|  | #include <linux/moduleloader.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/filter.h> | 
|  | #include <linux/cache.h> | 
|  | #include <linux/if_vlan.h> | 
|  |  | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/ptrace.h> | 
|  |  | 
|  | #include "bpf_jit.h" | 
|  |  | 
|  | int bpf_jit_enable __read_mostly; | 
|  |  | 
|  | static inline bool is_simm13(unsigned int value) | 
|  | { | 
|  | return value + 0x1000 < 0x2000; | 
|  | } | 
|  |  | 
|  | static void bpf_flush_icache(void *start_, void *end_) | 
|  | { | 
|  | #ifdef CONFIG_SPARC64 | 
|  | /* Cheetah's I-cache is fully coherent.  */ | 
|  | if (tlb_type == spitfire) { | 
|  | unsigned long start = (unsigned long) start_; | 
|  | unsigned long end = (unsigned long) end_; | 
|  |  | 
|  | start &= ~7UL; | 
|  | end = (end + 7UL) & ~7UL; | 
|  | while (start < end) { | 
|  | flushi(start); | 
|  | start += 32; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #define SEEN_DATAREF 1 /* might call external helpers */ | 
|  | #define SEEN_XREG    2 /* ebx is used */ | 
|  | #define SEEN_MEM     4 /* use mem[] for temporary storage */ | 
|  |  | 
|  | #define S13(X)		((X) & 0x1fff) | 
|  | #define IMMED		0x00002000 | 
|  | #define RD(X)		((X) << 25) | 
|  | #define RS1(X)		((X) << 14) | 
|  | #define RS2(X)		((X)) | 
|  | #define OP(X)		((X) << 30) | 
|  | #define OP2(X)		((X) << 22) | 
|  | #define OP3(X)		((X) << 19) | 
|  | #define COND(X)		((X) << 25) | 
|  | #define F1(X)		OP(X) | 
|  | #define F2(X, Y)	(OP(X) | OP2(Y)) | 
|  | #define F3(X, Y)	(OP(X) | OP3(Y)) | 
|  |  | 
|  | #define CONDN		COND(0x0) | 
|  | #define CONDE		COND(0x1) | 
|  | #define CONDLE		COND(0x2) | 
|  | #define CONDL		COND(0x3) | 
|  | #define CONDLEU		COND(0x4) | 
|  | #define CONDCS		COND(0x5) | 
|  | #define CONDNEG		COND(0x6) | 
|  | #define CONDVC		COND(0x7) | 
|  | #define CONDA		COND(0x8) | 
|  | #define CONDNE		COND(0x9) | 
|  | #define CONDG		COND(0xa) | 
|  | #define CONDGE		COND(0xb) | 
|  | #define CONDGU		COND(0xc) | 
|  | #define CONDCC		COND(0xd) | 
|  | #define CONDPOS		COND(0xe) | 
|  | #define CONDVS		COND(0xf) | 
|  |  | 
|  | #define CONDGEU		CONDCC | 
|  | #define CONDLU		CONDCS | 
|  |  | 
|  | #define WDISP22(X)	(((X) >> 2) & 0x3fffff) | 
|  |  | 
|  | #define BA		(F2(0, 2) | CONDA) | 
|  | #define BGU		(F2(0, 2) | CONDGU) | 
|  | #define BLEU		(F2(0, 2) | CONDLEU) | 
|  | #define BGEU		(F2(0, 2) | CONDGEU) | 
|  | #define BLU		(F2(0, 2) | CONDLU) | 
|  | #define BE		(F2(0, 2) | CONDE) | 
|  | #define BNE		(F2(0, 2) | CONDNE) | 
|  |  | 
|  | #ifdef CONFIG_SPARC64 | 
|  | #define BE_PTR		(F2(0, 1) | CONDE | (2 << 20)) | 
|  | #else | 
|  | #define BE_PTR		BE | 
|  | #endif | 
|  |  | 
|  | #define SETHI(K, REG)	\ | 
|  | (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff)) | 
|  | #define OR_LO(K, REG)	\ | 
|  | (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG)) | 
|  |  | 
|  | #define ADD		F3(2, 0x00) | 
|  | #define AND		F3(2, 0x01) | 
|  | #define ANDCC		F3(2, 0x11) | 
|  | #define OR		F3(2, 0x02) | 
|  | #define XOR		F3(2, 0x03) | 
|  | #define SUB		F3(2, 0x04) | 
|  | #define SUBCC		F3(2, 0x14) | 
|  | #define MUL		F3(2, 0x0a)	/* umul */ | 
|  | #define DIV		F3(2, 0x0e)	/* udiv */ | 
|  | #define SLL		F3(2, 0x25) | 
|  | #define SRL		F3(2, 0x26) | 
|  | #define JMPL		F3(2, 0x38) | 
|  | #define CALL		F1(1) | 
|  | #define BR		F2(0, 0x01) | 
|  | #define RD_Y		F3(2, 0x28) | 
|  | #define WR_Y		F3(2, 0x30) | 
|  |  | 
|  | #define LD32		F3(3, 0x00) | 
|  | #define LD8		F3(3, 0x01) | 
|  | #define LD16		F3(3, 0x02) | 
|  | #define LD64		F3(3, 0x0b) | 
|  | #define ST32		F3(3, 0x04) | 
|  |  | 
|  | #ifdef CONFIG_SPARC64 | 
|  | #define LDPTR		LD64 | 
|  | #define BASE_STACKFRAME	176 | 
|  | #else | 
|  | #define LDPTR		LD32 | 
|  | #define BASE_STACKFRAME	96 | 
|  | #endif | 
|  |  | 
|  | #define LD32I		(LD32 | IMMED) | 
|  | #define LD8I		(LD8 | IMMED) | 
|  | #define LD16I		(LD16 | IMMED) | 
|  | #define LD64I		(LD64 | IMMED) | 
|  | #define LDPTRI		(LDPTR | IMMED) | 
|  | #define ST32I		(ST32 | IMMED) | 
|  |  | 
|  | #define emit_nop()		\ | 
|  | do {				\ | 
|  | *prog++ = SETHI(0, G0);	\ | 
|  | } while (0) | 
|  |  | 
|  | #define emit_neg()					\ | 
|  | do {	/* sub %g0, r_A, r_A */				\ | 
|  | *prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A);	\ | 
|  | } while (0) | 
|  |  | 
|  | #define emit_reg_move(FROM, TO)				\ | 
|  | do {	/* or %g0, FROM, TO */				\ | 
|  | *prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO);	\ | 
|  | } while (0) | 
|  |  | 
|  | #define emit_clear(REG)					\ | 
|  | do {	/* or %g0, %g0, REG */				\ | 
|  | *prog++ = OR | RS1(G0) | RS2(G0) | RD(REG);	\ | 
|  | } while (0) | 
|  |  | 
|  | #define emit_set_const(K, REG)					\ | 
|  | do {	/* sethi %hi(K), REG */					\ | 
|  | *prog++ = SETHI(K, REG);				\ | 
|  | /* or REG, %lo(K), REG */				\ | 
|  | *prog++ = OR_LO(K, REG);				\ | 
|  | } while (0) | 
|  |  | 
|  | /* Emit | 
|  | * | 
|  | *	OP	r_A, r_X, r_A | 
|  | */ | 
|  | #define emit_alu_X(OPCODE)					\ | 
|  | do {								\ | 
|  | seen |= SEEN_XREG;					\ | 
|  | *prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A);	\ | 
|  | } while (0) | 
|  |  | 
|  | /* Emit either: | 
|  | * | 
|  | *	OP	r_A, K, r_A | 
|  | * | 
|  | * or | 
|  | * | 
|  | *	sethi	%hi(K), r_TMP | 
|  | *	or	r_TMP, %lo(K), r_TMP | 
|  | *	OP	r_A, r_TMP, r_A | 
|  | * | 
|  | * depending upon whether K fits in a signed 13-bit | 
|  | * immediate instruction field.  Emit nothing if K | 
|  | * is zero. | 
|  | */ | 
|  | #define emit_alu_K(OPCODE, K)					\ | 
|  | do {								\ | 
|  | if (K || OPCODE == AND || OPCODE == MUL) {		\ | 
|  | unsigned int _insn = OPCODE;			\ | 
|  | _insn |= RS1(r_A) | RD(r_A);			\ | 
|  | if (is_simm13(K)) {				\ | 
|  | *prog++ = _insn | IMMED | S13(K);	\ | 
|  | } else {					\ | 
|  | emit_set_const(K, r_TMP);		\ | 
|  | *prog++ = _insn | RS2(r_TMP);		\ | 
|  | }						\ | 
|  | }							\ | 
|  | } while (0) | 
|  |  | 
|  | #define emit_loadimm(K, DEST)						\ | 
|  | do {									\ | 
|  | if (is_simm13(K)) {						\ | 
|  | /* or %g0, K, DEST */					\ | 
|  | *prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST);	\ | 
|  | } else {							\ | 
|  | emit_set_const(K, DEST);				\ | 
|  | }								\ | 
|  | } while (0) | 
|  |  | 
|  | #define emit_loadptr(BASE, STRUCT, FIELD, DEST)				\ | 
|  | do {	unsigned int _off = offsetof(STRUCT, FIELD);			\ | 
|  | BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(void *));	\ | 
|  | *prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST);		\ | 
|  | } while (0) | 
|  |  | 
|  | #define emit_load32(BASE, STRUCT, FIELD, DEST)				\ | 
|  | do {	unsigned int _off = offsetof(STRUCT, FIELD);			\ | 
|  | BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u32));	\ | 
|  | *prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST);		\ | 
|  | } while (0) | 
|  |  | 
|  | #define emit_load16(BASE, STRUCT, FIELD, DEST)				\ | 
|  | do {	unsigned int _off = offsetof(STRUCT, FIELD);			\ | 
|  | BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u16));	\ | 
|  | *prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST);		\ | 
|  | } while (0) | 
|  |  | 
|  | #define __emit_load8(BASE, STRUCT, FIELD, DEST)				\ | 
|  | do {	unsigned int _off = offsetof(STRUCT, FIELD);			\ | 
|  | *prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST);		\ | 
|  | } while (0) | 
|  |  | 
|  | #define emit_load8(BASE, STRUCT, FIELD, DEST)				\ | 
|  | do {	BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u8));	\ | 
|  | __emit_load8(BASE, STRUCT, FIELD, DEST);			\ | 
|  | } while (0) | 
|  |  | 
|  | #ifdef CONFIG_SPARC64 | 
|  | #define BIAS (STACK_BIAS - 4) | 
|  | #else | 
|  | #define BIAS (-4) | 
|  | #endif | 
|  |  | 
|  | #define emit_ldmem(OFF, DEST)						\ | 
|  | do {	*prog++ = LD32I | RS1(SP) | S13(BIAS - (OFF)) | RD(DEST);	\ | 
|  | } while (0) | 
|  |  | 
|  | #define emit_stmem(OFF, SRC)						\ | 
|  | do {	*prog++ = ST32I | RS1(SP) | S13(BIAS - (OFF)) | RD(SRC);	\ | 
|  | } while (0) | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | #ifdef CONFIG_SPARC64 | 
|  | #define emit_load_cpu(REG)						\ | 
|  | emit_load16(G6, struct thread_info, cpu, REG) | 
|  | #else | 
|  | #define emit_load_cpu(REG)						\ | 
|  | emit_load32(G6, struct thread_info, cpu, REG) | 
|  | #endif | 
|  | #else | 
|  | #define emit_load_cpu(REG)	emit_clear(REG) | 
|  | #endif | 
|  |  | 
|  | #define emit_skb_loadptr(FIELD, DEST) \ | 
|  | emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST) | 
|  | #define emit_skb_load32(FIELD, DEST) \ | 
|  | emit_load32(r_SKB, struct sk_buff, FIELD, DEST) | 
|  | #define emit_skb_load16(FIELD, DEST) \ | 
|  | emit_load16(r_SKB, struct sk_buff, FIELD, DEST) | 
|  | #define __emit_skb_load8(FIELD, DEST) \ | 
|  | __emit_load8(r_SKB, struct sk_buff, FIELD, DEST) | 
|  | #define emit_skb_load8(FIELD, DEST) \ | 
|  | emit_load8(r_SKB, struct sk_buff, FIELD, DEST) | 
|  |  | 
|  | #define emit_jmpl(BASE, IMM_OFF, LREG) \ | 
|  | *prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG)) | 
|  |  | 
|  | #define emit_call(FUNC)					\ | 
|  | do {	void *_here = image + addrs[i] - 8;		\ | 
|  | unsigned int _off = (void *)(FUNC) - _here;	\ | 
|  | *prog++ = CALL | (((_off) >> 2) & 0x3fffffff);	\ | 
|  | emit_nop();					\ | 
|  | } while (0) | 
|  |  | 
|  | #define emit_branch(BR_OPC, DEST)			\ | 
|  | do {	unsigned int _here = addrs[i] - 8;		\ | 
|  | *prog++ = BR_OPC | WDISP22((DEST) - _here);	\ | 
|  | } while (0) | 
|  |  | 
|  | #define emit_branch_off(BR_OPC, OFF)			\ | 
|  | do {	*prog++ = BR_OPC | WDISP22(OFF);		\ | 
|  | } while (0) | 
|  |  | 
|  | #define emit_jump(DEST)		emit_branch(BA, DEST) | 
|  |  | 
|  | #define emit_read_y(REG)	*prog++ = RD_Y | RD(REG) | 
|  | #define emit_write_y(REG)	*prog++ = WR_Y | IMMED | RS1(REG) | S13(0) | 
|  |  | 
|  | #define emit_cmp(R1, R2) \ | 
|  | *prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0)) | 
|  |  | 
|  | #define emit_cmpi(R1, IMM) \ | 
|  | *prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0)); | 
|  |  | 
|  | #define emit_btst(R1, R2) \ | 
|  | *prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0)) | 
|  |  | 
|  | #define emit_btsti(R1, IMM) \ | 
|  | *prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0)); | 
|  |  | 
|  | #define emit_sub(R1, R2, R3) \ | 
|  | *prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3)) | 
|  |  | 
|  | #define emit_subi(R1, IMM, R3) \ | 
|  | *prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3)) | 
|  |  | 
|  | #define emit_add(R1, R2, R3) \ | 
|  | *prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3)) | 
|  |  | 
|  | #define emit_addi(R1, IMM, R3) \ | 
|  | *prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3)) | 
|  |  | 
|  | #define emit_and(R1, R2, R3) \ | 
|  | *prog++ = (AND | RS1(R1) | RS2(R2) | RD(R3)) | 
|  |  | 
|  | #define emit_andi(R1, IMM, R3) \ | 
|  | *prog++ = (AND | IMMED | RS1(R1) | S13(IMM) | RD(R3)) | 
|  |  | 
|  | #define emit_alloc_stack(SZ) \ | 
|  | *prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP)) | 
|  |  | 
|  | #define emit_release_stack(SZ) \ | 
|  | *prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP)) | 
|  |  | 
|  | /* A note about branch offset calculations.  The addrs[] array, | 
|  | * indexed by BPF instruction, records the address after all the | 
|  | * sparc instructions emitted for that BPF instruction. | 
|  | * | 
|  | * The most common case is to emit a branch at the end of such | 
|  | * a code sequence.  So this would be two instructions, the | 
|  | * branch and it's delay slot. | 
|  | * | 
|  | * Therefore by default the branch emitters calculate the branch | 
|  | * offset field as: | 
|  | * | 
|  | *	destination - (addrs[i] - 8) | 
|  | * | 
|  | * This "addrs[i] - 8" is the address of the branch itself or | 
|  | * what "." would be in assembler notation.  The "8" part is | 
|  | * how we take into consideration the branch and it's delay | 
|  | * slot mentioned above. | 
|  | * | 
|  | * Sometimes we need to emit a branch earlier in the code | 
|  | * sequence.  And in these situations we adjust "destination" | 
|  | * to accomodate this difference.  For example, if we needed | 
|  | * to emit a branch (and it's delay slot) right before the | 
|  | * final instruction emitted for a BPF opcode, we'd use | 
|  | * "destination + 4" instead of just plain "destination" above. | 
|  | * | 
|  | * This is why you see all of these funny emit_branch() and | 
|  | * emit_jump() calls with adjusted offsets. | 
|  | */ | 
|  |  | 
|  | void bpf_jit_compile(struct bpf_prog *fp) | 
|  | { | 
|  | unsigned int cleanup_addr, proglen, oldproglen = 0; | 
|  | u32 temp[8], *prog, *func, seen = 0, pass; | 
|  | const struct sock_filter *filter = fp->insns; | 
|  | int i, flen = fp->len, pc_ret0 = -1; | 
|  | unsigned int *addrs; | 
|  | void *image; | 
|  |  | 
|  | if (!bpf_jit_enable) | 
|  | return; | 
|  |  | 
|  | addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL); | 
|  | if (addrs == NULL) | 
|  | return; | 
|  |  | 
|  | /* Before first pass, make a rough estimation of addrs[] | 
|  | * each bpf instruction is translated to less than 64 bytes | 
|  | */ | 
|  | for (proglen = 0, i = 0; i < flen; i++) { | 
|  | proglen += 64; | 
|  | addrs[i] = proglen; | 
|  | } | 
|  | cleanup_addr = proglen; /* epilogue address */ | 
|  | image = NULL; | 
|  | for (pass = 0; pass < 10; pass++) { | 
|  | u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen; | 
|  |  | 
|  | /* no prologue/epilogue for trivial filters (RET something) */ | 
|  | proglen = 0; | 
|  | prog = temp; | 
|  |  | 
|  | /* Prologue */ | 
|  | if (seen_or_pass0) { | 
|  | if (seen_or_pass0 & SEEN_MEM) { | 
|  | unsigned int sz = BASE_STACKFRAME; | 
|  | sz += BPF_MEMWORDS * sizeof(u32); | 
|  | emit_alloc_stack(sz); | 
|  | } | 
|  |  | 
|  | /* Make sure we dont leek kernel memory. */ | 
|  | if (seen_or_pass0 & SEEN_XREG) | 
|  | emit_clear(r_X); | 
|  |  | 
|  | /* If this filter needs to access skb data, | 
|  | * load %o4 and %o5 with: | 
|  | *  %o4 = skb->len - skb->data_len | 
|  | *  %o5 = skb->data | 
|  | * And also back up %o7 into r_saved_O7 so we can | 
|  | * invoke the stubs using 'call'. | 
|  | */ | 
|  | if (seen_or_pass0 & SEEN_DATAREF) { | 
|  | emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN); | 
|  | emit_load32(r_SKB, struct sk_buff, data_len, r_TMP); | 
|  | emit_sub(r_HEADLEN, r_TMP, r_HEADLEN); | 
|  | emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA); | 
|  | } | 
|  | } | 
|  | emit_reg_move(O7, r_saved_O7); | 
|  |  | 
|  | switch (filter[0].code) { | 
|  | case BPF_RET | BPF_K: | 
|  | case BPF_LD | BPF_W | BPF_LEN: | 
|  | case BPF_LD | BPF_W | BPF_ABS: | 
|  | case BPF_LD | BPF_H | BPF_ABS: | 
|  | case BPF_LD | BPF_B | BPF_ABS: | 
|  | /* The first instruction sets the A register (or is | 
|  | * a "RET 'constant'") | 
|  | */ | 
|  | break; | 
|  | default: | 
|  | /* Make sure we dont leak kernel information to the | 
|  | * user. | 
|  | */ | 
|  | emit_clear(r_A); /* A = 0 */ | 
|  | } | 
|  |  | 
|  | for (i = 0; i < flen; i++) { | 
|  | unsigned int K = filter[i].k; | 
|  | unsigned int t_offset; | 
|  | unsigned int f_offset; | 
|  | u32 t_op, f_op; | 
|  | u16 code = bpf_anc_helper(&filter[i]); | 
|  | int ilen; | 
|  |  | 
|  | switch (code) { | 
|  | case BPF_ALU | BPF_ADD | BPF_X:	/* A += X; */ | 
|  | emit_alu_X(ADD); | 
|  | break; | 
|  | case BPF_ALU | BPF_ADD | BPF_K:	/* A += K; */ | 
|  | emit_alu_K(ADD, K); | 
|  | break; | 
|  | case BPF_ALU | BPF_SUB | BPF_X:	/* A -= X; */ | 
|  | emit_alu_X(SUB); | 
|  | break; | 
|  | case BPF_ALU | BPF_SUB | BPF_K:	/* A -= K */ | 
|  | emit_alu_K(SUB, K); | 
|  | break; | 
|  | case BPF_ALU | BPF_AND | BPF_X:	/* A &= X */ | 
|  | emit_alu_X(AND); | 
|  | break; | 
|  | case BPF_ALU | BPF_AND | BPF_K:	/* A &= K */ | 
|  | emit_alu_K(AND, K); | 
|  | break; | 
|  | case BPF_ALU | BPF_OR | BPF_X:	/* A |= X */ | 
|  | emit_alu_X(OR); | 
|  | break; | 
|  | case BPF_ALU | BPF_OR | BPF_K:	/* A |= K */ | 
|  | emit_alu_K(OR, K); | 
|  | break; | 
|  | case BPF_ANC | SKF_AD_ALU_XOR_X: /* A ^= X; */ | 
|  | case BPF_ALU | BPF_XOR | BPF_X: | 
|  | emit_alu_X(XOR); | 
|  | break; | 
|  | case BPF_ALU | BPF_XOR | BPF_K:	/* A ^= K */ | 
|  | emit_alu_K(XOR, K); | 
|  | break; | 
|  | case BPF_ALU | BPF_LSH | BPF_X:	/* A <<= X */ | 
|  | emit_alu_X(SLL); | 
|  | break; | 
|  | case BPF_ALU | BPF_LSH | BPF_K:	/* A <<= K */ | 
|  | emit_alu_K(SLL, K); | 
|  | break; | 
|  | case BPF_ALU | BPF_RSH | BPF_X:	/* A >>= X */ | 
|  | emit_alu_X(SRL); | 
|  | break; | 
|  | case BPF_ALU | BPF_RSH | BPF_K:	/* A >>= K */ | 
|  | emit_alu_K(SRL, K); | 
|  | break; | 
|  | case BPF_ALU | BPF_MUL | BPF_X:	/* A *= X; */ | 
|  | emit_alu_X(MUL); | 
|  | break; | 
|  | case BPF_ALU | BPF_MUL | BPF_K:	/* A *= K */ | 
|  | emit_alu_K(MUL, K); | 
|  | break; | 
|  | case BPF_ALU | BPF_DIV | BPF_K:	/* A /= K with K != 0*/ | 
|  | if (K == 1) | 
|  | break; | 
|  | emit_write_y(G0); | 
|  | #ifdef CONFIG_SPARC32 | 
|  | /* The Sparc v8 architecture requires | 
|  | * three instructions between a %y | 
|  | * register write and the first use. | 
|  | */ | 
|  | emit_nop(); | 
|  | emit_nop(); | 
|  | emit_nop(); | 
|  | #endif | 
|  | emit_alu_K(DIV, K); | 
|  | break; | 
|  | case BPF_ALU | BPF_DIV | BPF_X:	/* A /= X; */ | 
|  | emit_cmpi(r_X, 0); | 
|  | if (pc_ret0 > 0) { | 
|  | t_offset = addrs[pc_ret0 - 1]; | 
|  | #ifdef CONFIG_SPARC32 | 
|  | emit_branch(BE, t_offset + 20); | 
|  | #else | 
|  | emit_branch(BE, t_offset + 8); | 
|  | #endif | 
|  | emit_nop(); /* delay slot */ | 
|  | } else { | 
|  | emit_branch_off(BNE, 16); | 
|  | emit_nop(); | 
|  | #ifdef CONFIG_SPARC32 | 
|  | emit_jump(cleanup_addr + 20); | 
|  | #else | 
|  | emit_jump(cleanup_addr + 8); | 
|  | #endif | 
|  | emit_clear(r_A); | 
|  | } | 
|  | emit_write_y(G0); | 
|  | #ifdef CONFIG_SPARC32 | 
|  | /* The Sparc v8 architecture requires | 
|  | * three instructions between a %y | 
|  | * register write and the first use. | 
|  | */ | 
|  | emit_nop(); | 
|  | emit_nop(); | 
|  | emit_nop(); | 
|  | #endif | 
|  | emit_alu_X(DIV); | 
|  | break; | 
|  | case BPF_ALU | BPF_NEG: | 
|  | emit_neg(); | 
|  | break; | 
|  | case BPF_RET | BPF_K: | 
|  | if (!K) { | 
|  | if (pc_ret0 == -1) | 
|  | pc_ret0 = i; | 
|  | emit_clear(r_A); | 
|  | } else { | 
|  | emit_loadimm(K, r_A); | 
|  | } | 
|  | /* Fallthrough */ | 
|  | case BPF_RET | BPF_A: | 
|  | if (seen_or_pass0) { | 
|  | if (i != flen - 1) { | 
|  | emit_jump(cleanup_addr); | 
|  | emit_nop(); | 
|  | break; | 
|  | } | 
|  | if (seen_or_pass0 & SEEN_MEM) { | 
|  | unsigned int sz = BASE_STACKFRAME; | 
|  | sz += BPF_MEMWORDS * sizeof(u32); | 
|  | emit_release_stack(sz); | 
|  | } | 
|  | } | 
|  | /* jmpl %r_saved_O7 + 8, %g0 */ | 
|  | emit_jmpl(r_saved_O7, 8, G0); | 
|  | emit_reg_move(r_A, O0); /* delay slot */ | 
|  | break; | 
|  | case BPF_MISC | BPF_TAX: | 
|  | seen |= SEEN_XREG; | 
|  | emit_reg_move(r_A, r_X); | 
|  | break; | 
|  | case BPF_MISC | BPF_TXA: | 
|  | seen |= SEEN_XREG; | 
|  | emit_reg_move(r_X, r_A); | 
|  | break; | 
|  | case BPF_ANC | SKF_AD_CPU: | 
|  | emit_load_cpu(r_A); | 
|  | break; | 
|  | case BPF_ANC | SKF_AD_PROTOCOL: | 
|  | emit_skb_load16(protocol, r_A); | 
|  | break; | 
|  | case BPF_ANC | SKF_AD_PKTTYPE: | 
|  | __emit_skb_load8(__pkt_type_offset, r_A); | 
|  | emit_andi(r_A, PKT_TYPE_MAX, r_A); | 
|  | emit_alu_K(SRL, 5); | 
|  | break; | 
|  | case BPF_ANC | SKF_AD_IFINDEX: | 
|  | emit_skb_loadptr(dev, r_A); | 
|  | emit_cmpi(r_A, 0); | 
|  | emit_branch(BE_PTR, cleanup_addr + 4); | 
|  | emit_nop(); | 
|  | emit_load32(r_A, struct net_device, ifindex, r_A); | 
|  | break; | 
|  | case BPF_ANC | SKF_AD_MARK: | 
|  | emit_skb_load32(mark, r_A); | 
|  | break; | 
|  | case BPF_ANC | SKF_AD_QUEUE: | 
|  | emit_skb_load16(queue_mapping, r_A); | 
|  | break; | 
|  | case BPF_ANC | SKF_AD_HATYPE: | 
|  | emit_skb_loadptr(dev, r_A); | 
|  | emit_cmpi(r_A, 0); | 
|  | emit_branch(BE_PTR, cleanup_addr + 4); | 
|  | emit_nop(); | 
|  | emit_load16(r_A, struct net_device, type, r_A); | 
|  | break; | 
|  | case BPF_ANC | SKF_AD_RXHASH: | 
|  | emit_skb_load32(hash, r_A); | 
|  | break; | 
|  | case BPF_ANC | SKF_AD_VLAN_TAG: | 
|  | case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT: | 
|  | emit_skb_load16(vlan_tci, r_A); | 
|  | if (code != (BPF_ANC | SKF_AD_VLAN_TAG)) { | 
|  | emit_alu_K(SRL, 12); | 
|  | emit_andi(r_A, 1, r_A); | 
|  | } else { | 
|  | emit_loadimm(~VLAN_TAG_PRESENT, r_TMP); | 
|  | emit_and(r_A, r_TMP, r_A); | 
|  | } | 
|  | break; | 
|  | case BPF_LD | BPF_W | BPF_LEN: | 
|  | emit_skb_load32(len, r_A); | 
|  | break; | 
|  | case BPF_LDX | BPF_W | BPF_LEN: | 
|  | emit_skb_load32(len, r_X); | 
|  | break; | 
|  | case BPF_LD | BPF_IMM: | 
|  | emit_loadimm(K, r_A); | 
|  | break; | 
|  | case BPF_LDX | BPF_IMM: | 
|  | emit_loadimm(K, r_X); | 
|  | break; | 
|  | case BPF_LD | BPF_MEM: | 
|  | seen |= SEEN_MEM; | 
|  | emit_ldmem(K * 4, r_A); | 
|  | break; | 
|  | case BPF_LDX | BPF_MEM: | 
|  | seen |= SEEN_MEM | SEEN_XREG; | 
|  | emit_ldmem(K * 4, r_X); | 
|  | break; | 
|  | case BPF_ST: | 
|  | seen |= SEEN_MEM; | 
|  | emit_stmem(K * 4, r_A); | 
|  | break; | 
|  | case BPF_STX: | 
|  | seen |= SEEN_MEM | SEEN_XREG; | 
|  | emit_stmem(K * 4, r_X); | 
|  | break; | 
|  |  | 
|  | #define CHOOSE_LOAD_FUNC(K, func) \ | 
|  | ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset) | 
|  |  | 
|  | case BPF_LD | BPF_W | BPF_ABS: | 
|  | func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word); | 
|  | common_load:			seen |= SEEN_DATAREF; | 
|  | emit_loadimm(K, r_OFF); | 
|  | emit_call(func); | 
|  | break; | 
|  | case BPF_LD | BPF_H | BPF_ABS: | 
|  | func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half); | 
|  | goto common_load; | 
|  | case BPF_LD | BPF_B | BPF_ABS: | 
|  | func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte); | 
|  | goto common_load; | 
|  | case BPF_LDX | BPF_B | BPF_MSH: | 
|  | func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh); | 
|  | goto common_load; | 
|  | case BPF_LD | BPF_W | BPF_IND: | 
|  | func = bpf_jit_load_word; | 
|  | common_load_ind:		seen |= SEEN_DATAREF | SEEN_XREG; | 
|  | if (K) { | 
|  | if (is_simm13(K)) { | 
|  | emit_addi(r_X, K, r_OFF); | 
|  | } else { | 
|  | emit_loadimm(K, r_TMP); | 
|  | emit_add(r_X, r_TMP, r_OFF); | 
|  | } | 
|  | } else { | 
|  | emit_reg_move(r_X, r_OFF); | 
|  | } | 
|  | emit_call(func); | 
|  | break; | 
|  | case BPF_LD | BPF_H | BPF_IND: | 
|  | func = bpf_jit_load_half; | 
|  | goto common_load_ind; | 
|  | case BPF_LD | BPF_B | BPF_IND: | 
|  | func = bpf_jit_load_byte; | 
|  | goto common_load_ind; | 
|  | case BPF_JMP | BPF_JA: | 
|  | emit_jump(addrs[i + K]); | 
|  | emit_nop(); | 
|  | break; | 
|  |  | 
|  | #define COND_SEL(CODE, TOP, FOP)	\ | 
|  | case CODE:			\ | 
|  | t_op = TOP;		\ | 
|  | f_op = FOP;		\ | 
|  | goto cond_branch | 
|  |  | 
|  | COND_SEL(BPF_JMP | BPF_JGT | BPF_K, BGU, BLEU); | 
|  | COND_SEL(BPF_JMP | BPF_JGE | BPF_K, BGEU, BLU); | 
|  | COND_SEL(BPF_JMP | BPF_JEQ | BPF_K, BE, BNE); | 
|  | COND_SEL(BPF_JMP | BPF_JSET | BPF_K, BNE, BE); | 
|  | COND_SEL(BPF_JMP | BPF_JGT | BPF_X, BGU, BLEU); | 
|  | COND_SEL(BPF_JMP | BPF_JGE | BPF_X, BGEU, BLU); | 
|  | COND_SEL(BPF_JMP | BPF_JEQ | BPF_X, BE, BNE); | 
|  | COND_SEL(BPF_JMP | BPF_JSET | BPF_X, BNE, BE); | 
|  |  | 
|  | cond_branch:			f_offset = addrs[i + filter[i].jf]; | 
|  | t_offset = addrs[i + filter[i].jt]; | 
|  |  | 
|  | /* same targets, can avoid doing the test :) */ | 
|  | if (filter[i].jt == filter[i].jf) { | 
|  | emit_jump(t_offset); | 
|  | emit_nop(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (code) { | 
|  | case BPF_JMP | BPF_JGT | BPF_X: | 
|  | case BPF_JMP | BPF_JGE | BPF_X: | 
|  | case BPF_JMP | BPF_JEQ | BPF_X: | 
|  | seen |= SEEN_XREG; | 
|  | emit_cmp(r_A, r_X); | 
|  | break; | 
|  | case BPF_JMP | BPF_JSET | BPF_X: | 
|  | seen |= SEEN_XREG; | 
|  | emit_btst(r_A, r_X); | 
|  | break; | 
|  | case BPF_JMP | BPF_JEQ | BPF_K: | 
|  | case BPF_JMP | BPF_JGT | BPF_K: | 
|  | case BPF_JMP | BPF_JGE | BPF_K: | 
|  | if (is_simm13(K)) { | 
|  | emit_cmpi(r_A, K); | 
|  | } else { | 
|  | emit_loadimm(K, r_TMP); | 
|  | emit_cmp(r_A, r_TMP); | 
|  | } | 
|  | break; | 
|  | case BPF_JMP | BPF_JSET | BPF_K: | 
|  | if (is_simm13(K)) { | 
|  | emit_btsti(r_A, K); | 
|  | } else { | 
|  | emit_loadimm(K, r_TMP); | 
|  | emit_btst(r_A, r_TMP); | 
|  | } | 
|  | break; | 
|  | } | 
|  | if (filter[i].jt != 0) { | 
|  | if (filter[i].jf) | 
|  | t_offset += 8; | 
|  | emit_branch(t_op, t_offset); | 
|  | emit_nop(); /* delay slot */ | 
|  | if (filter[i].jf) { | 
|  | emit_jump(f_offset); | 
|  | emit_nop(); | 
|  | } | 
|  | break; | 
|  | } | 
|  | emit_branch(f_op, f_offset); | 
|  | emit_nop(); /* delay slot */ | 
|  | break; | 
|  |  | 
|  | default: | 
|  | /* hmm, too complex filter, give up with jit compiler */ | 
|  | goto out; | 
|  | } | 
|  | ilen = (void *) prog - (void *) temp; | 
|  | if (image) { | 
|  | if (unlikely(proglen + ilen > oldproglen)) { | 
|  | pr_err("bpb_jit_compile fatal error\n"); | 
|  | kfree(addrs); | 
|  | module_memfree(image); | 
|  | return; | 
|  | } | 
|  | memcpy(image + proglen, temp, ilen); | 
|  | } | 
|  | proglen += ilen; | 
|  | addrs[i] = proglen; | 
|  | prog = temp; | 
|  | } | 
|  | /* last bpf instruction is always a RET : | 
|  | * use it to give the cleanup instruction(s) addr | 
|  | */ | 
|  | cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */ | 
|  | if (seen_or_pass0 & SEEN_MEM) | 
|  | cleanup_addr -= 4; /* add %sp, X, %sp; */ | 
|  |  | 
|  | if (image) { | 
|  | if (proglen != oldproglen) | 
|  | pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n", | 
|  | proglen, oldproglen); | 
|  | break; | 
|  | } | 
|  | if (proglen == oldproglen) { | 
|  | image = module_alloc(proglen); | 
|  | if (!image) | 
|  | goto out; | 
|  | } | 
|  | oldproglen = proglen; | 
|  | } | 
|  |  | 
|  | if (bpf_jit_enable > 1) | 
|  | bpf_jit_dump(flen, proglen, pass + 1, image); | 
|  |  | 
|  | if (image) { | 
|  | bpf_flush_icache(image, image + proglen); | 
|  | fp->bpf_func = (void *)image; | 
|  | fp->jited = 1; | 
|  | } | 
|  | out: | 
|  | kfree(addrs); | 
|  | return; | 
|  | } | 
|  |  | 
|  | void bpf_jit_free(struct bpf_prog *fp) | 
|  | { | 
|  | if (fp->jited) | 
|  | module_memfree(fp->bpf_func); | 
|  |  | 
|  | bpf_prog_unlock_free(fp); | 
|  | } |