  | *pextra_pins = extra_pins; | 
|  | return total_mapcount(page) == page_count(page) - extra_pins - 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function splits huge page into normal pages. @page can point to any | 
|  | * subpage of huge page to split. Split doesn't change the position of @page. | 
|  | * | 
|  | * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. | 
|  | * The huge page must be locked. | 
|  | * | 
|  | * If @list is null, tail pages will be added to LRU list, otherwise, to @list. | 
|  | * | 
|  | * Both head page and tail pages will inherit mapping, flags, and so on from | 
|  | * the hugepage. | 
|  | * | 
|  | * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if | 
|  | * they are not mapped. | 
|  | * | 
|  | * Returns 0 if the hugepage is split successfully. | 
|  | * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under | 
|  | * us. | 
|  | */ | 
|  | int split_huge_page_to_list(struct page *page, struct list_head *list) | 
|  | { | 
|  | struct page *head = compound_head(page); | 
|  | struct pglist_data *pgdata = NODE_DATA(page_to_nid(head)); | 
|  | struct deferred_split *ds_queue = get_deferred_split_queue(head); | 
|  | struct anon_vma *anon_vma = NULL; | 
|  | struct address_space *mapping = NULL; | 
|  | int count, mapcount, extra_pins, ret; | 
|  | unsigned long flags; | 
|  | pgoff_t end; | 
|  |  | 
|  | VM_BUG_ON_PAGE(is_huge_zero_page(head), head); | 
|  | VM_BUG_ON_PAGE(!PageLocked(head), head); | 
|  | VM_BUG_ON_PAGE(!PageCompound(head), head); | 
|  |  | 
|  | if (PageWriteback(head)) | 
|  | return -EBUSY; | 
|  |  | 
|  | if (PageAnon(head)) { | 
|  | /* | 
|  | * The caller does not necessarily hold an mmap_lock that would | 
|  | * prevent the anon_vma disappearing so we first we take a | 
|  | * reference to it and then lock the anon_vma for write. This | 
|  | * is similar to page_lock_anon_vma_read except the write lock | 
|  | * is taken to serialise against parallel split or collapse | 
|  | * operations. | 
|  | */ | 
|  | anon_vma = page_get_anon_vma(head); | 
|  | if (!anon_vma) { | 
|  | ret = -EBUSY; | 
|  | goto out; | 
|  | } | 
|  | end = -1; | 
|  | mapping = NULL; | 
|  | anon_vma_lock_write(anon_vma); | 
|  | } else { | 
|  | mapping = head->mapping; | 
|  |  | 
|  | /* Truncated ? */ | 
|  | if (!mapping) { | 
|  | ret = -EBUSY; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | anon_vma = NULL; | 
|  | i_mmap_lock_read(mapping); | 
|  |  | 
|  | /* | 
|  | *__split_huge_page() may need to trim off pages beyond EOF: | 
|  | * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, | 
|  | * which cannot be nested inside the page tree lock. So note | 
|  | * end now: i_size itself may be changed at any moment, but | 
|  | * head page lock is good enough to serialize the trimming. | 
|  | */ | 
|  | end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Racy check if we can split the page, before unmap_page() will | 
|  | * split PMDs | 
|  | */ | 
|  | if (!can_split_huge_page(head, &extra_pins)) { | 
|  | ret = -EBUSY; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | unmap_page(head); | 
|  | VM_BUG_ON_PAGE(compound_mapcount(head), head); | 
|  |  | 
|  | /* prevent PageLRU to go away from under us, and freeze lru stats */ | 
|  | spin_lock_irqsave(&pgdata->lru_lock, flags); | 
|  |  | 
|  | if (mapping) { | 
|  | XA_STATE(xas, &mapping->i_pages, page_index(head)); | 
|  |  | 
|  | /* | 
|  | * Check if the head page is present in page cache. | 
|  | * We assume all tail are present too, if head is there. | 
|  | */ | 
|  | xa_lock(&mapping->i_pages); | 
|  | if (xas_load(&xas) != head) | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* Prevent deferred_split_scan() touching ->_refcount */ | 
|  | spin_lock(&ds_queue->split_queue_lock); | 
|  | count = page_count(head); | 
|  | mapcount = total_mapcount(head); | 
|  | if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) { | 
|  | if (!list_empty(page_deferred_list(head))) { | 
|  | ds_queue->split_queue_len--; | 
|  | list_del(page_deferred_list(head)); | 
|  | } | 
|  | spin_unlock(&ds_queue->split_queue_lock); | 
|  | if (mapping) { | 
|  | if (PageSwapBacked(head)) | 
|  | __dec_node_page_state(head, NR_SHMEM_THPS); | 
|  | else | 
|  | __dec_node_page_state(head, NR_FILE_THPS); | 
|  | } | 
|  |  | 
|  | __split_huge_page(page, list, end, flags); | 
|  | if (PageSwapCache(head)) { | 
|  | swp_entry_t entry = { .val = page_private(head) }; | 
|  |  | 
|  | ret = split_swap_cluster(entry); | 
|  | } else | 
|  | ret = 0; | 
|  | } else { | 
|  | if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) { | 
|  | pr_alert("total_mapcount: %u, page_count(): %u\n", | 
|  | mapcount, count); | 
|  | if (PageTail(page)) | 
|  | dump_page(head, NULL); | 
|  | dump_page(page, "total_mapcount(head) > 0"); | 
|  | BUG(); | 
|  | } | 
|  | spin_unlock(&ds_queue->split_queue_lock); | 
|  | fail:		if (mapping) | 
|  | xa_unlock(&mapping->i_pages); | 
|  | spin_unlock_irqrestore(&pgdata->lru_lock, flags); | 
|  | remap_page(head); | 
|  | ret = -EBUSY; | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | if (anon_vma) { | 
|  | anon_vma_unlock_write(anon_vma); | 
|  | put_anon_vma(anon_vma); | 
|  | } | 
|  | if (mapping) | 
|  | i_mmap_unlock_read(mapping); | 
|  | out: | 
|  | count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void free_transhuge_page(struct page *page) | 
|  | { | 
|  | struct deferred_split *ds_queue = get_deferred_split_queue(page); | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&ds_queue->split_queue_lock, flags); | 
|  | if (!list_empty(page_deferred_list(page))) { | 
|  | ds_queue->split_queue_len--; | 
|  | list_del(page_deferred_list(page)); | 
|  | } | 
|  | spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); | 
|  | free_compound_page(page); | 
|  | } | 
|  |  | 
|  | void deferred_split_huge_page(struct page *page) | 
|  | { | 
|  | struct deferred_split *ds_queue = get_deferred_split_queue(page); | 
|  | #ifdef CONFIG_MEMCG | 
|  | struct mem_cgroup *memcg = compound_head(page)->mem_cgroup; | 
|  | #endif | 
|  | unsigned long flags; | 
|  |  | 
|  | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | 
|  |  | 
|  | /* | 
|  | * The try_to_unmap() in page reclaim path might reach here too, | 
|  | * this may cause a race condition to corrupt deferred split queue. | 
|  | * And, if page reclaim is already handling the same page, it is | 
|  | * unnecessary to handle it again in shrinker. | 
|  | * | 
|  | * Check PageSwapCache to determine if the page is being | 
|  | * handled by page reclaim since THP swap would add the page into | 
|  | * swap cache before calling try_to_unmap(). | 
|  | */ | 
|  | if (PageSwapCache(page)) | 
|  | return; | 
|  |  | 
|  | spin_lock_irqsave(&ds_queue->split_queue_lock, flags); | 
|  | if (list_empty(page_deferred_list(page))) { | 
|  | count_vm_event(THP_DEFERRED_SPLIT_PAGE); | 
|  | list_add_tail(page_deferred_list(page), &ds_queue->split_queue); | 
|  | ds_queue->split_queue_len++; | 
|  | #ifdef CONFIG_MEMCG | 
|  | if (memcg) | 
|  | memcg_set_shrinker_bit(memcg, page_to_nid(page), | 
|  | deferred_split_shrinker.id); | 
|  | #endif | 
|  | } | 
|  | spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); | 
|  | } | 
|  |  | 
|  | static unsigned long deferred_split_count(struct shrinker *shrink, | 
|  | struct shrink_control *sc) | 
|  | { | 
|  | struct pglist_data *pgdata = NODE_DATA(sc->nid); | 
|  | struct deferred_split *ds_queue = &pgdata->deferred_split_queue; | 
|  |  | 
|  | #ifdef CONFIG_MEMCG | 
|  | if (sc->memcg) | 
|  | ds_queue = &sc->memcg->deferred_split_queue; | 
|  | #endif | 
|  | return READ_ONCE(ds_queue->split_queue_len); | 
|  | } | 
|  |  | 
|  | static unsigned long deferred_split_scan(struct shrinker *shrink, | 
|  | struct shrink_control *sc) | 
|  | { | 
|  | struct pglist_data *pgdata = NODE_DATA(sc->nid); | 
|  | struct deferred_split *ds_queue = &pgdata->deferred_split_queue; | 
|  | unsigned long flags; | 
|  | LIST_HEAD(list), *pos, *next; | 
|  | struct page *page; | 
|  | int split = 0; | 
|  |  | 
|  | #ifdef CONFIG_MEMCG | 
|  | if (sc->memcg) | 
|  | ds_queue = &sc->memcg->deferred_split_queue; | 
|  | #endif | 
|  |  | 
|  | spin_lock_irqsave(&ds_queue->split_queue_lock, flags); | 
|  | /* Take pin on all head pages to avoid freeing them under us */ | 
|  | list_for_each_safe(pos, next, &ds_queue->split_queue) { | 
|  | page = list_entry((void *)pos, struct page, mapping); | 
|  | page = compound_head(page); | 
|  | if (get_page_unless_zero(page)) { | 
|  | list_move(page_deferred_list(page), &list); | 
|  | } else { | 
|  | /* We lost race with put_compound_page() */ | 
|  | list_del_init(page_deferred_list(page)); | 
|  | ds_queue->split_queue_len--; | 
|  | } | 
|  | if (!--sc->nr_to_scan) | 
|  | break; | 
|  | } | 
|  | spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); | 
|  |  | 
|  | list_for_each_safe(pos, next, &list) { | 
|  | page = list_entry((void *)pos, struct page, mapping); | 
|  | if (!trylock_page(page)) | 
|  | goto next; | 
|  | /* split_huge_page() removes page from list on success */ | 
|  | if (!split_huge_page(page)) | 
|  | split++; | 
|  | unlock_page(page); | 
|  | next: | 
|  | put_page(page); | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&ds_queue->split_queue_lock, flags); | 
|  | list_splice_tail(&list, &ds_queue->split_queue); | 
|  | spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); | 
|  |  | 
|  | /* | 
|  | * Stop shrinker if we didn't split any page, but the queue is empty. | 
|  | * This can happen if pages were freed under us. | 
|  | */ | 
|  | if (!split && list_empty(&ds_queue->split_queue)) | 
|  | return SHRINK_STOP; | 
|  | return split; | 
|  | } | 
|  |  | 
|  | static struct shrinker deferred_split_shrinker = { | 
|  | .count_objects = deferred_split_count, | 
|  | .scan_objects = deferred_split_scan, | 
|  | .seeks = DEFAULT_SEEKS, | 
|  | .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE | | 
|  | SHRINKER_NONSLAB, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_FS | 
|  | static int split_huge_pages_set(void *data, u64 val) | 
|  | { | 
|  | struct zone *zone; | 
|  | struct page *page; | 
|  | unsigned long pfn, max_zone_pfn; | 
|  | unsigned long total = 0, split = 0; | 
|  |  | 
|  | if (val != 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | for_each_populated_zone(zone) { | 
|  | max_zone_pfn = zone_end_pfn(zone); | 
|  | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { | 
|  | if (!pfn_valid(pfn)) | 
|  | continue; | 
|  |  | 
|  | page = pfn_to_page(pfn); | 
|  | if (!get_page_unless_zero(page)) | 
|  | continue; | 
|  |  | 
|  | if (zone != page_zone(page)) | 
|  | goto next; | 
|  |  | 
|  | if (!PageHead(page) || PageHuge(page) || !PageLRU(page)) | 
|  | goto next; | 
|  |  | 
|  | total++; | 
|  | lock_page(page); | 
|  | if (!split_huge_page(page)) | 
|  | split++; | 
|  | unlock_page(page); | 
|  | next: | 
|  | put_page(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | pr_info("%lu of %lu THP split\n", split, total); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set, | 
|  | "%llu\n"); | 
|  |  | 
|  | static int __init split_huge_pages_debugfs(void) | 
|  | { | 
|  | debugfs_create_file("split_huge_pages", 0200, NULL, NULL, | 
|  | &split_huge_pages_fops); | 
|  | return 0; | 
|  | } | 
|  | late_initcall(split_huge_pages_debugfs); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION | 
|  | void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, | 
|  | struct page *page) | 
|  | { | 
|  | struct vm_area_struct *vma = pvmw->vma; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | unsigned long address = pvmw->address; | 
|  | pmd_t pmdval; | 
|  | swp_entry_t entry; | 
|  | pmd_t pmdswp; | 
|  |  | 
|  | if (!(pvmw->pmd && !pvmw->pte)) | 
|  | return; | 
|  |  | 
|  | flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); | 
|  | pmdval = pmdp_invalidate(vma, address, pvmw->pmd); | 
|  | if (pmd_dirty(pmdval)) | 
|  | set_page_dirty(page); | 
|  | entry = make_migration_entry(page, pmd_write(pmdval)); | 
|  | pmdswp = swp_entry_to_pmd(entry); | 
|  | if (pmd_soft_dirty(pmdval)) | 
|  | pmdswp = pmd_swp_mksoft_dirty(pmdswp); | 
|  | set_pmd_at(mm, address, pvmw->pmd, pmdswp); | 
|  | page_remove_rmap(page, true); | 
|  | put_page(page); | 
|  | } | 
|  |  | 
|  | void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) | 
|  | { | 
|  | struct vm_area_struct *vma = pvmw->vma; | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | unsigned long address = pvmw->address; | 
|  | unsigned long mmun_start = address & HPAGE_PMD_MASK; | 
|  | pmd_t pmde; | 
|  | swp_entry_t entry; | 
|  |  | 
|  | if (!(pvmw->pmd && !pvmw->pte)) | 
|  | return; | 
|  |  | 
|  | entry = pmd_to_swp_entry(*pvmw->pmd); | 
|  | get_page(new); | 
|  | pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot)); | 
|  | if (pmd_swp_soft_dirty(*pvmw->pmd)) | 
|  | pmde = pmd_mksoft_dirty(pmde); | 
|  | if (is_write_migration_entry(entry)) | 
|  | pmde = maybe_pmd_mkwrite(pmde, vma); | 
|  |  | 
|  | flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE); | 
|  | if (PageAnon(new)) | 
|  | page_add_anon_rmap(new, vma, mmun_start, true); | 
|  | else | 
|  | page_add_file_rmap(new, true); | 
|  | set_pmd_at(mm, mmun_start, pvmw->pmd, pmde); | 
|  | if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new)) | 
|  | mlock_vma_page(new); | 
|  | update_mmu_cache_pmd(vma, address, pvmw->pmd); | 
|  | } | 
|  | #endif |