| // SPDX-License-Identifier: GPL-2.0+ | 
 | /* | 
 |  * Freescale STMP37XX/STMP378X Real Time Clock driver | 
 |  * | 
 |  * Copyright (c) 2007 Sigmatel, Inc. | 
 |  * Peter Hartley, <peter.hartley@sigmatel.com> | 
 |  * | 
 |  * Copyright 2008 Freescale Semiconductor, Inc. All Rights Reserved. | 
 |  * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved. | 
 |  * Copyright 2011 Wolfram Sang, Pengutronix e.K. | 
 |  */ | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/io.h> | 
 | #include <linux/init.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/rtc.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/of_device.h> | 
 | #include <linux/of.h> | 
 | #include <linux/stmp_device.h> | 
 | #include <linux/stmp3xxx_rtc_wdt.h> | 
 |  | 
 | #define STMP3XXX_RTC_CTRL			0x0 | 
 | #define STMP3XXX_RTC_CTRL_ALARM_IRQ_EN		0x00000001 | 
 | #define STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN	0x00000002 | 
 | #define STMP3XXX_RTC_CTRL_ALARM_IRQ		0x00000004 | 
 | #define STMP3XXX_RTC_CTRL_WATCHDOGEN		0x00000010 | 
 |  | 
 | #define STMP3XXX_RTC_STAT			0x10 | 
 | #define STMP3XXX_RTC_STAT_STALE_SHIFT		16 | 
 | #define STMP3XXX_RTC_STAT_RTC_PRESENT		0x80000000 | 
 | #define STMP3XXX_RTC_STAT_XTAL32000_PRESENT	0x10000000 | 
 | #define STMP3XXX_RTC_STAT_XTAL32768_PRESENT	0x08000000 | 
 |  | 
 | #define STMP3XXX_RTC_SECONDS			0x30 | 
 |  | 
 | #define STMP3XXX_RTC_ALARM			0x40 | 
 |  | 
 | #define STMP3XXX_RTC_WATCHDOG			0x50 | 
 |  | 
 | #define STMP3XXX_RTC_PERSISTENT0		0x60 | 
 | #define STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE		(1 << 0) | 
 | #define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN		(1 << 1) | 
 | #define STMP3XXX_RTC_PERSISTENT0_ALARM_EN		(1 << 2) | 
 | #define STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP	(1 << 4) | 
 | #define STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP	(1 << 5) | 
 | #define STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ		(1 << 6) | 
 | #define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE		(1 << 7) | 
 |  | 
 | #define STMP3XXX_RTC_PERSISTENT1		0x70 | 
 | /* missing bitmask in headers */ | 
 | #define STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER	0x80000000 | 
 |  | 
 | struct stmp3xxx_rtc_data { | 
 | 	struct rtc_device *rtc; | 
 | 	void __iomem *io; | 
 | 	int irq_alarm; | 
 | }; | 
 |  | 
 | #if IS_ENABLED(CONFIG_STMP3XXX_RTC_WATCHDOG) | 
 | /** | 
 |  * stmp3xxx_wdt_set_timeout - configure the watchdog inside the STMP3xxx RTC | 
 |  * @dev: the parent device of the watchdog (= the RTC) | 
 |  * @timeout: the desired value for the timeout register of the watchdog. | 
 |  *           0 disables the watchdog | 
 |  * | 
 |  * The watchdog needs one register and two bits which are in the RTC domain. | 
 |  * To handle the resource conflict, the RTC driver will create another | 
 |  * platform_device for the watchdog driver as a child of the RTC device. | 
 |  * The watchdog driver is passed the below accessor function via platform_data | 
 |  * to configure the watchdog. Locking is not needed because accessing SET/CLR | 
 |  * registers is atomic. | 
 |  */ | 
 |  | 
 | static void stmp3xxx_wdt_set_timeout(struct device *dev, u32 timeout) | 
 | { | 
 | 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev); | 
 |  | 
 | 	if (timeout) { | 
 | 		writel(timeout, rtc_data->io + STMP3XXX_RTC_WATCHDOG); | 
 | 		writel(STMP3XXX_RTC_CTRL_WATCHDOGEN, | 
 | 		       rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET); | 
 | 		writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER, | 
 | 		       rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_SET); | 
 | 	} else { | 
 | 		writel(STMP3XXX_RTC_CTRL_WATCHDOGEN, | 
 | 		       rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR); | 
 | 		writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER, | 
 | 		       rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_CLR); | 
 | 	} | 
 | } | 
 |  | 
 | static struct stmp3xxx_wdt_pdata wdt_pdata = { | 
 | 	.wdt_set_timeout = stmp3xxx_wdt_set_timeout, | 
 | }; | 
 |  | 
 | static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev) | 
 | { | 
 | 	int rc = -1; | 
 | 	struct platform_device *wdt_pdev = | 
 | 		platform_device_alloc("stmp3xxx_rtc_wdt", rtc_pdev->id); | 
 |  | 
 | 	if (wdt_pdev) { | 
 | 		wdt_pdev->dev.parent = &rtc_pdev->dev; | 
 | 		wdt_pdev->dev.platform_data = &wdt_pdata; | 
 | 		rc = platform_device_add(wdt_pdev); | 
 | 	} | 
 |  | 
 | 	if (rc) | 
 | 		dev_err(&rtc_pdev->dev, | 
 | 			"failed to register stmp3xxx_rtc_wdt\n"); | 
 | } | 
 | #else | 
 | static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev) | 
 | { | 
 | } | 
 | #endif /* CONFIG_STMP3XXX_RTC_WATCHDOG */ | 
 |  | 
 | static int stmp3xxx_wait_time(struct stmp3xxx_rtc_data *rtc_data) | 
 | { | 
 | 	int timeout = 5000; /* 3ms according to i.MX28 Ref Manual */ | 
 | 	/* | 
 | 	 * The i.MX28 Applications Processor Reference Manual, Rev. 1, 2010 | 
 | 	 * states: | 
 | 	 * | The order in which registers are updated is | 
 | 	 * | Persistent 0, 1, 2, 3, 4, 5, Alarm, Seconds. | 
 | 	 * | (This list is in bitfield order, from LSB to MSB, as they would | 
 | 	 * | appear in the STALE_REGS and NEW_REGS bitfields of the HW_RTC_STAT | 
 | 	 * | register. For example, the Seconds register corresponds to | 
 | 	 * | STALE_REGS or NEW_REGS containing 0x80.) | 
 | 	 */ | 
 | 	do { | 
 | 		if (!(readl(rtc_data->io + STMP3XXX_RTC_STAT) & | 
 | 				(0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT))) | 
 | 			return 0; | 
 | 		udelay(1); | 
 | 	} while (--timeout > 0); | 
 | 	return (readl(rtc_data->io + STMP3XXX_RTC_STAT) & | 
 | 		(0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)) ? -ETIME : 0; | 
 | } | 
 |  | 
 | /* Time read/write */ | 
 | static int stmp3xxx_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm) | 
 | { | 
 | 	int ret; | 
 | 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev); | 
 |  | 
 | 	ret = stmp3xxx_wait_time(rtc_data); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	rtc_time64_to_tm(readl(rtc_data->io + STMP3XXX_RTC_SECONDS), rtc_tm); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int stmp3xxx_rtc_settime(struct device *dev, struct rtc_time *rtc_tm) | 
 | { | 
 | 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev); | 
 |  | 
 | 	writel(rtc_tm_to_time64(rtc_tm), rtc_data->io + STMP3XXX_RTC_SECONDS); | 
 | 	return stmp3xxx_wait_time(rtc_data); | 
 | } | 
 |  | 
 | /* interrupt(s) handler */ | 
 | static irqreturn_t stmp3xxx_rtc_interrupt(int irq, void *dev_id) | 
 | { | 
 | 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev_id); | 
 | 	u32 status = readl(rtc_data->io + STMP3XXX_RTC_CTRL); | 
 |  | 
 | 	if (status & STMP3XXX_RTC_CTRL_ALARM_IRQ) { | 
 | 		writel(STMP3XXX_RTC_CTRL_ALARM_IRQ, | 
 | 			rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR); | 
 | 		rtc_update_irq(rtc_data->rtc, 1, RTC_AF | RTC_IRQF); | 
 | 		return IRQ_HANDLED; | 
 | 	} | 
 |  | 
 | 	return IRQ_NONE; | 
 | } | 
 |  | 
 | static int stmp3xxx_alarm_irq_enable(struct device *dev, unsigned int enabled) | 
 | { | 
 | 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev); | 
 |  | 
 | 	if (enabled) { | 
 | 		writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN | | 
 | 				STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN, | 
 | 			rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + | 
 | 				STMP_OFFSET_REG_SET); | 
 | 		writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN, | 
 | 			rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET); | 
 | 	} else { | 
 | 		writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN | | 
 | 				STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN, | 
 | 			rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + | 
 | 				STMP_OFFSET_REG_CLR); | 
 | 		writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN, | 
 | 			rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int stmp3xxx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm) | 
 | { | 
 | 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev); | 
 |  | 
 | 	rtc_time64_to_tm(readl(rtc_data->io + STMP3XXX_RTC_ALARM), &alm->time); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int stmp3xxx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm) | 
 | { | 
 | 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev); | 
 |  | 
 | 	writel(rtc_tm_to_time64(&alm->time), rtc_data->io + STMP3XXX_RTC_ALARM); | 
 |  | 
 | 	stmp3xxx_alarm_irq_enable(dev, alm->enabled); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct rtc_class_ops stmp3xxx_rtc_ops = { | 
 | 	.alarm_irq_enable = | 
 | 			  stmp3xxx_alarm_irq_enable, | 
 | 	.read_time	= stmp3xxx_rtc_gettime, | 
 | 	.set_time	= stmp3xxx_rtc_settime, | 
 | 	.read_alarm	= stmp3xxx_rtc_read_alarm, | 
 | 	.set_alarm	= stmp3xxx_rtc_set_alarm, | 
 | }; | 
 |  | 
 | static int stmp3xxx_rtc_remove(struct platform_device *pdev) | 
 | { | 
 | 	struct stmp3xxx_rtc_data *rtc_data = platform_get_drvdata(pdev); | 
 |  | 
 | 	if (!rtc_data) | 
 | 		return 0; | 
 |  | 
 | 	writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN, | 
 | 		rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int stmp3xxx_rtc_probe(struct platform_device *pdev) | 
 | { | 
 | 	struct stmp3xxx_rtc_data *rtc_data; | 
 | 	struct resource *r; | 
 | 	u32 rtc_stat; | 
 | 	u32 pers0_set, pers0_clr; | 
 | 	u32 crystalfreq = 0; | 
 | 	int err; | 
 |  | 
 | 	rtc_data = devm_kzalloc(&pdev->dev, sizeof(*rtc_data), GFP_KERNEL); | 
 | 	if (!rtc_data) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
 | 	if (!r) { | 
 | 		dev_err(&pdev->dev, "failed to get resource\n"); | 
 | 		return -ENXIO; | 
 | 	} | 
 |  | 
 | 	rtc_data->io = devm_ioremap(&pdev->dev, r->start, resource_size(r)); | 
 | 	if (!rtc_data->io) { | 
 | 		dev_err(&pdev->dev, "ioremap failed\n"); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	rtc_data->irq_alarm = platform_get_irq(pdev, 0); | 
 |  | 
 | 	rtc_stat = readl(rtc_data->io + STMP3XXX_RTC_STAT); | 
 | 	if (!(rtc_stat & STMP3XXX_RTC_STAT_RTC_PRESENT)) { | 
 | 		dev_err(&pdev->dev, "no device onboard\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	platform_set_drvdata(pdev, rtc_data); | 
 |  | 
 | 	/* | 
 | 	 * Resetting the rtc stops the watchdog timer that is potentially | 
 | 	 * running. So (assuming it is running on purpose) don't reset if the | 
 | 	 * watchdog is enabled. | 
 | 	 */ | 
 | 	if (readl(rtc_data->io + STMP3XXX_RTC_CTRL) & | 
 | 	    STMP3XXX_RTC_CTRL_WATCHDOGEN) { | 
 | 		dev_info(&pdev->dev, | 
 | 			 "Watchdog is running, skip resetting rtc\n"); | 
 | 	} else { | 
 | 		err = stmp_reset_block(rtc_data->io); | 
 | 		if (err) { | 
 | 			dev_err(&pdev->dev, "stmp_reset_block failed: %d\n", | 
 | 				err); | 
 | 			return err; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Obviously the rtc needs a clock input to be able to run. | 
 | 	 * This clock can be provided by an external 32k crystal. If that one is | 
 | 	 * missing XTAL must not be disabled in suspend which consumes a | 
 | 	 * lot of power. Normally the presence and exact frequency (supported | 
 | 	 * are 32000 Hz and 32768 Hz) is detectable from fuses, but as reality | 
 | 	 * proves these fuses are not blown correctly on all machines, so the | 
 | 	 * frequency can be overridden in the device tree. | 
 | 	 */ | 
 | 	if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32000_PRESENT) | 
 | 		crystalfreq = 32000; | 
 | 	else if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32768_PRESENT) | 
 | 		crystalfreq = 32768; | 
 |  | 
 | 	of_property_read_u32(pdev->dev.of_node, "stmp,crystal-freq", | 
 | 			     &crystalfreq); | 
 |  | 
 | 	switch (crystalfreq) { | 
 | 	case 32000: | 
 | 		/* keep 32kHz crystal running in low-power mode */ | 
 | 		pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ | | 
 | 			STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP | | 
 | 			STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE; | 
 | 		pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP; | 
 | 		break; | 
 | 	case 32768: | 
 | 		/* keep 32.768kHz crystal running in low-power mode */ | 
 | 		pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP | | 
 | 			STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE; | 
 | 		pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP | | 
 | 			STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ; | 
 | 		break; | 
 | 	default: | 
 | 		dev_warn(&pdev->dev, | 
 | 			 "invalid crystal-freq specified in device-tree. Assuming no crystal\n"); | 
 | 		/* fall-through */ | 
 | 	case 0: | 
 | 		/* keep XTAL on in low-power mode */ | 
 | 		pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP; | 
 | 		pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP | | 
 | 			STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE; | 
 | 	} | 
 |  | 
 | 	writel(pers0_set, rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + | 
 | 			STMP_OFFSET_REG_SET); | 
 |  | 
 | 	writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN | | 
 | 			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN | | 
 | 			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE | pers0_clr, | 
 | 		rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR); | 
 |  | 
 | 	writel(STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN | | 
 | 			STMP3XXX_RTC_CTRL_ALARM_IRQ_EN, | 
 | 		rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR); | 
 |  | 
 | 	rtc_data->rtc = devm_rtc_allocate_device(&pdev->dev); | 
 | 	if (IS_ERR(rtc_data->rtc)) | 
 | 		return PTR_ERR(rtc_data->rtc); | 
 |  | 
 | 	err = devm_request_irq(&pdev->dev, rtc_data->irq_alarm, | 
 | 			stmp3xxx_rtc_interrupt, 0, "RTC alarm", &pdev->dev); | 
 | 	if (err) { | 
 | 		dev_err(&pdev->dev, "Cannot claim IRQ%d\n", | 
 | 			rtc_data->irq_alarm); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	rtc_data->rtc->ops = &stmp3xxx_rtc_ops; | 
 | 	rtc_data->rtc->range_max = U32_MAX; | 
 |  | 
 | 	err = rtc_register_device(rtc_data->rtc); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	stmp3xxx_wdt_register(pdev); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PM_SLEEP | 
 | static int stmp3xxx_rtc_suspend(struct device *dev) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int stmp3xxx_rtc_resume(struct device *dev) | 
 | { | 
 | 	struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev); | 
 |  | 
 | 	stmp_reset_block(rtc_data->io); | 
 | 	writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN | | 
 | 			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN | | 
 | 			STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE, | 
 | 		rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR); | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static SIMPLE_DEV_PM_OPS(stmp3xxx_rtc_pm_ops, stmp3xxx_rtc_suspend, | 
 | 			stmp3xxx_rtc_resume); | 
 |  | 
 | static const struct of_device_id rtc_dt_ids[] = { | 
 | 	{ .compatible = "fsl,stmp3xxx-rtc", }, | 
 | 	{ /* sentinel */ } | 
 | }; | 
 | MODULE_DEVICE_TABLE(of, rtc_dt_ids); | 
 |  | 
 | static struct platform_driver stmp3xxx_rtcdrv = { | 
 | 	.probe		= stmp3xxx_rtc_probe, | 
 | 	.remove		= stmp3xxx_rtc_remove, | 
 | 	.driver		= { | 
 | 		.name	= "stmp3xxx-rtc", | 
 | 		.pm	= &stmp3xxx_rtc_pm_ops, | 
 | 		.of_match_table = rtc_dt_ids, | 
 | 	}, | 
 | }; | 
 |  | 
 | module_platform_driver(stmp3xxx_rtcdrv); | 
 |  | 
 | MODULE_DESCRIPTION("STMP3xxx RTC Driver"); | 
 | MODULE_AUTHOR("dmitry pervushin <dpervushin@embeddedalley.com> and " | 
 | 		"Wolfram Sang <w.sang@pengutronix.de>"); | 
 | MODULE_LICENSE("GPL"); |