| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* | 
 |  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved. | 
 |  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved. | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/slab.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/completion.h> | 
 | #include <linux/buffer_head.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/gfs2_ondisk.h> | 
 | #include <linux/prefetch.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/rbtree.h> | 
 | #include <linux/random.h> | 
 |  | 
 | #include "gfs2.h" | 
 | #include "incore.h" | 
 | #include "glock.h" | 
 | #include "glops.h" | 
 | #include "lops.h" | 
 | #include "meta_io.h" | 
 | #include "quota.h" | 
 | #include "rgrp.h" | 
 | #include "super.h" | 
 | #include "trans.h" | 
 | #include "util.h" | 
 | #include "log.h" | 
 | #include "inode.h" | 
 | #include "trace_gfs2.h" | 
 | #include "dir.h" | 
 |  | 
 | #define BFITNOENT ((u32)~0) | 
 | #define NO_BLOCK ((u64)~0) | 
 |  | 
 | /* | 
 |  * These routines are used by the resource group routines (rgrp.c) | 
 |  * to keep track of block allocation.  Each block is represented by two | 
 |  * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks. | 
 |  * | 
 |  * 0 = Free | 
 |  * 1 = Used (not metadata) | 
 |  * 2 = Unlinked (still in use) inode | 
 |  * 3 = Used (metadata) | 
 |  */ | 
 |  | 
 | struct gfs2_extent { | 
 | 	struct gfs2_rbm rbm; | 
 | 	u32 len; | 
 | }; | 
 |  | 
 | static const char valid_change[16] = { | 
 | 	        /* current */ | 
 | 	/* n */ 0, 1, 1, 1, | 
 | 	/* e */ 1, 0, 0, 0, | 
 | 	/* w */ 0, 0, 0, 1, | 
 | 	        1, 0, 0, 0 | 
 | }; | 
 |  | 
 | static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, | 
 | 			 const struct gfs2_inode *ip, bool nowrap); | 
 |  | 
 |  | 
 | /** | 
 |  * gfs2_setbit - Set a bit in the bitmaps | 
 |  * @rbm: The position of the bit to set | 
 |  * @do_clone: Also set the clone bitmap, if it exists | 
 |  * @new_state: the new state of the block | 
 |  * | 
 |  */ | 
 |  | 
 | static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone, | 
 | 			       unsigned char new_state) | 
 | { | 
 | 	unsigned char *byte1, *byte2, *end, cur_state; | 
 | 	struct gfs2_bitmap *bi = rbm_bi(rbm); | 
 | 	unsigned int buflen = bi->bi_bytes; | 
 | 	const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; | 
 |  | 
 | 	byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY); | 
 | 	end = bi->bi_bh->b_data + bi->bi_offset + buflen; | 
 |  | 
 | 	BUG_ON(byte1 >= end); | 
 |  | 
 | 	cur_state = (*byte1 >> bit) & GFS2_BIT_MASK; | 
 |  | 
 | 	if (unlikely(!valid_change[new_state * 4 + cur_state])) { | 
 | 		struct gfs2_sbd *sdp = rbm->rgd->rd_sbd; | 
 |  | 
 | 		fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n", | 
 | 			rbm->offset, cur_state, new_state); | 
 | 		fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n", | 
 | 			(unsigned long long)rbm->rgd->rd_addr, bi->bi_start, | 
 | 			(unsigned long long)bi->bi_bh->b_blocknr); | 
 | 		fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n", | 
 | 			bi->bi_offset, bi->bi_bytes, | 
 | 			(unsigned long long)gfs2_rbm_to_block(rbm)); | 
 | 		dump_stack(); | 
 | 		gfs2_consist_rgrpd(rbm->rgd); | 
 | 		return; | 
 | 	} | 
 | 	*byte1 ^= (cur_state ^ new_state) << bit; | 
 |  | 
 | 	if (do_clone && bi->bi_clone) { | 
 | 		byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY); | 
 | 		cur_state = (*byte2 >> bit) & GFS2_BIT_MASK; | 
 | 		*byte2 ^= (cur_state ^ new_state) << bit; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_testbit - test a bit in the bitmaps | 
 |  * @rbm: The bit to test | 
 |  * @use_clone: If true, test the clone bitmap, not the official bitmap. | 
 |  * | 
 |  * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps, | 
 |  * not the "real" bitmaps, to avoid allocating recently freed blocks. | 
 |  * | 
 |  * Returns: The two bit block state of the requested bit | 
 |  */ | 
 |  | 
 | static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone) | 
 | { | 
 | 	struct gfs2_bitmap *bi = rbm_bi(rbm); | 
 | 	const u8 *buffer; | 
 | 	const u8 *byte; | 
 | 	unsigned int bit; | 
 |  | 
 | 	if (use_clone && bi->bi_clone) | 
 | 		buffer = bi->bi_clone; | 
 | 	else | 
 | 		buffer = bi->bi_bh->b_data; | 
 | 	buffer += bi->bi_offset; | 
 | 	byte = buffer + (rbm->offset / GFS2_NBBY); | 
 | 	bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE; | 
 |  | 
 | 	return (*byte >> bit) & GFS2_BIT_MASK; | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_bit_search | 
 |  * @ptr: Pointer to bitmap data | 
 |  * @mask: Mask to use (normally 0x55555.... but adjusted for search start) | 
 |  * @state: The state we are searching for | 
 |  * | 
 |  * We xor the bitmap data with a patter which is the bitwise opposite | 
 |  * of what we are looking for, this gives rise to a pattern of ones | 
 |  * wherever there is a match. Since we have two bits per entry, we | 
 |  * take this pattern, shift it down by one place and then and it with | 
 |  * the original. All the even bit positions (0,2,4, etc) then represent | 
 |  * successful matches, so we mask with 0x55555..... to remove the unwanted | 
 |  * odd bit positions. | 
 |  * | 
 |  * This allows searching of a whole u64 at once (32 blocks) with a | 
 |  * single test (on 64 bit arches). | 
 |  */ | 
 |  | 
 | static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state) | 
 | { | 
 | 	u64 tmp; | 
 | 	static const u64 search[] = { | 
 | 		[0] = 0xffffffffffffffffULL, | 
 | 		[1] = 0xaaaaaaaaaaaaaaaaULL, | 
 | 		[2] = 0x5555555555555555ULL, | 
 | 		[3] = 0x0000000000000000ULL, | 
 | 	}; | 
 | 	tmp = le64_to_cpu(*ptr) ^ search[state]; | 
 | 	tmp &= (tmp >> 1); | 
 | 	tmp &= mask; | 
 | 	return tmp; | 
 | } | 
 |  | 
 | /** | 
 |  * rs_cmp - multi-block reservation range compare | 
 |  * @blk: absolute file system block number of the new reservation | 
 |  * @len: number of blocks in the new reservation | 
 |  * @rs: existing reservation to compare against | 
 |  * | 
 |  * returns: 1 if the block range is beyond the reach of the reservation | 
 |  *         -1 if the block range is before the start of the reservation | 
 |  *          0 if the block range overlaps with the reservation | 
 |  */ | 
 | static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs) | 
 | { | 
 | 	u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm); | 
 |  | 
 | 	if (blk >= startblk + rs->rs_free) | 
 | 		return 1; | 
 | 	if (blk + len - 1 < startblk) | 
 | 		return -1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing | 
 |  *       a block in a given allocation state. | 
 |  * @buf: the buffer that holds the bitmaps | 
 |  * @len: the length (in bytes) of the buffer | 
 |  * @goal: start search at this block's bit-pair (within @buffer) | 
 |  * @state: GFS2_BLKST_XXX the state of the block we're looking for. | 
 |  * | 
 |  * Scope of @goal and returned block number is only within this bitmap buffer, | 
 |  * not entire rgrp or filesystem.  @buffer will be offset from the actual | 
 |  * beginning of a bitmap block buffer, skipping any header structures, but | 
 |  * headers are always a multiple of 64 bits long so that the buffer is | 
 |  * always aligned to a 64 bit boundary. | 
 |  * | 
 |  * The size of the buffer is in bytes, but is it assumed that it is | 
 |  * always ok to read a complete multiple of 64 bits at the end | 
 |  * of the block in case the end is no aligned to a natural boundary. | 
 |  * | 
 |  * Return: the block number (bitmap buffer scope) that was found | 
 |  */ | 
 |  | 
 | static u32 gfs2_bitfit(const u8 *buf, const unsigned int len, | 
 | 		       u32 goal, u8 state) | 
 | { | 
 | 	u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1); | 
 | 	const __le64 *ptr = ((__le64 *)buf) + (goal >> 5); | 
 | 	const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64))); | 
 | 	u64 tmp; | 
 | 	u64 mask = 0x5555555555555555ULL; | 
 | 	u32 bit; | 
 |  | 
 | 	/* Mask off bits we don't care about at the start of the search */ | 
 | 	mask <<= spoint; | 
 | 	tmp = gfs2_bit_search(ptr, mask, state); | 
 | 	ptr++; | 
 | 	while(tmp == 0 && ptr < end) { | 
 | 		tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state); | 
 | 		ptr++; | 
 | 	} | 
 | 	/* Mask off any bits which are more than len bytes from the start */ | 
 | 	if (ptr == end && (len & (sizeof(u64) - 1))) | 
 | 		tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1)))); | 
 | 	/* Didn't find anything, so return */ | 
 | 	if (tmp == 0) | 
 | 		return BFITNOENT; | 
 | 	ptr--; | 
 | 	bit = __ffs64(tmp); | 
 | 	bit /= 2;	/* two bits per entry in the bitmap */ | 
 | 	return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit; | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_rbm_from_block - Set the rbm based upon rgd and block number | 
 |  * @rbm: The rbm with rgd already set correctly | 
 |  * @block: The block number (filesystem relative) | 
 |  * | 
 |  * This sets the bi and offset members of an rbm based on a | 
 |  * resource group and a filesystem relative block number. The | 
 |  * resource group must be set in the rbm on entry, the bi and | 
 |  * offset members will be set by this function. | 
 |  * | 
 |  * Returns: 0 on success, or an error code | 
 |  */ | 
 |  | 
 | static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block) | 
 | { | 
 | 	if (!rgrp_contains_block(rbm->rgd, block)) | 
 | 		return -E2BIG; | 
 | 	rbm->bii = 0; | 
 | 	rbm->offset = block - rbm->rgd->rd_data0; | 
 | 	/* Check if the block is within the first block */ | 
 | 	if (rbm->offset < rbm_bi(rbm)->bi_blocks) | 
 | 		return 0; | 
 |  | 
 | 	/* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */ | 
 | 	rbm->offset += (sizeof(struct gfs2_rgrp) - | 
 | 			sizeof(struct gfs2_meta_header)) * GFS2_NBBY; | 
 | 	rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap; | 
 | 	rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_rbm_incr - increment an rbm structure | 
 |  * @rbm: The rbm with rgd already set correctly | 
 |  * | 
 |  * This function takes an existing rbm structure and increments it to the next | 
 |  * viable block offset. | 
 |  * | 
 |  * Returns: If incrementing the offset would cause the rbm to go past the | 
 |  *          end of the rgrp, true is returned, otherwise false. | 
 |  * | 
 |  */ | 
 |  | 
 | static bool gfs2_rbm_incr(struct gfs2_rbm *rbm) | 
 | { | 
 | 	if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */ | 
 | 		rbm->offset++; | 
 | 		return false; | 
 | 	} | 
 | 	if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */ | 
 | 		return true; | 
 |  | 
 | 	rbm->offset = 0; | 
 | 	rbm->bii++; | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned | 
 |  * @rbm: Position to search (value/result) | 
 |  * @n_unaligned: Number of unaligned blocks to check | 
 |  * @len: Decremented for each block found (terminate on zero) | 
 |  * | 
 |  * Returns: true if a non-free block is encountered | 
 |  */ | 
 |  | 
 | static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len) | 
 | { | 
 | 	u32 n; | 
 | 	u8 res; | 
 |  | 
 | 	for (n = 0; n < n_unaligned; n++) { | 
 | 		res = gfs2_testbit(rbm, true); | 
 | 		if (res != GFS2_BLKST_FREE) | 
 | 			return true; | 
 | 		(*len)--; | 
 | 		if (*len == 0) | 
 | 			return true; | 
 | 		if (gfs2_rbm_incr(rbm)) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_free_extlen - Return extent length of free blocks | 
 |  * @rrbm: Starting position | 
 |  * @len: Max length to check | 
 |  * | 
 |  * Starting at the block specified by the rbm, see how many free blocks | 
 |  * there are, not reading more than len blocks ahead. This can be done | 
 |  * using memchr_inv when the blocks are byte aligned, but has to be done | 
 |  * on a block by block basis in case of unaligned blocks. Also this | 
 |  * function can cope with bitmap boundaries (although it must stop on | 
 |  * a resource group boundary) | 
 |  * | 
 |  * Returns: Number of free blocks in the extent | 
 |  */ | 
 |  | 
 | static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len) | 
 | { | 
 | 	struct gfs2_rbm rbm = *rrbm; | 
 | 	u32 n_unaligned = rbm.offset & 3; | 
 | 	u32 size = len; | 
 | 	u32 bytes; | 
 | 	u32 chunk_size; | 
 | 	u8 *ptr, *start, *end; | 
 | 	u64 block; | 
 | 	struct gfs2_bitmap *bi; | 
 |  | 
 | 	if (n_unaligned && | 
 | 	    gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len)) | 
 | 		goto out; | 
 |  | 
 | 	n_unaligned = len & 3; | 
 | 	/* Start is now byte aligned */ | 
 | 	while (len > 3) { | 
 | 		bi = rbm_bi(&rbm); | 
 | 		start = bi->bi_bh->b_data; | 
 | 		if (bi->bi_clone) | 
 | 			start = bi->bi_clone; | 
 | 		start += bi->bi_offset; | 
 | 		end = start + bi->bi_bytes; | 
 | 		BUG_ON(rbm.offset & 3); | 
 | 		start += (rbm.offset / GFS2_NBBY); | 
 | 		bytes = min_t(u32, len / GFS2_NBBY, (end - start)); | 
 | 		ptr = memchr_inv(start, 0, bytes); | 
 | 		chunk_size = ((ptr == NULL) ? bytes : (ptr - start)); | 
 | 		chunk_size *= GFS2_NBBY; | 
 | 		BUG_ON(len < chunk_size); | 
 | 		len -= chunk_size; | 
 | 		block = gfs2_rbm_to_block(&rbm); | 
 | 		if (gfs2_rbm_from_block(&rbm, block + chunk_size)) { | 
 | 			n_unaligned = 0; | 
 | 			break; | 
 | 		} | 
 | 		if (ptr) { | 
 | 			n_unaligned = 3; | 
 | 			break; | 
 | 		} | 
 | 		n_unaligned = len & 3; | 
 | 	} | 
 |  | 
 | 	/* Deal with any bits left over at the end */ | 
 | 	if (n_unaligned) | 
 | 		gfs2_unaligned_extlen(&rbm, n_unaligned, &len); | 
 | out: | 
 | 	return size - len; | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_bitcount - count the number of bits in a certain state | 
 |  * @rgd: the resource group descriptor | 
 |  * @buffer: the buffer that holds the bitmaps | 
 |  * @buflen: the length (in bytes) of the buffer | 
 |  * @state: the state of the block we're looking for | 
 |  * | 
 |  * Returns: The number of bits | 
 |  */ | 
 |  | 
 | static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer, | 
 | 			 unsigned int buflen, u8 state) | 
 | { | 
 | 	const u8 *byte = buffer; | 
 | 	const u8 *end = buffer + buflen; | 
 | 	const u8 state1 = state << 2; | 
 | 	const u8 state2 = state << 4; | 
 | 	const u8 state3 = state << 6; | 
 | 	u32 count = 0; | 
 |  | 
 | 	for (; byte < end; byte++) { | 
 | 		if (((*byte) & 0x03) == state) | 
 | 			count++; | 
 | 		if (((*byte) & 0x0C) == state1) | 
 | 			count++; | 
 | 		if (((*byte) & 0x30) == state2) | 
 | 			count++; | 
 | 		if (((*byte) & 0xC0) == state3) | 
 | 			count++; | 
 | 	} | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_rgrp_verify - Verify that a resource group is consistent | 
 |  * @rgd: the rgrp | 
 |  * | 
 |  */ | 
 |  | 
 | void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd) | 
 | { | 
 | 	struct gfs2_sbd *sdp = rgd->rd_sbd; | 
 | 	struct gfs2_bitmap *bi = NULL; | 
 | 	u32 length = rgd->rd_length; | 
 | 	u32 count[4], tmp; | 
 | 	int buf, x; | 
 |  | 
 | 	memset(count, 0, 4 * sizeof(u32)); | 
 |  | 
 | 	/* Count # blocks in each of 4 possible allocation states */ | 
 | 	for (buf = 0; buf < length; buf++) { | 
 | 		bi = rgd->rd_bits + buf; | 
 | 		for (x = 0; x < 4; x++) | 
 | 			count[x] += gfs2_bitcount(rgd, | 
 | 						  bi->bi_bh->b_data + | 
 | 						  bi->bi_offset, | 
 | 						  bi->bi_bytes, x); | 
 | 	} | 
 |  | 
 | 	if (count[0] != rgd->rd_free) { | 
 | 		if (gfs2_consist_rgrpd(rgd)) | 
 | 			fs_err(sdp, "free data mismatch:  %u != %u\n", | 
 | 			       count[0], rgd->rd_free); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes; | 
 | 	if (count[1] != tmp) { | 
 | 		if (gfs2_consist_rgrpd(rgd)) | 
 | 			fs_err(sdp, "used data mismatch:  %u != %u\n", | 
 | 			       count[1], tmp); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (count[2] + count[3] != rgd->rd_dinodes) { | 
 | 		if (gfs2_consist_rgrpd(rgd)) | 
 | 			fs_err(sdp, "used metadata mismatch:  %u != %u\n", | 
 | 			       count[2] + count[3], rgd->rd_dinodes); | 
 | 		return; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_blk2rgrpd - Find resource group for a given data/meta block number | 
 |  * @sdp: The GFS2 superblock | 
 |  * @blk: The data block number | 
 |  * @exact: True if this needs to be an exact match | 
 |  * | 
 |  * The @exact argument should be set to true by most callers. The exception | 
 |  * is when we need to match blocks which are not represented by the rgrp | 
 |  * bitmap, but which are part of the rgrp (i.e. padding blocks) which are | 
 |  * there for alignment purposes. Another way of looking at it is that @exact | 
 |  * matches only valid data/metadata blocks, but with @exact false, it will | 
 |  * match any block within the extent of the rgrp. | 
 |  * | 
 |  * Returns: The resource group, or NULL if not found | 
 |  */ | 
 |  | 
 | struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact) | 
 | { | 
 | 	struct rb_node *n, *next; | 
 | 	struct gfs2_rgrpd *cur; | 
 |  | 
 | 	spin_lock(&sdp->sd_rindex_spin); | 
 | 	n = sdp->sd_rindex_tree.rb_node; | 
 | 	while (n) { | 
 | 		cur = rb_entry(n, struct gfs2_rgrpd, rd_node); | 
 | 		next = NULL; | 
 | 		if (blk < cur->rd_addr) | 
 | 			next = n->rb_left; | 
 | 		else if (blk >= cur->rd_data0 + cur->rd_data) | 
 | 			next = n->rb_right; | 
 | 		if (next == NULL) { | 
 | 			spin_unlock(&sdp->sd_rindex_spin); | 
 | 			if (exact) { | 
 | 				if (blk < cur->rd_addr) | 
 | 					return NULL; | 
 | 				if (blk >= cur->rd_data0 + cur->rd_data) | 
 | 					return NULL; | 
 | 			} | 
 | 			return cur; | 
 | 		} | 
 | 		n = next; | 
 | 	} | 
 | 	spin_unlock(&sdp->sd_rindex_spin); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem | 
 |  * @sdp: The GFS2 superblock | 
 |  * | 
 |  * Returns: The first rgrp in the filesystem | 
 |  */ | 
 |  | 
 | struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp) | 
 | { | 
 | 	const struct rb_node *n; | 
 | 	struct gfs2_rgrpd *rgd; | 
 |  | 
 | 	spin_lock(&sdp->sd_rindex_spin); | 
 | 	n = rb_first(&sdp->sd_rindex_tree); | 
 | 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); | 
 | 	spin_unlock(&sdp->sd_rindex_spin); | 
 |  | 
 | 	return rgd; | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_rgrpd_get_next - get the next RG | 
 |  * @rgd: the resource group descriptor | 
 |  * | 
 |  * Returns: The next rgrp | 
 |  */ | 
 |  | 
 | struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd) | 
 | { | 
 | 	struct gfs2_sbd *sdp = rgd->rd_sbd; | 
 | 	const struct rb_node *n; | 
 |  | 
 | 	spin_lock(&sdp->sd_rindex_spin); | 
 | 	n = rb_next(&rgd->rd_node); | 
 | 	if (n == NULL) | 
 | 		n = rb_first(&sdp->sd_rindex_tree); | 
 |  | 
 | 	if (unlikely(&rgd->rd_node == n)) { | 
 | 		spin_unlock(&sdp->sd_rindex_spin); | 
 | 		return NULL; | 
 | 	} | 
 | 	rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); | 
 | 	spin_unlock(&sdp->sd_rindex_spin); | 
 | 	return rgd; | 
 | } | 
 |  | 
 | void check_and_update_goal(struct gfs2_inode *ip) | 
 | { | 
 | 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); | 
 | 	if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL) | 
 | 		ip->i_goal = ip->i_no_addr; | 
 | } | 
 |  | 
 | void gfs2_free_clones(struct gfs2_rgrpd *rgd) | 
 | { | 
 | 	int x; | 
 |  | 
 | 	for (x = 0; x < rgd->rd_length; x++) { | 
 | 		struct gfs2_bitmap *bi = rgd->rd_bits + x; | 
 | 		kfree(bi->bi_clone); | 
 | 		bi->bi_clone = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode | 
 |  *                 plus a quota allocations data structure, if necessary | 
 |  * @ip: the inode for this reservation | 
 |  */ | 
 | int gfs2_rsqa_alloc(struct gfs2_inode *ip) | 
 | { | 
 | 	return gfs2_qa_alloc(ip); | 
 | } | 
 |  | 
 | static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs, | 
 | 		    const char *fs_id_buf) | 
 | { | 
 | 	struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res); | 
 |  | 
 | 	gfs2_print_dbg(seq, "%s  B: n:%llu s:%llu b:%u f:%u\n", fs_id_buf, | 
 | 		       (unsigned long long)ip->i_no_addr, | 
 | 		       (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm), | 
 | 		       rs->rs_rbm.offset, rs->rs_free); | 
 | } | 
 |  | 
 | /** | 
 |  * __rs_deltree - remove a multi-block reservation from the rgd tree | 
 |  * @rs: The reservation to remove | 
 |  * | 
 |  */ | 
 | static void __rs_deltree(struct gfs2_blkreserv *rs) | 
 | { | 
 | 	struct gfs2_rgrpd *rgd; | 
 |  | 
 | 	if (!gfs2_rs_active(rs)) | 
 | 		return; | 
 |  | 
 | 	rgd = rs->rs_rbm.rgd; | 
 | 	trace_gfs2_rs(rs, TRACE_RS_TREEDEL); | 
 | 	rb_erase(&rs->rs_node, &rgd->rd_rstree); | 
 | 	RB_CLEAR_NODE(&rs->rs_node); | 
 |  | 
 | 	if (rs->rs_free) { | 
 | 		u64 last_block = gfs2_rbm_to_block(&rs->rs_rbm) + | 
 | 				 rs->rs_free - 1; | 
 | 		struct gfs2_rbm last_rbm = { .rgd = rs->rs_rbm.rgd, }; | 
 | 		struct gfs2_bitmap *start, *last; | 
 |  | 
 | 		/* return reserved blocks to the rgrp */ | 
 | 		BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free); | 
 | 		rs->rs_rbm.rgd->rd_reserved -= rs->rs_free; | 
 | 		/* The rgrp extent failure point is likely not to increase; | 
 | 		   it will only do so if the freed blocks are somehow | 
 | 		   contiguous with a span of free blocks that follows. Still, | 
 | 		   it will force the number to be recalculated later. */ | 
 | 		rgd->rd_extfail_pt += rs->rs_free; | 
 | 		rs->rs_free = 0; | 
 | 		if (gfs2_rbm_from_block(&last_rbm, last_block)) | 
 | 			return; | 
 | 		start = rbm_bi(&rs->rs_rbm); | 
 | 		last = rbm_bi(&last_rbm); | 
 | 		do | 
 | 			clear_bit(GBF_FULL, &start->bi_flags); | 
 | 		while (start++ != last); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree | 
 |  * @rs: The reservation to remove | 
 |  * | 
 |  */ | 
 | void gfs2_rs_deltree(struct gfs2_blkreserv *rs) | 
 | { | 
 | 	struct gfs2_rgrpd *rgd; | 
 |  | 
 | 	rgd = rs->rs_rbm.rgd; | 
 | 	if (rgd) { | 
 | 		spin_lock(&rgd->rd_rsspin); | 
 | 		__rs_deltree(rs); | 
 | 		BUG_ON(rs->rs_free); | 
 | 		spin_unlock(&rgd->rd_rsspin); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation | 
 |  * @ip: The inode for this reservation | 
 |  * @wcount: The inode's write count, or NULL | 
 |  * | 
 |  */ | 
 | void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount) | 
 | { | 
 | 	down_write(&ip->i_rw_mutex); | 
 | 	if ((wcount == NULL) || (atomic_read(wcount) <= 1)) | 
 | 		gfs2_rs_deltree(&ip->i_res); | 
 | 	up_write(&ip->i_rw_mutex); | 
 | 	gfs2_qa_delete(ip, wcount); | 
 | } | 
 |  | 
 | /** | 
 |  * return_all_reservations - return all reserved blocks back to the rgrp. | 
 |  * @rgd: the rgrp that needs its space back | 
 |  * | 
 |  * We previously reserved a bunch of blocks for allocation. Now we need to | 
 |  * give them back. This leave the reservation structures in tact, but removes | 
 |  * all of their corresponding "no-fly zones". | 
 |  */ | 
 | static void return_all_reservations(struct gfs2_rgrpd *rgd) | 
 | { | 
 | 	struct rb_node *n; | 
 | 	struct gfs2_blkreserv *rs; | 
 |  | 
 | 	spin_lock(&rgd->rd_rsspin); | 
 | 	while ((n = rb_first(&rgd->rd_rstree))) { | 
 | 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node); | 
 | 		__rs_deltree(rs); | 
 | 	} | 
 | 	spin_unlock(&rgd->rd_rsspin); | 
 | } | 
 |  | 
 | void gfs2_clear_rgrpd(struct gfs2_sbd *sdp) | 
 | { | 
 | 	struct rb_node *n; | 
 | 	struct gfs2_rgrpd *rgd; | 
 | 	struct gfs2_glock *gl; | 
 |  | 
 | 	while ((n = rb_first(&sdp->sd_rindex_tree))) { | 
 | 		rgd = rb_entry(n, struct gfs2_rgrpd, rd_node); | 
 | 		gl = rgd->rd_gl; | 
 |  | 
 | 		rb_erase(n, &sdp->sd_rindex_tree); | 
 |  | 
 | 		if (gl) { | 
 | 			glock_clear_object(gl, rgd); | 
 | 			gfs2_rgrp_brelse(rgd); | 
 | 			gfs2_glock_put(gl); | 
 | 		} | 
 |  | 
 | 		gfs2_free_clones(rgd); | 
 | 		kfree(rgd->rd_bits); | 
 | 		rgd->rd_bits = NULL; | 
 | 		return_all_reservations(rgd); | 
 | 		kmem_cache_free(gfs2_rgrpd_cachep, rgd); | 
 | 	} | 
 | } | 
 |  | 
 | static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd) | 
 | { | 
 | 	struct gfs2_sbd *sdp = rgd->rd_sbd; | 
 |  | 
 | 	fs_info(sdp, "ri_addr = %llu\n", (unsigned long long)rgd->rd_addr); | 
 | 	fs_info(sdp, "ri_length = %u\n", rgd->rd_length); | 
 | 	fs_info(sdp, "ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0); | 
 | 	fs_info(sdp, "ri_data = %u\n", rgd->rd_data); | 
 | 	fs_info(sdp, "ri_bitbytes = %u\n", rgd->rd_bitbytes); | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_compute_bitstructs - Compute the bitmap sizes | 
 |  * @rgd: The resource group descriptor | 
 |  * | 
 |  * Calculates bitmap descriptors, one for each block that contains bitmap data | 
 |  * | 
 |  * Returns: errno | 
 |  */ | 
 |  | 
 | static int compute_bitstructs(struct gfs2_rgrpd *rgd) | 
 | { | 
 | 	struct gfs2_sbd *sdp = rgd->rd_sbd; | 
 | 	struct gfs2_bitmap *bi; | 
 | 	u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */ | 
 | 	u32 bytes_left, bytes; | 
 | 	int x; | 
 |  | 
 | 	if (!length) | 
 | 		return -EINVAL; | 
 |  | 
 | 	rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS); | 
 | 	if (!rgd->rd_bits) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	bytes_left = rgd->rd_bitbytes; | 
 |  | 
 | 	for (x = 0; x < length; x++) { | 
 | 		bi = rgd->rd_bits + x; | 
 |  | 
 | 		bi->bi_flags = 0; | 
 | 		/* small rgrp; bitmap stored completely in header block */ | 
 | 		if (length == 1) { | 
 | 			bytes = bytes_left; | 
 | 			bi->bi_offset = sizeof(struct gfs2_rgrp); | 
 | 			bi->bi_start = 0; | 
 | 			bi->bi_bytes = bytes; | 
 | 			bi->bi_blocks = bytes * GFS2_NBBY; | 
 | 		/* header block */ | 
 | 		} else if (x == 0) { | 
 | 			bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp); | 
 | 			bi->bi_offset = sizeof(struct gfs2_rgrp); | 
 | 			bi->bi_start = 0; | 
 | 			bi->bi_bytes = bytes; | 
 | 			bi->bi_blocks = bytes * GFS2_NBBY; | 
 | 		/* last block */ | 
 | 		} else if (x + 1 == length) { | 
 | 			bytes = bytes_left; | 
 | 			bi->bi_offset = sizeof(struct gfs2_meta_header); | 
 | 			bi->bi_start = rgd->rd_bitbytes - bytes_left; | 
 | 			bi->bi_bytes = bytes; | 
 | 			bi->bi_blocks = bytes * GFS2_NBBY; | 
 | 		/* other blocks */ | 
 | 		} else { | 
 | 			bytes = sdp->sd_sb.sb_bsize - | 
 | 				sizeof(struct gfs2_meta_header); | 
 | 			bi->bi_offset = sizeof(struct gfs2_meta_header); | 
 | 			bi->bi_start = rgd->rd_bitbytes - bytes_left; | 
 | 			bi->bi_bytes = bytes; | 
 | 			bi->bi_blocks = bytes * GFS2_NBBY; | 
 | 		} | 
 |  | 
 | 		bytes_left -= bytes; | 
 | 	} | 
 |  | 
 | 	if (bytes_left) { | 
 | 		gfs2_consist_rgrpd(rgd); | 
 | 		return -EIO; | 
 | 	} | 
 | 	bi = rgd->rd_bits + (length - 1); | 
 | 	if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) { | 
 | 		if (gfs2_consist_rgrpd(rgd)) { | 
 | 			gfs2_rindex_print(rgd); | 
 | 			fs_err(sdp, "start=%u len=%u offset=%u\n", | 
 | 			       bi->bi_start, bi->bi_bytes, bi->bi_offset); | 
 | 		} | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_ri_total - Total up the file system space, according to the rindex. | 
 |  * @sdp: the filesystem | 
 |  * | 
 |  */ | 
 | u64 gfs2_ri_total(struct gfs2_sbd *sdp) | 
 | { | 
 | 	u64 total_data = 0;	 | 
 | 	struct inode *inode = sdp->sd_rindex; | 
 | 	struct gfs2_inode *ip = GFS2_I(inode); | 
 | 	char buf[sizeof(struct gfs2_rindex)]; | 
 | 	int error, rgrps; | 
 |  | 
 | 	for (rgrps = 0;; rgrps++) { | 
 | 		loff_t pos = rgrps * sizeof(struct gfs2_rindex); | 
 |  | 
 | 		if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode)) | 
 | 			break; | 
 | 		error = gfs2_internal_read(ip, buf, &pos, | 
 | 					   sizeof(struct gfs2_rindex)); | 
 | 		if (error != sizeof(struct gfs2_rindex)) | 
 | 			break; | 
 | 		total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data); | 
 | 	} | 
 | 	return total_data; | 
 | } | 
 |  | 
 | static int rgd_insert(struct gfs2_rgrpd *rgd) | 
 | { | 
 | 	struct gfs2_sbd *sdp = rgd->rd_sbd; | 
 | 	struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL; | 
 |  | 
 | 	/* Figure out where to put new node */ | 
 | 	while (*newn) { | 
 | 		struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd, | 
 | 						  rd_node); | 
 |  | 
 | 		parent = *newn; | 
 | 		if (rgd->rd_addr < cur->rd_addr) | 
 | 			newn = &((*newn)->rb_left); | 
 | 		else if (rgd->rd_addr > cur->rd_addr) | 
 | 			newn = &((*newn)->rb_right); | 
 | 		else | 
 | 			return -EEXIST; | 
 | 	} | 
 |  | 
 | 	rb_link_node(&rgd->rd_node, parent, newn); | 
 | 	rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree); | 
 | 	sdp->sd_rgrps++; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * read_rindex_entry - Pull in a new resource index entry from the disk | 
 |  * @ip: Pointer to the rindex inode | 
 |  * | 
 |  * Returns: 0 on success, > 0 on EOF, error code otherwise | 
 |  */ | 
 |  | 
 | static int read_rindex_entry(struct gfs2_inode *ip) | 
 | { | 
 | 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); | 
 | 	const unsigned bsize = sdp->sd_sb.sb_bsize; | 
 | 	loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex); | 
 | 	struct gfs2_rindex buf; | 
 | 	int error; | 
 | 	struct gfs2_rgrpd *rgd; | 
 |  | 
 | 	if (pos >= i_size_read(&ip->i_inode)) | 
 | 		return 1; | 
 |  | 
 | 	error = gfs2_internal_read(ip, (char *)&buf, &pos, | 
 | 				   sizeof(struct gfs2_rindex)); | 
 |  | 
 | 	if (error != sizeof(struct gfs2_rindex)) | 
 | 		return (error == 0) ? 1 : error; | 
 |  | 
 | 	rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS); | 
 | 	error = -ENOMEM; | 
 | 	if (!rgd) | 
 | 		return error; | 
 |  | 
 | 	rgd->rd_sbd = sdp; | 
 | 	rgd->rd_addr = be64_to_cpu(buf.ri_addr); | 
 | 	rgd->rd_length = be32_to_cpu(buf.ri_length); | 
 | 	rgd->rd_data0 = be64_to_cpu(buf.ri_data0); | 
 | 	rgd->rd_data = be32_to_cpu(buf.ri_data); | 
 | 	rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes); | 
 | 	spin_lock_init(&rgd->rd_rsspin); | 
 |  | 
 | 	error = compute_bitstructs(rgd); | 
 | 	if (error) | 
 | 		goto fail; | 
 |  | 
 | 	error = gfs2_glock_get(sdp, rgd->rd_addr, | 
 | 			       &gfs2_rgrp_glops, CREATE, &rgd->rd_gl); | 
 | 	if (error) | 
 | 		goto fail; | 
 |  | 
 | 	rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr; | 
 | 	rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED); | 
 | 	if (rgd->rd_data > sdp->sd_max_rg_data) | 
 | 		sdp->sd_max_rg_data = rgd->rd_data; | 
 | 	spin_lock(&sdp->sd_rindex_spin); | 
 | 	error = rgd_insert(rgd); | 
 | 	spin_unlock(&sdp->sd_rindex_spin); | 
 | 	if (!error) { | 
 | 		glock_set_object(rgd->rd_gl, rgd); | 
 | 		rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK; | 
 | 		rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr + | 
 | 						    rgd->rd_length) * bsize) - 1; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	error = 0; /* someone else read in the rgrp; free it and ignore it */ | 
 | 	gfs2_glock_put(rgd->rd_gl); | 
 |  | 
 | fail: | 
 | 	kfree(rgd->rd_bits); | 
 | 	rgd->rd_bits = NULL; | 
 | 	kmem_cache_free(gfs2_rgrpd_cachep, rgd); | 
 | 	return error; | 
 | } | 
 |  | 
 | /** | 
 |  * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use | 
 |  * @sdp: the GFS2 superblock | 
 |  * | 
 |  * The purpose of this function is to select a subset of the resource groups | 
 |  * and mark them as PREFERRED. We do it in such a way that each node prefers | 
 |  * to use a unique set of rgrps to minimize glock contention. | 
 |  */ | 
 | static void set_rgrp_preferences(struct gfs2_sbd *sdp) | 
 | { | 
 | 	struct gfs2_rgrpd *rgd, *first; | 
 | 	int i; | 
 |  | 
 | 	/* Skip an initial number of rgrps, based on this node's journal ID. | 
 | 	   That should start each node out on its own set. */ | 
 | 	rgd = gfs2_rgrpd_get_first(sdp); | 
 | 	for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++) | 
 | 		rgd = gfs2_rgrpd_get_next(rgd); | 
 | 	first = rgd; | 
 |  | 
 | 	do { | 
 | 		rgd->rd_flags |= GFS2_RDF_PREFERRED; | 
 | 		for (i = 0; i < sdp->sd_journals; i++) { | 
 | 			rgd = gfs2_rgrpd_get_next(rgd); | 
 | 			if (!rgd || rgd == first) | 
 | 				break; | 
 | 		} | 
 | 	} while (rgd && rgd != first); | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_ri_update - Pull in a new resource index from the disk | 
 |  * @ip: pointer to the rindex inode | 
 |  * | 
 |  * Returns: 0 on successful update, error code otherwise | 
 |  */ | 
 |  | 
 | static int gfs2_ri_update(struct gfs2_inode *ip) | 
 | { | 
 | 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); | 
 | 	int error; | 
 |  | 
 | 	do { | 
 | 		error = read_rindex_entry(ip); | 
 | 	} while (error == 0); | 
 |  | 
 | 	if (error < 0) | 
 | 		return error; | 
 |  | 
 | 	set_rgrp_preferences(sdp); | 
 |  | 
 | 	sdp->sd_rindex_uptodate = 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_rindex_update - Update the rindex if required | 
 |  * @sdp: The GFS2 superblock | 
 |  * | 
 |  * We grab a lock on the rindex inode to make sure that it doesn't | 
 |  * change whilst we are performing an operation. We keep this lock | 
 |  * for quite long periods of time compared to other locks. This | 
 |  * doesn't matter, since it is shared and it is very, very rarely | 
 |  * accessed in the exclusive mode (i.e. only when expanding the filesystem). | 
 |  * | 
 |  * This makes sure that we're using the latest copy of the resource index | 
 |  * special file, which might have been updated if someone expanded the | 
 |  * filesystem (via gfs2_grow utility), which adds new resource groups. | 
 |  * | 
 |  * Returns: 0 on succeess, error code otherwise | 
 |  */ | 
 |  | 
 | int gfs2_rindex_update(struct gfs2_sbd *sdp) | 
 | { | 
 | 	struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex); | 
 | 	struct gfs2_glock *gl = ip->i_gl; | 
 | 	struct gfs2_holder ri_gh; | 
 | 	int error = 0; | 
 | 	int unlock_required = 0; | 
 |  | 
 | 	/* Read new copy from disk if we don't have the latest */ | 
 | 	if (!sdp->sd_rindex_uptodate) { | 
 | 		if (!gfs2_glock_is_locked_by_me(gl)) { | 
 | 			error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh); | 
 | 			if (error) | 
 | 				return error; | 
 | 			unlock_required = 1; | 
 | 		} | 
 | 		if (!sdp->sd_rindex_uptodate) | 
 | 			error = gfs2_ri_update(ip); | 
 | 		if (unlock_required) | 
 | 			gfs2_glock_dq_uninit(&ri_gh); | 
 | 	} | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf) | 
 | { | 
 | 	const struct gfs2_rgrp *str = buf; | 
 | 	u32 rg_flags; | 
 |  | 
 | 	rg_flags = be32_to_cpu(str->rg_flags); | 
 | 	rg_flags &= ~GFS2_RDF_MASK; | 
 | 	rgd->rd_flags &= GFS2_RDF_MASK; | 
 | 	rgd->rd_flags |= rg_flags; | 
 | 	rgd->rd_free = be32_to_cpu(str->rg_free); | 
 | 	rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes); | 
 | 	rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration); | 
 | 	/* rd_data0, rd_data and rd_bitbytes already set from rindex */ | 
 | } | 
 |  | 
 | static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf) | 
 | { | 
 | 	const struct gfs2_rgrp *str = buf; | 
 |  | 
 | 	rgl->rl_magic = cpu_to_be32(GFS2_MAGIC); | 
 | 	rgl->rl_flags = str->rg_flags; | 
 | 	rgl->rl_free = str->rg_free; | 
 | 	rgl->rl_dinodes = str->rg_dinodes; | 
 | 	rgl->rl_igeneration = str->rg_igeneration; | 
 | 	rgl->__pad = 0UL; | 
 | } | 
 |  | 
 | static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf) | 
 | { | 
 | 	struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd); | 
 | 	struct gfs2_rgrp *str = buf; | 
 | 	u32 crc; | 
 |  | 
 | 	str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK); | 
 | 	str->rg_free = cpu_to_be32(rgd->rd_free); | 
 | 	str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes); | 
 | 	if (next == NULL) | 
 | 		str->rg_skip = 0; | 
 | 	else if (next->rd_addr > rgd->rd_addr) | 
 | 		str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr); | 
 | 	str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration); | 
 | 	str->rg_data0 = cpu_to_be64(rgd->rd_data0); | 
 | 	str->rg_data = cpu_to_be32(rgd->rd_data); | 
 | 	str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes); | 
 | 	str->rg_crc = 0; | 
 | 	crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp)); | 
 | 	str->rg_crc = cpu_to_be32(crc); | 
 |  | 
 | 	memset(&str->rg_reserved, 0, sizeof(str->rg_reserved)); | 
 | 	gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf); | 
 | } | 
 |  | 
 | static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd) | 
 | { | 
 | 	struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; | 
 | 	struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data; | 
 | 	struct gfs2_sbd *sdp = rgd->rd_sbd; | 
 | 	int valid = 1; | 
 |  | 
 | 	if (rgl->rl_flags != str->rg_flags) { | 
 | 		fs_warn(sdp, "GFS2: rgd: %llu lvb flag mismatch %u/%u", | 
 | 			(unsigned long long)rgd->rd_addr, | 
 | 		       be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags)); | 
 | 		valid = 0; | 
 | 	} | 
 | 	if (rgl->rl_free != str->rg_free) { | 
 | 		fs_warn(sdp, "GFS2: rgd: %llu lvb free mismatch %u/%u", | 
 | 			(unsigned long long)rgd->rd_addr, | 
 | 			be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free)); | 
 | 		valid = 0; | 
 | 	} | 
 | 	if (rgl->rl_dinodes != str->rg_dinodes) { | 
 | 		fs_warn(sdp, "GFS2: rgd: %llu lvb dinode mismatch %u/%u", | 
 | 			(unsigned long long)rgd->rd_addr, | 
 | 			be32_to_cpu(rgl->rl_dinodes), | 
 | 			be32_to_cpu(str->rg_dinodes)); | 
 | 		valid = 0; | 
 | 	} | 
 | 	if (rgl->rl_igeneration != str->rg_igeneration) { | 
 | 		fs_warn(sdp, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu", | 
 | 			(unsigned long long)rgd->rd_addr, | 
 | 			(unsigned long long)be64_to_cpu(rgl->rl_igeneration), | 
 | 			(unsigned long long)be64_to_cpu(str->rg_igeneration)); | 
 | 		valid = 0; | 
 | 	} | 
 | 	return valid; | 
 | } | 
 |  | 
 | static u32 count_unlinked(struct gfs2_rgrpd *rgd) | 
 | { | 
 | 	struct gfs2_bitmap *bi; | 
 | 	const u32 length = rgd->rd_length; | 
 | 	const u8 *buffer = NULL; | 
 | 	u32 i, goal, count = 0; | 
 |  | 
 | 	for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) { | 
 | 		goal = 0; | 
 | 		buffer = bi->bi_bh->b_data + bi->bi_offset; | 
 | 		WARN_ON(!buffer_uptodate(bi->bi_bh)); | 
 | 		while (goal < bi->bi_blocks) { | 
 | 			goal = gfs2_bitfit(buffer, bi->bi_bytes, goal, | 
 | 					   GFS2_BLKST_UNLINKED); | 
 | 			if (goal == BFITNOENT) | 
 | 				break; | 
 | 			count++; | 
 | 			goal++; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 |  | 
 | /** | 
 |  * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps | 
 |  * @rgd: the struct gfs2_rgrpd describing the RG to read in | 
 |  * | 
 |  * Read in all of a Resource Group's header and bitmap blocks. | 
 |  * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps. | 
 |  * | 
 |  * Returns: errno | 
 |  */ | 
 |  | 
 | static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd) | 
 | { | 
 | 	struct gfs2_sbd *sdp = rgd->rd_sbd; | 
 | 	struct gfs2_glock *gl = rgd->rd_gl; | 
 | 	unsigned int length = rgd->rd_length; | 
 | 	struct gfs2_bitmap *bi; | 
 | 	unsigned int x, y; | 
 | 	int error; | 
 |  | 
 | 	if (rgd->rd_bits[0].bi_bh != NULL) | 
 | 		return 0; | 
 |  | 
 | 	for (x = 0; x < length; x++) { | 
 | 		bi = rgd->rd_bits + x; | 
 | 		error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh); | 
 | 		if (error) | 
 | 			goto fail; | 
 | 	} | 
 |  | 
 | 	for (y = length; y--;) { | 
 | 		bi = rgd->rd_bits + y; | 
 | 		error = gfs2_meta_wait(sdp, bi->bi_bh); | 
 | 		if (error) | 
 | 			goto fail; | 
 | 		if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB : | 
 | 					      GFS2_METATYPE_RG)) { | 
 | 			error = -EIO; | 
 | 			goto fail; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) { | 
 | 		for (x = 0; x < length; x++) | 
 | 			clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags); | 
 | 		gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data); | 
 | 		rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK); | 
 | 		rgd->rd_free_clone = rgd->rd_free; | 
 | 		/* max out the rgrp allocation failure point */ | 
 | 		rgd->rd_extfail_pt = rgd->rd_free; | 
 | 	} | 
 | 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) { | 
 | 		rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd)); | 
 | 		gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, | 
 | 				     rgd->rd_bits[0].bi_bh->b_data); | 
 | 	} | 
 | 	else if (sdp->sd_args.ar_rgrplvb) { | 
 | 		if (!gfs2_rgrp_lvb_valid(rgd)){ | 
 | 			gfs2_consist_rgrpd(rgd); | 
 | 			error = -EIO; | 
 | 			goto fail; | 
 | 		} | 
 | 		if (rgd->rd_rgl->rl_unlinked == 0) | 
 | 			rgd->rd_flags &= ~GFS2_RDF_CHECK; | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | fail: | 
 | 	while (x--) { | 
 | 		bi = rgd->rd_bits + x; | 
 | 		brelse(bi->bi_bh); | 
 | 		bi->bi_bh = NULL; | 
 | 		gfs2_assert_warn(sdp, !bi->bi_clone); | 
 | 	} | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | static int update_rgrp_lvb(struct gfs2_rgrpd *rgd) | 
 | { | 
 | 	u32 rl_flags; | 
 |  | 
 | 	if (rgd->rd_flags & GFS2_RDF_UPTODATE) | 
 | 		return 0; | 
 |  | 
 | 	if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) | 
 | 		return gfs2_rgrp_bh_get(rgd); | 
 |  | 
 | 	rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags); | 
 | 	rl_flags &= ~GFS2_RDF_MASK; | 
 | 	rgd->rd_flags &= GFS2_RDF_MASK; | 
 | 	rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK); | 
 | 	if (rgd->rd_rgl->rl_unlinked == 0) | 
 | 		rgd->rd_flags &= ~GFS2_RDF_CHECK; | 
 | 	rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free); | 
 | 	rgd->rd_free_clone = rgd->rd_free; | 
 | 	rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes); | 
 | 	rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int gfs2_rgrp_go_lock(struct gfs2_holder *gh) | 
 | { | 
 | 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; | 
 | 	struct gfs2_sbd *sdp = rgd->rd_sbd; | 
 |  | 
 | 	if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb) | 
 | 		return 0; | 
 | 	return gfs2_rgrp_bh_get(rgd); | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get() | 
 |  * @rgd: The resource group | 
 |  * | 
 |  */ | 
 |  | 
 | void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd) | 
 | { | 
 | 	int x, length = rgd->rd_length; | 
 |  | 
 | 	for (x = 0; x < length; x++) { | 
 | 		struct gfs2_bitmap *bi = rgd->rd_bits + x; | 
 | 		if (bi->bi_bh) { | 
 | 			brelse(bi->bi_bh); | 
 | 			bi->bi_bh = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_rgrp_go_unlock - Unlock a rgrp glock | 
 |  * @gh: The glock holder for the resource group | 
 |  * | 
 |  */ | 
 |  | 
 | void gfs2_rgrp_go_unlock(struct gfs2_holder *gh) | 
 | { | 
 | 	struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object; | 
 | 	int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) | | 
 | 		test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags); | 
 |  | 
 | 	if (rgd && demote_requested) | 
 | 		gfs2_rgrp_brelse(rgd); | 
 | } | 
 |  | 
 | int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset, | 
 | 			     struct buffer_head *bh, | 
 | 			     const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed) | 
 | { | 
 | 	struct super_block *sb = sdp->sd_vfs; | 
 | 	u64 blk; | 
 | 	sector_t start = 0; | 
 | 	sector_t nr_blks = 0; | 
 | 	int rv; | 
 | 	unsigned int x; | 
 | 	u32 trimmed = 0; | 
 | 	u8 diff; | 
 |  | 
 | 	for (x = 0; x < bi->bi_bytes; x++) { | 
 | 		const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data; | 
 | 		clone += bi->bi_offset; | 
 | 		clone += x; | 
 | 		if (bh) { | 
 | 			const u8 *orig = bh->b_data + bi->bi_offset + x; | 
 | 			diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1)); | 
 | 		} else { | 
 | 			diff = ~(*clone | (*clone >> 1)); | 
 | 		} | 
 | 		diff &= 0x55; | 
 | 		if (diff == 0) | 
 | 			continue; | 
 | 		blk = offset + ((bi->bi_start + x) * GFS2_NBBY); | 
 | 		while(diff) { | 
 | 			if (diff & 1) { | 
 | 				if (nr_blks == 0) | 
 | 					goto start_new_extent; | 
 | 				if ((start + nr_blks) != blk) { | 
 | 					if (nr_blks >= minlen) { | 
 | 						rv = sb_issue_discard(sb, | 
 | 							start, nr_blks, | 
 | 							GFP_NOFS, 0); | 
 | 						if (rv) | 
 | 							goto fail; | 
 | 						trimmed += nr_blks; | 
 | 					} | 
 | 					nr_blks = 0; | 
 | start_new_extent: | 
 | 					start = blk; | 
 | 				} | 
 | 				nr_blks++; | 
 | 			} | 
 | 			diff >>= 2; | 
 | 			blk++; | 
 | 		} | 
 | 	} | 
 | 	if (nr_blks >= minlen) { | 
 | 		rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0); | 
 | 		if (rv) | 
 | 			goto fail; | 
 | 		trimmed += nr_blks; | 
 | 	} | 
 | 	if (ptrimmed) | 
 | 		*ptrimmed = trimmed; | 
 | 	return 0; | 
 |  | 
 | fail: | 
 | 	if (sdp->sd_args.ar_discard) | 
 | 		fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv); | 
 | 	sdp->sd_args.ar_discard = 0; | 
 | 	return -EIO; | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_fitrim - Generate discard requests for unused bits of the filesystem | 
 |  * @filp: Any file on the filesystem | 
 |  * @argp: Pointer to the arguments (also used to pass result) | 
 |  * | 
 |  * Returns: 0 on success, otherwise error code | 
 |  */ | 
 |  | 
 | int gfs2_fitrim(struct file *filp, void __user *argp) | 
 | { | 
 | 	struct inode *inode = file_inode(filp); | 
 | 	struct gfs2_sbd *sdp = GFS2_SB(inode); | 
 | 	struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev); | 
 | 	struct buffer_head *bh; | 
 | 	struct gfs2_rgrpd *rgd; | 
 | 	struct gfs2_rgrpd *rgd_end; | 
 | 	struct gfs2_holder gh; | 
 | 	struct fstrim_range r; | 
 | 	int ret = 0; | 
 | 	u64 amt; | 
 | 	u64 trimmed = 0; | 
 | 	u64 start, end, minlen; | 
 | 	unsigned int x; | 
 | 	unsigned bs_shift = sdp->sd_sb.sb_bsize_shift; | 
 |  | 
 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 		return -EPERM; | 
 |  | 
 | 	if (!blk_queue_discard(q)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	if (copy_from_user(&r, argp, sizeof(r))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	ret = gfs2_rindex_update(sdp); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	start = r.start >> bs_shift; | 
 | 	end = start + (r.len >> bs_shift); | 
 | 	minlen = max_t(u64, r.minlen, | 
 | 		       q->limits.discard_granularity) >> bs_shift; | 
 |  | 
 | 	if (end <= start || minlen > sdp->sd_max_rg_data) | 
 | 		return -EINVAL; | 
 |  | 
 | 	rgd = gfs2_blk2rgrpd(sdp, start, 0); | 
 | 	rgd_end = gfs2_blk2rgrpd(sdp, end, 0); | 
 |  | 
 | 	if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end)) | 
 | 	    && (start > rgd_end->rd_data0 + rgd_end->rd_data)) | 
 | 		return -EINVAL; /* start is beyond the end of the fs */ | 
 |  | 
 | 	while (1) { | 
 |  | 
 | 		ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh); | 
 | 		if (ret) | 
 | 			goto out; | 
 |  | 
 | 		if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) { | 
 | 			/* Trim each bitmap in the rgrp */ | 
 | 			for (x = 0; x < rgd->rd_length; x++) { | 
 | 				struct gfs2_bitmap *bi = rgd->rd_bits + x; | 
 | 				ret = gfs2_rgrp_send_discards(sdp, | 
 | 						rgd->rd_data0, NULL, bi, minlen, | 
 | 						&amt); | 
 | 				if (ret) { | 
 | 					gfs2_glock_dq_uninit(&gh); | 
 | 					goto out; | 
 | 				} | 
 | 				trimmed += amt; | 
 | 			} | 
 |  | 
 | 			/* Mark rgrp as having been trimmed */ | 
 | 			ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0); | 
 | 			if (ret == 0) { | 
 | 				bh = rgd->rd_bits[0].bi_bh; | 
 | 				rgd->rd_flags |= GFS2_RGF_TRIMMED; | 
 | 				gfs2_trans_add_meta(rgd->rd_gl, bh); | 
 | 				gfs2_rgrp_out(rgd, bh->b_data); | 
 | 				gfs2_trans_end(sdp); | 
 | 			} | 
 | 		} | 
 | 		gfs2_glock_dq_uninit(&gh); | 
 |  | 
 | 		if (rgd == rgd_end) | 
 | 			break; | 
 |  | 
 | 		rgd = gfs2_rgrpd_get_next(rgd); | 
 | 	} | 
 |  | 
 | out: | 
 | 	r.len = trimmed << bs_shift; | 
 | 	if (copy_to_user(argp, &r, sizeof(r))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree | 
 |  * @ip: the inode structure | 
 |  * | 
 |  */ | 
 | static void rs_insert(struct gfs2_inode *ip) | 
 | { | 
 | 	struct rb_node **newn, *parent = NULL; | 
 | 	int rc; | 
 | 	struct gfs2_blkreserv *rs = &ip->i_res; | 
 | 	struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd; | 
 | 	u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm); | 
 |  | 
 | 	BUG_ON(gfs2_rs_active(rs)); | 
 |  | 
 | 	spin_lock(&rgd->rd_rsspin); | 
 | 	newn = &rgd->rd_rstree.rb_node; | 
 | 	while (*newn) { | 
 | 		struct gfs2_blkreserv *cur = | 
 | 			rb_entry(*newn, struct gfs2_blkreserv, rs_node); | 
 |  | 
 | 		parent = *newn; | 
 | 		rc = rs_cmp(fsblock, rs->rs_free, cur); | 
 | 		if (rc > 0) | 
 | 			newn = &((*newn)->rb_right); | 
 | 		else if (rc < 0) | 
 | 			newn = &((*newn)->rb_left); | 
 | 		else { | 
 | 			spin_unlock(&rgd->rd_rsspin); | 
 | 			WARN_ON(1); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rb_link_node(&rs->rs_node, parent, newn); | 
 | 	rb_insert_color(&rs->rs_node, &rgd->rd_rstree); | 
 |  | 
 | 	/* Do our rgrp accounting for the reservation */ | 
 | 	rgd->rd_reserved += rs->rs_free; /* blocks reserved */ | 
 | 	spin_unlock(&rgd->rd_rsspin); | 
 | 	trace_gfs2_rs(rs, TRACE_RS_INSERT); | 
 | } | 
 |  | 
 | /** | 
 |  * rgd_free - return the number of free blocks we can allocate. | 
 |  * @rgd: the resource group | 
 |  * | 
 |  * This function returns the number of free blocks for an rgrp. | 
 |  * That's the clone-free blocks (blocks that are free, not including those | 
 |  * still being used for unlinked files that haven't been deleted.) | 
 |  * | 
 |  * It also subtracts any blocks reserved by someone else, but does not | 
 |  * include free blocks that are still part of our current reservation, | 
 |  * because obviously we can (and will) allocate them. | 
 |  */ | 
 | static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs) | 
 | { | 
 | 	u32 tot_reserved, tot_free; | 
 |  | 
 | 	if (WARN_ON_ONCE(rgd->rd_reserved < rs->rs_free)) | 
 | 		return 0; | 
 | 	tot_reserved = rgd->rd_reserved - rs->rs_free; | 
 |  | 
 | 	if (rgd->rd_free_clone < tot_reserved) | 
 | 		tot_reserved = 0; | 
 |  | 
 | 	tot_free = rgd->rd_free_clone - tot_reserved; | 
 |  | 
 | 	return tot_free; | 
 | } | 
 |  | 
 | /** | 
 |  * rg_mblk_search - find a group of multiple free blocks to form a reservation | 
 |  * @rgd: the resource group descriptor | 
 |  * @ip: pointer to the inode for which we're reserving blocks | 
 |  * @ap: the allocation parameters | 
 |  * | 
 |  */ | 
 |  | 
 | static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip, | 
 | 			   const struct gfs2_alloc_parms *ap) | 
 | { | 
 | 	struct gfs2_rbm rbm = { .rgd = rgd, }; | 
 | 	u64 goal; | 
 | 	struct gfs2_blkreserv *rs = &ip->i_res; | 
 | 	u32 extlen; | 
 | 	u32 free_blocks = rgd_free(rgd, rs); | 
 | 	int ret; | 
 | 	struct inode *inode = &ip->i_inode; | 
 |  | 
 | 	if (S_ISDIR(inode->i_mode)) | 
 | 		extlen = 1; | 
 | 	else { | 
 | 		extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target); | 
 | 		extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks); | 
 | 	} | 
 | 	if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen)) | 
 | 		return; | 
 |  | 
 | 	/* Find bitmap block that contains bits for goal block */ | 
 | 	if (rgrp_contains_block(rgd, ip->i_goal)) | 
 | 		goal = ip->i_goal; | 
 | 	else | 
 | 		goal = rgd->rd_last_alloc + rgd->rd_data0; | 
 |  | 
 | 	if (WARN_ON(gfs2_rbm_from_block(&rbm, goal))) | 
 | 		return; | 
 |  | 
 | 	ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true); | 
 | 	if (ret == 0) { | 
 | 		rs->rs_rbm = rbm; | 
 | 		rs->rs_free = extlen; | 
 | 		rs_insert(ip); | 
 | 	} else { | 
 | 		if (goal == rgd->rd_last_alloc + rgd->rd_data0) | 
 | 			rgd->rd_last_alloc = 0; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_next_unreserved_block - Return next block that is not reserved | 
 |  * @rgd: The resource group | 
 |  * @block: The starting block | 
 |  * @length: The required length | 
 |  * @ip: Ignore any reservations for this inode | 
 |  * | 
 |  * If the block does not appear in any reservation, then return the | 
 |  * block number unchanged. If it does appear in the reservation, then | 
 |  * keep looking through the tree of reservations in order to find the | 
 |  * first block number which is not reserved. | 
 |  */ | 
 |  | 
 | static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block, | 
 | 				      u32 length, | 
 | 				      const struct gfs2_inode *ip) | 
 | { | 
 | 	struct gfs2_blkreserv *rs; | 
 | 	struct rb_node *n; | 
 | 	int rc; | 
 |  | 
 | 	spin_lock(&rgd->rd_rsspin); | 
 | 	n = rgd->rd_rstree.rb_node; | 
 | 	while (n) { | 
 | 		rs = rb_entry(n, struct gfs2_blkreserv, rs_node); | 
 | 		rc = rs_cmp(block, length, rs); | 
 | 		if (rc < 0) | 
 | 			n = n->rb_left; | 
 | 		else if (rc > 0) | 
 | 			n = n->rb_right; | 
 | 		else | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (n) { | 
 | 		while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) { | 
 | 			block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free; | 
 | 			n = n->rb_right; | 
 | 			if (n == NULL) | 
 | 				break; | 
 | 			rs = rb_entry(n, struct gfs2_blkreserv, rs_node); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_unlock(&rgd->rd_rsspin); | 
 | 	return block; | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_reservation_check_and_update - Check for reservations during block alloc | 
 |  * @rbm: The current position in the resource group | 
 |  * @ip: The inode for which we are searching for blocks | 
 |  * @minext: The minimum extent length | 
 |  * @maxext: A pointer to the maximum extent structure | 
 |  * | 
 |  * This checks the current position in the rgrp to see whether there is | 
 |  * a reservation covering this block. If not then this function is a | 
 |  * no-op. If there is, then the position is moved to the end of the | 
 |  * contiguous reservation(s) so that we are pointing at the first | 
 |  * non-reserved block. | 
 |  * | 
 |  * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error | 
 |  */ | 
 |  | 
 | static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm, | 
 | 					     const struct gfs2_inode *ip, | 
 | 					     u32 minext, | 
 | 					     struct gfs2_extent *maxext) | 
 | { | 
 | 	u64 block = gfs2_rbm_to_block(rbm); | 
 | 	u32 extlen = 1; | 
 | 	u64 nblock; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * If we have a minimum extent length, then skip over any extent | 
 | 	 * which is less than the min extent length in size. | 
 | 	 */ | 
 | 	if (minext) { | 
 | 		extlen = gfs2_free_extlen(rbm, minext); | 
 | 		if (extlen <= maxext->len) | 
 | 			goto fail; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check the extent which has been found against the reservations | 
 | 	 * and skip if parts of it are already reserved | 
 | 	 */ | 
 | 	nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip); | 
 | 	if (nblock == block) { | 
 | 		if (!minext || extlen >= minext) | 
 | 			return 0; | 
 |  | 
 | 		if (extlen > maxext->len) { | 
 | 			maxext->len = extlen; | 
 | 			maxext->rbm = *rbm; | 
 | 		} | 
 | fail: | 
 | 		nblock = block + extlen; | 
 | 	} | 
 | 	ret = gfs2_rbm_from_block(rbm, nblock); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 | 	return 1; | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_rbm_find - Look for blocks of a particular state | 
 |  * @rbm: Value/result starting position and final position | 
 |  * @state: The state which we want to find | 
 |  * @minext: Pointer to the requested extent length (NULL for a single block) | 
 |  *          This is updated to be the actual reservation size. | 
 |  * @ip: If set, check for reservations | 
 |  * @nowrap: Stop looking at the end of the rgrp, rather than wrapping | 
 |  *          around until we've reached the starting point. | 
 |  * | 
 |  * Side effects: | 
 |  * - If looking for free blocks, we set GBF_FULL on each bitmap which | 
 |  *   has no free blocks in it. | 
 |  * - If looking for free blocks, we set rd_extfail_pt on each rgrp which | 
 |  *   has come up short on a free block search. | 
 |  * | 
 |  * Returns: 0 on success, -ENOSPC if there is no block of the requested state | 
 |  */ | 
 |  | 
 | static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext, | 
 | 			 const struct gfs2_inode *ip, bool nowrap) | 
 | { | 
 | 	bool scan_from_start = rbm->bii == 0 && rbm->offset == 0; | 
 | 	struct buffer_head *bh; | 
 | 	int last_bii; | 
 | 	u32 offset; | 
 | 	u8 *buffer; | 
 | 	bool wrapped = false; | 
 | 	int ret; | 
 | 	struct gfs2_bitmap *bi; | 
 | 	struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, }; | 
 |  | 
 | 	/* | 
 | 	 * Determine the last bitmap to search.  If we're not starting at the | 
 | 	 * beginning of a bitmap, we need to search that bitmap twice to scan | 
 | 	 * the entire resource group. | 
 | 	 */ | 
 | 	last_bii = rbm->bii - (rbm->offset == 0); | 
 |  | 
 | 	while(1) { | 
 | 		bi = rbm_bi(rbm); | 
 | 		if ((ip == NULL || !gfs2_rs_active(&ip->i_res)) && | 
 | 		    test_bit(GBF_FULL, &bi->bi_flags) && | 
 | 		    (state == GFS2_BLKST_FREE)) | 
 | 			goto next_bitmap; | 
 |  | 
 | 		bh = bi->bi_bh; | 
 | 		buffer = bh->b_data + bi->bi_offset; | 
 | 		WARN_ON(!buffer_uptodate(bh)); | 
 | 		if (state != GFS2_BLKST_UNLINKED && bi->bi_clone) | 
 | 			buffer = bi->bi_clone + bi->bi_offset; | 
 | 		offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state); | 
 | 		if (offset == BFITNOENT) { | 
 | 			if (state == GFS2_BLKST_FREE && rbm->offset == 0) | 
 | 				set_bit(GBF_FULL, &bi->bi_flags); | 
 | 			goto next_bitmap; | 
 | 		} | 
 | 		rbm->offset = offset; | 
 | 		if (ip == NULL) | 
 | 			return 0; | 
 |  | 
 | 		ret = gfs2_reservation_check_and_update(rbm, ip, | 
 | 							minext ? *minext : 0, | 
 | 							&maxext); | 
 | 		if (ret == 0) | 
 | 			return 0; | 
 | 		if (ret > 0) | 
 | 			goto next_iter; | 
 | 		if (ret == -E2BIG) { | 
 | 			rbm->bii = 0; | 
 | 			rbm->offset = 0; | 
 | 			goto res_covered_end_of_rgrp; | 
 | 		} | 
 | 		return ret; | 
 |  | 
 | next_bitmap:	/* Find next bitmap in the rgrp */ | 
 | 		rbm->offset = 0; | 
 | 		rbm->bii++; | 
 | 		if (rbm->bii == rbm->rgd->rd_length) | 
 | 			rbm->bii = 0; | 
 | res_covered_end_of_rgrp: | 
 | 		if (rbm->bii == 0) { | 
 | 			if (wrapped) | 
 | 				break; | 
 | 			wrapped = true; | 
 | 			if (nowrap) | 
 | 				break; | 
 | 		} | 
 | next_iter: | 
 | 		/* Have we scanned the entire resource group? */ | 
 | 		if (wrapped && rbm->bii > last_bii) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (minext == NULL || state != GFS2_BLKST_FREE) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	/* If the extent was too small, and it's smaller than the smallest | 
 | 	   to have failed before, remember for future reference that it's | 
 | 	   useless to search this rgrp again for this amount or more. */ | 
 | 	if (wrapped && (scan_from_start || rbm->bii > last_bii) && | 
 | 	    *minext < rbm->rgd->rd_extfail_pt) | 
 | 		rbm->rgd->rd_extfail_pt = *minext; | 
 |  | 
 | 	/* If the maximum extent we found is big enough to fulfill the | 
 | 	   minimum requirements, use it anyway. */ | 
 | 	if (maxext.len) { | 
 | 		*rbm = maxext.rbm; | 
 | 		*minext = maxext.len; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return -ENOSPC; | 
 | } | 
 |  | 
 | /** | 
 |  * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes | 
 |  * @rgd: The rgrp | 
 |  * @last_unlinked: block address of the last dinode we unlinked | 
 |  * @skip: block address we should explicitly not unlink | 
 |  * | 
 |  * Returns: 0 if no error | 
 |  *          The inode, if one has been found, in inode. | 
 |  */ | 
 |  | 
 | static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip) | 
 | { | 
 | 	u64 block; | 
 | 	struct gfs2_sbd *sdp = rgd->rd_sbd; | 
 | 	struct gfs2_glock *gl; | 
 | 	struct gfs2_inode *ip; | 
 | 	int error; | 
 | 	int found = 0; | 
 | 	struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 }; | 
 |  | 
 | 	while (1) { | 
 | 		down_write(&sdp->sd_log_flush_lock); | 
 | 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL, | 
 | 				      true); | 
 | 		up_write(&sdp->sd_log_flush_lock); | 
 | 		if (error == -ENOSPC) | 
 | 			break; | 
 | 		if (WARN_ON_ONCE(error)) | 
 | 			break; | 
 |  | 
 | 		block = gfs2_rbm_to_block(&rbm); | 
 | 		if (gfs2_rbm_from_block(&rbm, block + 1)) | 
 | 			break; | 
 | 		if (*last_unlinked != NO_BLOCK && block <= *last_unlinked) | 
 | 			continue; | 
 | 		if (block == skip) | 
 | 			continue; | 
 | 		*last_unlinked = block; | 
 |  | 
 | 		error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl); | 
 | 		if (error) | 
 | 			continue; | 
 |  | 
 | 		/* If the inode is already in cache, we can ignore it here | 
 | 		 * because the existing inode disposal code will deal with | 
 | 		 * it when all refs have gone away. Accessing gl_object like | 
 | 		 * this is not safe in general. Here it is ok because we do | 
 | 		 * not dereference the pointer, and we only need an approx | 
 | 		 * answer to whether it is NULL or not. | 
 | 		 */ | 
 | 		ip = gl->gl_object; | 
 |  | 
 | 		if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0) | 
 | 			gfs2_glock_put(gl); | 
 | 		else | 
 | 			found++; | 
 |  | 
 | 		/* Limit reclaim to sensible number of tasks */ | 
 | 		if (found > NR_CPUS) | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	rgd->rd_flags &= ~GFS2_RDF_CHECK; | 
 | 	return; | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested | 
 |  * @rgd: The rgrp in question | 
 |  * @loops: An indication of how picky we can be (0=very, 1=less so) | 
 |  * | 
 |  * This function uses the recently added glock statistics in order to | 
 |  * figure out whether a parciular resource group is suffering from | 
 |  * contention from multiple nodes. This is done purely on the basis | 
 |  * of timings, since this is the only data we have to work with and | 
 |  * our aim here is to reject a resource group which is highly contended | 
 |  * but (very important) not to do this too often in order to ensure that | 
 |  * we do not land up introducing fragmentation by changing resource | 
 |  * groups when not actually required. | 
 |  * | 
 |  * The calculation is fairly simple, we want to know whether the SRTTB | 
 |  * (i.e. smoothed round trip time for blocking operations) to acquire | 
 |  * the lock for this rgrp's glock is significantly greater than the | 
 |  * time taken for resource groups on average. We introduce a margin in | 
 |  * the form of the variable @var which is computed as the sum of the two | 
 |  * respective variences, and multiplied by a factor depending on @loops | 
 |  * and whether we have a lot of data to base the decision on. This is | 
 |  * then tested against the square difference of the means in order to | 
 |  * decide whether the result is statistically significant or not. | 
 |  * | 
 |  * Returns: A boolean verdict on the congestion status | 
 |  */ | 
 |  | 
 | static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops) | 
 | { | 
 | 	const struct gfs2_glock *gl = rgd->rd_gl; | 
 | 	const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; | 
 | 	struct gfs2_lkstats *st; | 
 | 	u64 r_dcount, l_dcount; | 
 | 	u64 l_srttb, a_srttb = 0; | 
 | 	s64 srttb_diff; | 
 | 	u64 sqr_diff; | 
 | 	u64 var; | 
 | 	int cpu, nonzero = 0; | 
 |  | 
 | 	preempt_disable(); | 
 | 	for_each_present_cpu(cpu) { | 
 | 		st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP]; | 
 | 		if (st->stats[GFS2_LKS_SRTTB]) { | 
 | 			a_srttb += st->stats[GFS2_LKS_SRTTB]; | 
 | 			nonzero++; | 
 | 		} | 
 | 	} | 
 | 	st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP]; | 
 | 	if (nonzero) | 
 | 		do_div(a_srttb, nonzero); | 
 | 	r_dcount = st->stats[GFS2_LKS_DCOUNT]; | 
 | 	var = st->stats[GFS2_LKS_SRTTVARB] + | 
 | 	      gl->gl_stats.stats[GFS2_LKS_SRTTVARB]; | 
 | 	preempt_enable(); | 
 |  | 
 | 	l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB]; | 
 | 	l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT]; | 
 |  | 
 | 	if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0)) | 
 | 		return false; | 
 |  | 
 | 	srttb_diff = a_srttb - l_srttb; | 
 | 	sqr_diff = srttb_diff * srttb_diff; | 
 |  | 
 | 	var *= 2; | 
 | 	if (l_dcount < 8 || r_dcount < 8) | 
 | 		var *= 2; | 
 | 	if (loops == 1) | 
 | 		var *= 2; | 
 |  | 
 | 	return ((srttb_diff < 0) && (sqr_diff > var)); | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_rgrp_used_recently | 
 |  * @rs: The block reservation with the rgrp to test | 
 |  * @msecs: The time limit in milliseconds | 
 |  * | 
 |  * Returns: True if the rgrp glock has been used within the time limit | 
 |  */ | 
 | static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs, | 
 | 				    u64 msecs) | 
 | { | 
 | 	u64 tdiff; | 
 |  | 
 | 	tdiff = ktime_to_ns(ktime_sub(ktime_get_real(), | 
 |                             rs->rs_rbm.rgd->rd_gl->gl_dstamp)); | 
 |  | 
 | 	return tdiff > (msecs * 1000 * 1000); | 
 | } | 
 |  | 
 | static u32 gfs2_orlov_skip(const struct gfs2_inode *ip) | 
 | { | 
 | 	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); | 
 | 	u32 skip; | 
 |  | 
 | 	get_random_bytes(&skip, sizeof(skip)); | 
 | 	return skip % sdp->sd_rgrps; | 
 | } | 
 |  | 
 | static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin) | 
 | { | 
 | 	struct gfs2_rgrpd *rgd = *pos; | 
 | 	struct gfs2_sbd *sdp = rgd->rd_sbd; | 
 |  | 
 | 	rgd = gfs2_rgrpd_get_next(rgd); | 
 | 	if (rgd == NULL) | 
 | 		rgd = gfs2_rgrpd_get_first(sdp); | 
 | 	*pos = rgd; | 
 | 	if (rgd != begin) /* If we didn't wrap */ | 
 | 		return true; | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  * fast_to_acquire - determine if a resource group will be fast to acquire | 
 |  * | 
 |  * If this is one of our preferred rgrps, it should be quicker to acquire, | 
 |  * because we tried to set ourselves up as dlm lock master. | 
 |  */ | 
 | static inline int fast_to_acquire(struct gfs2_rgrpd *rgd) | 
 | { | 
 | 	struct gfs2_glock *gl = rgd->rd_gl; | 
 |  | 
 | 	if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) && | 
 | 	    !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) && | 
 | 	    !test_bit(GLF_DEMOTE, &gl->gl_flags)) | 
 | 		return 1; | 
 | 	if (rgd->rd_flags & GFS2_RDF_PREFERRED) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_inplace_reserve - Reserve space in the filesystem | 
 |  * @ip: the inode to reserve space for | 
 |  * @ap: the allocation parameters | 
 |  * | 
 |  * We try our best to find an rgrp that has at least ap->target blocks | 
 |  * available. After a couple of passes (loops == 2), the prospects of finding | 
 |  * such an rgrp diminish. At this stage, we return the first rgrp that has | 
 |  * at least ap->min_target blocks available. Either way, we set ap->allowed to | 
 |  * the number of blocks available in the chosen rgrp. | 
 |  * | 
 |  * Returns: 0 on success, | 
 |  *          -ENOMEM if a suitable rgrp can't be found | 
 |  *          errno otherwise | 
 |  */ | 
 |  | 
 | int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap) | 
 | { | 
 | 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); | 
 | 	struct gfs2_rgrpd *begin = NULL; | 
 | 	struct gfs2_blkreserv *rs = &ip->i_res; | 
 | 	int error = 0, rg_locked, flags = 0; | 
 | 	u64 last_unlinked = NO_BLOCK; | 
 | 	int loops = 0; | 
 | 	u32 free_blocks, skip = 0; | 
 |  | 
 | 	if (sdp->sd_args.ar_rgrplvb) | 
 | 		flags |= GL_SKIP; | 
 | 	if (gfs2_assert_warn(sdp, ap->target)) | 
 | 		return -EINVAL; | 
 | 	if (gfs2_rs_active(rs)) { | 
 | 		begin = rs->rs_rbm.rgd; | 
 | 	} else if (rs->rs_rbm.rgd && | 
 | 		   rgrp_contains_block(rs->rs_rbm.rgd, ip->i_goal)) { | 
 | 		begin = rs->rs_rbm.rgd; | 
 | 	} else { | 
 | 		check_and_update_goal(ip); | 
 | 		rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1); | 
 | 	} | 
 | 	if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV)) | 
 | 		skip = gfs2_orlov_skip(ip); | 
 | 	if (rs->rs_rbm.rgd == NULL) | 
 | 		return -EBADSLT; | 
 |  | 
 | 	while (loops < 3) { | 
 | 		rg_locked = 1; | 
 |  | 
 | 		if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) { | 
 | 			rg_locked = 0; | 
 | 			if (skip && skip--) | 
 | 				goto next_rgrp; | 
 | 			if (!gfs2_rs_active(rs)) { | 
 | 				if (loops == 0 && | 
 | 				    !fast_to_acquire(rs->rs_rbm.rgd)) | 
 | 					goto next_rgrp; | 
 | 				if ((loops < 2) && | 
 | 				    gfs2_rgrp_used_recently(rs, 1000) && | 
 | 				    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) | 
 | 					goto next_rgrp; | 
 | 			} | 
 | 			error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl, | 
 | 						   LM_ST_EXCLUSIVE, flags, | 
 | 						   &ip->i_rgd_gh); | 
 | 			if (unlikely(error)) | 
 | 				return error; | 
 | 			if (!gfs2_rs_active(rs) && (loops < 2) && | 
 | 			    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops)) | 
 | 				goto skip_rgrp; | 
 | 			if (sdp->sd_args.ar_rgrplvb) { | 
 | 				error = update_rgrp_lvb(rs->rs_rbm.rgd); | 
 | 				if (unlikely(error)) { | 
 | 					gfs2_glock_dq_uninit(&ip->i_rgd_gh); | 
 | 					return error; | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* Skip unusable resource groups */ | 
 | 		if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | | 
 | 						 GFS2_RDF_ERROR)) || | 
 | 		    (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt)) | 
 | 			goto skip_rgrp; | 
 |  | 
 | 		if (sdp->sd_args.ar_rgrplvb) | 
 | 			gfs2_rgrp_bh_get(rs->rs_rbm.rgd); | 
 |  | 
 | 		/* Get a reservation if we don't already have one */ | 
 | 		if (!gfs2_rs_active(rs)) | 
 | 			rg_mblk_search(rs->rs_rbm.rgd, ip, ap); | 
 |  | 
 | 		/* Skip rgrps when we can't get a reservation on first pass */ | 
 | 		if (!gfs2_rs_active(rs) && (loops < 1)) | 
 | 			goto check_rgrp; | 
 |  | 
 | 		/* If rgrp has enough free space, use it */ | 
 | 		free_blocks = rgd_free(rs->rs_rbm.rgd, rs); | 
 | 		if (free_blocks >= ap->target || | 
 | 		    (loops == 2 && ap->min_target && | 
 | 		     free_blocks >= ap->min_target)) { | 
 | 			ap->allowed = free_blocks; | 
 | 			return 0; | 
 | 		} | 
 | check_rgrp: | 
 | 		/* Check for unlinked inodes which can be reclaimed */ | 
 | 		if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK) | 
 | 			try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked, | 
 | 					ip->i_no_addr); | 
 | skip_rgrp: | 
 | 		/* Drop reservation, if we couldn't use reserved rgrp */ | 
 | 		if (gfs2_rs_active(rs)) | 
 | 			gfs2_rs_deltree(rs); | 
 |  | 
 | 		/* Unlock rgrp if required */ | 
 | 		if (!rg_locked) | 
 | 			gfs2_glock_dq_uninit(&ip->i_rgd_gh); | 
 | next_rgrp: | 
 | 		/* Find the next rgrp, and continue looking */ | 
 | 		if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin)) | 
 | 			continue; | 
 | 		if (skip) | 
 | 			continue; | 
 |  | 
 | 		/* If we've scanned all the rgrps, but found no free blocks | 
 | 		 * then this checks for some less likely conditions before | 
 | 		 * trying again. | 
 | 		 */ | 
 | 		loops++; | 
 | 		/* Check that fs hasn't grown if writing to rindex */ | 
 | 		if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) { | 
 | 			error = gfs2_ri_update(ip); | 
 | 			if (error) | 
 | 				return error; | 
 | 		} | 
 | 		/* Flushing the log may release space */ | 
 | 		if (loops == 2) | 
 | 			gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL | | 
 | 				       GFS2_LFC_INPLACE_RESERVE); | 
 | 	} | 
 |  | 
 | 	return -ENOSPC; | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_inplace_release - release an inplace reservation | 
 |  * @ip: the inode the reservation was taken out on | 
 |  * | 
 |  * Release a reservation made by gfs2_inplace_reserve(). | 
 |  */ | 
 |  | 
 | void gfs2_inplace_release(struct gfs2_inode *ip) | 
 | { | 
 | 	if (gfs2_holder_initialized(&ip->i_rgd_gh)) | 
 | 		gfs2_glock_dq_uninit(&ip->i_rgd_gh); | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_alloc_extent - allocate an extent from a given bitmap | 
 |  * @rbm: the resource group information | 
 |  * @dinode: TRUE if the first block we allocate is for a dinode | 
 |  * @n: The extent length (value/result) | 
 |  * | 
 |  * Add the bitmap buffer to the transaction. | 
 |  * Set the found bits to @new_state to change block's allocation state. | 
 |  */ | 
 | static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode, | 
 | 			     unsigned int *n) | 
 | { | 
 | 	struct gfs2_rbm pos = { .rgd = rbm->rgd, }; | 
 | 	const unsigned int elen = *n; | 
 | 	u64 block; | 
 | 	int ret; | 
 |  | 
 | 	*n = 1; | 
 | 	block = gfs2_rbm_to_block(rbm); | 
 | 	gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh); | 
 | 	gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); | 
 | 	block++; | 
 | 	while (*n < elen) { | 
 | 		ret = gfs2_rbm_from_block(&pos, block); | 
 | 		if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE) | 
 | 			break; | 
 | 		gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh); | 
 | 		gfs2_setbit(&pos, true, GFS2_BLKST_USED); | 
 | 		(*n)++; | 
 | 		block++; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * rgblk_free - Change alloc state of given block(s) | 
 |  * @sdp: the filesystem | 
 |  * @rgd: the resource group the blocks are in | 
 |  * @bstart: the start of a run of blocks to free | 
 |  * @blen: the length of the block run (all must lie within ONE RG!) | 
 |  * @new_state: GFS2_BLKST_XXX the after-allocation block state | 
 |  */ | 
 |  | 
 | static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd, | 
 | 		       u64 bstart, u32 blen, unsigned char new_state) | 
 | { | 
 | 	struct gfs2_rbm rbm; | 
 | 	struct gfs2_bitmap *bi, *bi_prev = NULL; | 
 |  | 
 | 	rbm.rgd = rgd; | 
 | 	if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart))) | 
 | 		return; | 
 | 	while (blen--) { | 
 | 		bi = rbm_bi(&rbm); | 
 | 		if (bi != bi_prev) { | 
 | 			if (!bi->bi_clone) { | 
 | 				bi->bi_clone = kmalloc(bi->bi_bh->b_size, | 
 | 						      GFP_NOFS | __GFP_NOFAIL); | 
 | 				memcpy(bi->bi_clone + bi->bi_offset, | 
 | 				       bi->bi_bh->b_data + bi->bi_offset, | 
 | 				       bi->bi_bytes); | 
 | 			} | 
 | 			gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh); | 
 | 			bi_prev = bi; | 
 | 		} | 
 | 		gfs2_setbit(&rbm, false, new_state); | 
 | 		gfs2_rbm_incr(&rbm); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_rgrp_dump - print out an rgrp | 
 |  * @seq: The iterator | 
 |  * @gl: The glock in question | 
 |  * @fs_id_buf: pointer to file system id (if requested) | 
 |  * | 
 |  */ | 
 |  | 
 | void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_glock *gl, | 
 | 		    const char *fs_id_buf) | 
 | { | 
 | 	struct gfs2_rgrpd *rgd = gl->gl_object; | 
 | 	struct gfs2_blkreserv *trs; | 
 | 	const struct rb_node *n; | 
 |  | 
 | 	if (rgd == NULL) | 
 | 		return; | 
 | 	gfs2_print_dbg(seq, "%s R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n", | 
 | 		       fs_id_buf, | 
 | 		       (unsigned long long)rgd->rd_addr, rgd->rd_flags, | 
 | 		       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes, | 
 | 		       rgd->rd_reserved, rgd->rd_extfail_pt); | 
 | 	if (rgd->rd_sbd->sd_args.ar_rgrplvb) { | 
 | 		struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl; | 
 |  | 
 | 		gfs2_print_dbg(seq, "%s  L: f:%02x b:%u i:%u\n", fs_id_buf, | 
 | 			       be32_to_cpu(rgl->rl_flags), | 
 | 			       be32_to_cpu(rgl->rl_free), | 
 | 			       be32_to_cpu(rgl->rl_dinodes)); | 
 | 	} | 
 | 	spin_lock(&rgd->rd_rsspin); | 
 | 	for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) { | 
 | 		trs = rb_entry(n, struct gfs2_blkreserv, rs_node); | 
 | 		dump_rs(seq, trs, fs_id_buf); | 
 | 	} | 
 | 	spin_unlock(&rgd->rd_rsspin); | 
 | } | 
 |  | 
 | static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd) | 
 | { | 
 | 	struct gfs2_sbd *sdp = rgd->rd_sbd; | 
 | 	char fs_id_buf[sizeof(sdp->sd_fsname) + 7]; | 
 |  | 
 | 	fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n", | 
 | 		(unsigned long long)rgd->rd_addr); | 
 | 	fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n"); | 
 | 	sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname); | 
 | 	gfs2_rgrp_dump(NULL, rgd->rd_gl, fs_id_buf); | 
 | 	rgd->rd_flags |= GFS2_RDF_ERROR; | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation | 
 |  * @ip: The inode we have just allocated blocks for | 
 |  * @rbm: The start of the allocated blocks | 
 |  * @len: The extent length | 
 |  * | 
 |  * Adjusts a reservation after an allocation has taken place. If the | 
 |  * reservation does not match the allocation, or if it is now empty | 
 |  * then it is removed. | 
 |  */ | 
 |  | 
 | static void gfs2_adjust_reservation(struct gfs2_inode *ip, | 
 | 				    const struct gfs2_rbm *rbm, unsigned len) | 
 | { | 
 | 	struct gfs2_blkreserv *rs = &ip->i_res; | 
 | 	struct gfs2_rgrpd *rgd = rbm->rgd; | 
 | 	unsigned rlen; | 
 | 	u64 block; | 
 | 	int ret; | 
 |  | 
 | 	spin_lock(&rgd->rd_rsspin); | 
 | 	if (gfs2_rs_active(rs)) { | 
 | 		if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) { | 
 | 			block = gfs2_rbm_to_block(rbm); | 
 | 			ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len); | 
 | 			rlen = min(rs->rs_free, len); | 
 | 			rs->rs_free -= rlen; | 
 | 			rgd->rd_reserved -= rlen; | 
 | 			trace_gfs2_rs(rs, TRACE_RS_CLAIM); | 
 | 			if (rs->rs_free && !ret) | 
 | 				goto out; | 
 | 			/* We used up our block reservation, so we should | 
 | 			   reserve more blocks next time. */ | 
 | 			atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint); | 
 | 		} | 
 | 		__rs_deltree(rs); | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&rgd->rd_rsspin); | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_set_alloc_start - Set starting point for block allocation | 
 |  * @rbm: The rbm which will be set to the required location | 
 |  * @ip: The gfs2 inode | 
 |  * @dinode: Flag to say if allocation includes a new inode | 
 |  * | 
 |  * This sets the starting point from the reservation if one is active | 
 |  * otherwise it falls back to guessing a start point based on the | 
 |  * inode's goal block or the last allocation point in the rgrp. | 
 |  */ | 
 |  | 
 | static void gfs2_set_alloc_start(struct gfs2_rbm *rbm, | 
 | 				 const struct gfs2_inode *ip, bool dinode) | 
 | { | 
 | 	u64 goal; | 
 |  | 
 | 	if (gfs2_rs_active(&ip->i_res)) { | 
 | 		*rbm = ip->i_res.rs_rbm; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal)) | 
 | 		goal = ip->i_goal; | 
 | 	else | 
 | 		goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0; | 
 |  | 
 | 	if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) { | 
 | 		rbm->bii = 0; | 
 | 		rbm->offset = 0; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode | 
 |  * @ip: the inode to allocate the block for | 
 |  * @bn: Used to return the starting block number | 
 |  * @nblocks: requested number of blocks/extent length (value/result) | 
 |  * @dinode: 1 if we're allocating a dinode block, else 0 | 
 |  * @generation: the generation number of the inode | 
 |  * | 
 |  * Returns: 0 or error | 
 |  */ | 
 |  | 
 | int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks, | 
 | 		      bool dinode, u64 *generation) | 
 | { | 
 | 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); | 
 | 	struct buffer_head *dibh; | 
 | 	struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rbm.rgd, }; | 
 | 	unsigned int ndata; | 
 | 	u64 block; /* block, within the file system scope */ | 
 | 	int error; | 
 |  | 
 | 	gfs2_set_alloc_start(&rbm, ip, dinode); | 
 | 	error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false); | 
 |  | 
 | 	if (error == -ENOSPC) { | 
 | 		gfs2_set_alloc_start(&rbm, ip, dinode); | 
 | 		error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false); | 
 | 	} | 
 |  | 
 | 	/* Since all blocks are reserved in advance, this shouldn't happen */ | 
 | 	if (error) { | 
 | 		fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n", | 
 | 			(unsigned long long)ip->i_no_addr, error, *nblocks, | 
 | 			test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags), | 
 | 			rbm.rgd->rd_extfail_pt); | 
 | 		goto rgrp_error; | 
 | 	} | 
 |  | 
 | 	gfs2_alloc_extent(&rbm, dinode, nblocks); | 
 | 	block = gfs2_rbm_to_block(&rbm); | 
 | 	rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0; | 
 | 	if (gfs2_rs_active(&ip->i_res)) | 
 | 		gfs2_adjust_reservation(ip, &rbm, *nblocks); | 
 | 	ndata = *nblocks; | 
 | 	if (dinode) | 
 | 		ndata--; | 
 |  | 
 | 	if (!dinode) { | 
 | 		ip->i_goal = block + ndata - 1; | 
 | 		error = gfs2_meta_inode_buffer(ip, &dibh); | 
 | 		if (error == 0) { | 
 | 			struct gfs2_dinode *di = | 
 | 				(struct gfs2_dinode *)dibh->b_data; | 
 | 			gfs2_trans_add_meta(ip->i_gl, dibh); | 
 | 			di->di_goal_meta = di->di_goal_data = | 
 | 				cpu_to_be64(ip->i_goal); | 
 | 			brelse(dibh); | 
 | 		} | 
 | 	} | 
 | 	if (rbm.rgd->rd_free < *nblocks) { | 
 | 		fs_warn(sdp, "nblocks=%u\n", *nblocks); | 
 | 		goto rgrp_error; | 
 | 	} | 
 |  | 
 | 	rbm.rgd->rd_free -= *nblocks; | 
 | 	if (dinode) { | 
 | 		rbm.rgd->rd_dinodes++; | 
 | 		*generation = rbm.rgd->rd_igeneration++; | 
 | 		if (*generation == 0) | 
 | 			*generation = rbm.rgd->rd_igeneration++; | 
 | 	} | 
 |  | 
 | 	gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh); | 
 | 	gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data); | 
 |  | 
 | 	gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0); | 
 | 	if (dinode) | 
 | 		gfs2_trans_remove_revoke(sdp, block, *nblocks); | 
 |  | 
 | 	gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid); | 
 |  | 
 | 	rbm.rgd->rd_free_clone -= *nblocks; | 
 | 	trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks, | 
 | 			       dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED); | 
 | 	*bn = block; | 
 | 	return 0; | 
 |  | 
 | rgrp_error: | 
 | 	gfs2_rgrp_error(rbm.rgd); | 
 | 	return -EIO; | 
 | } | 
 |  | 
 | /** | 
 |  * __gfs2_free_blocks - free a contiguous run of block(s) | 
 |  * @ip: the inode these blocks are being freed from | 
 |  * @rgd: the resource group the blocks are in | 
 |  * @bstart: first block of a run of contiguous blocks | 
 |  * @blen: the length of the block run | 
 |  * @meta: 1 if the blocks represent metadata | 
 |  * | 
 |  */ | 
 |  | 
 | void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd, | 
 | 			u64 bstart, u32 blen, int meta) | 
 | { | 
 | 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); | 
 |  | 
 | 	rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE); | 
 | 	trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE); | 
 | 	rgd->rd_free += blen; | 
 | 	rgd->rd_flags &= ~GFS2_RGF_TRIMMED; | 
 | 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); | 
 | 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); | 
 |  | 
 | 	/* Directories keep their data in the metadata address space */ | 
 | 	if (meta || ip->i_depth) | 
 | 		gfs2_meta_wipe(ip, bstart, blen); | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_free_meta - free a contiguous run of data block(s) | 
 |  * @ip: the inode these blocks are being freed from | 
 |  * @rgd: the resource group the blocks are in | 
 |  * @bstart: first block of a run of contiguous blocks | 
 |  * @blen: the length of the block run | 
 |  * | 
 |  */ | 
 |  | 
 | void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd, | 
 | 		    u64 bstart, u32 blen) | 
 | { | 
 | 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); | 
 |  | 
 | 	__gfs2_free_blocks(ip, rgd, bstart, blen, 1); | 
 | 	gfs2_statfs_change(sdp, 0, +blen, 0); | 
 | 	gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid); | 
 | } | 
 |  | 
 | void gfs2_unlink_di(struct inode *inode) | 
 | { | 
 | 	struct gfs2_inode *ip = GFS2_I(inode); | 
 | 	struct gfs2_sbd *sdp = GFS2_SB(inode); | 
 | 	struct gfs2_rgrpd *rgd; | 
 | 	u64 blkno = ip->i_no_addr; | 
 |  | 
 | 	rgd = gfs2_blk2rgrpd(sdp, blkno, true); | 
 | 	if (!rgd) | 
 | 		return; | 
 | 	rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED); | 
 | 	trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED); | 
 | 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); | 
 | 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); | 
 | 	be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1); | 
 | } | 
 |  | 
 | void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip) | 
 | { | 
 | 	struct gfs2_sbd *sdp = rgd->rd_sbd; | 
 |  | 
 | 	rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); | 
 | 	if (!rgd->rd_dinodes) | 
 | 		gfs2_consist_rgrpd(rgd); | 
 | 	rgd->rd_dinodes--; | 
 | 	rgd->rd_free++; | 
 |  | 
 | 	gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh); | 
 | 	gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data); | 
 | 	be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1); | 
 |  | 
 | 	gfs2_statfs_change(sdp, 0, +1, -1); | 
 | 	trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE); | 
 | 	gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid); | 
 | 	gfs2_meta_wipe(ip, ip->i_no_addr, 1); | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_check_blk_type - Check the type of a block | 
 |  * @sdp: The superblock | 
 |  * @no_addr: The block number to check | 
 |  * @type: The block type we are looking for | 
 |  * | 
 |  * Returns: 0 if the block type matches the expected type | 
 |  *          -ESTALE if it doesn't match | 
 |  *          or -ve errno if something went wrong while checking | 
 |  */ | 
 |  | 
 | int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type) | 
 | { | 
 | 	struct gfs2_rgrpd *rgd; | 
 | 	struct gfs2_holder rgd_gh; | 
 | 	struct gfs2_rbm rbm; | 
 | 	int error = -EINVAL; | 
 |  | 
 | 	rgd = gfs2_blk2rgrpd(sdp, no_addr, 1); | 
 | 	if (!rgd) | 
 | 		goto fail; | 
 |  | 
 | 	error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh); | 
 | 	if (error) | 
 | 		goto fail; | 
 |  | 
 | 	rbm.rgd = rgd; | 
 | 	error = gfs2_rbm_from_block(&rbm, no_addr); | 
 | 	if (WARN_ON_ONCE(error)) | 
 | 		goto fail; | 
 |  | 
 | 	if (gfs2_testbit(&rbm, false) != type) | 
 | 		error = -ESTALE; | 
 |  | 
 | 	gfs2_glock_dq_uninit(&rgd_gh); | 
 | fail: | 
 | 	return error; | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_rlist_add - add a RG to a list of RGs | 
 |  * @ip: the inode | 
 |  * @rlist: the list of resource groups | 
 |  * @block: the block | 
 |  * | 
 |  * Figure out what RG a block belongs to and add that RG to the list | 
 |  * | 
 |  * FIXME: Don't use NOFAIL | 
 |  * | 
 |  */ | 
 |  | 
 | void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist, | 
 | 		    u64 block) | 
 | { | 
 | 	struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); | 
 | 	struct gfs2_rgrpd *rgd; | 
 | 	struct gfs2_rgrpd **tmp; | 
 | 	unsigned int new_space; | 
 | 	unsigned int x; | 
 |  | 
 | 	if (gfs2_assert_warn(sdp, !rlist->rl_ghs)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * The resource group last accessed is kept in the last position. | 
 | 	 */ | 
 |  | 
 | 	if (rlist->rl_rgrps) { | 
 | 		rgd = rlist->rl_rgd[rlist->rl_rgrps - 1]; | 
 | 		if (rgrp_contains_block(rgd, block)) | 
 | 			return; | 
 | 		rgd = gfs2_blk2rgrpd(sdp, block, 1); | 
 | 	} else { | 
 | 		rgd = ip->i_res.rs_rbm.rgd; | 
 | 		if (!rgd || !rgrp_contains_block(rgd, block)) | 
 | 			rgd = gfs2_blk2rgrpd(sdp, block, 1); | 
 | 	} | 
 |  | 
 | 	if (!rgd) { | 
 | 		fs_err(sdp, "rlist_add: no rgrp for block %llu\n", | 
 | 		       (unsigned long long)block); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	for (x = 0; x < rlist->rl_rgrps; x++) { | 
 | 		if (rlist->rl_rgd[x] == rgd) { | 
 | 			swap(rlist->rl_rgd[x], | 
 | 			     rlist->rl_rgd[rlist->rl_rgrps - 1]); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (rlist->rl_rgrps == rlist->rl_space) { | 
 | 		new_space = rlist->rl_space + 10; | 
 |  | 
 | 		tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *), | 
 | 			      GFP_NOFS | __GFP_NOFAIL); | 
 |  | 
 | 		if (rlist->rl_rgd) { | 
 | 			memcpy(tmp, rlist->rl_rgd, | 
 | 			       rlist->rl_space * sizeof(struct gfs2_rgrpd *)); | 
 | 			kfree(rlist->rl_rgd); | 
 | 		} | 
 |  | 
 | 		rlist->rl_space = new_space; | 
 | 		rlist->rl_rgd = tmp; | 
 | 	} | 
 |  | 
 | 	rlist->rl_rgd[rlist->rl_rgrps++] = rgd; | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate | 
 |  *      and initialize an array of glock holders for them | 
 |  * @rlist: the list of resource groups | 
 |  * | 
 |  * FIXME: Don't use NOFAIL | 
 |  * | 
 |  */ | 
 |  | 
 | void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist) | 
 | { | 
 | 	unsigned int x; | 
 |  | 
 | 	rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps, | 
 | 				      sizeof(struct gfs2_holder), | 
 | 				      GFP_NOFS | __GFP_NOFAIL); | 
 | 	for (x = 0; x < rlist->rl_rgrps; x++) | 
 | 		gfs2_holder_init(rlist->rl_rgd[x]->rd_gl, | 
 | 				LM_ST_EXCLUSIVE, 0, | 
 | 				&rlist->rl_ghs[x]); | 
 | } | 
 |  | 
 | /** | 
 |  * gfs2_rlist_free - free a resource group list | 
 |  * @rlist: the list of resource groups | 
 |  * | 
 |  */ | 
 |  | 
 | void gfs2_rlist_free(struct gfs2_rgrp_list *rlist) | 
 | { | 
 | 	unsigned int x; | 
 |  | 
 | 	kfree(rlist->rl_rgd); | 
 |  | 
 | 	if (rlist->rl_ghs) { | 
 | 		for (x = 0; x < rlist->rl_rgrps; x++) | 
 | 			gfs2_holder_uninit(&rlist->rl_ghs[x]); | 
 | 		kfree(rlist->rl_ghs); | 
 | 		rlist->rl_ghs = NULL; | 
 | 	} | 
 | } | 
 |  |