| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Copyright (C) 2011 Fujitsu.  All rights reserved. | 
 |  * Written by Miao Xie <miaox@cn.fujitsu.com> | 
 |  */ | 
 |  | 
 | #include <linux/slab.h> | 
 | #include <linux/iversion.h> | 
 | #include "misc.h" | 
 | #include "delayed-inode.h" | 
 | #include "disk-io.h" | 
 | #include "transaction.h" | 
 | #include "ctree.h" | 
 | #include "qgroup.h" | 
 |  | 
 | #define BTRFS_DELAYED_WRITEBACK		512 | 
 | #define BTRFS_DELAYED_BACKGROUND	128 | 
 | #define BTRFS_DELAYED_BATCH		16 | 
 |  | 
 | static struct kmem_cache *delayed_node_cache; | 
 |  | 
 | int __init btrfs_delayed_inode_init(void) | 
 | { | 
 | 	delayed_node_cache = kmem_cache_create("btrfs_delayed_node", | 
 | 					sizeof(struct btrfs_delayed_node), | 
 | 					0, | 
 | 					SLAB_MEM_SPREAD, | 
 | 					NULL); | 
 | 	if (!delayed_node_cache) | 
 | 		return -ENOMEM; | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __cold btrfs_delayed_inode_exit(void) | 
 | { | 
 | 	kmem_cache_destroy(delayed_node_cache); | 
 | } | 
 |  | 
 | static inline void btrfs_init_delayed_node( | 
 | 				struct btrfs_delayed_node *delayed_node, | 
 | 				struct btrfs_root *root, u64 inode_id) | 
 | { | 
 | 	delayed_node->root = root; | 
 | 	delayed_node->inode_id = inode_id; | 
 | 	refcount_set(&delayed_node->refs, 0); | 
 | 	delayed_node->ins_root = RB_ROOT_CACHED; | 
 | 	delayed_node->del_root = RB_ROOT_CACHED; | 
 | 	mutex_init(&delayed_node->mutex); | 
 | 	INIT_LIST_HEAD(&delayed_node->n_list); | 
 | 	INIT_LIST_HEAD(&delayed_node->p_list); | 
 | } | 
 |  | 
 | static inline int btrfs_is_continuous_delayed_item( | 
 | 					struct btrfs_delayed_item *item1, | 
 | 					struct btrfs_delayed_item *item2) | 
 | { | 
 | 	if (item1->key.type == BTRFS_DIR_INDEX_KEY && | 
 | 	    item1->key.objectid == item2->key.objectid && | 
 | 	    item1->key.type == item2->key.type && | 
 | 	    item1->key.offset + 1 == item2->key.offset) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct btrfs_delayed_node *btrfs_get_delayed_node( | 
 | 		struct btrfs_inode *btrfs_inode) | 
 | { | 
 | 	struct btrfs_root *root = btrfs_inode->root; | 
 | 	u64 ino = btrfs_ino(btrfs_inode); | 
 | 	struct btrfs_delayed_node *node; | 
 |  | 
 | 	node = READ_ONCE(btrfs_inode->delayed_node); | 
 | 	if (node) { | 
 | 		refcount_inc(&node->refs); | 
 | 		return node; | 
 | 	} | 
 |  | 
 | 	spin_lock(&root->inode_lock); | 
 | 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino); | 
 |  | 
 | 	if (node) { | 
 | 		if (btrfs_inode->delayed_node) { | 
 | 			refcount_inc(&node->refs);	/* can be accessed */ | 
 | 			BUG_ON(btrfs_inode->delayed_node != node); | 
 | 			spin_unlock(&root->inode_lock); | 
 | 			return node; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * It's possible that we're racing into the middle of removing | 
 | 		 * this node from the radix tree.  In this case, the refcount | 
 | 		 * was zero and it should never go back to one.  Just return | 
 | 		 * NULL like it was never in the radix at all; our release | 
 | 		 * function is in the process of removing it. | 
 | 		 * | 
 | 		 * Some implementations of refcount_inc refuse to bump the | 
 | 		 * refcount once it has hit zero.  If we don't do this dance | 
 | 		 * here, refcount_inc() may decide to just WARN_ONCE() instead | 
 | 		 * of actually bumping the refcount. | 
 | 		 * | 
 | 		 * If this node is properly in the radix, we want to bump the | 
 | 		 * refcount twice, once for the inode and once for this get | 
 | 		 * operation. | 
 | 		 */ | 
 | 		if (refcount_inc_not_zero(&node->refs)) { | 
 | 			refcount_inc(&node->refs); | 
 | 			btrfs_inode->delayed_node = node; | 
 | 		} else { | 
 | 			node = NULL; | 
 | 		} | 
 |  | 
 | 		spin_unlock(&root->inode_lock); | 
 | 		return node; | 
 | 	} | 
 | 	spin_unlock(&root->inode_lock); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* Will return either the node or PTR_ERR(-ENOMEM) */ | 
 | static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( | 
 | 		struct btrfs_inode *btrfs_inode) | 
 | { | 
 | 	struct btrfs_delayed_node *node; | 
 | 	struct btrfs_root *root = btrfs_inode->root; | 
 | 	u64 ino = btrfs_ino(btrfs_inode); | 
 | 	int ret; | 
 |  | 
 | again: | 
 | 	node = btrfs_get_delayed_node(btrfs_inode); | 
 | 	if (node) | 
 | 		return node; | 
 |  | 
 | 	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); | 
 | 	if (!node) | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	btrfs_init_delayed_node(node, root, ino); | 
 |  | 
 | 	/* cached in the btrfs inode and can be accessed */ | 
 | 	refcount_set(&node->refs, 2); | 
 |  | 
 | 	ret = radix_tree_preload(GFP_NOFS); | 
 | 	if (ret) { | 
 | 		kmem_cache_free(delayed_node_cache, node); | 
 | 		return ERR_PTR(ret); | 
 | 	} | 
 |  | 
 | 	spin_lock(&root->inode_lock); | 
 | 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); | 
 | 	if (ret == -EEXIST) { | 
 | 		spin_unlock(&root->inode_lock); | 
 | 		kmem_cache_free(delayed_node_cache, node); | 
 | 		radix_tree_preload_end(); | 
 | 		goto again; | 
 | 	} | 
 | 	btrfs_inode->delayed_node = node; | 
 | 	spin_unlock(&root->inode_lock); | 
 | 	radix_tree_preload_end(); | 
 |  | 
 | 	return node; | 
 | } | 
 |  | 
 | /* | 
 |  * Call it when holding delayed_node->mutex | 
 |  * | 
 |  * If mod = 1, add this node into the prepared list. | 
 |  */ | 
 | static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, | 
 | 				     struct btrfs_delayed_node *node, | 
 | 				     int mod) | 
 | { | 
 | 	spin_lock(&root->lock); | 
 | 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { | 
 | 		if (!list_empty(&node->p_list)) | 
 | 			list_move_tail(&node->p_list, &root->prepare_list); | 
 | 		else if (mod) | 
 | 			list_add_tail(&node->p_list, &root->prepare_list); | 
 | 	} else { | 
 | 		list_add_tail(&node->n_list, &root->node_list); | 
 | 		list_add_tail(&node->p_list, &root->prepare_list); | 
 | 		refcount_inc(&node->refs);	/* inserted into list */ | 
 | 		root->nodes++; | 
 | 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); | 
 | 	} | 
 | 	spin_unlock(&root->lock); | 
 | } | 
 |  | 
 | /* Call it when holding delayed_node->mutex */ | 
 | static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, | 
 | 				       struct btrfs_delayed_node *node) | 
 | { | 
 | 	spin_lock(&root->lock); | 
 | 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { | 
 | 		root->nodes--; | 
 | 		refcount_dec(&node->refs);	/* not in the list */ | 
 | 		list_del_init(&node->n_list); | 
 | 		if (!list_empty(&node->p_list)) | 
 | 			list_del_init(&node->p_list); | 
 | 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); | 
 | 	} | 
 | 	spin_unlock(&root->lock); | 
 | } | 
 |  | 
 | static struct btrfs_delayed_node *btrfs_first_delayed_node( | 
 | 			struct btrfs_delayed_root *delayed_root) | 
 | { | 
 | 	struct list_head *p; | 
 | 	struct btrfs_delayed_node *node = NULL; | 
 |  | 
 | 	spin_lock(&delayed_root->lock); | 
 | 	if (list_empty(&delayed_root->node_list)) | 
 | 		goto out; | 
 |  | 
 | 	p = delayed_root->node_list.next; | 
 | 	node = list_entry(p, struct btrfs_delayed_node, n_list); | 
 | 	refcount_inc(&node->refs); | 
 | out: | 
 | 	spin_unlock(&delayed_root->lock); | 
 |  | 
 | 	return node; | 
 | } | 
 |  | 
 | static struct btrfs_delayed_node *btrfs_next_delayed_node( | 
 | 						struct btrfs_delayed_node *node) | 
 | { | 
 | 	struct btrfs_delayed_root *delayed_root; | 
 | 	struct list_head *p; | 
 | 	struct btrfs_delayed_node *next = NULL; | 
 |  | 
 | 	delayed_root = node->root->fs_info->delayed_root; | 
 | 	spin_lock(&delayed_root->lock); | 
 | 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { | 
 | 		/* not in the list */ | 
 | 		if (list_empty(&delayed_root->node_list)) | 
 | 			goto out; | 
 | 		p = delayed_root->node_list.next; | 
 | 	} else if (list_is_last(&node->n_list, &delayed_root->node_list)) | 
 | 		goto out; | 
 | 	else | 
 | 		p = node->n_list.next; | 
 |  | 
 | 	next = list_entry(p, struct btrfs_delayed_node, n_list); | 
 | 	refcount_inc(&next->refs); | 
 | out: | 
 | 	spin_unlock(&delayed_root->lock); | 
 |  | 
 | 	return next; | 
 | } | 
 |  | 
 | static void __btrfs_release_delayed_node( | 
 | 				struct btrfs_delayed_node *delayed_node, | 
 | 				int mod) | 
 | { | 
 | 	struct btrfs_delayed_root *delayed_root; | 
 |  | 
 | 	if (!delayed_node) | 
 | 		return; | 
 |  | 
 | 	delayed_root = delayed_node->root->fs_info->delayed_root; | 
 |  | 
 | 	mutex_lock(&delayed_node->mutex); | 
 | 	if (delayed_node->count) | 
 | 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod); | 
 | 	else | 
 | 		btrfs_dequeue_delayed_node(delayed_root, delayed_node); | 
 | 	mutex_unlock(&delayed_node->mutex); | 
 |  | 
 | 	if (refcount_dec_and_test(&delayed_node->refs)) { | 
 | 		struct btrfs_root *root = delayed_node->root; | 
 |  | 
 | 		spin_lock(&root->inode_lock); | 
 | 		/* | 
 | 		 * Once our refcount goes to zero, nobody is allowed to bump it | 
 | 		 * back up.  We can delete it now. | 
 | 		 */ | 
 | 		ASSERT(refcount_read(&delayed_node->refs) == 0); | 
 | 		radix_tree_delete(&root->delayed_nodes_tree, | 
 | 				  delayed_node->inode_id); | 
 | 		spin_unlock(&root->inode_lock); | 
 | 		kmem_cache_free(delayed_node_cache, delayed_node); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) | 
 | { | 
 | 	__btrfs_release_delayed_node(node, 0); | 
 | } | 
 |  | 
 | static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( | 
 | 					struct btrfs_delayed_root *delayed_root) | 
 | { | 
 | 	struct list_head *p; | 
 | 	struct btrfs_delayed_node *node = NULL; | 
 |  | 
 | 	spin_lock(&delayed_root->lock); | 
 | 	if (list_empty(&delayed_root->prepare_list)) | 
 | 		goto out; | 
 |  | 
 | 	p = delayed_root->prepare_list.next; | 
 | 	list_del_init(p); | 
 | 	node = list_entry(p, struct btrfs_delayed_node, p_list); | 
 | 	refcount_inc(&node->refs); | 
 | out: | 
 | 	spin_unlock(&delayed_root->lock); | 
 |  | 
 | 	return node; | 
 | } | 
 |  | 
 | static inline void btrfs_release_prepared_delayed_node( | 
 | 					struct btrfs_delayed_node *node) | 
 | { | 
 | 	__btrfs_release_delayed_node(node, 1); | 
 | } | 
 |  | 
 | static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len) | 
 | { | 
 | 	struct btrfs_delayed_item *item; | 
 | 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); | 
 | 	if (item) { | 
 | 		item->data_len = data_len; | 
 | 		item->ins_or_del = 0; | 
 | 		item->bytes_reserved = 0; | 
 | 		item->delayed_node = NULL; | 
 | 		refcount_set(&item->refs, 1); | 
 | 	} | 
 | 	return item; | 
 | } | 
 |  | 
 | /* | 
 |  * __btrfs_lookup_delayed_item - look up the delayed item by key | 
 |  * @delayed_node: pointer to the delayed node | 
 |  * @key:	  the key to look up | 
 |  * @prev:	  used to store the prev item if the right item isn't found | 
 |  * @next:	  used to store the next item if the right item isn't found | 
 |  * | 
 |  * Note: if we don't find the right item, we will return the prev item and | 
 |  * the next item. | 
 |  */ | 
 | static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( | 
 | 				struct rb_root *root, | 
 | 				struct btrfs_key *key, | 
 | 				struct btrfs_delayed_item **prev, | 
 | 				struct btrfs_delayed_item **next) | 
 | { | 
 | 	struct rb_node *node, *prev_node = NULL; | 
 | 	struct btrfs_delayed_item *delayed_item = NULL; | 
 | 	int ret = 0; | 
 |  | 
 | 	node = root->rb_node; | 
 |  | 
 | 	while (node) { | 
 | 		delayed_item = rb_entry(node, struct btrfs_delayed_item, | 
 | 					rb_node); | 
 | 		prev_node = node; | 
 | 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key); | 
 | 		if (ret < 0) | 
 | 			node = node->rb_right; | 
 | 		else if (ret > 0) | 
 | 			node = node->rb_left; | 
 | 		else | 
 | 			return delayed_item; | 
 | 	} | 
 |  | 
 | 	if (prev) { | 
 | 		if (!prev_node) | 
 | 			*prev = NULL; | 
 | 		else if (ret < 0) | 
 | 			*prev = delayed_item; | 
 | 		else if ((node = rb_prev(prev_node)) != NULL) { | 
 | 			*prev = rb_entry(node, struct btrfs_delayed_item, | 
 | 					 rb_node); | 
 | 		} else | 
 | 			*prev = NULL; | 
 | 	} | 
 |  | 
 | 	if (next) { | 
 | 		if (!prev_node) | 
 | 			*next = NULL; | 
 | 		else if (ret > 0) | 
 | 			*next = delayed_item; | 
 | 		else if ((node = rb_next(prev_node)) != NULL) { | 
 | 			*next = rb_entry(node, struct btrfs_delayed_item, | 
 | 					 rb_node); | 
 | 		} else | 
 | 			*next = NULL; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item( | 
 | 					struct btrfs_delayed_node *delayed_node, | 
 | 					struct btrfs_key *key) | 
 | { | 
 | 	return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key, | 
 | 					   NULL, NULL); | 
 | } | 
 |  | 
 | static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, | 
 | 				    struct btrfs_delayed_item *ins, | 
 | 				    int action) | 
 | { | 
 | 	struct rb_node **p, *node; | 
 | 	struct rb_node *parent_node = NULL; | 
 | 	struct rb_root_cached *root; | 
 | 	struct btrfs_delayed_item *item; | 
 | 	int cmp; | 
 | 	bool leftmost = true; | 
 |  | 
 | 	if (action == BTRFS_DELAYED_INSERTION_ITEM) | 
 | 		root = &delayed_node->ins_root; | 
 | 	else if (action == BTRFS_DELAYED_DELETION_ITEM) | 
 | 		root = &delayed_node->del_root; | 
 | 	else | 
 | 		BUG(); | 
 | 	p = &root->rb_root.rb_node; | 
 | 	node = &ins->rb_node; | 
 |  | 
 | 	while (*p) { | 
 | 		parent_node = *p; | 
 | 		item = rb_entry(parent_node, struct btrfs_delayed_item, | 
 | 				 rb_node); | 
 |  | 
 | 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key); | 
 | 		if (cmp < 0) { | 
 | 			p = &(*p)->rb_right; | 
 | 			leftmost = false; | 
 | 		} else if (cmp > 0) { | 
 | 			p = &(*p)->rb_left; | 
 | 		} else { | 
 | 			return -EEXIST; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rb_link_node(node, parent_node, p); | 
 | 	rb_insert_color_cached(node, root, leftmost); | 
 | 	ins->delayed_node = delayed_node; | 
 | 	ins->ins_or_del = action; | 
 |  | 
 | 	if (ins->key.type == BTRFS_DIR_INDEX_KEY && | 
 | 	    action == BTRFS_DELAYED_INSERTION_ITEM && | 
 | 	    ins->key.offset >= delayed_node->index_cnt) | 
 | 			delayed_node->index_cnt = ins->key.offset + 1; | 
 |  | 
 | 	delayed_node->count++; | 
 | 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node, | 
 | 					      struct btrfs_delayed_item *item) | 
 | { | 
 | 	return __btrfs_add_delayed_item(node, item, | 
 | 					BTRFS_DELAYED_INSERTION_ITEM); | 
 | } | 
 |  | 
 | static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node, | 
 | 					     struct btrfs_delayed_item *item) | 
 | { | 
 | 	return __btrfs_add_delayed_item(node, item, | 
 | 					BTRFS_DELAYED_DELETION_ITEM); | 
 | } | 
 |  | 
 | static void finish_one_item(struct btrfs_delayed_root *delayed_root) | 
 | { | 
 | 	int seq = atomic_inc_return(&delayed_root->items_seq); | 
 |  | 
 | 	/* atomic_dec_return implies a barrier */ | 
 | 	if ((atomic_dec_return(&delayed_root->items) < | 
 | 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) | 
 | 		cond_wake_up_nomb(&delayed_root->wait); | 
 | } | 
 |  | 
 | static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) | 
 | { | 
 | 	struct rb_root_cached *root; | 
 | 	struct btrfs_delayed_root *delayed_root; | 
 |  | 
 | 	/* Not associated with any delayed_node */ | 
 | 	if (!delayed_item->delayed_node) | 
 | 		return; | 
 | 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; | 
 |  | 
 | 	BUG_ON(!delayed_root); | 
 | 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM && | 
 | 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM); | 
 |  | 
 | 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) | 
 | 		root = &delayed_item->delayed_node->ins_root; | 
 | 	else | 
 | 		root = &delayed_item->delayed_node->del_root; | 
 |  | 
 | 	rb_erase_cached(&delayed_item->rb_node, root); | 
 | 	delayed_item->delayed_node->count--; | 
 |  | 
 | 	finish_one_item(delayed_root); | 
 | } | 
 |  | 
 | static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) | 
 | { | 
 | 	if (item) { | 
 | 		__btrfs_remove_delayed_item(item); | 
 | 		if (refcount_dec_and_test(&item->refs)) | 
 | 			kfree(item); | 
 | 	} | 
 | } | 
 |  | 
 | static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( | 
 | 					struct btrfs_delayed_node *delayed_node) | 
 | { | 
 | 	struct rb_node *p; | 
 | 	struct btrfs_delayed_item *item = NULL; | 
 |  | 
 | 	p = rb_first_cached(&delayed_node->ins_root); | 
 | 	if (p) | 
 | 		item = rb_entry(p, struct btrfs_delayed_item, rb_node); | 
 |  | 
 | 	return item; | 
 | } | 
 |  | 
 | static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( | 
 | 					struct btrfs_delayed_node *delayed_node) | 
 | { | 
 | 	struct rb_node *p; | 
 | 	struct btrfs_delayed_item *item = NULL; | 
 |  | 
 | 	p = rb_first_cached(&delayed_node->del_root); | 
 | 	if (p) | 
 | 		item = rb_entry(p, struct btrfs_delayed_item, rb_node); | 
 |  | 
 | 	return item; | 
 | } | 
 |  | 
 | static struct btrfs_delayed_item *__btrfs_next_delayed_item( | 
 | 						struct btrfs_delayed_item *item) | 
 | { | 
 | 	struct rb_node *p; | 
 | 	struct btrfs_delayed_item *next = NULL; | 
 |  | 
 | 	p = rb_next(&item->rb_node); | 
 | 	if (p) | 
 | 		next = rb_entry(p, struct btrfs_delayed_item, rb_node); | 
 |  | 
 | 	return next; | 
 | } | 
 |  | 
 | static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, | 
 | 					       struct btrfs_root *root, | 
 | 					       struct btrfs_delayed_item *item) | 
 | { | 
 | 	struct btrfs_block_rsv *src_rsv; | 
 | 	struct btrfs_block_rsv *dst_rsv; | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	u64 num_bytes; | 
 | 	int ret; | 
 |  | 
 | 	if (!trans->bytes_reserved) | 
 | 		return 0; | 
 |  | 
 | 	src_rsv = trans->block_rsv; | 
 | 	dst_rsv = &fs_info->delayed_block_rsv; | 
 |  | 
 | 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1); | 
 |  | 
 | 	/* | 
 | 	 * Here we migrate space rsv from transaction rsv, since have already | 
 | 	 * reserved space when starting a transaction.  So no need to reserve | 
 | 	 * qgroup space here. | 
 | 	 */ | 
 | 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); | 
 | 	if (!ret) { | 
 | 		trace_btrfs_space_reservation(fs_info, "delayed_item", | 
 | 					      item->key.objectid, | 
 | 					      num_bytes, 1); | 
 | 		item->bytes_reserved = num_bytes; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, | 
 | 						struct btrfs_delayed_item *item) | 
 | { | 
 | 	struct btrfs_block_rsv *rsv; | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 |  | 
 | 	if (!item->bytes_reserved) | 
 | 		return; | 
 |  | 
 | 	rsv = &fs_info->delayed_block_rsv; | 
 | 	/* | 
 | 	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need | 
 | 	 * to release/reserve qgroup space. | 
 | 	 */ | 
 | 	trace_btrfs_space_reservation(fs_info, "delayed_item", | 
 | 				      item->key.objectid, item->bytes_reserved, | 
 | 				      0); | 
 | 	btrfs_block_rsv_release(fs_info, rsv, | 
 | 				item->bytes_reserved); | 
 | } | 
 |  | 
 | static int btrfs_delayed_inode_reserve_metadata( | 
 | 					struct btrfs_trans_handle *trans, | 
 | 					struct btrfs_root *root, | 
 | 					struct btrfs_inode *inode, | 
 | 					struct btrfs_delayed_node *node) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct btrfs_block_rsv *src_rsv; | 
 | 	struct btrfs_block_rsv *dst_rsv; | 
 | 	u64 num_bytes; | 
 | 	int ret; | 
 |  | 
 | 	src_rsv = trans->block_rsv; | 
 | 	dst_rsv = &fs_info->delayed_block_rsv; | 
 |  | 
 | 	num_bytes = btrfs_calc_metadata_size(fs_info, 1); | 
 |  | 
 | 	/* | 
 | 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction | 
 | 	 * which doesn't reserve space for speed.  This is a problem since we | 
 | 	 * still need to reserve space for this update, so try to reserve the | 
 | 	 * space. | 
 | 	 * | 
 | 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since | 
 | 	 * we always reserve enough to update the inode item. | 
 | 	 */ | 
 | 	if (!src_rsv || (!trans->bytes_reserved && | 
 | 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { | 
 | 		ret = btrfs_qgroup_reserve_meta_prealloc(root, | 
 | 				fs_info->nodesize, true); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes, | 
 | 					  BTRFS_RESERVE_NO_FLUSH); | 
 | 		/* | 
 | 		 * Since we're under a transaction reserve_metadata_bytes could | 
 | 		 * try to commit the transaction which will make it return | 
 | 		 * EAGAIN to make us stop the transaction we have, so return | 
 | 		 * ENOSPC instead so that btrfs_dirty_inode knows what to do. | 
 | 		 */ | 
 | 		if (ret == -EAGAIN) { | 
 | 			ret = -ENOSPC; | 
 | 			btrfs_qgroup_free_meta_prealloc(root, num_bytes); | 
 | 		} | 
 | 		if (!ret) { | 
 | 			node->bytes_reserved = num_bytes; | 
 | 			trace_btrfs_space_reservation(fs_info, | 
 | 						      "delayed_inode", | 
 | 						      btrfs_ino(inode), | 
 | 						      num_bytes, 1); | 
 | 		} else { | 
 | 			btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize); | 
 | 		} | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); | 
 | 	if (!ret) { | 
 | 		trace_btrfs_space_reservation(fs_info, "delayed_inode", | 
 | 					      btrfs_ino(inode), num_bytes, 1); | 
 | 		node->bytes_reserved = num_bytes; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, | 
 | 						struct btrfs_delayed_node *node, | 
 | 						bool qgroup_free) | 
 | { | 
 | 	struct btrfs_block_rsv *rsv; | 
 |  | 
 | 	if (!node->bytes_reserved) | 
 | 		return; | 
 |  | 
 | 	rsv = &fs_info->delayed_block_rsv; | 
 | 	trace_btrfs_space_reservation(fs_info, "delayed_inode", | 
 | 				      node->inode_id, node->bytes_reserved, 0); | 
 | 	btrfs_block_rsv_release(fs_info, rsv, | 
 | 				node->bytes_reserved); | 
 | 	if (qgroup_free) | 
 | 		btrfs_qgroup_free_meta_prealloc(node->root, | 
 | 				node->bytes_reserved); | 
 | 	else | 
 | 		btrfs_qgroup_convert_reserved_meta(node->root, | 
 | 				node->bytes_reserved); | 
 | 	node->bytes_reserved = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This helper will insert some continuous items into the same leaf according | 
 |  * to the free space of the leaf. | 
 |  */ | 
 | static int btrfs_batch_insert_items(struct btrfs_root *root, | 
 | 				    struct btrfs_path *path, | 
 | 				    struct btrfs_delayed_item *item) | 
 | { | 
 | 	struct btrfs_delayed_item *curr, *next; | 
 | 	int free_space; | 
 | 	int total_data_size = 0, total_size = 0; | 
 | 	struct extent_buffer *leaf; | 
 | 	char *data_ptr; | 
 | 	struct btrfs_key *keys; | 
 | 	u32 *data_size; | 
 | 	struct list_head head; | 
 | 	int slot; | 
 | 	int nitems; | 
 | 	int i; | 
 | 	int ret = 0; | 
 |  | 
 | 	BUG_ON(!path->nodes[0]); | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	free_space = btrfs_leaf_free_space(leaf); | 
 | 	INIT_LIST_HEAD(&head); | 
 |  | 
 | 	next = item; | 
 | 	nitems = 0; | 
 |  | 
 | 	/* | 
 | 	 * count the number of the continuous items that we can insert in batch | 
 | 	 */ | 
 | 	while (total_size + next->data_len + sizeof(struct btrfs_item) <= | 
 | 	       free_space) { | 
 | 		total_data_size += next->data_len; | 
 | 		total_size += next->data_len + sizeof(struct btrfs_item); | 
 | 		list_add_tail(&next->tree_list, &head); | 
 | 		nitems++; | 
 |  | 
 | 		curr = next; | 
 | 		next = __btrfs_next_delayed_item(curr); | 
 | 		if (!next) | 
 | 			break; | 
 |  | 
 | 		if (!btrfs_is_continuous_delayed_item(curr, next)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (!nitems) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * we need allocate some memory space, but it might cause the task | 
 | 	 * to sleep, so we set all locked nodes in the path to blocking locks | 
 | 	 * first. | 
 | 	 */ | 
 | 	btrfs_set_path_blocking(path); | 
 |  | 
 | 	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS); | 
 | 	if (!keys) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS); | 
 | 	if (!data_size) { | 
 | 		ret = -ENOMEM; | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	/* get keys of all the delayed items */ | 
 | 	i = 0; | 
 | 	list_for_each_entry(next, &head, tree_list) { | 
 | 		keys[i] = next->key; | 
 | 		data_size[i] = next->data_len; | 
 | 		i++; | 
 | 	} | 
 |  | 
 | 	/* insert the keys of the items */ | 
 | 	setup_items_for_insert(root, path, keys, data_size, | 
 | 			       total_data_size, total_size, nitems); | 
 |  | 
 | 	/* insert the dir index items */ | 
 | 	slot = path->slots[0]; | 
 | 	list_for_each_entry_safe(curr, next, &head, tree_list) { | 
 | 		data_ptr = btrfs_item_ptr(leaf, slot, char); | 
 | 		write_extent_buffer(leaf, &curr->data, | 
 | 				    (unsigned long)data_ptr, | 
 | 				    curr->data_len); | 
 | 		slot++; | 
 |  | 
 | 		btrfs_delayed_item_release_metadata(root, curr); | 
 |  | 
 | 		list_del(&curr->tree_list); | 
 | 		btrfs_release_delayed_item(curr); | 
 | 	} | 
 |  | 
 | error: | 
 | 	kfree(data_size); | 
 | 	kfree(keys); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * This helper can just do simple insertion that needn't extend item for new | 
 |  * data, such as directory name index insertion, inode insertion. | 
 |  */ | 
 | static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, | 
 | 				     struct btrfs_root *root, | 
 | 				     struct btrfs_path *path, | 
 | 				     struct btrfs_delayed_item *delayed_item) | 
 | { | 
 | 	struct extent_buffer *leaf; | 
 | 	char *ptr; | 
 | 	int ret; | 
 |  | 
 | 	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key, | 
 | 				      delayed_item->data_len); | 
 | 	if (ret < 0 && ret != -EEXIST) | 
 | 		return ret; | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 |  | 
 | 	ptr = btrfs_item_ptr(leaf, path->slots[0], char); | 
 |  | 
 | 	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr, | 
 | 			    delayed_item->data_len); | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 |  | 
 | 	btrfs_delayed_item_release_metadata(root, delayed_item); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * we insert an item first, then if there are some continuous items, we try | 
 |  * to insert those items into the same leaf. | 
 |  */ | 
 | static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, | 
 | 				      struct btrfs_path *path, | 
 | 				      struct btrfs_root *root, | 
 | 				      struct btrfs_delayed_node *node) | 
 | { | 
 | 	struct btrfs_delayed_item *curr, *prev; | 
 | 	int ret = 0; | 
 |  | 
 | do_again: | 
 | 	mutex_lock(&node->mutex); | 
 | 	curr = __btrfs_first_delayed_insertion_item(node); | 
 | 	if (!curr) | 
 | 		goto insert_end; | 
 |  | 
 | 	ret = btrfs_insert_delayed_item(trans, root, path, curr); | 
 | 	if (ret < 0) { | 
 | 		btrfs_release_path(path); | 
 | 		goto insert_end; | 
 | 	} | 
 |  | 
 | 	prev = curr; | 
 | 	curr = __btrfs_next_delayed_item(prev); | 
 | 	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) { | 
 | 		/* insert the continuous items into the same leaf */ | 
 | 		path->slots[0]++; | 
 | 		btrfs_batch_insert_items(root, path, curr); | 
 | 	} | 
 | 	btrfs_release_delayed_item(prev); | 
 | 	btrfs_mark_buffer_dirty(path->nodes[0]); | 
 |  | 
 | 	btrfs_release_path(path); | 
 | 	mutex_unlock(&node->mutex); | 
 | 	goto do_again; | 
 |  | 
 | insert_end: | 
 | 	mutex_unlock(&node->mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, | 
 | 				    struct btrfs_root *root, | 
 | 				    struct btrfs_path *path, | 
 | 				    struct btrfs_delayed_item *item) | 
 | { | 
 | 	struct btrfs_delayed_item *curr, *next; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_key key; | 
 | 	struct list_head head; | 
 | 	int nitems, i, last_item; | 
 | 	int ret = 0; | 
 |  | 
 | 	BUG_ON(!path->nodes[0]); | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 |  | 
 | 	i = path->slots[0]; | 
 | 	last_item = btrfs_header_nritems(leaf) - 1; | 
 | 	if (i > last_item) | 
 | 		return -ENOENT;	/* FIXME: Is errno suitable? */ | 
 |  | 
 | 	next = item; | 
 | 	INIT_LIST_HEAD(&head); | 
 | 	btrfs_item_key_to_cpu(leaf, &key, i); | 
 | 	nitems = 0; | 
 | 	/* | 
 | 	 * count the number of the dir index items that we can delete in batch | 
 | 	 */ | 
 | 	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) { | 
 | 		list_add_tail(&next->tree_list, &head); | 
 | 		nitems++; | 
 |  | 
 | 		curr = next; | 
 | 		next = __btrfs_next_delayed_item(curr); | 
 | 		if (!next) | 
 | 			break; | 
 |  | 
 | 		if (!btrfs_is_continuous_delayed_item(curr, next)) | 
 | 			break; | 
 |  | 
 | 		i++; | 
 | 		if (i > last_item) | 
 | 			break; | 
 | 		btrfs_item_key_to_cpu(leaf, &key, i); | 
 | 	} | 
 |  | 
 | 	if (!nitems) | 
 | 		return 0; | 
 |  | 
 | 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	list_for_each_entry_safe(curr, next, &head, tree_list) { | 
 | 		btrfs_delayed_item_release_metadata(root, curr); | 
 | 		list_del(&curr->tree_list); | 
 | 		btrfs_release_delayed_item(curr); | 
 | 	} | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, | 
 | 				      struct btrfs_path *path, | 
 | 				      struct btrfs_root *root, | 
 | 				      struct btrfs_delayed_node *node) | 
 | { | 
 | 	struct btrfs_delayed_item *curr, *prev; | 
 | 	int ret = 0; | 
 |  | 
 | do_again: | 
 | 	mutex_lock(&node->mutex); | 
 | 	curr = __btrfs_first_delayed_deletion_item(node); | 
 | 	if (!curr) | 
 | 		goto delete_fail; | 
 |  | 
 | 	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1); | 
 | 	if (ret < 0) | 
 | 		goto delete_fail; | 
 | 	else if (ret > 0) { | 
 | 		/* | 
 | 		 * can't find the item which the node points to, so this node | 
 | 		 * is invalid, just drop it. | 
 | 		 */ | 
 | 		prev = curr; | 
 | 		curr = __btrfs_next_delayed_item(prev); | 
 | 		btrfs_release_delayed_item(prev); | 
 | 		ret = 0; | 
 | 		btrfs_release_path(path); | 
 | 		if (curr) { | 
 | 			mutex_unlock(&node->mutex); | 
 | 			goto do_again; | 
 | 		} else | 
 | 			goto delete_fail; | 
 | 	} | 
 |  | 
 | 	btrfs_batch_delete_items(trans, root, path, curr); | 
 | 	btrfs_release_path(path); | 
 | 	mutex_unlock(&node->mutex); | 
 | 	goto do_again; | 
 |  | 
 | delete_fail: | 
 | 	btrfs_release_path(path); | 
 | 	mutex_unlock(&node->mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) | 
 | { | 
 | 	struct btrfs_delayed_root *delayed_root; | 
 |  | 
 | 	if (delayed_node && | 
 | 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { | 
 | 		BUG_ON(!delayed_node->root); | 
 | 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); | 
 | 		delayed_node->count--; | 
 |  | 
 | 		delayed_root = delayed_node->root->fs_info->delayed_root; | 
 | 		finish_one_item(delayed_root); | 
 | 	} | 
 | } | 
 |  | 
 | static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) | 
 | { | 
 | 	struct btrfs_delayed_root *delayed_root; | 
 |  | 
 | 	ASSERT(delayed_node->root); | 
 | 	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); | 
 | 	delayed_node->count--; | 
 |  | 
 | 	delayed_root = delayed_node->root->fs_info->delayed_root; | 
 | 	finish_one_item(delayed_root); | 
 | } | 
 |  | 
 | static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, | 
 | 					struct btrfs_root *root, | 
 | 					struct btrfs_path *path, | 
 | 					struct btrfs_delayed_node *node) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_inode_item *inode_item; | 
 | 	struct extent_buffer *leaf; | 
 | 	int mod; | 
 | 	int ret; | 
 |  | 
 | 	key.objectid = node->inode_id; | 
 | 	key.type = BTRFS_INODE_ITEM_KEY; | 
 | 	key.offset = 0; | 
 |  | 
 | 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) | 
 | 		mod = -1; | 
 | 	else | 
 | 		mod = 1; | 
 |  | 
 | 	ret = btrfs_lookup_inode(trans, root, path, &key, mod); | 
 | 	if (ret > 0) { | 
 | 		btrfs_release_path(path); | 
 | 		return -ENOENT; | 
 | 	} else if (ret < 0) { | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	inode_item = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				    struct btrfs_inode_item); | 
 | 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, | 
 | 			    sizeof(struct btrfs_inode_item)); | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 |  | 
 | 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) | 
 | 		goto no_iref; | 
 |  | 
 | 	path->slots[0]++; | 
 | 	if (path->slots[0] >= btrfs_header_nritems(leaf)) | 
 | 		goto search; | 
 | again: | 
 | 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
 | 	if (key.objectid != node->inode_id) | 
 | 		goto out; | 
 |  | 
 | 	if (key.type != BTRFS_INODE_REF_KEY && | 
 | 	    key.type != BTRFS_INODE_EXTREF_KEY) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Delayed iref deletion is for the inode who has only one link, | 
 | 	 * so there is only one iref. The case that several irefs are | 
 | 	 * in the same item doesn't exist. | 
 | 	 */ | 
 | 	btrfs_del_item(trans, root, path); | 
 | out: | 
 | 	btrfs_release_delayed_iref(node); | 
 | no_iref: | 
 | 	btrfs_release_path(path); | 
 | err_out: | 
 | 	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); | 
 | 	btrfs_release_delayed_inode(node); | 
 |  | 
 | 	return ret; | 
 |  | 
 | search: | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	key.type = BTRFS_INODE_EXTREF_KEY; | 
 | 	key.offset = -1; | 
 | 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
 | 	if (ret < 0) | 
 | 		goto err_out; | 
 | 	ASSERT(ret); | 
 |  | 
 | 	ret = 0; | 
 | 	leaf = path->nodes[0]; | 
 | 	path->slots[0]--; | 
 | 	goto again; | 
 | } | 
 |  | 
 | static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, | 
 | 					     struct btrfs_root *root, | 
 | 					     struct btrfs_path *path, | 
 | 					     struct btrfs_delayed_node *node) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&node->mutex); | 
 | 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { | 
 | 		mutex_unlock(&node->mutex); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	ret = __btrfs_update_delayed_inode(trans, root, path, node); | 
 | 	mutex_unlock(&node->mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline int | 
 | __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, | 
 | 				   struct btrfs_path *path, | 
 | 				   struct btrfs_delayed_node *node) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = btrfs_insert_delayed_items(trans, path, node->root, node); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = btrfs_delete_delayed_items(trans, path, node->root, node); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = btrfs_update_delayed_inode(trans, node->root, path, node); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Called when committing the transaction. | 
 |  * Returns 0 on success. | 
 |  * Returns < 0 on error and returns with an aborted transaction with any | 
 |  * outstanding delayed items cleaned up. | 
 |  */ | 
 | static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = trans->fs_info; | 
 | 	struct btrfs_delayed_root *delayed_root; | 
 | 	struct btrfs_delayed_node *curr_node, *prev_node; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_block_rsv *block_rsv; | 
 | 	int ret = 0; | 
 | 	bool count = (nr > 0); | 
 |  | 
 | 	if (trans->aborted) | 
 | 		return -EIO; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 | 	path->leave_spinning = 1; | 
 |  | 
 | 	block_rsv = trans->block_rsv; | 
 | 	trans->block_rsv = &fs_info->delayed_block_rsv; | 
 |  | 
 | 	delayed_root = fs_info->delayed_root; | 
 |  | 
 | 	curr_node = btrfs_first_delayed_node(delayed_root); | 
 | 	while (curr_node && (!count || (count && nr--))) { | 
 | 		ret = __btrfs_commit_inode_delayed_items(trans, path, | 
 | 							 curr_node); | 
 | 		if (ret) { | 
 | 			btrfs_release_delayed_node(curr_node); | 
 | 			curr_node = NULL; | 
 | 			btrfs_abort_transaction(trans, ret); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		prev_node = curr_node; | 
 | 		curr_node = btrfs_next_delayed_node(curr_node); | 
 | 		btrfs_release_delayed_node(prev_node); | 
 | 	} | 
 |  | 
 | 	if (curr_node) | 
 | 		btrfs_release_delayed_node(curr_node); | 
 | 	btrfs_free_path(path); | 
 | 	trans->block_rsv = block_rsv; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) | 
 | { | 
 | 	return __btrfs_run_delayed_items(trans, -1); | 
 | } | 
 |  | 
 | int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) | 
 | { | 
 | 	return __btrfs_run_delayed_items(trans, nr); | 
 | } | 
 |  | 
 | int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, | 
 | 				     struct btrfs_inode *inode) | 
 | { | 
 | 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_block_rsv *block_rsv; | 
 | 	int ret; | 
 |  | 
 | 	if (!delayed_node) | 
 | 		return 0; | 
 |  | 
 | 	mutex_lock(&delayed_node->mutex); | 
 | 	if (!delayed_node->count) { | 
 | 		mutex_unlock(&delayed_node->mutex); | 
 | 		btrfs_release_delayed_node(delayed_node); | 
 | 		return 0; | 
 | 	} | 
 | 	mutex_unlock(&delayed_node->mutex); | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) { | 
 | 		btrfs_release_delayed_node(delayed_node); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	path->leave_spinning = 1; | 
 |  | 
 | 	block_rsv = trans->block_rsv; | 
 | 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; | 
 |  | 
 | 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); | 
 |  | 
 | 	btrfs_release_delayed_node(delayed_node); | 
 | 	btrfs_free_path(path); | 
 | 	trans->block_rsv = block_rsv; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_block_rsv *block_rsv; | 
 | 	int ret; | 
 |  | 
 | 	if (!delayed_node) | 
 | 		return 0; | 
 |  | 
 | 	mutex_lock(&delayed_node->mutex); | 
 | 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { | 
 | 		mutex_unlock(&delayed_node->mutex); | 
 | 		btrfs_release_delayed_node(delayed_node); | 
 | 		return 0; | 
 | 	} | 
 | 	mutex_unlock(&delayed_node->mutex); | 
 |  | 
 | 	trans = btrfs_join_transaction(delayed_node->root); | 
 | 	if (IS_ERR(trans)) { | 
 | 		ret = PTR_ERR(trans); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) { | 
 | 		ret = -ENOMEM; | 
 | 		goto trans_out; | 
 | 	} | 
 | 	path->leave_spinning = 1; | 
 |  | 
 | 	block_rsv = trans->block_rsv; | 
 | 	trans->block_rsv = &fs_info->delayed_block_rsv; | 
 |  | 
 | 	mutex_lock(&delayed_node->mutex); | 
 | 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) | 
 | 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root, | 
 | 						   path, delayed_node); | 
 | 	else | 
 | 		ret = 0; | 
 | 	mutex_unlock(&delayed_node->mutex); | 
 |  | 
 | 	btrfs_free_path(path); | 
 | 	trans->block_rsv = block_rsv; | 
 | trans_out: | 
 | 	btrfs_end_transaction(trans); | 
 | 	btrfs_btree_balance_dirty(fs_info); | 
 | out: | 
 | 	btrfs_release_delayed_node(delayed_node); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | void btrfs_remove_delayed_node(struct btrfs_inode *inode) | 
 | { | 
 | 	struct btrfs_delayed_node *delayed_node; | 
 |  | 
 | 	delayed_node = READ_ONCE(inode->delayed_node); | 
 | 	if (!delayed_node) | 
 | 		return; | 
 |  | 
 | 	inode->delayed_node = NULL; | 
 | 	btrfs_release_delayed_node(delayed_node); | 
 | } | 
 |  | 
 | struct btrfs_async_delayed_work { | 
 | 	struct btrfs_delayed_root *delayed_root; | 
 | 	int nr; | 
 | 	struct btrfs_work work; | 
 | }; | 
 |  | 
 | static void btrfs_async_run_delayed_root(struct btrfs_work *work) | 
 | { | 
 | 	struct btrfs_async_delayed_work *async_work; | 
 | 	struct btrfs_delayed_root *delayed_root; | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_delayed_node *delayed_node = NULL; | 
 | 	struct btrfs_root *root; | 
 | 	struct btrfs_block_rsv *block_rsv; | 
 | 	int total_done = 0; | 
 |  | 
 | 	async_work = container_of(work, struct btrfs_async_delayed_work, work); | 
 | 	delayed_root = async_work->delayed_root; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		goto out; | 
 |  | 
 | 	do { | 
 | 		if (atomic_read(&delayed_root->items) < | 
 | 		    BTRFS_DELAYED_BACKGROUND / 2) | 
 | 			break; | 
 |  | 
 | 		delayed_node = btrfs_first_prepared_delayed_node(delayed_root); | 
 | 		if (!delayed_node) | 
 | 			break; | 
 |  | 
 | 		path->leave_spinning = 1; | 
 | 		root = delayed_node->root; | 
 |  | 
 | 		trans = btrfs_join_transaction(root); | 
 | 		if (IS_ERR(trans)) { | 
 | 			btrfs_release_path(path); | 
 | 			btrfs_release_prepared_delayed_node(delayed_node); | 
 | 			total_done++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		block_rsv = trans->block_rsv; | 
 | 		trans->block_rsv = &root->fs_info->delayed_block_rsv; | 
 |  | 
 | 		__btrfs_commit_inode_delayed_items(trans, path, delayed_node); | 
 |  | 
 | 		trans->block_rsv = block_rsv; | 
 | 		btrfs_end_transaction(trans); | 
 | 		btrfs_btree_balance_dirty_nodelay(root->fs_info); | 
 |  | 
 | 		btrfs_release_path(path); | 
 | 		btrfs_release_prepared_delayed_node(delayed_node); | 
 | 		total_done++; | 
 |  | 
 | 	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) | 
 | 		 || total_done < async_work->nr); | 
 |  | 
 | 	btrfs_free_path(path); | 
 | out: | 
 | 	wake_up(&delayed_root->wait); | 
 | 	kfree(async_work); | 
 | } | 
 |  | 
 |  | 
 | static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, | 
 | 				     struct btrfs_fs_info *fs_info, int nr) | 
 | { | 
 | 	struct btrfs_async_delayed_work *async_work; | 
 |  | 
 | 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS); | 
 | 	if (!async_work) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	async_work->delayed_root = delayed_root; | 
 | 	btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper, | 
 | 			btrfs_async_run_delayed_root, NULL, NULL); | 
 | 	async_work->nr = nr; | 
 |  | 
 | 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root)); | 
 | } | 
 |  | 
 | static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) | 
 | { | 
 | 	int val = atomic_read(&delayed_root->items_seq); | 
 |  | 
 | 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) | 
 | 		return 1; | 
 |  | 
 | 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; | 
 |  | 
 | 	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || | 
 | 		btrfs_workqueue_normal_congested(fs_info->delayed_workers)) | 
 | 		return; | 
 |  | 
 | 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { | 
 | 		int seq; | 
 | 		int ret; | 
 |  | 
 | 		seq = atomic_read(&delayed_root->items_seq); | 
 |  | 
 | 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); | 
 | 		if (ret) | 
 | 			return; | 
 |  | 
 | 		wait_event_interruptible(delayed_root->wait, | 
 | 					 could_end_wait(delayed_root, seq)); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); | 
 | } | 
 |  | 
 | /* Will return 0 or -ENOMEM */ | 
 | int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, | 
 | 				   const char *name, int name_len, | 
 | 				   struct btrfs_inode *dir, | 
 | 				   struct btrfs_disk_key *disk_key, u8 type, | 
 | 				   u64 index) | 
 | { | 
 | 	struct btrfs_delayed_node *delayed_node; | 
 | 	struct btrfs_delayed_item *delayed_item; | 
 | 	struct btrfs_dir_item *dir_item; | 
 | 	int ret; | 
 |  | 
 | 	delayed_node = btrfs_get_or_create_delayed_node(dir); | 
 | 	if (IS_ERR(delayed_node)) | 
 | 		return PTR_ERR(delayed_node); | 
 |  | 
 | 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len); | 
 | 	if (!delayed_item) { | 
 | 		ret = -ENOMEM; | 
 | 		goto release_node; | 
 | 	} | 
 |  | 
 | 	delayed_item->key.objectid = btrfs_ino(dir); | 
 | 	delayed_item->key.type = BTRFS_DIR_INDEX_KEY; | 
 | 	delayed_item->key.offset = index; | 
 |  | 
 | 	dir_item = (struct btrfs_dir_item *)delayed_item->data; | 
 | 	dir_item->location = *disk_key; | 
 | 	btrfs_set_stack_dir_transid(dir_item, trans->transid); | 
 | 	btrfs_set_stack_dir_data_len(dir_item, 0); | 
 | 	btrfs_set_stack_dir_name_len(dir_item, name_len); | 
 | 	btrfs_set_stack_dir_type(dir_item, type); | 
 | 	memcpy((char *)(dir_item + 1), name, name_len); | 
 |  | 
 | 	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item); | 
 | 	/* | 
 | 	 * we have reserved enough space when we start a new transaction, | 
 | 	 * so reserving metadata failure is impossible | 
 | 	 */ | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	mutex_lock(&delayed_node->mutex); | 
 | 	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item); | 
 | 	if (unlikely(ret)) { | 
 | 		btrfs_err(trans->fs_info, | 
 | 			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", | 
 | 			  name_len, name, delayed_node->root->root_key.objectid, | 
 | 			  delayed_node->inode_id, ret); | 
 | 		BUG(); | 
 | 	} | 
 | 	mutex_unlock(&delayed_node->mutex); | 
 |  | 
 | release_node: | 
 | 	btrfs_release_delayed_node(delayed_node); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info, | 
 | 					       struct btrfs_delayed_node *node, | 
 | 					       struct btrfs_key *key) | 
 | { | 
 | 	struct btrfs_delayed_item *item; | 
 |  | 
 | 	mutex_lock(&node->mutex); | 
 | 	item = __btrfs_lookup_delayed_insertion_item(node, key); | 
 | 	if (!item) { | 
 | 		mutex_unlock(&node->mutex); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	btrfs_delayed_item_release_metadata(node->root, item); | 
 | 	btrfs_release_delayed_item(item); | 
 | 	mutex_unlock(&node->mutex); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, | 
 | 				   struct btrfs_inode *dir, u64 index) | 
 | { | 
 | 	struct btrfs_delayed_node *node; | 
 | 	struct btrfs_delayed_item *item; | 
 | 	struct btrfs_key item_key; | 
 | 	int ret; | 
 |  | 
 | 	node = btrfs_get_or_create_delayed_node(dir); | 
 | 	if (IS_ERR(node)) | 
 | 		return PTR_ERR(node); | 
 |  | 
 | 	item_key.objectid = btrfs_ino(dir); | 
 | 	item_key.type = BTRFS_DIR_INDEX_KEY; | 
 | 	item_key.offset = index; | 
 |  | 
 | 	ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, | 
 | 						  &item_key); | 
 | 	if (!ret) | 
 | 		goto end; | 
 |  | 
 | 	item = btrfs_alloc_delayed_item(0); | 
 | 	if (!item) { | 
 | 		ret = -ENOMEM; | 
 | 		goto end; | 
 | 	} | 
 |  | 
 | 	item->key = item_key; | 
 |  | 
 | 	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item); | 
 | 	/* | 
 | 	 * we have reserved enough space when we start a new transaction, | 
 | 	 * so reserving metadata failure is impossible. | 
 | 	 */ | 
 | 	if (ret < 0) { | 
 | 		btrfs_err(trans->fs_info, | 
 | "metadata reservation failed for delayed dir item deltiona, should have been reserved"); | 
 | 		btrfs_release_delayed_item(item); | 
 | 		goto end; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&node->mutex); | 
 | 	ret = __btrfs_add_delayed_deletion_item(node, item); | 
 | 	if (unlikely(ret)) { | 
 | 		btrfs_err(trans->fs_info, | 
 | 			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", | 
 | 			  index, node->root->root_key.objectid, | 
 | 			  node->inode_id, ret); | 
 | 		btrfs_delayed_item_release_metadata(dir->root, item); | 
 | 		btrfs_release_delayed_item(item); | 
 | 	} | 
 | 	mutex_unlock(&node->mutex); | 
 | end: | 
 | 	btrfs_release_delayed_node(node); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) | 
 | { | 
 | 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); | 
 |  | 
 | 	if (!delayed_node) | 
 | 		return -ENOENT; | 
 |  | 
 | 	/* | 
 | 	 * Since we have held i_mutex of this directory, it is impossible that | 
 | 	 * a new directory index is added into the delayed node and index_cnt | 
 | 	 * is updated now. So we needn't lock the delayed node. | 
 | 	 */ | 
 | 	if (!delayed_node->index_cnt) { | 
 | 		btrfs_release_delayed_node(delayed_node); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	inode->index_cnt = delayed_node->index_cnt; | 
 | 	btrfs_release_delayed_node(delayed_node); | 
 | 	return 0; | 
 | } | 
 |  | 
 | bool btrfs_readdir_get_delayed_items(struct inode *inode, | 
 | 				     struct list_head *ins_list, | 
 | 				     struct list_head *del_list) | 
 | { | 
 | 	struct btrfs_delayed_node *delayed_node; | 
 | 	struct btrfs_delayed_item *item; | 
 |  | 
 | 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); | 
 | 	if (!delayed_node) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * We can only do one readdir with delayed items at a time because of | 
 | 	 * item->readdir_list. | 
 | 	 */ | 
 | 	inode_unlock_shared(inode); | 
 | 	inode_lock(inode); | 
 |  | 
 | 	mutex_lock(&delayed_node->mutex); | 
 | 	item = __btrfs_first_delayed_insertion_item(delayed_node); | 
 | 	while (item) { | 
 | 		refcount_inc(&item->refs); | 
 | 		list_add_tail(&item->readdir_list, ins_list); | 
 | 		item = __btrfs_next_delayed_item(item); | 
 | 	} | 
 |  | 
 | 	item = __btrfs_first_delayed_deletion_item(delayed_node); | 
 | 	while (item) { | 
 | 		refcount_inc(&item->refs); | 
 | 		list_add_tail(&item->readdir_list, del_list); | 
 | 		item = __btrfs_next_delayed_item(item); | 
 | 	} | 
 | 	mutex_unlock(&delayed_node->mutex); | 
 | 	/* | 
 | 	 * This delayed node is still cached in the btrfs inode, so refs | 
 | 	 * must be > 1 now, and we needn't check it is going to be freed | 
 | 	 * or not. | 
 | 	 * | 
 | 	 * Besides that, this function is used to read dir, we do not | 
 | 	 * insert/delete delayed items in this period. So we also needn't | 
 | 	 * requeue or dequeue this delayed node. | 
 | 	 */ | 
 | 	refcount_dec(&delayed_node->refs); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | void btrfs_readdir_put_delayed_items(struct inode *inode, | 
 | 				     struct list_head *ins_list, | 
 | 				     struct list_head *del_list) | 
 | { | 
 | 	struct btrfs_delayed_item *curr, *next; | 
 |  | 
 | 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) { | 
 | 		list_del(&curr->readdir_list); | 
 | 		if (refcount_dec_and_test(&curr->refs)) | 
 | 			kfree(curr); | 
 | 	} | 
 |  | 
 | 	list_for_each_entry_safe(curr, next, del_list, readdir_list) { | 
 | 		list_del(&curr->readdir_list); | 
 | 		if (refcount_dec_and_test(&curr->refs)) | 
 | 			kfree(curr); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The VFS is going to do up_read(), so we need to downgrade back to a | 
 | 	 * read lock. | 
 | 	 */ | 
 | 	downgrade_write(&inode->i_rwsem); | 
 | } | 
 |  | 
 | int btrfs_should_delete_dir_index(struct list_head *del_list, | 
 | 				  u64 index) | 
 | { | 
 | 	struct btrfs_delayed_item *curr; | 
 | 	int ret = 0; | 
 |  | 
 | 	list_for_each_entry(curr, del_list, readdir_list) { | 
 | 		if (curr->key.offset > index) | 
 | 			break; | 
 | 		if (curr->key.offset == index) { | 
 | 			ret = 1; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree | 
 |  * | 
 |  */ | 
 | int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, | 
 | 				    struct list_head *ins_list) | 
 | { | 
 | 	struct btrfs_dir_item *di; | 
 | 	struct btrfs_delayed_item *curr, *next; | 
 | 	struct btrfs_key location; | 
 | 	char *name; | 
 | 	int name_len; | 
 | 	int over = 0; | 
 | 	unsigned char d_type; | 
 |  | 
 | 	if (list_empty(ins_list)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Changing the data of the delayed item is impossible. So | 
 | 	 * we needn't lock them. And we have held i_mutex of the | 
 | 	 * directory, nobody can delete any directory indexes now. | 
 | 	 */ | 
 | 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) { | 
 | 		list_del(&curr->readdir_list); | 
 |  | 
 | 		if (curr->key.offset < ctx->pos) { | 
 | 			if (refcount_dec_and_test(&curr->refs)) | 
 | 				kfree(curr); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		ctx->pos = curr->key.offset; | 
 |  | 
 | 		di = (struct btrfs_dir_item *)curr->data; | 
 | 		name = (char *)(di + 1); | 
 | 		name_len = btrfs_stack_dir_name_len(di); | 
 |  | 
 | 		d_type = fs_ftype_to_dtype(di->type); | 
 | 		btrfs_disk_key_to_cpu(&location, &di->location); | 
 |  | 
 | 		over = !dir_emit(ctx, name, name_len, | 
 | 			       location.objectid, d_type); | 
 |  | 
 | 		if (refcount_dec_and_test(&curr->refs)) | 
 | 			kfree(curr); | 
 |  | 
 | 		if (over) | 
 | 			return 1; | 
 | 		ctx->pos++; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void fill_stack_inode_item(struct btrfs_trans_handle *trans, | 
 | 				  struct btrfs_inode_item *inode_item, | 
 | 				  struct inode *inode) | 
 | { | 
 | 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); | 
 | 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); | 
 | 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); | 
 | 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode); | 
 | 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); | 
 | 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); | 
 | 	btrfs_set_stack_inode_generation(inode_item, | 
 | 					 BTRFS_I(inode)->generation); | 
 | 	btrfs_set_stack_inode_sequence(inode_item, | 
 | 				       inode_peek_iversion(inode)); | 
 | 	btrfs_set_stack_inode_transid(inode_item, trans->transid); | 
 | 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); | 
 | 	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags); | 
 | 	btrfs_set_stack_inode_block_group(inode_item, 0); | 
 |  | 
 | 	btrfs_set_stack_timespec_sec(&inode_item->atime, | 
 | 				     inode->i_atime.tv_sec); | 
 | 	btrfs_set_stack_timespec_nsec(&inode_item->atime, | 
 | 				      inode->i_atime.tv_nsec); | 
 |  | 
 | 	btrfs_set_stack_timespec_sec(&inode_item->mtime, | 
 | 				     inode->i_mtime.tv_sec); | 
 | 	btrfs_set_stack_timespec_nsec(&inode_item->mtime, | 
 | 				      inode->i_mtime.tv_nsec); | 
 |  | 
 | 	btrfs_set_stack_timespec_sec(&inode_item->ctime, | 
 | 				     inode->i_ctime.tv_sec); | 
 | 	btrfs_set_stack_timespec_nsec(&inode_item->ctime, | 
 | 				      inode->i_ctime.tv_nsec); | 
 |  | 
 | 	btrfs_set_stack_timespec_sec(&inode_item->otime, | 
 | 				     BTRFS_I(inode)->i_otime.tv_sec); | 
 | 	btrfs_set_stack_timespec_nsec(&inode_item->otime, | 
 | 				     BTRFS_I(inode)->i_otime.tv_nsec); | 
 | } | 
 |  | 
 | int btrfs_fill_inode(struct inode *inode, u32 *rdev) | 
 | { | 
 | 	struct btrfs_delayed_node *delayed_node; | 
 | 	struct btrfs_inode_item *inode_item; | 
 |  | 
 | 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); | 
 | 	if (!delayed_node) | 
 | 		return -ENOENT; | 
 |  | 
 | 	mutex_lock(&delayed_node->mutex); | 
 | 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { | 
 | 		mutex_unlock(&delayed_node->mutex); | 
 | 		btrfs_release_delayed_node(delayed_node); | 
 | 		return -ENOENT; | 
 | 	} | 
 |  | 
 | 	inode_item = &delayed_node->inode_item; | 
 |  | 
 | 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); | 
 | 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); | 
 | 	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item)); | 
 | 	inode->i_mode = btrfs_stack_inode_mode(inode_item); | 
 | 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); | 
 | 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); | 
 | 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); | 
 |         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); | 
 |  | 
 | 	inode_set_iversion_queried(inode, | 
 | 				   btrfs_stack_inode_sequence(inode_item)); | 
 | 	inode->i_rdev = 0; | 
 | 	*rdev = btrfs_stack_inode_rdev(inode_item); | 
 | 	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item); | 
 |  | 
 | 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime); | 
 | 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime); | 
 |  | 
 | 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime); | 
 | 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime); | 
 |  | 
 | 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime); | 
 | 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime); | 
 |  | 
 | 	BTRFS_I(inode)->i_otime.tv_sec = | 
 | 		btrfs_stack_timespec_sec(&inode_item->otime); | 
 | 	BTRFS_I(inode)->i_otime.tv_nsec = | 
 | 		btrfs_stack_timespec_nsec(&inode_item->otime); | 
 |  | 
 | 	inode->i_generation = BTRFS_I(inode)->generation; | 
 | 	BTRFS_I(inode)->index_cnt = (u64)-1; | 
 |  | 
 | 	mutex_unlock(&delayed_node->mutex); | 
 | 	btrfs_release_delayed_node(delayed_node); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, | 
 | 			       struct btrfs_root *root, struct inode *inode) | 
 | { | 
 | 	struct btrfs_delayed_node *delayed_node; | 
 | 	int ret = 0; | 
 |  | 
 | 	delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode)); | 
 | 	if (IS_ERR(delayed_node)) | 
 | 		return PTR_ERR(delayed_node); | 
 |  | 
 | 	mutex_lock(&delayed_node->mutex); | 
 | 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { | 
 | 		fill_stack_inode_item(trans, &delayed_node->inode_item, inode); | 
 | 		goto release_node; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode), | 
 | 						   delayed_node); | 
 | 	if (ret) | 
 | 		goto release_node; | 
 |  | 
 | 	fill_stack_inode_item(trans, &delayed_node->inode_item, inode); | 
 | 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); | 
 | 	delayed_node->count++; | 
 | 	atomic_inc(&root->fs_info->delayed_root->items); | 
 | release_node: | 
 | 	mutex_unlock(&delayed_node->mutex); | 
 | 	btrfs_release_delayed_node(delayed_node); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
 | 	struct btrfs_delayed_node *delayed_node; | 
 |  | 
 | 	/* | 
 | 	 * we don't do delayed inode updates during log recovery because it | 
 | 	 * leads to enospc problems.  This means we also can't do | 
 | 	 * delayed inode refs | 
 | 	 */ | 
 | 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	delayed_node = btrfs_get_or_create_delayed_node(inode); | 
 | 	if (IS_ERR(delayed_node)) | 
 | 		return PTR_ERR(delayed_node); | 
 |  | 
 | 	/* | 
 | 	 * We don't reserve space for inode ref deletion is because: | 
 | 	 * - We ONLY do async inode ref deletion for the inode who has only | 
 | 	 *   one link(i_nlink == 1), it means there is only one inode ref. | 
 | 	 *   And in most case, the inode ref and the inode item are in the | 
 | 	 *   same leaf, and we will deal with them at the same time. | 
 | 	 *   Since we are sure we will reserve the space for the inode item, | 
 | 	 *   it is unnecessary to reserve space for inode ref deletion. | 
 | 	 * - If the inode ref and the inode item are not in the same leaf, | 
 | 	 *   We also needn't worry about enospc problem, because we reserve | 
 | 	 *   much more space for the inode update than it needs. | 
 | 	 * - At the worst, we can steal some space from the global reservation. | 
 | 	 *   It is very rare. | 
 | 	 */ | 
 | 	mutex_lock(&delayed_node->mutex); | 
 | 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) | 
 | 		goto release_node; | 
 |  | 
 | 	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); | 
 | 	delayed_node->count++; | 
 | 	atomic_inc(&fs_info->delayed_root->items); | 
 | release_node: | 
 | 	mutex_unlock(&delayed_node->mutex); | 
 | 	btrfs_release_delayed_node(delayed_node); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) | 
 | { | 
 | 	struct btrfs_root *root = delayed_node->root; | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct btrfs_delayed_item *curr_item, *prev_item; | 
 |  | 
 | 	mutex_lock(&delayed_node->mutex); | 
 | 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node); | 
 | 	while (curr_item) { | 
 | 		btrfs_delayed_item_release_metadata(root, curr_item); | 
 | 		prev_item = curr_item; | 
 | 		curr_item = __btrfs_next_delayed_item(prev_item); | 
 | 		btrfs_release_delayed_item(prev_item); | 
 | 	} | 
 |  | 
 | 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node); | 
 | 	while (curr_item) { | 
 | 		btrfs_delayed_item_release_metadata(root, curr_item); | 
 | 		prev_item = curr_item; | 
 | 		curr_item = __btrfs_next_delayed_item(prev_item); | 
 | 		btrfs_release_delayed_item(prev_item); | 
 | 	} | 
 |  | 
 | 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) | 
 | 		btrfs_release_delayed_iref(delayed_node); | 
 |  | 
 | 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { | 
 | 		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); | 
 | 		btrfs_release_delayed_inode(delayed_node); | 
 | 	} | 
 | 	mutex_unlock(&delayed_node->mutex); | 
 | } | 
 |  | 
 | void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) | 
 | { | 
 | 	struct btrfs_delayed_node *delayed_node; | 
 |  | 
 | 	delayed_node = btrfs_get_delayed_node(inode); | 
 | 	if (!delayed_node) | 
 | 		return; | 
 |  | 
 | 	__btrfs_kill_delayed_node(delayed_node); | 
 | 	btrfs_release_delayed_node(delayed_node); | 
 | } | 
 |  | 
 | void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) | 
 | { | 
 | 	u64 inode_id = 0; | 
 | 	struct btrfs_delayed_node *delayed_nodes[8]; | 
 | 	int i, n; | 
 |  | 
 | 	while (1) { | 
 | 		spin_lock(&root->inode_lock); | 
 | 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree, | 
 | 					   (void **)delayed_nodes, inode_id, | 
 | 					   ARRAY_SIZE(delayed_nodes)); | 
 | 		if (!n) { | 
 | 			spin_unlock(&root->inode_lock); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		inode_id = delayed_nodes[n - 1]->inode_id + 1; | 
 |  | 
 | 		for (i = 0; i < n; i++) | 
 | 			refcount_inc(&delayed_nodes[i]->refs); | 
 | 		spin_unlock(&root->inode_lock); | 
 |  | 
 | 		for (i = 0; i < n; i++) { | 
 | 			__btrfs_kill_delayed_node(delayed_nodes[i]); | 
 | 			btrfs_release_delayed_node(delayed_nodes[i]); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	struct btrfs_delayed_node *curr_node, *prev_node; | 
 |  | 
 | 	curr_node = btrfs_first_delayed_node(fs_info->delayed_root); | 
 | 	while (curr_node) { | 
 | 		__btrfs_kill_delayed_node(curr_node); | 
 |  | 
 | 		prev_node = curr_node; | 
 | 		curr_node = btrfs_next_delayed_node(curr_node); | 
 | 		btrfs_release_delayed_node(prev_node); | 
 | 	} | 
 | } | 
 |  |