|  | /* | 
|  | * (C) 1997 Linus Torvalds | 
|  | * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) | 
|  | */ | 
|  | #include <linux/export.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/hash.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/cdev.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/fsnotify.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/posix_acl.h> | 
|  | #include <linux/prefetch.h> | 
|  | #include <linux/buffer_head.h> /* for inode_has_buffers */ | 
|  | #include <linux/ratelimit.h> | 
|  | #include "internal.h" | 
|  |  | 
|  | /* | 
|  | * Inode locking rules: | 
|  | * | 
|  | * inode->i_lock protects: | 
|  | *   inode->i_state, inode->i_hash, __iget() | 
|  | * inode->i_sb->s_inode_lru_lock protects: | 
|  | *   inode->i_sb->s_inode_lru, inode->i_lru | 
|  | * inode_sb_list_lock protects: | 
|  | *   sb->s_inodes, inode->i_sb_list | 
|  | * bdi->wb.list_lock protects: | 
|  | *   bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list | 
|  | * inode_hash_lock protects: | 
|  | *   inode_hashtable, inode->i_hash | 
|  | * | 
|  | * Lock ordering: | 
|  | * | 
|  | * inode_sb_list_lock | 
|  | *   inode->i_lock | 
|  | *     inode->i_sb->s_inode_lru_lock | 
|  | * | 
|  | * bdi->wb.list_lock | 
|  | *   inode->i_lock | 
|  | * | 
|  | * inode_hash_lock | 
|  | *   inode_sb_list_lock | 
|  | *   inode->i_lock | 
|  | * | 
|  | * iunique_lock | 
|  | *   inode_hash_lock | 
|  | */ | 
|  |  | 
|  | static unsigned int i_hash_mask __read_mostly; | 
|  | static unsigned int i_hash_shift __read_mostly; | 
|  | static struct hlist_head *inode_hashtable __read_mostly; | 
|  | static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); | 
|  |  | 
|  | __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock); | 
|  |  | 
|  | /* | 
|  | * Empty aops. Can be used for the cases where the user does not | 
|  | * define any of the address_space operations. | 
|  | */ | 
|  | const struct address_space_operations empty_aops = { | 
|  | }; | 
|  | EXPORT_SYMBOL(empty_aops); | 
|  |  | 
|  | /* | 
|  | * Statistics gathering.. | 
|  | */ | 
|  | struct inodes_stat_t inodes_stat; | 
|  |  | 
|  | static DEFINE_PER_CPU(unsigned int, nr_inodes); | 
|  | static DEFINE_PER_CPU(unsigned int, nr_unused); | 
|  |  | 
|  | static struct kmem_cache *inode_cachep __read_mostly; | 
|  |  | 
|  | static int get_nr_inodes(void) | 
|  | { | 
|  | int i; | 
|  | int sum = 0; | 
|  | for_each_possible_cpu(i) | 
|  | sum += per_cpu(nr_inodes, i); | 
|  | return sum < 0 ? 0 : sum; | 
|  | } | 
|  |  | 
|  | static inline int get_nr_inodes_unused(void) | 
|  | { | 
|  | int i; | 
|  | int sum = 0; | 
|  | for_each_possible_cpu(i) | 
|  | sum += per_cpu(nr_unused, i); | 
|  | return sum < 0 ? 0 : sum; | 
|  | } | 
|  |  | 
|  | int get_nr_dirty_inodes(void) | 
|  | { | 
|  | /* not actually dirty inodes, but a wild approximation */ | 
|  | int nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); | 
|  | return nr_dirty > 0 ? nr_dirty : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle nr_inode sysctl | 
|  | */ | 
|  | #ifdef CONFIG_SYSCTL | 
|  | int proc_nr_inodes(ctl_table *table, int write, | 
|  | void __user *buffer, size_t *lenp, loff_t *ppos) | 
|  | { | 
|  | inodes_stat.nr_inodes = get_nr_inodes(); | 
|  | inodes_stat.nr_unused = get_nr_inodes_unused(); | 
|  | return proc_dointvec(table, write, buffer, lenp, ppos); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * inode_init_always - perform inode structure intialisation | 
|  | * @sb: superblock inode belongs to | 
|  | * @inode: inode to initialise | 
|  | * | 
|  | * These are initializations that need to be done on every inode | 
|  | * allocation as the fields are not initialised by slab allocation. | 
|  | */ | 
|  | int inode_init_always(struct super_block *sb, struct inode *inode) | 
|  | { | 
|  | static const struct inode_operations empty_iops; | 
|  | static const struct file_operations empty_fops; | 
|  | struct address_space *const mapping = &inode->i_data; | 
|  |  | 
|  | inode->i_sb = sb; | 
|  | inode->i_blkbits = sb->s_blocksize_bits; | 
|  | inode->i_flags = 0; | 
|  | atomic_set(&inode->i_count, 1); | 
|  | inode->i_op = &empty_iops; | 
|  | inode->i_fop = &empty_fops; | 
|  | inode->__i_nlink = 1; | 
|  | inode->i_opflags = 0; | 
|  | i_uid_write(inode, 0); | 
|  | i_gid_write(inode, 0); | 
|  | atomic_set(&inode->i_writecount, 0); | 
|  | inode->i_size = 0; | 
|  | inode->i_blocks = 0; | 
|  | inode->i_bytes = 0; | 
|  | inode->i_generation = 0; | 
|  | #ifdef CONFIG_QUOTA | 
|  | memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); | 
|  | #endif | 
|  | inode->i_pipe = NULL; | 
|  | inode->i_bdev = NULL; | 
|  | inode->i_cdev = NULL; | 
|  | inode->i_rdev = 0; | 
|  | inode->dirtied_when = 0; | 
|  |  | 
|  | if (security_inode_alloc(inode)) | 
|  | goto out; | 
|  | spin_lock_init(&inode->i_lock); | 
|  | lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); | 
|  |  | 
|  | mutex_init(&inode->i_mutex); | 
|  | lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); | 
|  |  | 
|  | atomic_set(&inode->i_dio_count, 0); | 
|  |  | 
|  | mapping->a_ops = &empty_aops; | 
|  | mapping->host = inode; | 
|  | mapping->flags = 0; | 
|  | mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); | 
|  | mapping->private_data = NULL; | 
|  | mapping->backing_dev_info = &default_backing_dev_info; | 
|  | mapping->writeback_index = 0; | 
|  |  | 
|  | /* | 
|  | * If the block_device provides a backing_dev_info for client | 
|  | * inodes then use that.  Otherwise the inode share the bdev's | 
|  | * backing_dev_info. | 
|  | */ | 
|  | if (sb->s_bdev) { | 
|  | struct backing_dev_info *bdi; | 
|  |  | 
|  | bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; | 
|  | mapping->backing_dev_info = bdi; | 
|  | } | 
|  | inode->i_private = NULL; | 
|  | inode->i_mapping = mapping; | 
|  | INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */ | 
|  | #ifdef CONFIG_FS_POSIX_ACL | 
|  | inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_FSNOTIFY | 
|  | inode->i_fsnotify_mask = 0; | 
|  | #endif | 
|  |  | 
|  | this_cpu_inc(nr_inodes); | 
|  |  | 
|  | return 0; | 
|  | out: | 
|  | return -ENOMEM; | 
|  | } | 
|  | EXPORT_SYMBOL(inode_init_always); | 
|  |  | 
|  | static struct inode *alloc_inode(struct super_block *sb) | 
|  | { | 
|  | struct inode *inode; | 
|  |  | 
|  | if (sb->s_op->alloc_inode) | 
|  | inode = sb->s_op->alloc_inode(sb); | 
|  | else | 
|  | inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); | 
|  |  | 
|  | if (!inode) | 
|  | return NULL; | 
|  |  | 
|  | if (unlikely(inode_init_always(sb, inode))) { | 
|  | if (inode->i_sb->s_op->destroy_inode) | 
|  | inode->i_sb->s_op->destroy_inode(inode); | 
|  | else | 
|  | kmem_cache_free(inode_cachep, inode); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return inode; | 
|  | } | 
|  |  | 
|  | void free_inode_nonrcu(struct inode *inode) | 
|  | { | 
|  | kmem_cache_free(inode_cachep, inode); | 
|  | } | 
|  | EXPORT_SYMBOL(free_inode_nonrcu); | 
|  |  | 
|  | void __destroy_inode(struct inode *inode) | 
|  | { | 
|  | BUG_ON(inode_has_buffers(inode)); | 
|  | security_inode_free(inode); | 
|  | fsnotify_inode_delete(inode); | 
|  | if (!inode->i_nlink) { | 
|  | WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); | 
|  | atomic_long_dec(&inode->i_sb->s_remove_count); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FS_POSIX_ACL | 
|  | if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED) | 
|  | posix_acl_release(inode->i_acl); | 
|  | if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED) | 
|  | posix_acl_release(inode->i_default_acl); | 
|  | #endif | 
|  | this_cpu_dec(nr_inodes); | 
|  | } | 
|  | EXPORT_SYMBOL(__destroy_inode); | 
|  |  | 
|  | static void i_callback(struct rcu_head *head) | 
|  | { | 
|  | struct inode *inode = container_of(head, struct inode, i_rcu); | 
|  | kmem_cache_free(inode_cachep, inode); | 
|  | } | 
|  |  | 
|  | static void destroy_inode(struct inode *inode) | 
|  | { | 
|  | BUG_ON(!list_empty(&inode->i_lru)); | 
|  | __destroy_inode(inode); | 
|  | if (inode->i_sb->s_op->destroy_inode) | 
|  | inode->i_sb->s_op->destroy_inode(inode); | 
|  | else | 
|  | call_rcu(&inode->i_rcu, i_callback); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * drop_nlink - directly drop an inode's link count | 
|  | * @inode: inode | 
|  | * | 
|  | * This is a low-level filesystem helper to replace any | 
|  | * direct filesystem manipulation of i_nlink.  In cases | 
|  | * where we are attempting to track writes to the | 
|  | * filesystem, a decrement to zero means an imminent | 
|  | * write when the file is truncated and actually unlinked | 
|  | * on the filesystem. | 
|  | */ | 
|  | void drop_nlink(struct inode *inode) | 
|  | { | 
|  | WARN_ON(inode->i_nlink == 0); | 
|  | inode->__i_nlink--; | 
|  | if (!inode->i_nlink) | 
|  | atomic_long_inc(&inode->i_sb->s_remove_count); | 
|  | } | 
|  | EXPORT_SYMBOL(drop_nlink); | 
|  |  | 
|  | /** | 
|  | * clear_nlink - directly zero an inode's link count | 
|  | * @inode: inode | 
|  | * | 
|  | * This is a low-level filesystem helper to replace any | 
|  | * direct filesystem manipulation of i_nlink.  See | 
|  | * drop_nlink() for why we care about i_nlink hitting zero. | 
|  | */ | 
|  | void clear_nlink(struct inode *inode) | 
|  | { | 
|  | if (inode->i_nlink) { | 
|  | inode->__i_nlink = 0; | 
|  | atomic_long_inc(&inode->i_sb->s_remove_count); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(clear_nlink); | 
|  |  | 
|  | /** | 
|  | * set_nlink - directly set an inode's link count | 
|  | * @inode: inode | 
|  | * @nlink: new nlink (should be non-zero) | 
|  | * | 
|  | * This is a low-level filesystem helper to replace any | 
|  | * direct filesystem manipulation of i_nlink. | 
|  | */ | 
|  | void set_nlink(struct inode *inode, unsigned int nlink) | 
|  | { | 
|  | if (!nlink) { | 
|  | clear_nlink(inode); | 
|  | } else { | 
|  | /* Yes, some filesystems do change nlink from zero to one */ | 
|  | if (inode->i_nlink == 0) | 
|  | atomic_long_dec(&inode->i_sb->s_remove_count); | 
|  |  | 
|  | inode->__i_nlink = nlink; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(set_nlink); | 
|  |  | 
|  | /** | 
|  | * inc_nlink - directly increment an inode's link count | 
|  | * @inode: inode | 
|  | * | 
|  | * This is a low-level filesystem helper to replace any | 
|  | * direct filesystem manipulation of i_nlink.  Currently, | 
|  | * it is only here for parity with dec_nlink(). | 
|  | */ | 
|  | void inc_nlink(struct inode *inode) | 
|  | { | 
|  | if (WARN_ON(inode->i_nlink == 0)) | 
|  | atomic_long_dec(&inode->i_sb->s_remove_count); | 
|  |  | 
|  | inode->__i_nlink++; | 
|  | } | 
|  | EXPORT_SYMBOL(inc_nlink); | 
|  |  | 
|  | void address_space_init_once(struct address_space *mapping) | 
|  | { | 
|  | memset(mapping, 0, sizeof(*mapping)); | 
|  | INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC); | 
|  | spin_lock_init(&mapping->tree_lock); | 
|  | mutex_init(&mapping->i_mmap_mutex); | 
|  | INIT_LIST_HEAD(&mapping->private_list); | 
|  | spin_lock_init(&mapping->private_lock); | 
|  | mapping->i_mmap = RB_ROOT; | 
|  | INIT_LIST_HEAD(&mapping->i_mmap_nonlinear); | 
|  | } | 
|  | EXPORT_SYMBOL(address_space_init_once); | 
|  |  | 
|  | /* | 
|  | * These are initializations that only need to be done | 
|  | * once, because the fields are idempotent across use | 
|  | * of the inode, so let the slab aware of that. | 
|  | */ | 
|  | void inode_init_once(struct inode *inode) | 
|  | { | 
|  | memset(inode, 0, sizeof(*inode)); | 
|  | INIT_HLIST_NODE(&inode->i_hash); | 
|  | INIT_LIST_HEAD(&inode->i_devices); | 
|  | INIT_LIST_HEAD(&inode->i_wb_list); | 
|  | INIT_LIST_HEAD(&inode->i_lru); | 
|  | address_space_init_once(&inode->i_data); | 
|  | i_size_ordered_init(inode); | 
|  | #ifdef CONFIG_FSNOTIFY | 
|  | INIT_HLIST_HEAD(&inode->i_fsnotify_marks); | 
|  | #endif | 
|  | } | 
|  | EXPORT_SYMBOL(inode_init_once); | 
|  |  | 
|  | static void init_once(void *foo) | 
|  | { | 
|  | struct inode *inode = (struct inode *) foo; | 
|  |  | 
|  | inode_init_once(inode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * inode->i_lock must be held | 
|  | */ | 
|  | void __iget(struct inode *inode) | 
|  | { | 
|  | atomic_inc(&inode->i_count); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * get additional reference to inode; caller must already hold one. | 
|  | */ | 
|  | void ihold(struct inode *inode) | 
|  | { | 
|  | WARN_ON(atomic_inc_return(&inode->i_count) < 2); | 
|  | } | 
|  | EXPORT_SYMBOL(ihold); | 
|  |  | 
|  | static void inode_lru_list_add(struct inode *inode) | 
|  | { | 
|  | spin_lock(&inode->i_sb->s_inode_lru_lock); | 
|  | if (list_empty(&inode->i_lru)) { | 
|  | list_add(&inode->i_lru, &inode->i_sb->s_inode_lru); | 
|  | inode->i_sb->s_nr_inodes_unused++; | 
|  | this_cpu_inc(nr_unused); | 
|  | } | 
|  | spin_unlock(&inode->i_sb->s_inode_lru_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add inode to LRU if needed (inode is unused and clean). | 
|  | * | 
|  | * Needs inode->i_lock held. | 
|  | */ | 
|  | void inode_add_lru(struct inode *inode) | 
|  | { | 
|  | if (!(inode->i_state & (I_DIRTY | I_SYNC | I_FREEING | I_WILL_FREE)) && | 
|  | !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE) | 
|  | inode_lru_list_add(inode); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void inode_lru_list_del(struct inode *inode) | 
|  | { | 
|  | spin_lock(&inode->i_sb->s_inode_lru_lock); | 
|  | if (!list_empty(&inode->i_lru)) { | 
|  | list_del_init(&inode->i_lru); | 
|  | inode->i_sb->s_nr_inodes_unused--; | 
|  | this_cpu_dec(nr_unused); | 
|  | } | 
|  | spin_unlock(&inode->i_sb->s_inode_lru_lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * inode_sb_list_add - add inode to the superblock list of inodes | 
|  | * @inode: inode to add | 
|  | */ | 
|  | void inode_sb_list_add(struct inode *inode) | 
|  | { | 
|  | spin_lock(&inode_sb_list_lock); | 
|  | list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); | 
|  | spin_unlock(&inode_sb_list_lock); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(inode_sb_list_add); | 
|  |  | 
|  | static inline void inode_sb_list_del(struct inode *inode) | 
|  | { | 
|  | if (!list_empty(&inode->i_sb_list)) { | 
|  | spin_lock(&inode_sb_list_lock); | 
|  | list_del_init(&inode->i_sb_list); | 
|  | spin_unlock(&inode_sb_list_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned long hash(struct super_block *sb, unsigned long hashval) | 
|  | { | 
|  | unsigned long tmp; | 
|  |  | 
|  | tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / | 
|  | L1_CACHE_BYTES; | 
|  | tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); | 
|  | return tmp & i_hash_mask; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	__insert_inode_hash - hash an inode | 
|  | *	@inode: unhashed inode | 
|  | *	@hashval: unsigned long value used to locate this object in the | 
|  | *		inode_hashtable. | 
|  | * | 
|  | *	Add an inode to the inode hash for this superblock. | 
|  | */ | 
|  | void __insert_inode_hash(struct inode *inode, unsigned long hashval) | 
|  | { | 
|  | struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); | 
|  |  | 
|  | spin_lock(&inode_hash_lock); | 
|  | spin_lock(&inode->i_lock); | 
|  | hlist_add_head(&inode->i_hash, b); | 
|  | spin_unlock(&inode->i_lock); | 
|  | spin_unlock(&inode_hash_lock); | 
|  | } | 
|  | EXPORT_SYMBOL(__insert_inode_hash); | 
|  |  | 
|  | /** | 
|  | *	__remove_inode_hash - remove an inode from the hash | 
|  | *	@inode: inode to unhash | 
|  | * | 
|  | *	Remove an inode from the superblock. | 
|  | */ | 
|  | void __remove_inode_hash(struct inode *inode) | 
|  | { | 
|  | spin_lock(&inode_hash_lock); | 
|  | spin_lock(&inode->i_lock); | 
|  | hlist_del_init(&inode->i_hash); | 
|  | spin_unlock(&inode->i_lock); | 
|  | spin_unlock(&inode_hash_lock); | 
|  | } | 
|  | EXPORT_SYMBOL(__remove_inode_hash); | 
|  |  | 
|  | void clear_inode(struct inode *inode) | 
|  | { | 
|  | might_sleep(); | 
|  | /* | 
|  | * We have to cycle tree_lock here because reclaim can be still in the | 
|  | * process of removing the last page (in __delete_from_page_cache()) | 
|  | * and we must not free mapping under it. | 
|  | */ | 
|  | spin_lock_irq(&inode->i_data.tree_lock); | 
|  | BUG_ON(inode->i_data.nrpages); | 
|  | spin_unlock_irq(&inode->i_data.tree_lock); | 
|  | BUG_ON(!list_empty(&inode->i_data.private_list)); | 
|  | BUG_ON(!(inode->i_state & I_FREEING)); | 
|  | BUG_ON(inode->i_state & I_CLEAR); | 
|  | /* don't need i_lock here, no concurrent mods to i_state */ | 
|  | inode->i_state = I_FREEING | I_CLEAR; | 
|  | } | 
|  | EXPORT_SYMBOL(clear_inode); | 
|  |  | 
|  | /* | 
|  | * Free the inode passed in, removing it from the lists it is still connected | 
|  | * to. We remove any pages still attached to the inode and wait for any IO that | 
|  | * is still in progress before finally destroying the inode. | 
|  | * | 
|  | * An inode must already be marked I_FREEING so that we avoid the inode being | 
|  | * moved back onto lists if we race with other code that manipulates the lists | 
|  | * (e.g. writeback_single_inode). The caller is responsible for setting this. | 
|  | * | 
|  | * An inode must already be removed from the LRU list before being evicted from | 
|  | * the cache. This should occur atomically with setting the I_FREEING state | 
|  | * flag, so no inodes here should ever be on the LRU when being evicted. | 
|  | */ | 
|  | static void evict(struct inode *inode) | 
|  | { | 
|  | const struct super_operations *op = inode->i_sb->s_op; | 
|  |  | 
|  | BUG_ON(!(inode->i_state & I_FREEING)); | 
|  | BUG_ON(!list_empty(&inode->i_lru)); | 
|  |  | 
|  | if (!list_empty(&inode->i_wb_list)) | 
|  | inode_wb_list_del(inode); | 
|  |  | 
|  | inode_sb_list_del(inode); | 
|  |  | 
|  | /* | 
|  | * Wait for flusher thread to be done with the inode so that filesystem | 
|  | * does not start destroying it while writeback is still running. Since | 
|  | * the inode has I_FREEING set, flusher thread won't start new work on | 
|  | * the inode.  We just have to wait for running writeback to finish. | 
|  | */ | 
|  | inode_wait_for_writeback(inode); | 
|  |  | 
|  | if (op->evict_inode) { | 
|  | op->evict_inode(inode); | 
|  | } else { | 
|  | if (inode->i_data.nrpages) | 
|  | truncate_inode_pages(&inode->i_data, 0); | 
|  | clear_inode(inode); | 
|  | } | 
|  | if (S_ISBLK(inode->i_mode) && inode->i_bdev) | 
|  | bd_forget(inode); | 
|  | if (S_ISCHR(inode->i_mode) && inode->i_cdev) | 
|  | cd_forget(inode); | 
|  |  | 
|  | remove_inode_hash(inode); | 
|  |  | 
|  | spin_lock(&inode->i_lock); | 
|  | wake_up_bit(&inode->i_state, __I_NEW); | 
|  | BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); | 
|  | spin_unlock(&inode->i_lock); | 
|  |  | 
|  | destroy_inode(inode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * dispose_list - dispose of the contents of a local list | 
|  | * @head: the head of the list to free | 
|  | * | 
|  | * Dispose-list gets a local list with local inodes in it, so it doesn't | 
|  | * need to worry about list corruption and SMP locks. | 
|  | */ | 
|  | static void dispose_list(struct list_head *head) | 
|  | { | 
|  | while (!list_empty(head)) { | 
|  | struct inode *inode; | 
|  |  | 
|  | inode = list_first_entry(head, struct inode, i_lru); | 
|  | list_del_init(&inode->i_lru); | 
|  |  | 
|  | evict(inode); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * evict_inodes	- evict all evictable inodes for a superblock | 
|  | * @sb:		superblock to operate on | 
|  | * | 
|  | * Make sure that no inodes with zero refcount are retained.  This is | 
|  | * called by superblock shutdown after having MS_ACTIVE flag removed, | 
|  | * so any inode reaching zero refcount during or after that call will | 
|  | * be immediately evicted. | 
|  | */ | 
|  | void evict_inodes(struct super_block *sb) | 
|  | { | 
|  | struct inode *inode, *next; | 
|  | LIST_HEAD(dispose); | 
|  |  | 
|  | spin_lock(&inode_sb_list_lock); | 
|  | list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { | 
|  | if (atomic_read(&inode->i_count)) | 
|  | continue; | 
|  |  | 
|  | spin_lock(&inode->i_lock); | 
|  | if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { | 
|  | spin_unlock(&inode->i_lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | inode->i_state |= I_FREEING; | 
|  | inode_lru_list_del(inode); | 
|  | spin_unlock(&inode->i_lock); | 
|  | list_add(&inode->i_lru, &dispose); | 
|  | } | 
|  | spin_unlock(&inode_sb_list_lock); | 
|  |  | 
|  | dispose_list(&dispose); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * invalidate_inodes	- attempt to free all inodes on a superblock | 
|  | * @sb:		superblock to operate on | 
|  | * @kill_dirty: flag to guide handling of dirty inodes | 
|  | * | 
|  | * Attempts to free all inodes for a given superblock.  If there were any | 
|  | * busy inodes return a non-zero value, else zero. | 
|  | * If @kill_dirty is set, discard dirty inodes too, otherwise treat | 
|  | * them as busy. | 
|  | */ | 
|  | int invalidate_inodes(struct super_block *sb, bool kill_dirty) | 
|  | { | 
|  | int busy = 0; | 
|  | struct inode *inode, *next; | 
|  | LIST_HEAD(dispose); | 
|  |  | 
|  | spin_lock(&inode_sb_list_lock); | 
|  | list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { | 
|  | spin_lock(&inode->i_lock); | 
|  | if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { | 
|  | spin_unlock(&inode->i_lock); | 
|  | continue; | 
|  | } | 
|  | if (inode->i_state & I_DIRTY && !kill_dirty) { | 
|  | spin_unlock(&inode->i_lock); | 
|  | busy = 1; | 
|  | continue; | 
|  | } | 
|  | if (atomic_read(&inode->i_count)) { | 
|  | spin_unlock(&inode->i_lock); | 
|  | busy = 1; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | inode->i_state |= I_FREEING; | 
|  | inode_lru_list_del(inode); | 
|  | spin_unlock(&inode->i_lock); | 
|  | list_add(&inode->i_lru, &dispose); | 
|  | } | 
|  | spin_unlock(&inode_sb_list_lock); | 
|  |  | 
|  | dispose_list(&dispose); | 
|  |  | 
|  | return busy; | 
|  | } | 
|  |  | 
|  | static int can_unuse(struct inode *inode) | 
|  | { | 
|  | if (inode->i_state & ~I_REFERENCED) | 
|  | return 0; | 
|  | if (inode_has_buffers(inode)) | 
|  | return 0; | 
|  | if (atomic_read(&inode->i_count)) | 
|  | return 0; | 
|  | if (inode->i_data.nrpages) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Walk the superblock inode LRU for freeable inodes and attempt to free them. | 
|  | * This is called from the superblock shrinker function with a number of inodes | 
|  | * to trim from the LRU. Inodes to be freed are moved to a temporary list and | 
|  | * then are freed outside inode_lock by dispose_list(). | 
|  | * | 
|  | * Any inodes which are pinned purely because of attached pagecache have their | 
|  | * pagecache removed.  If the inode has metadata buffers attached to | 
|  | * mapping->private_list then try to remove them. | 
|  | * | 
|  | * If the inode has the I_REFERENCED flag set, then it means that it has been | 
|  | * used recently - the flag is set in iput_final(). When we encounter such an | 
|  | * inode, clear the flag and move it to the back of the LRU so it gets another | 
|  | * pass through the LRU before it gets reclaimed. This is necessary because of | 
|  | * the fact we are doing lazy LRU updates to minimise lock contention so the | 
|  | * LRU does not have strict ordering. Hence we don't want to reclaim inodes | 
|  | * with this flag set because they are the inodes that are out of order. | 
|  | */ | 
|  | void prune_icache_sb(struct super_block *sb, int nr_to_scan) | 
|  | { | 
|  | LIST_HEAD(freeable); | 
|  | int nr_scanned; | 
|  | unsigned long reap = 0; | 
|  |  | 
|  | spin_lock(&sb->s_inode_lru_lock); | 
|  | for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) { | 
|  | struct inode *inode; | 
|  |  | 
|  | if (list_empty(&sb->s_inode_lru)) | 
|  | break; | 
|  |  | 
|  | inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru); | 
|  |  | 
|  | /* | 
|  | * we are inverting the sb->s_inode_lru_lock/inode->i_lock here, | 
|  | * so use a trylock. If we fail to get the lock, just move the | 
|  | * inode to the back of the list so we don't spin on it. | 
|  | */ | 
|  | if (!spin_trylock(&inode->i_lock)) { | 
|  | list_move(&inode->i_lru, &sb->s_inode_lru); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Referenced or dirty inodes are still in use. Give them | 
|  | * another pass through the LRU as we canot reclaim them now. | 
|  | */ | 
|  | if (atomic_read(&inode->i_count) || | 
|  | (inode->i_state & ~I_REFERENCED)) { | 
|  | list_del_init(&inode->i_lru); | 
|  | spin_unlock(&inode->i_lock); | 
|  | sb->s_nr_inodes_unused--; | 
|  | this_cpu_dec(nr_unused); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* recently referenced inodes get one more pass */ | 
|  | if (inode->i_state & I_REFERENCED) { | 
|  | inode->i_state &= ~I_REFERENCED; | 
|  | list_move(&inode->i_lru, &sb->s_inode_lru); | 
|  | spin_unlock(&inode->i_lock); | 
|  | continue; | 
|  | } | 
|  | if (inode_has_buffers(inode) || inode->i_data.nrpages) { | 
|  | __iget(inode); | 
|  | spin_unlock(&inode->i_lock); | 
|  | spin_unlock(&sb->s_inode_lru_lock); | 
|  | if (remove_inode_buffers(inode)) | 
|  | reap += invalidate_mapping_pages(&inode->i_data, | 
|  | 0, -1); | 
|  | iput(inode); | 
|  | spin_lock(&sb->s_inode_lru_lock); | 
|  |  | 
|  | if (inode != list_entry(sb->s_inode_lru.next, | 
|  | struct inode, i_lru)) | 
|  | continue;	/* wrong inode or list_empty */ | 
|  | /* avoid lock inversions with trylock */ | 
|  | if (!spin_trylock(&inode->i_lock)) | 
|  | continue; | 
|  | if (!can_unuse(inode)) { | 
|  | spin_unlock(&inode->i_lock); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | WARN_ON(inode->i_state & I_NEW); | 
|  | inode->i_state |= I_FREEING; | 
|  | spin_unlock(&inode->i_lock); | 
|  |  | 
|  | list_move(&inode->i_lru, &freeable); | 
|  | sb->s_nr_inodes_unused--; | 
|  | this_cpu_dec(nr_unused); | 
|  | } | 
|  | if (current_is_kswapd()) | 
|  | __count_vm_events(KSWAPD_INODESTEAL, reap); | 
|  | else | 
|  | __count_vm_events(PGINODESTEAL, reap); | 
|  | spin_unlock(&sb->s_inode_lru_lock); | 
|  | if (current->reclaim_state) | 
|  | current->reclaim_state->reclaimed_slab += reap; | 
|  |  | 
|  | dispose_list(&freeable); | 
|  | } | 
|  |  | 
|  | static void __wait_on_freeing_inode(struct inode *inode); | 
|  | /* | 
|  | * Called with the inode lock held. | 
|  | */ | 
|  | static struct inode *find_inode(struct super_block *sb, | 
|  | struct hlist_head *head, | 
|  | int (*test)(struct inode *, void *), | 
|  | void *data) | 
|  | { | 
|  | struct inode *inode = NULL; | 
|  |  | 
|  | repeat: | 
|  | hlist_for_each_entry(inode, head, i_hash) { | 
|  | spin_lock(&inode->i_lock); | 
|  | if (inode->i_sb != sb) { | 
|  | spin_unlock(&inode->i_lock); | 
|  | continue; | 
|  | } | 
|  | if (!test(inode, data)) { | 
|  | spin_unlock(&inode->i_lock); | 
|  | continue; | 
|  | } | 
|  | if (inode->i_state & (I_FREEING|I_WILL_FREE)) { | 
|  | __wait_on_freeing_inode(inode); | 
|  | goto repeat; | 
|  | } | 
|  | __iget(inode); | 
|  | spin_unlock(&inode->i_lock); | 
|  | return inode; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find_inode_fast is the fast path version of find_inode, see the comment at | 
|  | * iget_locked for details. | 
|  | */ | 
|  | static struct inode *find_inode_fast(struct super_block *sb, | 
|  | struct hlist_head *head, unsigned long ino) | 
|  | { | 
|  | struct inode *inode = NULL; | 
|  |  | 
|  | repeat: | 
|  | hlist_for_each_entry(inode, head, i_hash) { | 
|  | spin_lock(&inode->i_lock); | 
|  | if (inode->i_ino != ino) { | 
|  | spin_unlock(&inode->i_lock); | 
|  | continue; | 
|  | } | 
|  | if (inode->i_sb != sb) { | 
|  | spin_unlock(&inode->i_lock); | 
|  | continue; | 
|  | } | 
|  | if (inode->i_state & (I_FREEING|I_WILL_FREE)) { | 
|  | __wait_on_freeing_inode(inode); | 
|  | goto repeat; | 
|  | } | 
|  | __iget(inode); | 
|  | spin_unlock(&inode->i_lock); | 
|  | return inode; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Each cpu owns a range of LAST_INO_BATCH numbers. | 
|  | * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, | 
|  | * to renew the exhausted range. | 
|  | * | 
|  | * This does not significantly increase overflow rate because every CPU can | 
|  | * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is | 
|  | * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the | 
|  | * 2^32 range, and is a worst-case. Even a 50% wastage would only increase | 
|  | * overflow rate by 2x, which does not seem too significant. | 
|  | * | 
|  | * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW | 
|  | * error if st_ino won't fit in target struct field. Use 32bit counter | 
|  | * here to attempt to avoid that. | 
|  | */ | 
|  | #define LAST_INO_BATCH 1024 | 
|  | static DEFINE_PER_CPU(unsigned int, last_ino); | 
|  |  | 
|  | unsigned int get_next_ino(void) | 
|  | { | 
|  | unsigned int *p = &get_cpu_var(last_ino); | 
|  | unsigned int res = *p; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { | 
|  | static atomic_t shared_last_ino; | 
|  | int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); | 
|  |  | 
|  | res = next - LAST_INO_BATCH; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | *p = ++res; | 
|  | put_cpu_var(last_ino); | 
|  | return res; | 
|  | } | 
|  | EXPORT_SYMBOL(get_next_ino); | 
|  |  | 
|  | /** | 
|  | *	new_inode_pseudo 	- obtain an inode | 
|  | *	@sb: superblock | 
|  | * | 
|  | *	Allocates a new inode for given superblock. | 
|  | *	Inode wont be chained in superblock s_inodes list | 
|  | *	This means : | 
|  | *	- fs can't be unmount | 
|  | *	- quotas, fsnotify, writeback can't work | 
|  | */ | 
|  | struct inode *new_inode_pseudo(struct super_block *sb) | 
|  | { | 
|  | struct inode *inode = alloc_inode(sb); | 
|  |  | 
|  | if (inode) { | 
|  | spin_lock(&inode->i_lock); | 
|  | inode->i_state = 0; | 
|  | spin_unlock(&inode->i_lock); | 
|  | INIT_LIST_HEAD(&inode->i_sb_list); | 
|  | } | 
|  | return inode; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	new_inode 	- obtain an inode | 
|  | *	@sb: superblock | 
|  | * | 
|  | *	Allocates a new inode for given superblock. The default gfp_mask | 
|  | *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. | 
|  | *	If HIGHMEM pages are unsuitable or it is known that pages allocated | 
|  | *	for the page cache are not reclaimable or migratable, | 
|  | *	mapping_set_gfp_mask() must be called with suitable flags on the | 
|  | *	newly created inode's mapping | 
|  | * | 
|  | */ | 
|  | struct inode *new_inode(struct super_block *sb) | 
|  | { | 
|  | struct inode *inode; | 
|  |  | 
|  | spin_lock_prefetch(&inode_sb_list_lock); | 
|  |  | 
|  | inode = new_inode_pseudo(sb); | 
|  | if (inode) | 
|  | inode_sb_list_add(inode); | 
|  | return inode; | 
|  | } | 
|  | EXPORT_SYMBOL(new_inode); | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_LOCK_ALLOC | 
|  | void lockdep_annotate_inode_mutex_key(struct inode *inode) | 
|  | { | 
|  | if (S_ISDIR(inode->i_mode)) { | 
|  | struct file_system_type *type = inode->i_sb->s_type; | 
|  |  | 
|  | /* Set new key only if filesystem hasn't already changed it */ | 
|  | if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) { | 
|  | /* | 
|  | * ensure nobody is actually holding i_mutex | 
|  | */ | 
|  | mutex_destroy(&inode->i_mutex); | 
|  | mutex_init(&inode->i_mutex); | 
|  | lockdep_set_class(&inode->i_mutex, | 
|  | &type->i_mutex_dir_key); | 
|  | } | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * unlock_new_inode - clear the I_NEW state and wake up any waiters | 
|  | * @inode:	new inode to unlock | 
|  | * | 
|  | * Called when the inode is fully initialised to clear the new state of the | 
|  | * inode and wake up anyone waiting for the inode to finish initialisation. | 
|  | */ | 
|  | void unlock_new_inode(struct inode *inode) | 
|  | { | 
|  | lockdep_annotate_inode_mutex_key(inode); | 
|  | spin_lock(&inode->i_lock); | 
|  | WARN_ON(!(inode->i_state & I_NEW)); | 
|  | inode->i_state &= ~I_NEW; | 
|  | smp_mb(); | 
|  | wake_up_bit(&inode->i_state, __I_NEW); | 
|  | spin_unlock(&inode->i_lock); | 
|  | } | 
|  | EXPORT_SYMBOL(unlock_new_inode); | 
|  |  | 
|  | /** | 
|  | * iget5_locked - obtain an inode from a mounted file system | 
|  | * @sb:		super block of file system | 
|  | * @hashval:	hash value (usually inode number) to get | 
|  | * @test:	callback used for comparisons between inodes | 
|  | * @set:	callback used to initialize a new struct inode | 
|  | * @data:	opaque data pointer to pass to @test and @set | 
|  | * | 
|  | * Search for the inode specified by @hashval and @data in the inode cache, | 
|  | * and if present it is return it with an increased reference count. This is | 
|  | * a generalized version of iget_locked() for file systems where the inode | 
|  | * number is not sufficient for unique identification of an inode. | 
|  | * | 
|  | * If the inode is not in cache, allocate a new inode and return it locked, | 
|  | * hashed, and with the I_NEW flag set. The file system gets to fill it in | 
|  | * before unlocking it via unlock_new_inode(). | 
|  | * | 
|  | * Note both @test and @set are called with the inode_hash_lock held, so can't | 
|  | * sleep. | 
|  | */ | 
|  | struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, | 
|  | int (*test)(struct inode *, void *), | 
|  | int (*set)(struct inode *, void *), void *data) | 
|  | { | 
|  | struct hlist_head *head = inode_hashtable + hash(sb, hashval); | 
|  | struct inode *inode; | 
|  |  | 
|  | spin_lock(&inode_hash_lock); | 
|  | inode = find_inode(sb, head, test, data); | 
|  | spin_unlock(&inode_hash_lock); | 
|  |  | 
|  | if (inode) { | 
|  | wait_on_inode(inode); | 
|  | return inode; | 
|  | } | 
|  |  | 
|  | inode = alloc_inode(sb); | 
|  | if (inode) { | 
|  | struct inode *old; | 
|  |  | 
|  | spin_lock(&inode_hash_lock); | 
|  | /* We released the lock, so.. */ | 
|  | old = find_inode(sb, head, test, data); | 
|  | if (!old) { | 
|  | if (set(inode, data)) | 
|  | goto set_failed; | 
|  |  | 
|  | spin_lock(&inode->i_lock); | 
|  | inode->i_state = I_NEW; | 
|  | hlist_add_head(&inode->i_hash, head); | 
|  | spin_unlock(&inode->i_lock); | 
|  | inode_sb_list_add(inode); | 
|  | spin_unlock(&inode_hash_lock); | 
|  |  | 
|  | /* Return the locked inode with I_NEW set, the | 
|  | * caller is responsible for filling in the contents | 
|  | */ | 
|  | return inode; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Uhhuh, somebody else created the same inode under | 
|  | * us. Use the old inode instead of the one we just | 
|  | * allocated. | 
|  | */ | 
|  | spin_unlock(&inode_hash_lock); | 
|  | destroy_inode(inode); | 
|  | inode = old; | 
|  | wait_on_inode(inode); | 
|  | } | 
|  | return inode; | 
|  |  | 
|  | set_failed: | 
|  | spin_unlock(&inode_hash_lock); | 
|  | destroy_inode(inode); | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(iget5_locked); | 
|  |  | 
|  | /** | 
|  | * iget_locked - obtain an inode from a mounted file system | 
|  | * @sb:		super block of file system | 
|  | * @ino:	inode number to get | 
|  | * | 
|  | * Search for the inode specified by @ino in the inode cache and if present | 
|  | * return it with an increased reference count. This is for file systems | 
|  | * where the inode number is sufficient for unique identification of an inode. | 
|  | * | 
|  | * If the inode is not in cache, allocate a new inode and return it locked, | 
|  | * hashed, and with the I_NEW flag set.  The file system gets to fill it in | 
|  | * before unlocking it via unlock_new_inode(). | 
|  | */ | 
|  | struct inode *iget_locked(struct super_block *sb, unsigned long ino) | 
|  | { | 
|  | struct hlist_head *head = inode_hashtable + hash(sb, ino); | 
|  | struct inode *inode; | 
|  |  | 
|  | spin_lock(&inode_hash_lock); | 
|  | inode = find_inode_fast(sb, head, ino); | 
|  | spin_unlock(&inode_hash_lock); | 
|  | if (inode) { | 
|  | wait_on_inode(inode); | 
|  | return inode; | 
|  | } | 
|  |  | 
|  | inode = alloc_inode(sb); | 
|  | if (inode) { | 
|  | struct inode *old; | 
|  |  | 
|  | spin_lock(&inode_hash_lock); | 
|  | /* We released the lock, so.. */ | 
|  | old = find_inode_fast(sb, head, ino); | 
|  | if (!old) { | 
|  | inode->i_ino = ino; | 
|  | spin_lock(&inode->i_lock); | 
|  | inode->i_state = I_NEW; | 
|  | hlist_add_head(&inode->i_hash, head); | 
|  | spin_unlock(&inode->i_lock); | 
|  | inode_sb_list_add(inode); | 
|  | spin_unlock(&inode_hash_lock); | 
|  |  | 
|  | /* Return the locked inode with I_NEW set, the | 
|  | * caller is responsible for filling in the contents | 
|  | */ | 
|  | return inode; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Uhhuh, somebody else created the same inode under | 
|  | * us. Use the old inode instead of the one we just | 
|  | * allocated. | 
|  | */ | 
|  | spin_unlock(&inode_hash_lock); | 
|  | destroy_inode(inode); | 
|  | inode = old; | 
|  | wait_on_inode(inode); | 
|  | } | 
|  | return inode; | 
|  | } | 
|  | EXPORT_SYMBOL(iget_locked); | 
|  |  | 
|  | /* | 
|  | * search the inode cache for a matching inode number. | 
|  | * If we find one, then the inode number we are trying to | 
|  | * allocate is not unique and so we should not use it. | 
|  | * | 
|  | * Returns 1 if the inode number is unique, 0 if it is not. | 
|  | */ | 
|  | static int test_inode_iunique(struct super_block *sb, unsigned long ino) | 
|  | { | 
|  | struct hlist_head *b = inode_hashtable + hash(sb, ino); | 
|  | struct inode *inode; | 
|  |  | 
|  | spin_lock(&inode_hash_lock); | 
|  | hlist_for_each_entry(inode, b, i_hash) { | 
|  | if (inode->i_ino == ino && inode->i_sb == sb) { | 
|  | spin_unlock(&inode_hash_lock); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | spin_unlock(&inode_hash_lock); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	iunique - get a unique inode number | 
|  | *	@sb: superblock | 
|  | *	@max_reserved: highest reserved inode number | 
|  | * | 
|  | *	Obtain an inode number that is unique on the system for a given | 
|  | *	superblock. This is used by file systems that have no natural | 
|  | *	permanent inode numbering system. An inode number is returned that | 
|  | *	is higher than the reserved limit but unique. | 
|  | * | 
|  | *	BUGS: | 
|  | *	With a large number of inodes live on the file system this function | 
|  | *	currently becomes quite slow. | 
|  | */ | 
|  | ino_t iunique(struct super_block *sb, ino_t max_reserved) | 
|  | { | 
|  | /* | 
|  | * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW | 
|  | * error if st_ino won't fit in target struct field. Use 32bit counter | 
|  | * here to attempt to avoid that. | 
|  | */ | 
|  | static DEFINE_SPINLOCK(iunique_lock); | 
|  | static unsigned int counter; | 
|  | ino_t res; | 
|  |  | 
|  | spin_lock(&iunique_lock); | 
|  | do { | 
|  | if (counter <= max_reserved) | 
|  | counter = max_reserved + 1; | 
|  | res = counter++; | 
|  | } while (!test_inode_iunique(sb, res)); | 
|  | spin_unlock(&iunique_lock); | 
|  |  | 
|  | return res; | 
|  | } | 
|  | EXPORT_SYMBOL(iunique); | 
|  |  | 
|  | struct inode *igrab(struct inode *inode) | 
|  | { | 
|  | spin_lock(&inode->i_lock); | 
|  | if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { | 
|  | __iget(inode); | 
|  | spin_unlock(&inode->i_lock); | 
|  | } else { | 
|  | spin_unlock(&inode->i_lock); | 
|  | /* | 
|  | * Handle the case where s_op->clear_inode is not been | 
|  | * called yet, and somebody is calling igrab | 
|  | * while the inode is getting freed. | 
|  | */ | 
|  | inode = NULL; | 
|  | } | 
|  | return inode; | 
|  | } | 
|  | EXPORT_SYMBOL(igrab); | 
|  |  | 
|  | /** | 
|  | * ilookup5_nowait - search for an inode in the inode cache | 
|  | * @sb:		super block of file system to search | 
|  | * @hashval:	hash value (usually inode number) to search for | 
|  | * @test:	callback used for comparisons between inodes | 
|  | * @data:	opaque data pointer to pass to @test | 
|  | * | 
|  | * Search for the inode specified by @hashval and @data in the inode cache. | 
|  | * If the inode is in the cache, the inode is returned with an incremented | 
|  | * reference count. | 
|  | * | 
|  | * Note: I_NEW is not waited upon so you have to be very careful what you do | 
|  | * with the returned inode.  You probably should be using ilookup5() instead. | 
|  | * | 
|  | * Note2: @test is called with the inode_hash_lock held, so can't sleep. | 
|  | */ | 
|  | struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, | 
|  | int (*test)(struct inode *, void *), void *data) | 
|  | { | 
|  | struct hlist_head *head = inode_hashtable + hash(sb, hashval); | 
|  | struct inode *inode; | 
|  |  | 
|  | spin_lock(&inode_hash_lock); | 
|  | inode = find_inode(sb, head, test, data); | 
|  | spin_unlock(&inode_hash_lock); | 
|  |  | 
|  | return inode; | 
|  | } | 
|  | EXPORT_SYMBOL(ilookup5_nowait); | 
|  |  | 
|  | /** | 
|  | * ilookup5 - search for an inode in the inode cache | 
|  | * @sb:		super block of file system to search | 
|  | * @hashval:	hash value (usually inode number) to search for | 
|  | * @test:	callback used for comparisons between inodes | 
|  | * @data:	opaque data pointer to pass to @test | 
|  | * | 
|  | * Search for the inode specified by @hashval and @data in the inode cache, | 
|  | * and if the inode is in the cache, return the inode with an incremented | 
|  | * reference count.  Waits on I_NEW before returning the inode. | 
|  | * returned with an incremented reference count. | 
|  | * | 
|  | * This is a generalized version of ilookup() for file systems where the | 
|  | * inode number is not sufficient for unique identification of an inode. | 
|  | * | 
|  | * Note: @test is called with the inode_hash_lock held, so can't sleep. | 
|  | */ | 
|  | struct inode *ilookup5(struct super_block *sb, unsigned long hashval, | 
|  | int (*test)(struct inode *, void *), void *data) | 
|  | { | 
|  | struct inode *inode = ilookup5_nowait(sb, hashval, test, data); | 
|  |  | 
|  | if (inode) | 
|  | wait_on_inode(inode); | 
|  | return inode; | 
|  | } | 
|  | EXPORT_SYMBOL(ilookup5); | 
|  |  | 
|  | /** | 
|  | * ilookup - search for an inode in the inode cache | 
|  | * @sb:		super block of file system to search | 
|  | * @ino:	inode number to search for | 
|  | * | 
|  | * Search for the inode @ino in the inode cache, and if the inode is in the | 
|  | * cache, the inode is returned with an incremented reference count. | 
|  | */ | 
|  | struct inode *ilookup(struct super_block *sb, unsigned long ino) | 
|  | { | 
|  | struct hlist_head *head = inode_hashtable + hash(sb, ino); | 
|  | struct inode *inode; | 
|  |  | 
|  | spin_lock(&inode_hash_lock); | 
|  | inode = find_inode_fast(sb, head, ino); | 
|  | spin_unlock(&inode_hash_lock); | 
|  |  | 
|  | if (inode) | 
|  | wait_on_inode(inode); | 
|  | return inode; | 
|  | } | 
|  | EXPORT_SYMBOL(ilookup); | 
|  |  | 
|  | int insert_inode_locked(struct inode *inode) | 
|  | { | 
|  | struct super_block *sb = inode->i_sb; | 
|  | ino_t ino = inode->i_ino; | 
|  | struct hlist_head *head = inode_hashtable + hash(sb, ino); | 
|  |  | 
|  | while (1) { | 
|  | struct inode *old = NULL; | 
|  | spin_lock(&inode_hash_lock); | 
|  | hlist_for_each_entry(old, head, i_hash) { | 
|  | if (old->i_ino != ino) | 
|  | continue; | 
|  | if (old->i_sb != sb) | 
|  | continue; | 
|  | spin_lock(&old->i_lock); | 
|  | if (old->i_state & (I_FREEING|I_WILL_FREE)) { | 
|  | spin_unlock(&old->i_lock); | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  | if (likely(!old)) { | 
|  | spin_lock(&inode->i_lock); | 
|  | inode->i_state |= I_NEW; | 
|  | hlist_add_head(&inode->i_hash, head); | 
|  | spin_unlock(&inode->i_lock); | 
|  | spin_unlock(&inode_hash_lock); | 
|  | return 0; | 
|  | } | 
|  | __iget(old); | 
|  | spin_unlock(&old->i_lock); | 
|  | spin_unlock(&inode_hash_lock); | 
|  | wait_on_inode(old); | 
|  | if (unlikely(!inode_unhashed(old))) { | 
|  | iput(old); | 
|  | return -EBUSY; | 
|  | } | 
|  | iput(old); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(insert_inode_locked); | 
|  |  | 
|  | int insert_inode_locked4(struct inode *inode, unsigned long hashval, | 
|  | int (*test)(struct inode *, void *), void *data) | 
|  | { | 
|  | struct super_block *sb = inode->i_sb; | 
|  | struct hlist_head *head = inode_hashtable + hash(sb, hashval); | 
|  |  | 
|  | while (1) { | 
|  | struct inode *old = NULL; | 
|  |  | 
|  | spin_lock(&inode_hash_lock); | 
|  | hlist_for_each_entry(old, head, i_hash) { | 
|  | if (old->i_sb != sb) | 
|  | continue; | 
|  | if (!test(old, data)) | 
|  | continue; | 
|  | spin_lock(&old->i_lock); | 
|  | if (old->i_state & (I_FREEING|I_WILL_FREE)) { | 
|  | spin_unlock(&old->i_lock); | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  | if (likely(!old)) { | 
|  | spin_lock(&inode->i_lock); | 
|  | inode->i_state |= I_NEW; | 
|  | hlist_add_head(&inode->i_hash, head); | 
|  | spin_unlock(&inode->i_lock); | 
|  | spin_unlock(&inode_hash_lock); | 
|  | return 0; | 
|  | } | 
|  | __iget(old); | 
|  | spin_unlock(&old->i_lock); | 
|  | spin_unlock(&inode_hash_lock); | 
|  | wait_on_inode(old); | 
|  | if (unlikely(!inode_unhashed(old))) { | 
|  | iput(old); | 
|  | return -EBUSY; | 
|  | } | 
|  | iput(old); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(insert_inode_locked4); | 
|  |  | 
|  |  | 
|  | int generic_delete_inode(struct inode *inode) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  | EXPORT_SYMBOL(generic_delete_inode); | 
|  |  | 
|  | /* | 
|  | * Called when we're dropping the last reference | 
|  | * to an inode. | 
|  | * | 
|  | * Call the FS "drop_inode()" function, defaulting to | 
|  | * the legacy UNIX filesystem behaviour.  If it tells | 
|  | * us to evict inode, do so.  Otherwise, retain inode | 
|  | * in cache if fs is alive, sync and evict if fs is | 
|  | * shutting down. | 
|  | */ | 
|  | static void iput_final(struct inode *inode) | 
|  | { | 
|  | struct super_block *sb = inode->i_sb; | 
|  | const struct super_operations *op = inode->i_sb->s_op; | 
|  | int drop; | 
|  |  | 
|  | WARN_ON(inode->i_state & I_NEW); | 
|  |  | 
|  | if (op->drop_inode) | 
|  | drop = op->drop_inode(inode); | 
|  | else | 
|  | drop = generic_drop_inode(inode); | 
|  |  | 
|  | if (!drop && (sb->s_flags & MS_ACTIVE)) { | 
|  | inode->i_state |= I_REFERENCED; | 
|  | inode_add_lru(inode); | 
|  | spin_unlock(&inode->i_lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!drop) { | 
|  | inode->i_state |= I_WILL_FREE; | 
|  | spin_unlock(&inode->i_lock); | 
|  | write_inode_now(inode, 1); | 
|  | spin_lock(&inode->i_lock); | 
|  | WARN_ON(inode->i_state & I_NEW); | 
|  | inode->i_state &= ~I_WILL_FREE; | 
|  | } | 
|  |  | 
|  | inode->i_state |= I_FREEING; | 
|  | if (!list_empty(&inode->i_lru)) | 
|  | inode_lru_list_del(inode); | 
|  | spin_unlock(&inode->i_lock); | 
|  |  | 
|  | evict(inode); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	iput	- put an inode | 
|  | *	@inode: inode to put | 
|  | * | 
|  | *	Puts an inode, dropping its usage count. If the inode use count hits | 
|  | *	zero, the inode is then freed and may also be destroyed. | 
|  | * | 
|  | *	Consequently, iput() can sleep. | 
|  | */ | 
|  | void iput(struct inode *inode) | 
|  | { | 
|  | if (inode) { | 
|  | BUG_ON(inode->i_state & I_CLEAR); | 
|  |  | 
|  | if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) | 
|  | iput_final(inode); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(iput); | 
|  |  | 
|  | /** | 
|  | *	bmap	- find a block number in a file | 
|  | *	@inode: inode of file | 
|  | *	@block: block to find | 
|  | * | 
|  | *	Returns the block number on the device holding the inode that | 
|  | *	is the disk block number for the block of the file requested. | 
|  | *	That is, asked for block 4 of inode 1 the function will return the | 
|  | *	disk block relative to the disk start that holds that block of the | 
|  | *	file. | 
|  | */ | 
|  | sector_t bmap(struct inode *inode, sector_t block) | 
|  | { | 
|  | sector_t res = 0; | 
|  | if (inode->i_mapping->a_ops->bmap) | 
|  | res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); | 
|  | return res; | 
|  | } | 
|  | EXPORT_SYMBOL(bmap); | 
|  |  | 
|  | /* | 
|  | * With relative atime, only update atime if the previous atime is | 
|  | * earlier than either the ctime or mtime or if at least a day has | 
|  | * passed since the last atime update. | 
|  | */ | 
|  | static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, | 
|  | struct timespec now) | 
|  | { | 
|  |  | 
|  | if (!(mnt->mnt_flags & MNT_RELATIME)) | 
|  | return 1; | 
|  | /* | 
|  | * Is mtime younger than atime? If yes, update atime: | 
|  | */ | 
|  | if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) | 
|  | return 1; | 
|  | /* | 
|  | * Is ctime younger than atime? If yes, update atime: | 
|  | */ | 
|  | if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * Is the previous atime value older than a day? If yes, | 
|  | * update atime: | 
|  | */ | 
|  | if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) | 
|  | return 1; | 
|  | /* | 
|  | * Good, we can skip the atime update: | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This does the actual work of updating an inodes time or version.  Must have | 
|  | * had called mnt_want_write() before calling this. | 
|  | */ | 
|  | static int update_time(struct inode *inode, struct timespec *time, int flags) | 
|  | { | 
|  | if (inode->i_op->update_time) | 
|  | return inode->i_op->update_time(inode, time, flags); | 
|  |  | 
|  | if (flags & S_ATIME) | 
|  | inode->i_atime = *time; | 
|  | if (flags & S_VERSION) | 
|  | inode_inc_iversion(inode); | 
|  | if (flags & S_CTIME) | 
|  | inode->i_ctime = *time; | 
|  | if (flags & S_MTIME) | 
|  | inode->i_mtime = *time; | 
|  | mark_inode_dirty_sync(inode); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	touch_atime	-	update the access time | 
|  | *	@path: the &struct path to update | 
|  | * | 
|  | *	Update the accessed time on an inode and mark it for writeback. | 
|  | *	This function automatically handles read only file systems and media, | 
|  | *	as well as the "noatime" flag and inode specific "noatime" markers. | 
|  | */ | 
|  | void touch_atime(struct path *path) | 
|  | { | 
|  | struct vfsmount *mnt = path->mnt; | 
|  | struct inode *inode = path->dentry->d_inode; | 
|  | struct timespec now; | 
|  |  | 
|  | if (inode->i_flags & S_NOATIME) | 
|  | return; | 
|  | if (IS_NOATIME(inode)) | 
|  | return; | 
|  | if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) | 
|  | return; | 
|  |  | 
|  | if (mnt->mnt_flags & MNT_NOATIME) | 
|  | return; | 
|  | if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) | 
|  | return; | 
|  |  | 
|  | now = current_fs_time(inode->i_sb); | 
|  |  | 
|  | if (!relatime_need_update(mnt, inode, now)) | 
|  | return; | 
|  |  | 
|  | if (timespec_equal(&inode->i_atime, &now)) | 
|  | return; | 
|  |  | 
|  | if (!sb_start_write_trylock(inode->i_sb)) | 
|  | return; | 
|  |  | 
|  | if (__mnt_want_write(mnt)) | 
|  | goto skip_update; | 
|  | /* | 
|  | * File systems can error out when updating inodes if they need to | 
|  | * allocate new space to modify an inode (such is the case for | 
|  | * Btrfs), but since we touch atime while walking down the path we | 
|  | * really don't care if we failed to update the atime of the file, | 
|  | * so just ignore the return value. | 
|  | * We may also fail on filesystems that have the ability to make parts | 
|  | * of the fs read only, e.g. subvolumes in Btrfs. | 
|  | */ | 
|  | update_time(inode, &now, S_ATIME); | 
|  | __mnt_drop_write(mnt); | 
|  | skip_update: | 
|  | sb_end_write(inode->i_sb); | 
|  | } | 
|  | EXPORT_SYMBOL(touch_atime); | 
|  |  | 
|  | /* | 
|  | * The logic we want is | 
|  | * | 
|  | *	if suid or (sgid and xgrp) | 
|  | *		remove privs | 
|  | */ | 
|  | int should_remove_suid(struct dentry *dentry) | 
|  | { | 
|  | umode_t mode = dentry->d_inode->i_mode; | 
|  | int kill = 0; | 
|  |  | 
|  | /* suid always must be killed */ | 
|  | if (unlikely(mode & S_ISUID)) | 
|  | kill = ATTR_KILL_SUID; | 
|  |  | 
|  | /* | 
|  | * sgid without any exec bits is just a mandatory locking mark; leave | 
|  | * it alone.  If some exec bits are set, it's a real sgid; kill it. | 
|  | */ | 
|  | if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) | 
|  | kill |= ATTR_KILL_SGID; | 
|  |  | 
|  | if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) | 
|  | return kill; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(should_remove_suid); | 
|  |  | 
|  | static int __remove_suid(struct dentry *dentry, int kill) | 
|  | { | 
|  | struct iattr newattrs; | 
|  |  | 
|  | newattrs.ia_valid = ATTR_FORCE | kill; | 
|  | return notify_change(dentry, &newattrs); | 
|  | } | 
|  |  | 
|  | int file_remove_suid(struct file *file) | 
|  | { | 
|  | struct dentry *dentry = file->f_path.dentry; | 
|  | struct inode *inode = dentry->d_inode; | 
|  | int killsuid; | 
|  | int killpriv; | 
|  | int error = 0; | 
|  |  | 
|  | /* Fast path for nothing security related */ | 
|  | if (IS_NOSEC(inode)) | 
|  | return 0; | 
|  |  | 
|  | killsuid = should_remove_suid(dentry); | 
|  | killpriv = security_inode_need_killpriv(dentry); | 
|  |  | 
|  | if (killpriv < 0) | 
|  | return killpriv; | 
|  | if (killpriv) | 
|  | error = security_inode_killpriv(dentry); | 
|  | if (!error && killsuid) | 
|  | error = __remove_suid(dentry, killsuid); | 
|  | if (!error && (inode->i_sb->s_flags & MS_NOSEC)) | 
|  | inode->i_flags |= S_NOSEC; | 
|  |  | 
|  | return error; | 
|  | } | 
|  | EXPORT_SYMBOL(file_remove_suid); | 
|  |  | 
|  | /** | 
|  | *	file_update_time	-	update mtime and ctime time | 
|  | *	@file: file accessed | 
|  | * | 
|  | *	Update the mtime and ctime members of an inode and mark the inode | 
|  | *	for writeback.  Note that this function is meant exclusively for | 
|  | *	usage in the file write path of filesystems, and filesystems may | 
|  | *	choose to explicitly ignore update via this function with the | 
|  | *	S_NOCMTIME inode flag, e.g. for network filesystem where these | 
|  | *	timestamps are handled by the server.  This can return an error for | 
|  | *	file systems who need to allocate space in order to update an inode. | 
|  | */ | 
|  |  | 
|  | int file_update_time(struct file *file) | 
|  | { | 
|  | struct inode *inode = file_inode(file); | 
|  | struct timespec now; | 
|  | int sync_it = 0; | 
|  | int ret; | 
|  |  | 
|  | /* First try to exhaust all avenues to not sync */ | 
|  | if (IS_NOCMTIME(inode)) | 
|  | return 0; | 
|  |  | 
|  | now = current_fs_time(inode->i_sb); | 
|  | if (!timespec_equal(&inode->i_mtime, &now)) | 
|  | sync_it = S_MTIME; | 
|  |  | 
|  | if (!timespec_equal(&inode->i_ctime, &now)) | 
|  | sync_it |= S_CTIME; | 
|  |  | 
|  | if (IS_I_VERSION(inode)) | 
|  | sync_it |= S_VERSION; | 
|  |  | 
|  | if (!sync_it) | 
|  | return 0; | 
|  |  | 
|  | /* Finally allowed to write? Takes lock. */ | 
|  | if (__mnt_want_write_file(file)) | 
|  | return 0; | 
|  |  | 
|  | ret = update_time(inode, &now, sync_it); | 
|  | __mnt_drop_write_file(file); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(file_update_time); | 
|  |  | 
|  | int inode_needs_sync(struct inode *inode) | 
|  | { | 
|  | if (IS_SYNC(inode)) | 
|  | return 1; | 
|  | if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(inode_needs_sync); | 
|  |  | 
|  | int inode_wait(void *word) | 
|  | { | 
|  | schedule(); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(inode_wait); | 
|  |  | 
|  | /* | 
|  | * If we try to find an inode in the inode hash while it is being | 
|  | * deleted, we have to wait until the filesystem completes its | 
|  | * deletion before reporting that it isn't found.  This function waits | 
|  | * until the deletion _might_ have completed.  Callers are responsible | 
|  | * to recheck inode state. | 
|  | * | 
|  | * It doesn't matter if I_NEW is not set initially, a call to | 
|  | * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list | 
|  | * will DTRT. | 
|  | */ | 
|  | static void __wait_on_freeing_inode(struct inode *inode) | 
|  | { | 
|  | wait_queue_head_t *wq; | 
|  | DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); | 
|  | wq = bit_waitqueue(&inode->i_state, __I_NEW); | 
|  | prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); | 
|  | spin_unlock(&inode->i_lock); | 
|  | spin_unlock(&inode_hash_lock); | 
|  | schedule(); | 
|  | finish_wait(wq, &wait.wait); | 
|  | spin_lock(&inode_hash_lock); | 
|  | } | 
|  |  | 
|  | static __initdata unsigned long ihash_entries; | 
|  | static int __init set_ihash_entries(char *str) | 
|  | { | 
|  | if (!str) | 
|  | return 0; | 
|  | ihash_entries = simple_strtoul(str, &str, 0); | 
|  | return 1; | 
|  | } | 
|  | __setup("ihash_entries=", set_ihash_entries); | 
|  |  | 
|  | /* | 
|  | * Initialize the waitqueues and inode hash table. | 
|  | */ | 
|  | void __init inode_init_early(void) | 
|  | { | 
|  | unsigned int loop; | 
|  |  | 
|  | /* If hashes are distributed across NUMA nodes, defer | 
|  | * hash allocation until vmalloc space is available. | 
|  | */ | 
|  | if (hashdist) | 
|  | return; | 
|  |  | 
|  | inode_hashtable = | 
|  | alloc_large_system_hash("Inode-cache", | 
|  | sizeof(struct hlist_head), | 
|  | ihash_entries, | 
|  | 14, | 
|  | HASH_EARLY, | 
|  | &i_hash_shift, | 
|  | &i_hash_mask, | 
|  | 0, | 
|  | 0); | 
|  |  | 
|  | for (loop = 0; loop < (1U << i_hash_shift); loop++) | 
|  | INIT_HLIST_HEAD(&inode_hashtable[loop]); | 
|  | } | 
|  |  | 
|  | void __init inode_init(void) | 
|  | { | 
|  | unsigned int loop; | 
|  |  | 
|  | /* inode slab cache */ | 
|  | inode_cachep = kmem_cache_create("inode_cache", | 
|  | sizeof(struct inode), | 
|  | 0, | 
|  | (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| | 
|  | SLAB_MEM_SPREAD), | 
|  | init_once); | 
|  |  | 
|  | /* Hash may have been set up in inode_init_early */ | 
|  | if (!hashdist) | 
|  | return; | 
|  |  | 
|  | inode_hashtable = | 
|  | alloc_large_system_hash("Inode-cache", | 
|  | sizeof(struct hlist_head), | 
|  | ihash_entries, | 
|  | 14, | 
|  | 0, | 
|  | &i_hash_shift, | 
|  | &i_hash_mask, | 
|  | 0, | 
|  | 0); | 
|  |  | 
|  | for (loop = 0; loop < (1U << i_hash_shift); loop++) | 
|  | INIT_HLIST_HEAD(&inode_hashtable[loop]); | 
|  | } | 
|  |  | 
|  | void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) | 
|  | { | 
|  | inode->i_mode = mode; | 
|  | if (S_ISCHR(mode)) { | 
|  | inode->i_fop = &def_chr_fops; | 
|  | inode->i_rdev = rdev; | 
|  | } else if (S_ISBLK(mode)) { | 
|  | inode->i_fop = &def_blk_fops; | 
|  | inode->i_rdev = rdev; | 
|  | } else if (S_ISFIFO(mode)) | 
|  | inode->i_fop = &pipefifo_fops; | 
|  | else if (S_ISSOCK(mode)) | 
|  | inode->i_fop = &bad_sock_fops; | 
|  | else | 
|  | printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" | 
|  | " inode %s:%lu\n", mode, inode->i_sb->s_id, | 
|  | inode->i_ino); | 
|  | } | 
|  | EXPORT_SYMBOL(init_special_inode); | 
|  |  | 
|  | /** | 
|  | * inode_init_owner - Init uid,gid,mode for new inode according to posix standards | 
|  | * @inode: New inode | 
|  | * @dir: Directory inode | 
|  | * @mode: mode of the new inode | 
|  | */ | 
|  | void inode_init_owner(struct inode *inode, const struct inode *dir, | 
|  | umode_t mode) | 
|  | { | 
|  | inode->i_uid = current_fsuid(); | 
|  | if (dir && dir->i_mode & S_ISGID) { | 
|  | inode->i_gid = dir->i_gid; | 
|  | if (S_ISDIR(mode)) | 
|  | mode |= S_ISGID; | 
|  | } else | 
|  | inode->i_gid = current_fsgid(); | 
|  | inode->i_mode = mode; | 
|  | } | 
|  | EXPORT_SYMBOL(inode_init_owner); | 
|  |  | 
|  | /** | 
|  | * inode_owner_or_capable - check current task permissions to inode | 
|  | * @inode: inode being checked | 
|  | * | 
|  | * Return true if current either has CAP_FOWNER to the inode, or | 
|  | * owns the file. | 
|  | */ | 
|  | bool inode_owner_or_capable(const struct inode *inode) | 
|  | { | 
|  | if (uid_eq(current_fsuid(), inode->i_uid)) | 
|  | return true; | 
|  | if (inode_capable(inode, CAP_FOWNER)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  | EXPORT_SYMBOL(inode_owner_or_capable); | 
|  |  | 
|  | /* | 
|  | * Direct i/o helper functions | 
|  | */ | 
|  | static void __inode_dio_wait(struct inode *inode) | 
|  | { | 
|  | wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); | 
|  | DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); | 
|  |  | 
|  | do { | 
|  | prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE); | 
|  | if (atomic_read(&inode->i_dio_count)) | 
|  | schedule(); | 
|  | } while (atomic_read(&inode->i_dio_count)); | 
|  | finish_wait(wq, &q.wait); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * inode_dio_wait - wait for outstanding DIO requests to finish | 
|  | * @inode: inode to wait for | 
|  | * | 
|  | * Waits for all pending direct I/O requests to finish so that we can | 
|  | * proceed with a truncate or equivalent operation. | 
|  | * | 
|  | * Must be called under a lock that serializes taking new references | 
|  | * to i_dio_count, usually by inode->i_mutex. | 
|  | */ | 
|  | void inode_dio_wait(struct inode *inode) | 
|  | { | 
|  | if (atomic_read(&inode->i_dio_count)) | 
|  | __inode_dio_wait(inode); | 
|  | } | 
|  | EXPORT_SYMBOL(inode_dio_wait); | 
|  |  | 
|  | /* | 
|  | * inode_dio_done - signal finish of a direct I/O requests | 
|  | * @inode: inode the direct I/O happens on | 
|  | * | 
|  | * This is called once we've finished processing a direct I/O request, | 
|  | * and is used to wake up callers waiting for direct I/O to be quiesced. | 
|  | */ | 
|  | void inode_dio_done(struct inode *inode) | 
|  | { | 
|  | if (atomic_dec_and_test(&inode->i_dio_count)) | 
|  | wake_up_bit(&inode->i_state, __I_DIO_WAKEUP); | 
|  | } | 
|  | EXPORT_SYMBOL(inode_dio_done); |