| /* | 
 |  * NVM Express device driver | 
 |  * Copyright (c) 2011-2014, Intel Corporation. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify it | 
 |  * under the terms and conditions of the GNU General Public License, | 
 |  * version 2, as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope it will be useful, but WITHOUT | 
 |  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 |  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
 |  * more details. | 
 |  */ | 
 |  | 
 | #include <linux/aer.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/blk-mq.h> | 
 | #include <linux/blk-mq-pci.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/genhd.h> | 
 | #include <linux/hdreg.h> | 
 | #include <linux/idr.h> | 
 | #include <linux/init.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/io.h> | 
 | #include <linux/kdev_t.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/module.h> | 
 | #include <linux/moduleparam.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/poison.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/t10-pi.h> | 
 | #include <linux/timer.h> | 
 | #include <linux/types.h> | 
 | #include <linux/io-64-nonatomic-lo-hi.h> | 
 | #include <asm/unaligned.h> | 
 |  | 
 | #include "nvme.h" | 
 |  | 
 | #define NVME_Q_DEPTH		1024 | 
 | #define NVME_AQ_DEPTH		256 | 
 | #define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command)) | 
 | #define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion)) | 
 | 		 | 
 | /* | 
 |  * We handle AEN commands ourselves and don't even let the | 
 |  * block layer know about them. | 
 |  */ | 
 | #define NVME_AQ_BLKMQ_DEPTH	(NVME_AQ_DEPTH - NVME_NR_AERS) | 
 |  | 
 | static int use_threaded_interrupts; | 
 | module_param(use_threaded_interrupts, int, 0); | 
 |  | 
 | static bool use_cmb_sqes = true; | 
 | module_param(use_cmb_sqes, bool, 0644); | 
 | MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); | 
 |  | 
 | static struct workqueue_struct *nvme_workq; | 
 |  | 
 | struct nvme_dev; | 
 | struct nvme_queue; | 
 |  | 
 | static int nvme_reset(struct nvme_dev *dev); | 
 | static void nvme_process_cq(struct nvme_queue *nvmeq); | 
 | static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); | 
 |  | 
 | /* | 
 |  * Represents an NVM Express device.  Each nvme_dev is a PCI function. | 
 |  */ | 
 | struct nvme_dev { | 
 | 	struct nvme_queue **queues; | 
 | 	struct blk_mq_tag_set tagset; | 
 | 	struct blk_mq_tag_set admin_tagset; | 
 | 	u32 __iomem *dbs; | 
 | 	struct device *dev; | 
 | 	struct dma_pool *prp_page_pool; | 
 | 	struct dma_pool *prp_small_pool; | 
 | 	unsigned queue_count; | 
 | 	unsigned online_queues; | 
 | 	unsigned max_qid; | 
 | 	int q_depth; | 
 | 	u32 db_stride; | 
 | 	void __iomem *bar; | 
 | 	struct work_struct reset_work; | 
 | 	struct work_struct remove_work; | 
 | 	struct timer_list watchdog_timer; | 
 | 	struct mutex shutdown_lock; | 
 | 	bool subsystem; | 
 | 	void __iomem *cmb; | 
 | 	dma_addr_t cmb_dma_addr; | 
 | 	u64 cmb_size; | 
 | 	u32 cmbsz; | 
 | 	u32 cmbloc; | 
 | 	struct nvme_ctrl ctrl; | 
 | 	struct completion ioq_wait; | 
 | }; | 
 |  | 
 | static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	return container_of(ctrl, struct nvme_dev, ctrl); | 
 | } | 
 |  | 
 | /* | 
 |  * An NVM Express queue.  Each device has at least two (one for admin | 
 |  * commands and one for I/O commands). | 
 |  */ | 
 | struct nvme_queue { | 
 | 	struct device *q_dmadev; | 
 | 	struct nvme_dev *dev; | 
 | 	char irqname[24];	/* nvme4294967295-65535\0 */ | 
 | 	spinlock_t q_lock; | 
 | 	struct nvme_command *sq_cmds; | 
 | 	struct nvme_command __iomem *sq_cmds_io; | 
 | 	volatile struct nvme_completion *cqes; | 
 | 	struct blk_mq_tags **tags; | 
 | 	dma_addr_t sq_dma_addr; | 
 | 	dma_addr_t cq_dma_addr; | 
 | 	u32 __iomem *q_db; | 
 | 	u16 q_depth; | 
 | 	s16 cq_vector; | 
 | 	u16 sq_tail; | 
 | 	u16 cq_head; | 
 | 	u16 qid; | 
 | 	u8 cq_phase; | 
 | 	u8 cqe_seen; | 
 | }; | 
 |  | 
 | /* | 
 |  * The nvme_iod describes the data in an I/O, including the list of PRP | 
 |  * entries.  You can't see it in this data structure because C doesn't let | 
 |  * me express that.  Use nvme_init_iod to ensure there's enough space | 
 |  * allocated to store the PRP list. | 
 |  */ | 
 | struct nvme_iod { | 
 | 	struct nvme_queue *nvmeq; | 
 | 	int aborted; | 
 | 	int npages;		/* In the PRP list. 0 means small pool in use */ | 
 | 	int nents;		/* Used in scatterlist */ | 
 | 	int length;		/* Of data, in bytes */ | 
 | 	dma_addr_t first_dma; | 
 | 	struct scatterlist meta_sg; /* metadata requires single contiguous buffer */ | 
 | 	struct scatterlist *sg; | 
 | 	struct scatterlist inline_sg[0]; | 
 | }; | 
 |  | 
 | /* | 
 |  * Check we didin't inadvertently grow the command struct | 
 |  */ | 
 | static inline void _nvme_check_size(void) | 
 | { | 
 | 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); | 
 | 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); | 
 | 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); | 
 | 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); | 
 | 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64); | 
 | 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); | 
 | 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); | 
 | 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64); | 
 | 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096); | 
 | 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096); | 
 | 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); | 
 | 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); | 
 | } | 
 |  | 
 | /* | 
 |  * Max size of iod being embedded in the request payload | 
 |  */ | 
 | #define NVME_INT_PAGES		2 | 
 | #define NVME_INT_BYTES(dev)	(NVME_INT_PAGES * (dev)->ctrl.page_size) | 
 |  | 
 | /* | 
 |  * Will slightly overestimate the number of pages needed.  This is OK | 
 |  * as it only leads to a small amount of wasted memory for the lifetime of | 
 |  * the I/O. | 
 |  */ | 
 | static int nvme_npages(unsigned size, struct nvme_dev *dev) | 
 | { | 
 | 	unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size, | 
 | 				      dev->ctrl.page_size); | 
 | 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); | 
 | } | 
 |  | 
 | static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev, | 
 | 		unsigned int size, unsigned int nseg) | 
 | { | 
 | 	return sizeof(__le64 *) * nvme_npages(size, dev) + | 
 | 			sizeof(struct scatterlist) * nseg; | 
 | } | 
 |  | 
 | static unsigned int nvme_cmd_size(struct nvme_dev *dev) | 
 | { | 
 | 	return sizeof(struct nvme_iod) + | 
 | 		nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES); | 
 | } | 
 |  | 
 | static int nvmeq_irq(struct nvme_queue *nvmeq) | 
 | { | 
 | 	return pci_irq_vector(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector); | 
 | } | 
 |  | 
 | static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, | 
 | 				unsigned int hctx_idx) | 
 | { | 
 | 	struct nvme_dev *dev = data; | 
 | 	struct nvme_queue *nvmeq = dev->queues[0]; | 
 |  | 
 | 	WARN_ON(hctx_idx != 0); | 
 | 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); | 
 | 	WARN_ON(nvmeq->tags); | 
 |  | 
 | 	hctx->driver_data = nvmeq; | 
 | 	nvmeq->tags = &dev->admin_tagset.tags[0]; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) | 
 | { | 
 | 	struct nvme_queue *nvmeq = hctx->driver_data; | 
 |  | 
 | 	nvmeq->tags = NULL; | 
 | } | 
 |  | 
 | static int nvme_admin_init_request(void *data, struct request *req, | 
 | 				unsigned int hctx_idx, unsigned int rq_idx, | 
 | 				unsigned int numa_node) | 
 | { | 
 | 	struct nvme_dev *dev = data; | 
 | 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req); | 
 | 	struct nvme_queue *nvmeq = dev->queues[0]; | 
 |  | 
 | 	BUG_ON(!nvmeq); | 
 | 	iod->nvmeq = nvmeq; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, | 
 | 			  unsigned int hctx_idx) | 
 | { | 
 | 	struct nvme_dev *dev = data; | 
 | 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; | 
 |  | 
 | 	if (!nvmeq->tags) | 
 | 		nvmeq->tags = &dev->tagset.tags[hctx_idx]; | 
 |  | 
 | 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); | 
 | 	hctx->driver_data = nvmeq; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nvme_init_request(void *data, struct request *req, | 
 | 				unsigned int hctx_idx, unsigned int rq_idx, | 
 | 				unsigned int numa_node) | 
 | { | 
 | 	struct nvme_dev *dev = data; | 
 | 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req); | 
 | 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; | 
 |  | 
 | 	BUG_ON(!nvmeq); | 
 | 	iod->nvmeq = nvmeq; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nvme_pci_map_queues(struct blk_mq_tag_set *set) | 
 | { | 
 | 	struct nvme_dev *dev = set->driver_data; | 
 |  | 
 | 	return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev)); | 
 | } | 
 |  | 
 | /** | 
 |  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell | 
 |  * @nvmeq: The queue to use | 
 |  * @cmd: The command to send | 
 |  * | 
 |  * Safe to use from interrupt context | 
 |  */ | 
 | static void __nvme_submit_cmd(struct nvme_queue *nvmeq, | 
 | 						struct nvme_command *cmd) | 
 | { | 
 | 	u16 tail = nvmeq->sq_tail; | 
 |  | 
 | 	if (nvmeq->sq_cmds_io) | 
 | 		memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd)); | 
 | 	else | 
 | 		memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); | 
 |  | 
 | 	if (++tail == nvmeq->q_depth) | 
 | 		tail = 0; | 
 | 	writel(tail, nvmeq->q_db); | 
 | 	nvmeq->sq_tail = tail; | 
 | } | 
 |  | 
 | static __le64 **iod_list(struct request *req) | 
 | { | 
 | 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req); | 
 | 	return (__le64 **)(iod->sg + req->nr_phys_segments); | 
 | } | 
 |  | 
 | static int nvme_init_iod(struct request *rq, unsigned size, | 
 | 		struct nvme_dev *dev) | 
 | { | 
 | 	struct nvme_iod *iod = blk_mq_rq_to_pdu(rq); | 
 | 	int nseg = rq->nr_phys_segments; | 
 |  | 
 | 	if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) { | 
 | 		iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC); | 
 | 		if (!iod->sg) | 
 | 			return BLK_MQ_RQ_QUEUE_BUSY; | 
 | 	} else { | 
 | 		iod->sg = iod->inline_sg; | 
 | 	} | 
 |  | 
 | 	iod->aborted = 0; | 
 | 	iod->npages = -1; | 
 | 	iod->nents = 0; | 
 | 	iod->length = size; | 
 |  | 
 | 	if (!(rq->cmd_flags & REQ_DONTPREP)) { | 
 | 		rq->retries = 0; | 
 | 		rq->cmd_flags |= REQ_DONTPREP; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void nvme_free_iod(struct nvme_dev *dev, struct request *req) | 
 | { | 
 | 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req); | 
 | 	const int last_prp = dev->ctrl.page_size / 8 - 1; | 
 | 	int i; | 
 | 	__le64 **list = iod_list(req); | 
 | 	dma_addr_t prp_dma = iod->first_dma; | 
 |  | 
 | 	nvme_cleanup_cmd(req); | 
 |  | 
 | 	if (iod->npages == 0) | 
 | 		dma_pool_free(dev->prp_small_pool, list[0], prp_dma); | 
 | 	for (i = 0; i < iod->npages; i++) { | 
 | 		__le64 *prp_list = list[i]; | 
 | 		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]); | 
 | 		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma); | 
 | 		prp_dma = next_prp_dma; | 
 | 	} | 
 |  | 
 | 	if (iod->sg != iod->inline_sg) | 
 | 		kfree(iod->sg); | 
 | } | 
 |  | 
 | #ifdef CONFIG_BLK_DEV_INTEGRITY | 
 | static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) | 
 | { | 
 | 	if (be32_to_cpu(pi->ref_tag) == v) | 
 | 		pi->ref_tag = cpu_to_be32(p); | 
 | } | 
 |  | 
 | static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) | 
 | { | 
 | 	if (be32_to_cpu(pi->ref_tag) == p) | 
 | 		pi->ref_tag = cpu_to_be32(v); | 
 | } | 
 |  | 
 | /** | 
 |  * nvme_dif_remap - remaps ref tags to bip seed and physical lba | 
 |  * | 
 |  * The virtual start sector is the one that was originally submitted by the | 
 |  * block layer.	Due to partitioning, MD/DM cloning, etc. the actual physical | 
 |  * start sector may be different. Remap protection information to match the | 
 |  * physical LBA on writes, and back to the original seed on reads. | 
 |  * | 
 |  * Type 0 and 3 do not have a ref tag, so no remapping required. | 
 |  */ | 
 | static void nvme_dif_remap(struct request *req, | 
 | 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) | 
 | { | 
 | 	struct nvme_ns *ns = req->rq_disk->private_data; | 
 | 	struct bio_integrity_payload *bip; | 
 | 	struct t10_pi_tuple *pi; | 
 | 	void *p, *pmap; | 
 | 	u32 i, nlb, ts, phys, virt; | 
 |  | 
 | 	if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3) | 
 | 		return; | 
 |  | 
 | 	bip = bio_integrity(req->bio); | 
 | 	if (!bip) | 
 | 		return; | 
 |  | 
 | 	pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset; | 
 |  | 
 | 	p = pmap; | 
 | 	virt = bip_get_seed(bip); | 
 | 	phys = nvme_block_nr(ns, blk_rq_pos(req)); | 
 | 	nlb = (blk_rq_bytes(req) >> ns->lba_shift); | 
 | 	ts = ns->disk->queue->integrity.tuple_size; | 
 |  | 
 | 	for (i = 0; i < nlb; i++, virt++, phys++) { | 
 | 		pi = (struct t10_pi_tuple *)p; | 
 | 		dif_swap(phys, virt, pi); | 
 | 		p += ts; | 
 | 	} | 
 | 	kunmap_atomic(pmap); | 
 | } | 
 | #else /* CONFIG_BLK_DEV_INTEGRITY */ | 
 | static void nvme_dif_remap(struct request *req, | 
 | 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) | 
 | { | 
 | } | 
 | static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) | 
 | { | 
 | } | 
 | static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req, | 
 | 		int total_len) | 
 | { | 
 | 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req); | 
 | 	struct dma_pool *pool; | 
 | 	int length = total_len; | 
 | 	struct scatterlist *sg = iod->sg; | 
 | 	int dma_len = sg_dma_len(sg); | 
 | 	u64 dma_addr = sg_dma_address(sg); | 
 | 	u32 page_size = dev->ctrl.page_size; | 
 | 	int offset = dma_addr & (page_size - 1); | 
 | 	__le64 *prp_list; | 
 | 	__le64 **list = iod_list(req); | 
 | 	dma_addr_t prp_dma; | 
 | 	int nprps, i; | 
 |  | 
 | 	length -= (page_size - offset); | 
 | 	if (length <= 0) | 
 | 		return true; | 
 |  | 
 | 	dma_len -= (page_size - offset); | 
 | 	if (dma_len) { | 
 | 		dma_addr += (page_size - offset); | 
 | 	} else { | 
 | 		sg = sg_next(sg); | 
 | 		dma_addr = sg_dma_address(sg); | 
 | 		dma_len = sg_dma_len(sg); | 
 | 	} | 
 |  | 
 | 	if (length <= page_size) { | 
 | 		iod->first_dma = dma_addr; | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	nprps = DIV_ROUND_UP(length, page_size); | 
 | 	if (nprps <= (256 / 8)) { | 
 | 		pool = dev->prp_small_pool; | 
 | 		iod->npages = 0; | 
 | 	} else { | 
 | 		pool = dev->prp_page_pool; | 
 | 		iod->npages = 1; | 
 | 	} | 
 |  | 
 | 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); | 
 | 	if (!prp_list) { | 
 | 		iod->first_dma = dma_addr; | 
 | 		iod->npages = -1; | 
 | 		return false; | 
 | 	} | 
 | 	list[0] = prp_list; | 
 | 	iod->first_dma = prp_dma; | 
 | 	i = 0; | 
 | 	for (;;) { | 
 | 		if (i == page_size >> 3) { | 
 | 			__le64 *old_prp_list = prp_list; | 
 | 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); | 
 | 			if (!prp_list) | 
 | 				return false; | 
 | 			list[iod->npages++] = prp_list; | 
 | 			prp_list[0] = old_prp_list[i - 1]; | 
 | 			old_prp_list[i - 1] = cpu_to_le64(prp_dma); | 
 | 			i = 1; | 
 | 		} | 
 | 		prp_list[i++] = cpu_to_le64(dma_addr); | 
 | 		dma_len -= page_size; | 
 | 		dma_addr += page_size; | 
 | 		length -= page_size; | 
 | 		if (length <= 0) | 
 | 			break; | 
 | 		if (dma_len > 0) | 
 | 			continue; | 
 | 		BUG_ON(dma_len < 0); | 
 | 		sg = sg_next(sg); | 
 | 		dma_addr = sg_dma_address(sg); | 
 | 		dma_len = sg_dma_len(sg); | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static int nvme_map_data(struct nvme_dev *dev, struct request *req, | 
 | 		unsigned size, struct nvme_command *cmnd) | 
 | { | 
 | 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req); | 
 | 	struct request_queue *q = req->q; | 
 | 	enum dma_data_direction dma_dir = rq_data_dir(req) ? | 
 | 			DMA_TO_DEVICE : DMA_FROM_DEVICE; | 
 | 	int ret = BLK_MQ_RQ_QUEUE_ERROR; | 
 |  | 
 | 	sg_init_table(iod->sg, req->nr_phys_segments); | 
 | 	iod->nents = blk_rq_map_sg(q, req, iod->sg); | 
 | 	if (!iod->nents) | 
 | 		goto out; | 
 |  | 
 | 	ret = BLK_MQ_RQ_QUEUE_BUSY; | 
 | 	if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir, | 
 | 				DMA_ATTR_NO_WARN)) | 
 | 		goto out; | 
 |  | 
 | 	if (!nvme_setup_prps(dev, req, size)) | 
 | 		goto out_unmap; | 
 |  | 
 | 	ret = BLK_MQ_RQ_QUEUE_ERROR; | 
 | 	if (blk_integrity_rq(req)) { | 
 | 		if (blk_rq_count_integrity_sg(q, req->bio) != 1) | 
 | 			goto out_unmap; | 
 |  | 
 | 		sg_init_table(&iod->meta_sg, 1); | 
 | 		if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1) | 
 | 			goto out_unmap; | 
 |  | 
 | 		if (rq_data_dir(req)) | 
 | 			nvme_dif_remap(req, nvme_dif_prep); | 
 |  | 
 | 		if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir)) | 
 | 			goto out_unmap; | 
 | 	} | 
 |  | 
 | 	cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); | 
 | 	cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma); | 
 | 	if (blk_integrity_rq(req)) | 
 | 		cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg)); | 
 | 	return BLK_MQ_RQ_QUEUE_OK; | 
 |  | 
 | out_unmap: | 
 | 	dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) | 
 | { | 
 | 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req); | 
 | 	enum dma_data_direction dma_dir = rq_data_dir(req) ? | 
 | 			DMA_TO_DEVICE : DMA_FROM_DEVICE; | 
 |  | 
 | 	if (iod->nents) { | 
 | 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); | 
 | 		if (blk_integrity_rq(req)) { | 
 | 			if (!rq_data_dir(req)) | 
 | 				nvme_dif_remap(req, nvme_dif_complete); | 
 | 			dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	nvme_free_iod(dev, req); | 
 | } | 
 |  | 
 | /* | 
 |  * NOTE: ns is NULL when called on the admin queue. | 
 |  */ | 
 | static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx, | 
 | 			 const struct blk_mq_queue_data *bd) | 
 | { | 
 | 	struct nvme_ns *ns = hctx->queue->queuedata; | 
 | 	struct nvme_queue *nvmeq = hctx->driver_data; | 
 | 	struct nvme_dev *dev = nvmeq->dev; | 
 | 	struct request *req = bd->rq; | 
 | 	struct nvme_command cmnd; | 
 | 	unsigned map_len; | 
 | 	int ret = BLK_MQ_RQ_QUEUE_OK; | 
 |  | 
 | 	/* | 
 | 	 * If formated with metadata, require the block layer provide a buffer | 
 | 	 * unless this namespace is formated such that the metadata can be | 
 | 	 * stripped/generated by the controller with PRACT=1. | 
 | 	 */ | 
 | 	if (ns && ns->ms && !blk_integrity_rq(req)) { | 
 | 		if (!(ns->pi_type && ns->ms == 8) && | 
 | 					req->cmd_type != REQ_TYPE_DRV_PRIV) { | 
 | 			blk_mq_end_request(req, -EFAULT); | 
 | 			return BLK_MQ_RQ_QUEUE_OK; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	map_len = nvme_map_len(req); | 
 | 	ret = nvme_init_iod(req, map_len, dev); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = nvme_setup_cmd(ns, req, &cmnd); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	if (req->nr_phys_segments) | 
 | 		ret = nvme_map_data(dev, req, map_len, &cmnd); | 
 |  | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	cmnd.common.command_id = req->tag; | 
 | 	blk_mq_start_request(req); | 
 |  | 
 | 	spin_lock_irq(&nvmeq->q_lock); | 
 | 	if (unlikely(nvmeq->cq_vector < 0)) { | 
 | 		if (ns && !test_bit(NVME_NS_DEAD, &ns->flags)) | 
 | 			ret = BLK_MQ_RQ_QUEUE_BUSY; | 
 | 		else | 
 | 			ret = BLK_MQ_RQ_QUEUE_ERROR; | 
 | 		spin_unlock_irq(&nvmeq->q_lock); | 
 | 		goto out; | 
 | 	} | 
 | 	__nvme_submit_cmd(nvmeq, &cmnd); | 
 | 	nvme_process_cq(nvmeq); | 
 | 	spin_unlock_irq(&nvmeq->q_lock); | 
 | 	return BLK_MQ_RQ_QUEUE_OK; | 
 | out: | 
 | 	nvme_free_iod(dev, req); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void nvme_complete_rq(struct request *req) | 
 | { | 
 | 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req); | 
 | 	struct nvme_dev *dev = iod->nvmeq->dev; | 
 | 	int error = 0; | 
 |  | 
 | 	nvme_unmap_data(dev, req); | 
 |  | 
 | 	if (unlikely(req->errors)) { | 
 | 		if (nvme_req_needs_retry(req, req->errors)) { | 
 | 			req->retries++; | 
 | 			nvme_requeue_req(req); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		if (req->cmd_type == REQ_TYPE_DRV_PRIV) | 
 | 			error = req->errors; | 
 | 		else | 
 | 			error = nvme_error_status(req->errors); | 
 | 	} | 
 |  | 
 | 	if (unlikely(iod->aborted)) { | 
 | 		dev_warn(dev->ctrl.device, | 
 | 			"completing aborted command with status: %04x\n", | 
 | 			req->errors); | 
 | 	} | 
 |  | 
 | 	blk_mq_end_request(req, error); | 
 | } | 
 |  | 
 | /* We read the CQE phase first to check if the rest of the entry is valid */ | 
 | static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head, | 
 | 		u16 phase) | 
 | { | 
 | 	return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase; | 
 | } | 
 |  | 
 | static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag) | 
 | { | 
 | 	u16 head, phase; | 
 |  | 
 | 	head = nvmeq->cq_head; | 
 | 	phase = nvmeq->cq_phase; | 
 |  | 
 | 	while (nvme_cqe_valid(nvmeq, head, phase)) { | 
 | 		struct nvme_completion cqe = nvmeq->cqes[head]; | 
 | 		struct request *req; | 
 |  | 
 | 		if (++head == nvmeq->q_depth) { | 
 | 			head = 0; | 
 | 			phase = !phase; | 
 | 		} | 
 |  | 
 | 		if (tag && *tag == cqe.command_id) | 
 | 			*tag = -1; | 
 |  | 
 | 		if (unlikely(cqe.command_id >= nvmeq->q_depth)) { | 
 | 			dev_warn(nvmeq->dev->ctrl.device, | 
 | 				"invalid id %d completed on queue %d\n", | 
 | 				cqe.command_id, le16_to_cpu(cqe.sq_id)); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * AEN requests are special as they don't time out and can | 
 | 		 * survive any kind of queue freeze and often don't respond to | 
 | 		 * aborts.  We don't even bother to allocate a struct request | 
 | 		 * for them but rather special case them here. | 
 | 		 */ | 
 | 		if (unlikely(nvmeq->qid == 0 && | 
 | 				cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) { | 
 | 			nvme_complete_async_event(&nvmeq->dev->ctrl, &cqe); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id); | 
 | 		if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special) | 
 | 			memcpy(req->special, &cqe, sizeof(cqe)); | 
 | 		blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1); | 
 |  | 
 | 	} | 
 |  | 
 | 	/* If the controller ignores the cq head doorbell and continuously | 
 | 	 * writes to the queue, it is theoretically possible to wrap around | 
 | 	 * the queue twice and mistakenly return IRQ_NONE.  Linux only | 
 | 	 * requires that 0.1% of your interrupts are handled, so this isn't | 
 | 	 * a big problem. | 
 | 	 */ | 
 | 	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase) | 
 | 		return; | 
 |  | 
 | 	if (likely(nvmeq->cq_vector >= 0)) | 
 | 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride); | 
 | 	nvmeq->cq_head = head; | 
 | 	nvmeq->cq_phase = phase; | 
 |  | 
 | 	nvmeq->cqe_seen = 1; | 
 | } | 
 |  | 
 | static void nvme_process_cq(struct nvme_queue *nvmeq) | 
 | { | 
 | 	__nvme_process_cq(nvmeq, NULL); | 
 | } | 
 |  | 
 | static irqreturn_t nvme_irq(int irq, void *data) | 
 | { | 
 | 	irqreturn_t result; | 
 | 	struct nvme_queue *nvmeq = data; | 
 | 	spin_lock(&nvmeq->q_lock); | 
 | 	nvme_process_cq(nvmeq); | 
 | 	result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE; | 
 | 	nvmeq->cqe_seen = 0; | 
 | 	spin_unlock(&nvmeq->q_lock); | 
 | 	return result; | 
 | } | 
 |  | 
 | static irqreturn_t nvme_irq_check(int irq, void *data) | 
 | { | 
 | 	struct nvme_queue *nvmeq = data; | 
 | 	if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) | 
 | 		return IRQ_WAKE_THREAD; | 
 | 	return IRQ_NONE; | 
 | } | 
 |  | 
 | static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) | 
 | { | 
 | 	struct nvme_queue *nvmeq = hctx->driver_data; | 
 |  | 
 | 	if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) { | 
 | 		spin_lock_irq(&nvmeq->q_lock); | 
 | 		__nvme_process_cq(nvmeq, &tag); | 
 | 		spin_unlock_irq(&nvmeq->q_lock); | 
 |  | 
 | 		if (tag == -1) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx) | 
 | { | 
 | 	struct nvme_dev *dev = to_nvme_dev(ctrl); | 
 | 	struct nvme_queue *nvmeq = dev->queues[0]; | 
 | 	struct nvme_command c; | 
 |  | 
 | 	memset(&c, 0, sizeof(c)); | 
 | 	c.common.opcode = nvme_admin_async_event; | 
 | 	c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx; | 
 |  | 
 | 	spin_lock_irq(&nvmeq->q_lock); | 
 | 	__nvme_submit_cmd(nvmeq, &c); | 
 | 	spin_unlock_irq(&nvmeq->q_lock); | 
 | } | 
 |  | 
 | static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) | 
 | { | 
 | 	struct nvme_command c; | 
 |  | 
 | 	memset(&c, 0, sizeof(c)); | 
 | 	c.delete_queue.opcode = opcode; | 
 | 	c.delete_queue.qid = cpu_to_le16(id); | 
 |  | 
 | 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); | 
 | } | 
 |  | 
 | static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, | 
 | 						struct nvme_queue *nvmeq) | 
 | { | 
 | 	struct nvme_command c; | 
 | 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; | 
 |  | 
 | 	/* | 
 | 	 * Note: we (ab)use the fact the the prp fields survive if no data | 
 | 	 * is attached to the request. | 
 | 	 */ | 
 | 	memset(&c, 0, sizeof(c)); | 
 | 	c.create_cq.opcode = nvme_admin_create_cq; | 
 | 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); | 
 | 	c.create_cq.cqid = cpu_to_le16(qid); | 
 | 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); | 
 | 	c.create_cq.cq_flags = cpu_to_le16(flags); | 
 | 	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); | 
 |  | 
 | 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); | 
 | } | 
 |  | 
 | static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, | 
 | 						struct nvme_queue *nvmeq) | 
 | { | 
 | 	struct nvme_command c; | 
 | 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM; | 
 |  | 
 | 	/* | 
 | 	 * Note: we (ab)use the fact the the prp fields survive if no data | 
 | 	 * is attached to the request. | 
 | 	 */ | 
 | 	memset(&c, 0, sizeof(c)); | 
 | 	c.create_sq.opcode = nvme_admin_create_sq; | 
 | 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); | 
 | 	c.create_sq.sqid = cpu_to_le16(qid); | 
 | 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); | 
 | 	c.create_sq.sq_flags = cpu_to_le16(flags); | 
 | 	c.create_sq.cqid = cpu_to_le16(qid); | 
 |  | 
 | 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); | 
 | } | 
 |  | 
 | static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) | 
 | { | 
 | 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); | 
 | } | 
 |  | 
 | static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) | 
 | { | 
 | 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); | 
 | } | 
 |  | 
 | static void abort_endio(struct request *req, int error) | 
 | { | 
 | 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req); | 
 | 	struct nvme_queue *nvmeq = iod->nvmeq; | 
 | 	u16 status = req->errors; | 
 |  | 
 | 	dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status); | 
 | 	atomic_inc(&nvmeq->dev->ctrl.abort_limit); | 
 | 	blk_mq_free_request(req); | 
 | } | 
 |  | 
 | static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) | 
 | { | 
 | 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req); | 
 | 	struct nvme_queue *nvmeq = iod->nvmeq; | 
 | 	struct nvme_dev *dev = nvmeq->dev; | 
 | 	struct request *abort_req; | 
 | 	struct nvme_command cmd; | 
 |  | 
 | 	/* | 
 | 	 * Shutdown immediately if controller times out while starting. The | 
 | 	 * reset work will see the pci device disabled when it gets the forced | 
 | 	 * cancellation error. All outstanding requests are completed on | 
 | 	 * shutdown, so we return BLK_EH_HANDLED. | 
 | 	 */ | 
 | 	if (dev->ctrl.state == NVME_CTRL_RESETTING) { | 
 | 		dev_warn(dev->ctrl.device, | 
 | 			 "I/O %d QID %d timeout, disable controller\n", | 
 | 			 req->tag, nvmeq->qid); | 
 | 		nvme_dev_disable(dev, false); | 
 | 		req->errors = NVME_SC_CANCELLED; | 
 | 		return BLK_EH_HANDLED; | 
 | 	} | 
 |  | 
 | 	/* | 
 |  	 * Shutdown the controller immediately and schedule a reset if the | 
 |  	 * command was already aborted once before and still hasn't been | 
 |  	 * returned to the driver, or if this is the admin queue. | 
 | 	 */ | 
 | 	if (!nvmeq->qid || iod->aborted) { | 
 | 		dev_warn(dev->ctrl.device, | 
 | 			 "I/O %d QID %d timeout, reset controller\n", | 
 | 			 req->tag, nvmeq->qid); | 
 | 		nvme_dev_disable(dev, false); | 
 | 		nvme_reset(dev); | 
 |  | 
 | 		/* | 
 | 		 * Mark the request as handled, since the inline shutdown | 
 | 		 * forces all outstanding requests to complete. | 
 | 		 */ | 
 | 		req->errors = NVME_SC_CANCELLED; | 
 | 		return BLK_EH_HANDLED; | 
 | 	} | 
 |  | 
 | 	iod->aborted = 1; | 
 |  | 
 | 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { | 
 | 		atomic_inc(&dev->ctrl.abort_limit); | 
 | 		return BLK_EH_RESET_TIMER; | 
 | 	} | 
 |  | 
 | 	memset(&cmd, 0, sizeof(cmd)); | 
 | 	cmd.abort.opcode = nvme_admin_abort_cmd; | 
 | 	cmd.abort.cid = req->tag; | 
 | 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid); | 
 |  | 
 | 	dev_warn(nvmeq->dev->ctrl.device, | 
 | 		"I/O %d QID %d timeout, aborting\n", | 
 | 		 req->tag, nvmeq->qid); | 
 |  | 
 | 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, | 
 | 			BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); | 
 | 	if (IS_ERR(abort_req)) { | 
 | 		atomic_inc(&dev->ctrl.abort_limit); | 
 | 		return BLK_EH_RESET_TIMER; | 
 | 	} | 
 |  | 
 | 	abort_req->timeout = ADMIN_TIMEOUT; | 
 | 	abort_req->end_io_data = NULL; | 
 | 	blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); | 
 |  | 
 | 	/* | 
 | 	 * The aborted req will be completed on receiving the abort req. | 
 | 	 * We enable the timer again. If hit twice, it'll cause a device reset, | 
 | 	 * as the device then is in a faulty state. | 
 | 	 */ | 
 | 	return BLK_EH_RESET_TIMER; | 
 | } | 
 |  | 
 | static void nvme_free_queue(struct nvme_queue *nvmeq) | 
 | { | 
 | 	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), | 
 | 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr); | 
 | 	if (nvmeq->sq_cmds) | 
 | 		dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), | 
 | 					nvmeq->sq_cmds, nvmeq->sq_dma_addr); | 
 | 	kfree(nvmeq); | 
 | } | 
 |  | 
 | static void nvme_free_queues(struct nvme_dev *dev, int lowest) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = dev->queue_count - 1; i >= lowest; i--) { | 
 | 		struct nvme_queue *nvmeq = dev->queues[i]; | 
 | 		dev->queue_count--; | 
 | 		dev->queues[i] = NULL; | 
 | 		nvme_free_queue(nvmeq); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * nvme_suspend_queue - put queue into suspended state | 
 |  * @nvmeq - queue to suspend | 
 |  */ | 
 | static int nvme_suspend_queue(struct nvme_queue *nvmeq) | 
 | { | 
 | 	int vector; | 
 |  | 
 | 	spin_lock_irq(&nvmeq->q_lock); | 
 | 	if (nvmeq->cq_vector == -1) { | 
 | 		spin_unlock_irq(&nvmeq->q_lock); | 
 | 		return 1; | 
 | 	} | 
 | 	vector = nvmeq_irq(nvmeq); | 
 | 	nvmeq->dev->online_queues--; | 
 | 	nvmeq->cq_vector = -1; | 
 | 	spin_unlock_irq(&nvmeq->q_lock); | 
 |  | 
 | 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) | 
 | 		blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q); | 
 |  | 
 | 	free_irq(vector, nvmeq); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) | 
 | { | 
 | 	struct nvme_queue *nvmeq = dev->queues[0]; | 
 |  | 
 | 	if (!nvmeq) | 
 | 		return; | 
 | 	if (nvme_suspend_queue(nvmeq)) | 
 | 		return; | 
 |  | 
 | 	if (shutdown) | 
 | 		nvme_shutdown_ctrl(&dev->ctrl); | 
 | 	else | 
 | 		nvme_disable_ctrl(&dev->ctrl, lo_hi_readq( | 
 | 						dev->bar + NVME_REG_CAP)); | 
 |  | 
 | 	spin_lock_irq(&nvmeq->q_lock); | 
 | 	nvme_process_cq(nvmeq); | 
 | 	spin_unlock_irq(&nvmeq->q_lock); | 
 | } | 
 |  | 
 | static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, | 
 | 				int entry_size) | 
 | { | 
 | 	int q_depth = dev->q_depth; | 
 | 	unsigned q_size_aligned = roundup(q_depth * entry_size, | 
 | 					  dev->ctrl.page_size); | 
 |  | 
 | 	if (q_size_aligned * nr_io_queues > dev->cmb_size) { | 
 | 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); | 
 | 		mem_per_q = round_down(mem_per_q, dev->ctrl.page_size); | 
 | 		q_depth = div_u64(mem_per_q, entry_size); | 
 |  | 
 | 		/* | 
 | 		 * Ensure the reduced q_depth is above some threshold where it | 
 | 		 * would be better to map queues in system memory with the | 
 | 		 * original depth | 
 | 		 */ | 
 | 		if (q_depth < 64) | 
 | 			return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	return q_depth; | 
 | } | 
 |  | 
 | static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, | 
 | 				int qid, int depth) | 
 | { | 
 | 	if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) { | 
 | 		unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth), | 
 | 						      dev->ctrl.page_size); | 
 | 		nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset; | 
 | 		nvmeq->sq_cmds_io = dev->cmb + offset; | 
 | 	} else { | 
 | 		nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth), | 
 | 					&nvmeq->sq_dma_addr, GFP_KERNEL); | 
 | 		if (!nvmeq->sq_cmds) | 
 | 			return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, | 
 | 							int depth) | 
 | { | 
 | 	struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL); | 
 | 	if (!nvmeq) | 
 | 		return NULL; | 
 |  | 
 | 	nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth), | 
 | 					  &nvmeq->cq_dma_addr, GFP_KERNEL); | 
 | 	if (!nvmeq->cqes) | 
 | 		goto free_nvmeq; | 
 |  | 
 | 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth)) | 
 | 		goto free_cqdma; | 
 |  | 
 | 	nvmeq->q_dmadev = dev->dev; | 
 | 	nvmeq->dev = dev; | 
 | 	snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d", | 
 | 			dev->ctrl.instance, qid); | 
 | 	spin_lock_init(&nvmeq->q_lock); | 
 | 	nvmeq->cq_head = 0; | 
 | 	nvmeq->cq_phase = 1; | 
 | 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; | 
 | 	nvmeq->q_depth = depth; | 
 | 	nvmeq->qid = qid; | 
 | 	nvmeq->cq_vector = -1; | 
 | 	dev->queues[qid] = nvmeq; | 
 | 	dev->queue_count++; | 
 |  | 
 | 	return nvmeq; | 
 |  | 
 |  free_cqdma: | 
 | 	dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes, | 
 | 							nvmeq->cq_dma_addr); | 
 |  free_nvmeq: | 
 | 	kfree(nvmeq); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static int queue_request_irq(struct nvme_queue *nvmeq) | 
 | { | 
 | 	if (use_threaded_interrupts) | 
 | 		return request_threaded_irq(nvmeq_irq(nvmeq), nvme_irq_check, | 
 | 				nvme_irq, IRQF_SHARED, nvmeq->irqname, nvmeq); | 
 | 	else | 
 | 		return request_irq(nvmeq_irq(nvmeq), nvme_irq, IRQF_SHARED, | 
 | 				nvmeq->irqname, nvmeq); | 
 | } | 
 |  | 
 | static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) | 
 | { | 
 | 	struct nvme_dev *dev = nvmeq->dev; | 
 |  | 
 | 	spin_lock_irq(&nvmeq->q_lock); | 
 | 	nvmeq->sq_tail = 0; | 
 | 	nvmeq->cq_head = 0; | 
 | 	nvmeq->cq_phase = 1; | 
 | 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; | 
 | 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth)); | 
 | 	dev->online_queues++; | 
 | 	spin_unlock_irq(&nvmeq->q_lock); | 
 | } | 
 |  | 
 | static int nvme_create_queue(struct nvme_queue *nvmeq, int qid) | 
 | { | 
 | 	struct nvme_dev *dev = nvmeq->dev; | 
 | 	int result; | 
 |  | 
 | 	nvmeq->cq_vector = qid - 1; | 
 | 	result = adapter_alloc_cq(dev, qid, nvmeq); | 
 | 	if (result < 0) | 
 | 		return result; | 
 |  | 
 | 	result = adapter_alloc_sq(dev, qid, nvmeq); | 
 | 	if (result < 0) | 
 | 		goto release_cq; | 
 |  | 
 | 	result = queue_request_irq(nvmeq); | 
 | 	if (result < 0) | 
 | 		goto release_sq; | 
 |  | 
 | 	nvme_init_queue(nvmeq, qid); | 
 | 	return result; | 
 |  | 
 |  release_sq: | 
 | 	adapter_delete_sq(dev, qid); | 
 |  release_cq: | 
 | 	adapter_delete_cq(dev, qid); | 
 | 	return result; | 
 | } | 
 |  | 
 | static struct blk_mq_ops nvme_mq_admin_ops = { | 
 | 	.queue_rq	= nvme_queue_rq, | 
 | 	.complete	= nvme_complete_rq, | 
 | 	.init_hctx	= nvme_admin_init_hctx, | 
 | 	.exit_hctx      = nvme_admin_exit_hctx, | 
 | 	.init_request	= nvme_admin_init_request, | 
 | 	.timeout	= nvme_timeout, | 
 | }; | 
 |  | 
 | static struct blk_mq_ops nvme_mq_ops = { | 
 | 	.queue_rq	= nvme_queue_rq, | 
 | 	.complete	= nvme_complete_rq, | 
 | 	.init_hctx	= nvme_init_hctx, | 
 | 	.init_request	= nvme_init_request, | 
 | 	.map_queues	= nvme_pci_map_queues, | 
 | 	.timeout	= nvme_timeout, | 
 | 	.poll		= nvme_poll, | 
 | }; | 
 |  | 
 | static void nvme_dev_remove_admin(struct nvme_dev *dev) | 
 | { | 
 | 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { | 
 | 		/* | 
 | 		 * If the controller was reset during removal, it's possible | 
 | 		 * user requests may be waiting on a stopped queue. Start the | 
 | 		 * queue to flush these to completion. | 
 | 		 */ | 
 | 		blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true); | 
 | 		blk_cleanup_queue(dev->ctrl.admin_q); | 
 | 		blk_mq_free_tag_set(&dev->admin_tagset); | 
 | 	} | 
 | } | 
 |  | 
 | static int nvme_alloc_admin_tags(struct nvme_dev *dev) | 
 | { | 
 | 	if (!dev->ctrl.admin_q) { | 
 | 		dev->admin_tagset.ops = &nvme_mq_admin_ops; | 
 | 		dev->admin_tagset.nr_hw_queues = 1; | 
 |  | 
 | 		/* | 
 | 		 * Subtract one to leave an empty queue entry for 'Full Queue' | 
 | 		 * condition. See NVM-Express 1.2 specification, section 4.1.2. | 
 | 		 */ | 
 | 		dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1; | 
 | 		dev->admin_tagset.timeout = ADMIN_TIMEOUT; | 
 | 		dev->admin_tagset.numa_node = dev_to_node(dev->dev); | 
 | 		dev->admin_tagset.cmd_size = nvme_cmd_size(dev); | 
 | 		dev->admin_tagset.driver_data = dev; | 
 |  | 
 | 		if (blk_mq_alloc_tag_set(&dev->admin_tagset)) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); | 
 | 		if (IS_ERR(dev->ctrl.admin_q)) { | 
 | 			blk_mq_free_tag_set(&dev->admin_tagset); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		if (!blk_get_queue(dev->ctrl.admin_q)) { | 
 | 			nvme_dev_remove_admin(dev); | 
 | 			dev->ctrl.admin_q = NULL; | 
 | 			return -ENODEV; | 
 | 		} | 
 | 	} else | 
 | 		blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nvme_configure_admin_queue(struct nvme_dev *dev) | 
 | { | 
 | 	int result; | 
 | 	u32 aqa; | 
 | 	u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP); | 
 | 	struct nvme_queue *nvmeq; | 
 |  | 
 | 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? | 
 | 						NVME_CAP_NSSRC(cap) : 0; | 
 |  | 
 | 	if (dev->subsystem && | 
 | 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) | 
 | 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); | 
 |  | 
 | 	result = nvme_disable_ctrl(&dev->ctrl, cap); | 
 | 	if (result < 0) | 
 | 		return result; | 
 |  | 
 | 	nvmeq = dev->queues[0]; | 
 | 	if (!nvmeq) { | 
 | 		nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); | 
 | 		if (!nvmeq) | 
 | 			return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	aqa = nvmeq->q_depth - 1; | 
 | 	aqa |= aqa << 16; | 
 |  | 
 | 	writel(aqa, dev->bar + NVME_REG_AQA); | 
 | 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); | 
 | 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); | 
 |  | 
 | 	result = nvme_enable_ctrl(&dev->ctrl, cap); | 
 | 	if (result) | 
 | 		goto free_nvmeq; | 
 |  | 
 | 	nvmeq->cq_vector = 0; | 
 | 	result = queue_request_irq(nvmeq); | 
 | 	if (result) { | 
 | 		nvmeq->cq_vector = -1; | 
 | 		goto free_nvmeq; | 
 | 	} | 
 |  | 
 | 	return result; | 
 |  | 
 |  free_nvmeq: | 
 | 	nvme_free_queues(dev, 0); | 
 | 	return result; | 
 | } | 
 |  | 
 | static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) | 
 | { | 
 |  | 
 | 	/* If true, indicates loss of adapter communication, possibly by a | 
 | 	 * NVMe Subsystem reset. | 
 | 	 */ | 
 | 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); | 
 |  | 
 | 	/* If there is a reset ongoing, we shouldn't reset again. */ | 
 | 	if (work_busy(&dev->reset_work)) | 
 | 		return false; | 
 |  | 
 | 	/* We shouldn't reset unless the controller is on fatal error state | 
 | 	 * _or_ if we lost the communication with it. | 
 | 	 */ | 
 | 	if (!(csts & NVME_CSTS_CFS) && !nssro) | 
 | 		return false; | 
 |  | 
 | 	/* If PCI error recovery process is happening, we cannot reset or | 
 | 	 * the recovery mechanism will surely fail. | 
 | 	 */ | 
 | 	if (pci_channel_offline(to_pci_dev(dev->dev))) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void nvme_watchdog_timer(unsigned long data) | 
 | { | 
 | 	struct nvme_dev *dev = (struct nvme_dev *)data; | 
 | 	u32 csts = readl(dev->bar + NVME_REG_CSTS); | 
 |  | 
 | 	/* Skip controllers under certain specific conditions. */ | 
 | 	if (nvme_should_reset(dev, csts)) { | 
 | 		if (!nvme_reset(dev)) | 
 | 			dev_warn(dev->dev, | 
 | 				"Failed status: 0x%x, reset controller.\n", | 
 | 				csts); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ)); | 
 | } | 
 |  | 
 | static int nvme_create_io_queues(struct nvme_dev *dev) | 
 | { | 
 | 	unsigned i, max; | 
 | 	int ret = 0; | 
 |  | 
 | 	for (i = dev->queue_count; i <= dev->max_qid; i++) { | 
 | 		if (!nvme_alloc_queue(dev, i, dev->q_depth)) { | 
 | 			ret = -ENOMEM; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	max = min(dev->max_qid, dev->queue_count - 1); | 
 | 	for (i = dev->online_queues; i <= max; i++) { | 
 | 		ret = nvme_create_queue(dev->queues[i], i); | 
 | 		if (ret) { | 
 | 			nvme_free_queues(dev, i); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Ignore failing Create SQ/CQ commands, we can continue with less | 
 | 	 * than the desired aount of queues, and even a controller without | 
 | 	 * I/O queues an still be used to issue admin commands.  This might | 
 | 	 * be useful to upgrade a buggy firmware for example. | 
 | 	 */ | 
 | 	return ret >= 0 ? 0 : ret; | 
 | } | 
 |  | 
 | static ssize_t nvme_cmb_show(struct device *dev, | 
 | 			     struct device_attribute *attr, | 
 | 			     char *buf) | 
 | { | 
 | 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); | 
 |  | 
 | 	return snprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n", | 
 | 		       ndev->cmbloc, ndev->cmbsz); | 
 | } | 
 | static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL); | 
 |  | 
 | static void __iomem *nvme_map_cmb(struct nvme_dev *dev) | 
 | { | 
 | 	u64 szu, size, offset; | 
 | 	resource_size_t bar_size; | 
 | 	struct pci_dev *pdev = to_pci_dev(dev->dev); | 
 | 	void __iomem *cmb; | 
 | 	dma_addr_t dma_addr; | 
 |  | 
 | 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); | 
 | 	if (!(NVME_CMB_SZ(dev->cmbsz))) | 
 | 		return NULL; | 
 | 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); | 
 |  | 
 | 	if (!use_cmb_sqes) | 
 | 		return NULL; | 
 |  | 
 | 	szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz)); | 
 | 	size = szu * NVME_CMB_SZ(dev->cmbsz); | 
 | 	offset = szu * NVME_CMB_OFST(dev->cmbloc); | 
 | 	bar_size = pci_resource_len(pdev, NVME_CMB_BIR(dev->cmbloc)); | 
 |  | 
 | 	if (offset > bar_size) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * Controllers may support a CMB size larger than their BAR, | 
 | 	 * for example, due to being behind a bridge. Reduce the CMB to | 
 | 	 * the reported size of the BAR | 
 | 	 */ | 
 | 	if (size > bar_size - offset) | 
 | 		size = bar_size - offset; | 
 |  | 
 | 	dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(dev->cmbloc)) + offset; | 
 | 	cmb = ioremap_wc(dma_addr, size); | 
 | 	if (!cmb) | 
 | 		return NULL; | 
 |  | 
 | 	dev->cmb_dma_addr = dma_addr; | 
 | 	dev->cmb_size = size; | 
 | 	return cmb; | 
 | } | 
 |  | 
 | static inline void nvme_release_cmb(struct nvme_dev *dev) | 
 | { | 
 | 	if (dev->cmb) { | 
 | 		iounmap(dev->cmb); | 
 | 		dev->cmb = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) | 
 | { | 
 | 	return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride); | 
 | } | 
 |  | 
 | static int nvme_setup_io_queues(struct nvme_dev *dev) | 
 | { | 
 | 	struct nvme_queue *adminq = dev->queues[0]; | 
 | 	struct pci_dev *pdev = to_pci_dev(dev->dev); | 
 | 	int result, nr_io_queues, size; | 
 |  | 
 | 	nr_io_queues = num_online_cpus(); | 
 | 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); | 
 | 	if (result < 0) | 
 | 		return result; | 
 |  | 
 | 	if (nr_io_queues == 0) | 
 | 		return 0; | 
 |  | 
 | 	if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) { | 
 | 		result = nvme_cmb_qdepth(dev, nr_io_queues, | 
 | 				sizeof(struct nvme_command)); | 
 | 		if (result > 0) | 
 | 			dev->q_depth = result; | 
 | 		else | 
 | 			nvme_release_cmb(dev); | 
 | 	} | 
 |  | 
 | 	size = db_bar_size(dev, nr_io_queues); | 
 | 	if (size > 8192) { | 
 | 		iounmap(dev->bar); | 
 | 		do { | 
 | 			dev->bar = ioremap(pci_resource_start(pdev, 0), size); | 
 | 			if (dev->bar) | 
 | 				break; | 
 | 			if (!--nr_io_queues) | 
 | 				return -ENOMEM; | 
 | 			size = db_bar_size(dev, nr_io_queues); | 
 | 		} while (1); | 
 | 		dev->dbs = dev->bar + 4096; | 
 | 		adminq->q_db = dev->dbs; | 
 | 	} | 
 |  | 
 | 	/* Deregister the admin queue's interrupt */ | 
 | 	free_irq(pci_irq_vector(pdev, 0), adminq); | 
 |  | 
 | 	/* | 
 | 	 * If we enable msix early due to not intx, disable it again before | 
 | 	 * setting up the full range we need. | 
 | 	 */ | 
 | 	pci_free_irq_vectors(pdev); | 
 | 	nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues, | 
 | 			PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY); | 
 | 	if (nr_io_queues <= 0) | 
 | 		return -EIO; | 
 | 	dev->max_qid = nr_io_queues; | 
 |  | 
 | 	/* | 
 | 	 * Should investigate if there's a performance win from allocating | 
 | 	 * more queues than interrupt vectors; it might allow the submission | 
 | 	 * path to scale better, even if the receive path is limited by the | 
 | 	 * number of interrupts. | 
 | 	 */ | 
 |  | 
 | 	result = queue_request_irq(adminq); | 
 | 	if (result) { | 
 | 		adminq->cq_vector = -1; | 
 | 		goto free_queues; | 
 | 	} | 
 | 	return nvme_create_io_queues(dev); | 
 |  | 
 |  free_queues: | 
 | 	nvme_free_queues(dev, 1); | 
 | 	return result; | 
 | } | 
 |  | 
 | static void nvme_del_queue_end(struct request *req, int error) | 
 | { | 
 | 	struct nvme_queue *nvmeq = req->end_io_data; | 
 |  | 
 | 	blk_mq_free_request(req); | 
 | 	complete(&nvmeq->dev->ioq_wait); | 
 | } | 
 |  | 
 | static void nvme_del_cq_end(struct request *req, int error) | 
 | { | 
 | 	struct nvme_queue *nvmeq = req->end_io_data; | 
 |  | 
 | 	if (!error) { | 
 | 		unsigned long flags; | 
 |  | 
 | 		/* | 
 | 		 * We might be called with the AQ q_lock held | 
 | 		 * and the I/O queue q_lock should always | 
 | 		 * nest inside the AQ one. | 
 | 		 */ | 
 | 		spin_lock_irqsave_nested(&nvmeq->q_lock, flags, | 
 | 					SINGLE_DEPTH_NESTING); | 
 | 		nvme_process_cq(nvmeq); | 
 | 		spin_unlock_irqrestore(&nvmeq->q_lock, flags); | 
 | 	} | 
 |  | 
 | 	nvme_del_queue_end(req, error); | 
 | } | 
 |  | 
 | static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) | 
 | { | 
 | 	struct request_queue *q = nvmeq->dev->ctrl.admin_q; | 
 | 	struct request *req; | 
 | 	struct nvme_command cmd; | 
 |  | 
 | 	memset(&cmd, 0, sizeof(cmd)); | 
 | 	cmd.delete_queue.opcode = opcode; | 
 | 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); | 
 |  | 
 | 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); | 
 | 	if (IS_ERR(req)) | 
 | 		return PTR_ERR(req); | 
 |  | 
 | 	req->timeout = ADMIN_TIMEOUT; | 
 | 	req->end_io_data = nvmeq; | 
 |  | 
 | 	blk_execute_rq_nowait(q, NULL, req, false, | 
 | 			opcode == nvme_admin_delete_cq ? | 
 | 				nvme_del_cq_end : nvme_del_queue_end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void nvme_disable_io_queues(struct nvme_dev *dev, int queues) | 
 | { | 
 | 	int pass; | 
 | 	unsigned long timeout; | 
 | 	u8 opcode = nvme_admin_delete_sq; | 
 |  | 
 | 	for (pass = 0; pass < 2; pass++) { | 
 | 		int sent = 0, i = queues; | 
 |  | 
 | 		reinit_completion(&dev->ioq_wait); | 
 |  retry: | 
 | 		timeout = ADMIN_TIMEOUT; | 
 | 		for (; i > 0; i--, sent++) | 
 | 			if (nvme_delete_queue(dev->queues[i], opcode)) | 
 | 				break; | 
 |  | 
 | 		while (sent--) { | 
 | 			timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout); | 
 | 			if (timeout == 0) | 
 | 				return; | 
 | 			if (i) | 
 | 				goto retry; | 
 | 		} | 
 | 		opcode = nvme_admin_delete_cq; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Return: error value if an error occurred setting up the queues or calling | 
 |  * Identify Device.  0 if these succeeded, even if adding some of the | 
 |  * namespaces failed.  At the moment, these failures are silent.  TBD which | 
 |  * failures should be reported. | 
 |  */ | 
 | static int nvme_dev_add(struct nvme_dev *dev) | 
 | { | 
 | 	if (!dev->ctrl.tagset) { | 
 | 		dev->tagset.ops = &nvme_mq_ops; | 
 | 		dev->tagset.nr_hw_queues = dev->online_queues - 1; | 
 | 		dev->tagset.timeout = NVME_IO_TIMEOUT; | 
 | 		dev->tagset.numa_node = dev_to_node(dev->dev); | 
 | 		dev->tagset.queue_depth = | 
 | 				min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; | 
 | 		dev->tagset.cmd_size = nvme_cmd_size(dev); | 
 | 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; | 
 | 		dev->tagset.driver_data = dev; | 
 |  | 
 | 		if (blk_mq_alloc_tag_set(&dev->tagset)) | 
 | 			return 0; | 
 | 		dev->ctrl.tagset = &dev->tagset; | 
 | 	} else { | 
 | 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); | 
 |  | 
 | 		/* Free previously allocated queues that are no longer usable */ | 
 | 		nvme_free_queues(dev, dev->online_queues); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nvme_pci_enable(struct nvme_dev *dev) | 
 | { | 
 | 	u64 cap; | 
 | 	int result = -ENOMEM; | 
 | 	struct pci_dev *pdev = to_pci_dev(dev->dev); | 
 |  | 
 | 	if (pci_enable_device_mem(pdev)) | 
 | 		return result; | 
 |  | 
 | 	pci_set_master(pdev); | 
 |  | 
 | 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) && | 
 | 	    dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32))) | 
 | 		goto disable; | 
 |  | 
 | 	if (readl(dev->bar + NVME_REG_CSTS) == -1) { | 
 | 		result = -ENODEV; | 
 | 		goto disable; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Some devices and/or platforms don't advertise or work with INTx | 
 | 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll | 
 | 	 * adjust this later. | 
 | 	 */ | 
 | 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); | 
 | 	if (result < 0) | 
 | 		return result; | 
 |  | 
 | 	cap = lo_hi_readq(dev->bar + NVME_REG_CAP); | 
 |  | 
 | 	dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH); | 
 | 	dev->db_stride = 1 << NVME_CAP_STRIDE(cap); | 
 | 	dev->dbs = dev->bar + 4096; | 
 |  | 
 | 	/* | 
 | 	 * Temporary fix for the Apple controller found in the MacBook8,1 and | 
 | 	 * some MacBook7,1 to avoid controller resets and data loss. | 
 | 	 */ | 
 | 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { | 
 | 		dev->q_depth = 2; | 
 | 		dev_warn(dev->dev, "detected Apple NVMe controller, set " | 
 | 			"queue depth=%u to work around controller resets\n", | 
 | 			dev->q_depth); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * CMBs can currently only exist on >=1.2 PCIe devices. We only | 
 | 	 * populate sysfs if a CMB is implemented. Note that we add the | 
 | 	 * CMB attribute to the nvme_ctrl kobj which removes the need to remove | 
 | 	 * it on exit. Since nvme_dev_attrs_group has no name we can pass | 
 | 	 * NULL as final argument to sysfs_add_file_to_group. | 
 | 	 */ | 
 |  | 
 | 	if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) { | 
 | 		dev->cmb = nvme_map_cmb(dev); | 
 |  | 
 | 		if (dev->cmbsz) { | 
 | 			if (sysfs_add_file_to_group(&dev->ctrl.device->kobj, | 
 | 						    &dev_attr_cmb.attr, NULL)) | 
 | 				dev_warn(dev->dev, | 
 | 					 "failed to add sysfs attribute for CMB\n"); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	pci_enable_pcie_error_reporting(pdev); | 
 | 	pci_save_state(pdev); | 
 | 	return 0; | 
 |  | 
 |  disable: | 
 | 	pci_disable_device(pdev); | 
 | 	return result; | 
 | } | 
 |  | 
 | static void nvme_dev_unmap(struct nvme_dev *dev) | 
 | { | 
 | 	if (dev->bar) | 
 | 		iounmap(dev->bar); | 
 | 	pci_release_mem_regions(to_pci_dev(dev->dev)); | 
 | } | 
 |  | 
 | static void nvme_pci_disable(struct nvme_dev *dev) | 
 | { | 
 | 	struct pci_dev *pdev = to_pci_dev(dev->dev); | 
 |  | 
 | 	pci_free_irq_vectors(pdev); | 
 |  | 
 | 	if (pci_is_enabled(pdev)) { | 
 | 		pci_disable_pcie_error_reporting(pdev); | 
 | 		pci_disable_device(pdev); | 
 | 	} | 
 | } | 
 |  | 
 | static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) | 
 | { | 
 | 	int i, queues; | 
 | 	u32 csts = -1; | 
 |  | 
 | 	del_timer_sync(&dev->watchdog_timer); | 
 |  | 
 | 	mutex_lock(&dev->shutdown_lock); | 
 | 	if (pci_is_enabled(to_pci_dev(dev->dev))) { | 
 | 		nvme_stop_queues(&dev->ctrl); | 
 | 		csts = readl(dev->bar + NVME_REG_CSTS); | 
 | 	} | 
 |  | 
 | 	queues = dev->online_queues - 1; | 
 | 	for (i = dev->queue_count - 1; i > 0; i--) | 
 | 		nvme_suspend_queue(dev->queues[i]); | 
 |  | 
 | 	if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) { | 
 | 		/* A device might become IO incapable very soon during | 
 | 		 * probe, before the admin queue is configured. Thus, | 
 | 		 * queue_count can be 0 here. | 
 | 		 */ | 
 | 		if (dev->queue_count) | 
 | 			nvme_suspend_queue(dev->queues[0]); | 
 | 	} else { | 
 | 		nvme_disable_io_queues(dev, queues); | 
 | 		nvme_disable_admin_queue(dev, shutdown); | 
 | 	} | 
 | 	nvme_pci_disable(dev); | 
 |  | 
 | 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); | 
 | 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); | 
 | 	mutex_unlock(&dev->shutdown_lock); | 
 | } | 
 |  | 
 | static int nvme_setup_prp_pools(struct nvme_dev *dev) | 
 | { | 
 | 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, | 
 | 						PAGE_SIZE, PAGE_SIZE, 0); | 
 | 	if (!dev->prp_page_pool) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* Optimisation for I/Os between 4k and 128k */ | 
 | 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, | 
 | 						256, 256, 0); | 
 | 	if (!dev->prp_small_pool) { | 
 | 		dma_pool_destroy(dev->prp_page_pool); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void nvme_release_prp_pools(struct nvme_dev *dev) | 
 | { | 
 | 	dma_pool_destroy(dev->prp_page_pool); | 
 | 	dma_pool_destroy(dev->prp_small_pool); | 
 | } | 
 |  | 
 | static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	struct nvme_dev *dev = to_nvme_dev(ctrl); | 
 |  | 
 | 	put_device(dev->dev); | 
 | 	if (dev->tagset.tags) | 
 | 		blk_mq_free_tag_set(&dev->tagset); | 
 | 	if (dev->ctrl.admin_q) | 
 | 		blk_put_queue(dev->ctrl.admin_q); | 
 | 	kfree(dev->queues); | 
 | 	kfree(dev); | 
 | } | 
 |  | 
 | static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status) | 
 | { | 
 | 	dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status); | 
 |  | 
 | 	kref_get(&dev->ctrl.kref); | 
 | 	nvme_dev_disable(dev, false); | 
 | 	if (!schedule_work(&dev->remove_work)) | 
 | 		nvme_put_ctrl(&dev->ctrl); | 
 | } | 
 |  | 
 | static void nvme_reset_work(struct work_struct *work) | 
 | { | 
 | 	struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work); | 
 | 	int result = -ENODEV; | 
 |  | 
 | 	if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * If we're called to reset a live controller first shut it down before | 
 | 	 * moving on. | 
 | 	 */ | 
 | 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) | 
 | 		nvme_dev_disable(dev, false); | 
 |  | 
 | 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) | 
 | 		goto out; | 
 |  | 
 | 	result = nvme_pci_enable(dev); | 
 | 	if (result) | 
 | 		goto out; | 
 |  | 
 | 	result = nvme_configure_admin_queue(dev); | 
 | 	if (result) | 
 | 		goto out; | 
 |  | 
 | 	nvme_init_queue(dev->queues[0], 0); | 
 | 	result = nvme_alloc_admin_tags(dev); | 
 | 	if (result) | 
 | 		goto out; | 
 |  | 
 | 	result = nvme_init_identify(&dev->ctrl); | 
 | 	if (result) | 
 | 		goto out; | 
 |  | 
 | 	result = nvme_setup_io_queues(dev); | 
 | 	if (result) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * A controller that can not execute IO typically requires user | 
 | 	 * intervention to correct. For such degraded controllers, the driver | 
 | 	 * should not submit commands the user did not request, so skip | 
 | 	 * registering for asynchronous event notification on this condition. | 
 | 	 */ | 
 | 	if (dev->online_queues > 1) | 
 | 		nvme_queue_async_events(&dev->ctrl); | 
 |  | 
 | 	mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ)); | 
 |  | 
 | 	/* | 
 | 	 * Keep the controller around but remove all namespaces if we don't have | 
 | 	 * any working I/O queue. | 
 | 	 */ | 
 | 	if (dev->online_queues < 2) { | 
 | 		dev_warn(dev->ctrl.device, "IO queues not created\n"); | 
 | 		nvme_kill_queues(&dev->ctrl); | 
 | 		nvme_remove_namespaces(&dev->ctrl); | 
 | 	} else { | 
 | 		nvme_start_queues(&dev->ctrl); | 
 | 		nvme_dev_add(dev); | 
 | 	} | 
 |  | 
 | 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { | 
 | 		dev_warn(dev->ctrl.device, "failed to mark controller live\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (dev->online_queues > 1) | 
 | 		nvme_queue_scan(&dev->ctrl); | 
 | 	return; | 
 |  | 
 |  out: | 
 | 	nvme_remove_dead_ctrl(dev, result); | 
 | } | 
 |  | 
 | static void nvme_remove_dead_ctrl_work(struct work_struct *work) | 
 | { | 
 | 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); | 
 | 	struct pci_dev *pdev = to_pci_dev(dev->dev); | 
 |  | 
 | 	nvme_kill_queues(&dev->ctrl); | 
 | 	if (pci_get_drvdata(pdev)) | 
 | 		device_release_driver(&pdev->dev); | 
 | 	nvme_put_ctrl(&dev->ctrl); | 
 | } | 
 |  | 
 | static int nvme_reset(struct nvme_dev *dev) | 
 | { | 
 | 	if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q)) | 
 | 		return -ENODEV; | 
 | 	if (work_busy(&dev->reset_work)) | 
 | 		return -ENODEV; | 
 | 	if (!queue_work(nvme_workq, &dev->reset_work)) | 
 | 		return -EBUSY; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) | 
 | { | 
 | 	*val = readl(to_nvme_dev(ctrl)->bar + off); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) | 
 | { | 
 | 	writel(val, to_nvme_dev(ctrl)->bar + off); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) | 
 | { | 
 | 	*val = readq(to_nvme_dev(ctrl)->bar + off); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	struct nvme_dev *dev = to_nvme_dev(ctrl); | 
 | 	int ret = nvme_reset(dev); | 
 |  | 
 | 	if (!ret) | 
 | 		flush_work(&dev->reset_work); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { | 
 | 	.name			= "pcie", | 
 | 	.module			= THIS_MODULE, | 
 | 	.reg_read32		= nvme_pci_reg_read32, | 
 | 	.reg_write32		= nvme_pci_reg_write32, | 
 | 	.reg_read64		= nvme_pci_reg_read64, | 
 | 	.reset_ctrl		= nvme_pci_reset_ctrl, | 
 | 	.free_ctrl		= nvme_pci_free_ctrl, | 
 | 	.submit_async_event	= nvme_pci_submit_async_event, | 
 | }; | 
 |  | 
 | static int nvme_dev_map(struct nvme_dev *dev) | 
 | { | 
 | 	struct pci_dev *pdev = to_pci_dev(dev->dev); | 
 |  | 
 | 	if (pci_request_mem_regions(pdev, "nvme")) | 
 | 		return -ENODEV; | 
 |  | 
 | 	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192); | 
 | 	if (!dev->bar) | 
 | 		goto release; | 
 |  | 
 |        return 0; | 
 |   release: | 
 |        pci_release_mem_regions(pdev); | 
 |        return -ENODEV; | 
 | } | 
 |  | 
 | static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) | 
 | { | 
 | 	int node, result = -ENOMEM; | 
 | 	struct nvme_dev *dev; | 
 |  | 
 | 	node = dev_to_node(&pdev->dev); | 
 | 	if (node == NUMA_NO_NODE) | 
 | 		set_dev_node(&pdev->dev, first_memory_node); | 
 |  | 
 | 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); | 
 | 	if (!dev) | 
 | 		return -ENOMEM; | 
 | 	dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *), | 
 | 							GFP_KERNEL, node); | 
 | 	if (!dev->queues) | 
 | 		goto free; | 
 |  | 
 | 	dev->dev = get_device(&pdev->dev); | 
 | 	pci_set_drvdata(pdev, dev); | 
 |  | 
 | 	result = nvme_dev_map(dev); | 
 | 	if (result) | 
 | 		goto free; | 
 |  | 
 | 	INIT_WORK(&dev->reset_work, nvme_reset_work); | 
 | 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); | 
 | 	setup_timer(&dev->watchdog_timer, nvme_watchdog_timer, | 
 | 		(unsigned long)dev); | 
 | 	mutex_init(&dev->shutdown_lock); | 
 | 	init_completion(&dev->ioq_wait); | 
 |  | 
 | 	result = nvme_setup_prp_pools(dev); | 
 | 	if (result) | 
 | 		goto put_pci; | 
 |  | 
 | 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, | 
 | 			id->driver_data); | 
 | 	if (result) | 
 | 		goto release_pools; | 
 |  | 
 | 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); | 
 |  | 
 | 	queue_work(nvme_workq, &dev->reset_work); | 
 | 	return 0; | 
 |  | 
 |  release_pools: | 
 | 	nvme_release_prp_pools(dev); | 
 |  put_pci: | 
 | 	put_device(dev->dev); | 
 | 	nvme_dev_unmap(dev); | 
 |  free: | 
 | 	kfree(dev->queues); | 
 | 	kfree(dev); | 
 | 	return result; | 
 | } | 
 |  | 
 | static void nvme_reset_notify(struct pci_dev *pdev, bool prepare) | 
 | { | 
 | 	struct nvme_dev *dev = pci_get_drvdata(pdev); | 
 |  | 
 | 	if (prepare) | 
 | 		nvme_dev_disable(dev, false); | 
 | 	else | 
 | 		nvme_reset(dev); | 
 | } | 
 |  | 
 | static void nvme_shutdown(struct pci_dev *pdev) | 
 | { | 
 | 	struct nvme_dev *dev = pci_get_drvdata(pdev); | 
 | 	nvme_dev_disable(dev, true); | 
 | } | 
 |  | 
 | /* | 
 |  * The driver's remove may be called on a device in a partially initialized | 
 |  * state. This function must not have any dependencies on the device state in | 
 |  * order to proceed. | 
 |  */ | 
 | static void nvme_remove(struct pci_dev *pdev) | 
 | { | 
 | 	struct nvme_dev *dev = pci_get_drvdata(pdev); | 
 |  | 
 | 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); | 
 |  | 
 | 	pci_set_drvdata(pdev, NULL); | 
 |  | 
 | 	if (!pci_device_is_present(pdev)) | 
 | 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); | 
 |  | 
 | 	flush_work(&dev->reset_work); | 
 | 	nvme_uninit_ctrl(&dev->ctrl); | 
 | 	nvme_dev_disable(dev, true); | 
 | 	nvme_dev_remove_admin(dev); | 
 | 	nvme_free_queues(dev, 0); | 
 | 	nvme_release_cmb(dev); | 
 | 	nvme_release_prp_pools(dev); | 
 | 	nvme_dev_unmap(dev); | 
 | 	nvme_put_ctrl(&dev->ctrl); | 
 | } | 
 |  | 
 | static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	if (numvfs == 0) { | 
 | 		if (pci_vfs_assigned(pdev)) { | 
 | 			dev_warn(&pdev->dev, | 
 | 				"Cannot disable SR-IOV VFs while assigned\n"); | 
 | 			return -EPERM; | 
 | 		} | 
 | 		pci_disable_sriov(pdev); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	ret = pci_enable_sriov(pdev, numvfs); | 
 | 	return ret ? ret : numvfs; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PM_SLEEP | 
 | static int nvme_suspend(struct device *dev) | 
 | { | 
 | 	struct pci_dev *pdev = to_pci_dev(dev); | 
 | 	struct nvme_dev *ndev = pci_get_drvdata(pdev); | 
 |  | 
 | 	nvme_dev_disable(ndev, true); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nvme_resume(struct device *dev) | 
 | { | 
 | 	struct pci_dev *pdev = to_pci_dev(dev); | 
 | 	struct nvme_dev *ndev = pci_get_drvdata(pdev); | 
 |  | 
 | 	nvme_reset(ndev); | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume); | 
 |  | 
 | static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, | 
 | 						pci_channel_state_t state) | 
 | { | 
 | 	struct nvme_dev *dev = pci_get_drvdata(pdev); | 
 |  | 
 | 	/* | 
 | 	 * A frozen channel requires a reset. When detected, this method will | 
 | 	 * shutdown the controller to quiesce. The controller will be restarted | 
 | 	 * after the slot reset through driver's slot_reset callback. | 
 | 	 */ | 
 | 	switch (state) { | 
 | 	case pci_channel_io_normal: | 
 | 		return PCI_ERS_RESULT_CAN_RECOVER; | 
 | 	case pci_channel_io_frozen: | 
 | 		dev_warn(dev->ctrl.device, | 
 | 			"frozen state error detected, reset controller\n"); | 
 | 		nvme_dev_disable(dev, false); | 
 | 		return PCI_ERS_RESULT_NEED_RESET; | 
 | 	case pci_channel_io_perm_failure: | 
 | 		dev_warn(dev->ctrl.device, | 
 | 			"failure state error detected, request disconnect\n"); | 
 | 		return PCI_ERS_RESULT_DISCONNECT; | 
 | 	} | 
 | 	return PCI_ERS_RESULT_NEED_RESET; | 
 | } | 
 |  | 
 | static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) | 
 | { | 
 | 	struct nvme_dev *dev = pci_get_drvdata(pdev); | 
 |  | 
 | 	dev_info(dev->ctrl.device, "restart after slot reset\n"); | 
 | 	pci_restore_state(pdev); | 
 | 	nvme_reset(dev); | 
 | 	return PCI_ERS_RESULT_RECOVERED; | 
 | } | 
 |  | 
 | static void nvme_error_resume(struct pci_dev *pdev) | 
 | { | 
 | 	pci_cleanup_aer_uncorrect_error_status(pdev); | 
 | } | 
 |  | 
 | static const struct pci_error_handlers nvme_err_handler = { | 
 | 	.error_detected	= nvme_error_detected, | 
 | 	.slot_reset	= nvme_slot_reset, | 
 | 	.resume		= nvme_error_resume, | 
 | 	.reset_notify	= nvme_reset_notify, | 
 | }; | 
 |  | 
 | /* Move to pci_ids.h later */ | 
 | #define PCI_CLASS_STORAGE_EXPRESS	0x010802 | 
 |  | 
 | static const struct pci_device_id nvme_id_table[] = { | 
 | 	{ PCI_VDEVICE(INTEL, 0x0953), | 
 | 		.driver_data = NVME_QUIRK_STRIPE_SIZE | | 
 | 				NVME_QUIRK_DISCARD_ZEROES, }, | 
 | 	{ PCI_VDEVICE(INTEL, 0x0a53), | 
 | 		.driver_data = NVME_QUIRK_STRIPE_SIZE | | 
 | 				NVME_QUIRK_DISCARD_ZEROES, }, | 
 | 	{ PCI_VDEVICE(INTEL, 0x0a54), | 
 | 		.driver_data = NVME_QUIRK_STRIPE_SIZE | | 
 | 				NVME_QUIRK_DISCARD_ZEROES, }, | 
 | 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */ | 
 | 		.driver_data = NVME_QUIRK_IDENTIFY_CNS, }, | 
 | 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */ | 
 | 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, | 
 | 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */ | 
 | 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, | 
 | 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, | 
 | 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) }, | 
 | 	{ 0, } | 
 | }; | 
 | MODULE_DEVICE_TABLE(pci, nvme_id_table); | 
 |  | 
 | static struct pci_driver nvme_driver = { | 
 | 	.name		= "nvme", | 
 | 	.id_table	= nvme_id_table, | 
 | 	.probe		= nvme_probe, | 
 | 	.remove		= nvme_remove, | 
 | 	.shutdown	= nvme_shutdown, | 
 | 	.driver		= { | 
 | 		.pm	= &nvme_dev_pm_ops, | 
 | 	}, | 
 | 	.sriov_configure = nvme_pci_sriov_configure, | 
 | 	.err_handler	= &nvme_err_handler, | 
 | }; | 
 |  | 
 | static int __init nvme_init(void) | 
 | { | 
 | 	int result; | 
 |  | 
 | 	nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0); | 
 | 	if (!nvme_workq) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	result = pci_register_driver(&nvme_driver); | 
 | 	if (result) | 
 | 		destroy_workqueue(nvme_workq); | 
 | 	return result; | 
 | } | 
 |  | 
 | static void __exit nvme_exit(void) | 
 | { | 
 | 	pci_unregister_driver(&nvme_driver); | 
 | 	destroy_workqueue(nvme_workq); | 
 | 	_nvme_check_size(); | 
 | } | 
 |  | 
 | MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_VERSION("1.0"); | 
 | module_init(nvme_init); | 
 | module_exit(nvme_exit); |