|  | /* | 
|  | * Copyright (C) 2001 Momchil Velikov | 
|  | * Portions Copyright (C) 2001 Christoph Hellwig | 
|  | * Copyright (C) 2005 SGI, Christoph Lameter | 
|  | * Copyright (C) 2006 Nick Piggin | 
|  | * Copyright (C) 2012 Konstantin Khlebnikov | 
|  | * Copyright (C) 2016 Intel, Matthew Wilcox | 
|  | * Copyright (C) 2016 Intel, Ross Zwisler | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as | 
|  | * published by the Free Software Foundation; either version 2, or (at | 
|  | * your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but | 
|  | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/bitmap.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/idr.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/kmemleak.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/preempt.h>		/* in_interrupt() */ | 
|  | #include <linux/radix-tree.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/string.h> | 
|  |  | 
|  |  | 
|  | /* Number of nodes in fully populated tree of given height */ | 
|  | static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly; | 
|  |  | 
|  | /* | 
|  | * Radix tree node cache. | 
|  | */ | 
|  | static struct kmem_cache *radix_tree_node_cachep; | 
|  |  | 
|  | /* | 
|  | * The radix tree is variable-height, so an insert operation not only has | 
|  | * to build the branch to its corresponding item, it also has to build the | 
|  | * branch to existing items if the size has to be increased (by | 
|  | * radix_tree_extend). | 
|  | * | 
|  | * The worst case is a zero height tree with just a single item at index 0, | 
|  | * and then inserting an item at index ULONG_MAX. This requires 2 new branches | 
|  | * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared. | 
|  | * Hence: | 
|  | */ | 
|  | #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1) | 
|  |  | 
|  | /* | 
|  | * The IDR does not have to be as high as the radix tree since it uses | 
|  | * signed integers, not unsigned longs. | 
|  | */ | 
|  | #define IDR_INDEX_BITS		(8 /* CHAR_BIT */ * sizeof(int) - 1) | 
|  | #define IDR_MAX_PATH		(DIV_ROUND_UP(IDR_INDEX_BITS, \ | 
|  | RADIX_TREE_MAP_SHIFT)) | 
|  | #define IDR_PRELOAD_SIZE	(IDR_MAX_PATH * 2 - 1) | 
|  |  | 
|  | /* | 
|  | * The IDA is even shorter since it uses a bitmap at the last level. | 
|  | */ | 
|  | #define IDA_INDEX_BITS		(8 * sizeof(int) - 1 - ilog2(IDA_BITMAP_BITS)) | 
|  | #define IDA_MAX_PATH		(DIV_ROUND_UP(IDA_INDEX_BITS, \ | 
|  | RADIX_TREE_MAP_SHIFT)) | 
|  | #define IDA_PRELOAD_SIZE	(IDA_MAX_PATH * 2 - 1) | 
|  |  | 
|  | /* | 
|  | * Per-cpu pool of preloaded nodes | 
|  | */ | 
|  | struct radix_tree_preload { | 
|  | unsigned nr; | 
|  | /* nodes->parent points to next preallocated node */ | 
|  | struct radix_tree_node *nodes; | 
|  | }; | 
|  | static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, }; | 
|  |  | 
|  | static inline struct radix_tree_node *entry_to_node(void *ptr) | 
|  | { | 
|  | return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE); | 
|  | } | 
|  |  | 
|  | static inline void *node_to_entry(void *ptr) | 
|  | { | 
|  | return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE); | 
|  | } | 
|  |  | 
|  | #define RADIX_TREE_RETRY	node_to_entry(NULL) | 
|  |  | 
|  | #ifdef CONFIG_RADIX_TREE_MULTIORDER | 
|  | /* Sibling slots point directly to another slot in the same node */ | 
|  | static inline | 
|  | bool is_sibling_entry(const struct radix_tree_node *parent, void *node) | 
|  | { | 
|  | void __rcu **ptr = node; | 
|  | return (parent->slots <= ptr) && | 
|  | (ptr < parent->slots + RADIX_TREE_MAP_SIZE); | 
|  | } | 
|  | #else | 
|  | static inline | 
|  | bool is_sibling_entry(const struct radix_tree_node *parent, void *node) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline unsigned long | 
|  | get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot) | 
|  | { | 
|  | return slot - parent->slots; | 
|  | } | 
|  |  | 
|  | static unsigned int radix_tree_descend(const struct radix_tree_node *parent, | 
|  | struct radix_tree_node **nodep, unsigned long index) | 
|  | { | 
|  | unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK; | 
|  | void __rcu **entry = rcu_dereference_raw(parent->slots[offset]); | 
|  |  | 
|  | #ifdef CONFIG_RADIX_TREE_MULTIORDER | 
|  | if (radix_tree_is_internal_node(entry)) { | 
|  | if (is_sibling_entry(parent, entry)) { | 
|  | void __rcu **sibentry; | 
|  | sibentry = (void __rcu **) entry_to_node(entry); | 
|  | offset = get_slot_offset(parent, sibentry); | 
|  | entry = rcu_dereference_raw(*sibentry); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | *nodep = (void *)entry; | 
|  | return offset; | 
|  | } | 
|  |  | 
|  | static inline gfp_t root_gfp_mask(const struct radix_tree_root *root) | 
|  | { | 
|  | return root->gfp_mask & __GFP_BITS_MASK; | 
|  | } | 
|  |  | 
|  | static inline void tag_set(struct radix_tree_node *node, unsigned int tag, | 
|  | int offset) | 
|  | { | 
|  | __set_bit(offset, node->tags[tag]); | 
|  | } | 
|  |  | 
|  | static inline void tag_clear(struct radix_tree_node *node, unsigned int tag, | 
|  | int offset) | 
|  | { | 
|  | __clear_bit(offset, node->tags[tag]); | 
|  | } | 
|  |  | 
|  | static inline int tag_get(const struct radix_tree_node *node, unsigned int tag, | 
|  | int offset) | 
|  | { | 
|  | return test_bit(offset, node->tags[tag]); | 
|  | } | 
|  |  | 
|  | static inline void root_tag_set(struct radix_tree_root *root, unsigned tag) | 
|  | { | 
|  | root->gfp_mask |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT)); | 
|  | } | 
|  |  | 
|  | static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag) | 
|  | { | 
|  | root->gfp_mask &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT)); | 
|  | } | 
|  |  | 
|  | static inline void root_tag_clear_all(struct radix_tree_root *root) | 
|  | { | 
|  | root->gfp_mask &= (1 << ROOT_TAG_SHIFT) - 1; | 
|  | } | 
|  |  | 
|  | static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag) | 
|  | { | 
|  | return (__force int)root->gfp_mask & (1 << (tag + ROOT_TAG_SHIFT)); | 
|  | } | 
|  |  | 
|  | static inline unsigned root_tags_get(const struct radix_tree_root *root) | 
|  | { | 
|  | return (__force unsigned)root->gfp_mask >> ROOT_TAG_SHIFT; | 
|  | } | 
|  |  | 
|  | static inline bool is_idr(const struct radix_tree_root *root) | 
|  | { | 
|  | return !!(root->gfp_mask & ROOT_IS_IDR); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns 1 if any slot in the node has this tag set. | 
|  | * Otherwise returns 0. | 
|  | */ | 
|  | static inline int any_tag_set(const struct radix_tree_node *node, | 
|  | unsigned int tag) | 
|  | { | 
|  | unsigned idx; | 
|  | for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) { | 
|  | if (node->tags[tag][idx]) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag) | 
|  | { | 
|  | bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * radix_tree_find_next_bit - find the next set bit in a memory region | 
|  | * | 
|  | * @addr: The address to base the search on | 
|  | * @size: The bitmap size in bits | 
|  | * @offset: The bitnumber to start searching at | 
|  | * | 
|  | * Unrollable variant of find_next_bit() for constant size arrays. | 
|  | * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero. | 
|  | * Returns next bit offset, or size if nothing found. | 
|  | */ | 
|  | static __always_inline unsigned long | 
|  | radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag, | 
|  | unsigned long offset) | 
|  | { | 
|  | const unsigned long *addr = node->tags[tag]; | 
|  |  | 
|  | if (offset < RADIX_TREE_MAP_SIZE) { | 
|  | unsigned long tmp; | 
|  |  | 
|  | addr += offset / BITS_PER_LONG; | 
|  | tmp = *addr >> (offset % BITS_PER_LONG); | 
|  | if (tmp) | 
|  | return __ffs(tmp) + offset; | 
|  | offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1); | 
|  | while (offset < RADIX_TREE_MAP_SIZE) { | 
|  | tmp = *++addr; | 
|  | if (tmp) | 
|  | return __ffs(tmp) + offset; | 
|  | offset += BITS_PER_LONG; | 
|  | } | 
|  | } | 
|  | return RADIX_TREE_MAP_SIZE; | 
|  | } | 
|  |  | 
|  | static unsigned int iter_offset(const struct radix_tree_iter *iter) | 
|  | { | 
|  | return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The maximum index which can be stored in a radix tree | 
|  | */ | 
|  | static inline unsigned long shift_maxindex(unsigned int shift) | 
|  | { | 
|  | return (RADIX_TREE_MAP_SIZE << shift) - 1; | 
|  | } | 
|  |  | 
|  | static inline unsigned long node_maxindex(const struct radix_tree_node *node) | 
|  | { | 
|  | return shift_maxindex(node->shift); | 
|  | } | 
|  |  | 
|  | static unsigned long next_index(unsigned long index, | 
|  | const struct radix_tree_node *node, | 
|  | unsigned long offset) | 
|  | { | 
|  | return (index & ~node_maxindex(node)) + (offset << node->shift); | 
|  | } | 
|  |  | 
|  | #ifndef __KERNEL__ | 
|  | static void dump_node(struct radix_tree_node *node, unsigned long index) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n", | 
|  | node, node->offset, index, index | node_maxindex(node), | 
|  | node->parent, | 
|  | node->tags[0][0], node->tags[1][0], node->tags[2][0], | 
|  | node->shift, node->count, node->exceptional); | 
|  |  | 
|  | for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) { | 
|  | unsigned long first = index | (i << node->shift); | 
|  | unsigned long last = first | ((1UL << node->shift) - 1); | 
|  | void *entry = node->slots[i]; | 
|  | if (!entry) | 
|  | continue; | 
|  | if (entry == RADIX_TREE_RETRY) { | 
|  | pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n", | 
|  | i, first, last, node); | 
|  | } else if (!radix_tree_is_internal_node(entry)) { | 
|  | pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n", | 
|  | entry, i, first, last, node); | 
|  | } else if (is_sibling_entry(node, entry)) { | 
|  | pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n", | 
|  | entry, i, first, last, node, | 
|  | *(void **)entry_to_node(entry)); | 
|  | } else { | 
|  | dump_node(entry_to_node(entry), first); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* For debug */ | 
|  | static void radix_tree_dump(struct radix_tree_root *root) | 
|  | { | 
|  | pr_debug("radix root: %p rnode %p tags %x\n", | 
|  | root, root->rnode, | 
|  | root->gfp_mask >> ROOT_TAG_SHIFT); | 
|  | if (!radix_tree_is_internal_node(root->rnode)) | 
|  | return; | 
|  | dump_node(entry_to_node(root->rnode), 0); | 
|  | } | 
|  |  | 
|  | static void dump_ida_node(void *entry, unsigned long index) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | if (!entry) | 
|  | return; | 
|  |  | 
|  | if (radix_tree_is_internal_node(entry)) { | 
|  | struct radix_tree_node *node = entry_to_node(entry); | 
|  |  | 
|  | pr_debug("ida node: %p offset %d indices %lu-%lu parent %p free %lx shift %d count %d\n", | 
|  | node, node->offset, index * IDA_BITMAP_BITS, | 
|  | ((index | node_maxindex(node)) + 1) * | 
|  | IDA_BITMAP_BITS - 1, | 
|  | node->parent, node->tags[0][0], node->shift, | 
|  | node->count); | 
|  | for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) | 
|  | dump_ida_node(node->slots[i], | 
|  | index | (i << node->shift)); | 
|  | } else if (radix_tree_exceptional_entry(entry)) { | 
|  | pr_debug("ida excp: %p offset %d indices %lu-%lu data %lx\n", | 
|  | entry, (int)(index & RADIX_TREE_MAP_MASK), | 
|  | index * IDA_BITMAP_BITS, | 
|  | index * IDA_BITMAP_BITS + BITS_PER_LONG - | 
|  | RADIX_TREE_EXCEPTIONAL_SHIFT, | 
|  | (unsigned long)entry >> | 
|  | RADIX_TREE_EXCEPTIONAL_SHIFT); | 
|  | } else { | 
|  | struct ida_bitmap *bitmap = entry; | 
|  |  | 
|  | pr_debug("ida btmp: %p offset %d indices %lu-%lu data", bitmap, | 
|  | (int)(index & RADIX_TREE_MAP_MASK), | 
|  | index * IDA_BITMAP_BITS, | 
|  | (index + 1) * IDA_BITMAP_BITS - 1); | 
|  | for (i = 0; i < IDA_BITMAP_LONGS; i++) | 
|  | pr_cont(" %lx", bitmap->bitmap[i]); | 
|  | pr_cont("\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ida_dump(struct ida *ida) | 
|  | { | 
|  | struct radix_tree_root *root = &ida->ida_rt; | 
|  | pr_debug("ida: %p node %p free %d\n", ida, root->rnode, | 
|  | root->gfp_mask >> ROOT_TAG_SHIFT); | 
|  | dump_ida_node(root->rnode, 0); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This assumes that the caller has performed appropriate preallocation, and | 
|  | * that the caller has pinned this thread of control to the current CPU. | 
|  | */ | 
|  | static struct radix_tree_node * | 
|  | radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent, | 
|  | struct radix_tree_root *root, | 
|  | unsigned int shift, unsigned int offset, | 
|  | unsigned int count, unsigned int exceptional) | 
|  | { | 
|  | struct radix_tree_node *ret = NULL; | 
|  |  | 
|  | /* | 
|  | * Preload code isn't irq safe and it doesn't make sense to use | 
|  | * preloading during an interrupt anyway as all the allocations have | 
|  | * to be atomic. So just do normal allocation when in interrupt. | 
|  | */ | 
|  | if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) { | 
|  | struct radix_tree_preload *rtp; | 
|  |  | 
|  | /* | 
|  | * Even if the caller has preloaded, try to allocate from the | 
|  | * cache first for the new node to get accounted to the memory | 
|  | * cgroup. | 
|  | */ | 
|  | ret = kmem_cache_alloc(radix_tree_node_cachep, | 
|  | gfp_mask | __GFP_NOWARN); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Provided the caller has preloaded here, we will always | 
|  | * succeed in getting a node here (and never reach | 
|  | * kmem_cache_alloc) | 
|  | */ | 
|  | rtp = this_cpu_ptr(&radix_tree_preloads); | 
|  | if (rtp->nr) { | 
|  | ret = rtp->nodes; | 
|  | rtp->nodes = ret->parent; | 
|  | rtp->nr--; | 
|  | } | 
|  | /* | 
|  | * Update the allocation stack trace as this is more useful | 
|  | * for debugging. | 
|  | */ | 
|  | kmemleak_update_trace(ret); | 
|  | goto out; | 
|  | } | 
|  | ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); | 
|  | out: | 
|  | BUG_ON(radix_tree_is_internal_node(ret)); | 
|  | if (ret) { | 
|  | ret->shift = shift; | 
|  | ret->offset = offset; | 
|  | ret->count = count; | 
|  | ret->exceptional = exceptional; | 
|  | ret->parent = parent; | 
|  | ret->root = root; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void radix_tree_node_rcu_free(struct rcu_head *head) | 
|  | { | 
|  | struct radix_tree_node *node = | 
|  | container_of(head, struct radix_tree_node, rcu_head); | 
|  |  | 
|  | /* | 
|  | * Must only free zeroed nodes into the slab.  We can be left with | 
|  | * non-NULL entries by radix_tree_free_nodes, so clear the entries | 
|  | * and tags here. | 
|  | */ | 
|  | memset(node->slots, 0, sizeof(node->slots)); | 
|  | memset(node->tags, 0, sizeof(node->tags)); | 
|  | INIT_LIST_HEAD(&node->private_list); | 
|  |  | 
|  | kmem_cache_free(radix_tree_node_cachep, node); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | radix_tree_node_free(struct radix_tree_node *node) | 
|  | { | 
|  | call_rcu(&node->rcu_head, radix_tree_node_rcu_free); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Load up this CPU's radix_tree_node buffer with sufficient objects to | 
|  | * ensure that the addition of a single element in the tree cannot fail.  On | 
|  | * success, return zero, with preemption disabled.  On error, return -ENOMEM | 
|  | * with preemption not disabled. | 
|  | * | 
|  | * To make use of this facility, the radix tree must be initialised without | 
|  | * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE(). | 
|  | */ | 
|  | static int __radix_tree_preload(gfp_t gfp_mask, unsigned nr) | 
|  | { | 
|  | struct radix_tree_preload *rtp; | 
|  | struct radix_tree_node *node; | 
|  | int ret = -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Nodes preloaded by one cgroup can be be used by another cgroup, so | 
|  | * they should never be accounted to any particular memory cgroup. | 
|  | */ | 
|  | gfp_mask &= ~__GFP_ACCOUNT; | 
|  |  | 
|  | preempt_disable(); | 
|  | rtp = this_cpu_ptr(&radix_tree_preloads); | 
|  | while (rtp->nr < nr) { | 
|  | preempt_enable(); | 
|  | node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); | 
|  | if (node == NULL) | 
|  | goto out; | 
|  | preempt_disable(); | 
|  | rtp = this_cpu_ptr(&radix_tree_preloads); | 
|  | if (rtp->nr < nr) { | 
|  | node->parent = rtp->nodes; | 
|  | rtp->nodes = node; | 
|  | rtp->nr++; | 
|  | } else { | 
|  | kmem_cache_free(radix_tree_node_cachep, node); | 
|  | } | 
|  | } | 
|  | ret = 0; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Load up this CPU's radix_tree_node buffer with sufficient objects to | 
|  | * ensure that the addition of a single element in the tree cannot fail.  On | 
|  | * success, return zero, with preemption disabled.  On error, return -ENOMEM | 
|  | * with preemption not disabled. | 
|  | * | 
|  | * To make use of this facility, the radix tree must be initialised without | 
|  | * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE(). | 
|  | */ | 
|  | int radix_tree_preload(gfp_t gfp_mask) | 
|  | { | 
|  | /* Warn on non-sensical use... */ | 
|  | WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask)); | 
|  | return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE); | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_preload); | 
|  |  | 
|  | /* | 
|  | * The same as above function, except we don't guarantee preloading happens. | 
|  | * We do it, if we decide it helps. On success, return zero with preemption | 
|  | * disabled. On error, return -ENOMEM with preemption not disabled. | 
|  | */ | 
|  | int radix_tree_maybe_preload(gfp_t gfp_mask) | 
|  | { | 
|  | if (gfpflags_allow_blocking(gfp_mask)) | 
|  | return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE); | 
|  | /* Preloading doesn't help anything with this gfp mask, skip it */ | 
|  | preempt_disable(); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_maybe_preload); | 
|  |  | 
|  | #ifdef CONFIG_RADIX_TREE_MULTIORDER | 
|  | /* | 
|  | * Preload with enough objects to ensure that we can split a single entry | 
|  | * of order @old_order into many entries of size @new_order | 
|  | */ | 
|  | int radix_tree_split_preload(unsigned int old_order, unsigned int new_order, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT); | 
|  | unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) - | 
|  | (new_order / RADIX_TREE_MAP_SHIFT); | 
|  | unsigned nr = 0; | 
|  |  | 
|  | WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask)); | 
|  | BUG_ON(new_order >= old_order); | 
|  |  | 
|  | while (layers--) | 
|  | nr = nr * RADIX_TREE_MAP_SIZE + 1; | 
|  | return __radix_tree_preload(gfp_mask, top * nr); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * The same as function above, but preload number of nodes required to insert | 
|  | * (1 << order) continuous naturally-aligned elements. | 
|  | */ | 
|  | int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order) | 
|  | { | 
|  | unsigned long nr_subtrees; | 
|  | int nr_nodes, subtree_height; | 
|  |  | 
|  | /* Preloading doesn't help anything with this gfp mask, skip it */ | 
|  | if (!gfpflags_allow_blocking(gfp_mask)) { | 
|  | preempt_disable(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate number and height of fully populated subtrees it takes to | 
|  | * store (1 << order) elements. | 
|  | */ | 
|  | nr_subtrees = 1 << order; | 
|  | for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE; | 
|  | subtree_height++) | 
|  | nr_subtrees >>= RADIX_TREE_MAP_SHIFT; | 
|  |  | 
|  | /* | 
|  | * The worst case is zero height tree with a single item at index 0 and | 
|  | * then inserting items starting at ULONG_MAX - (1 << order). | 
|  | * | 
|  | * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to | 
|  | * 0-index item. | 
|  | */ | 
|  | nr_nodes = RADIX_TREE_MAX_PATH; | 
|  |  | 
|  | /* Plus branch to fully populated subtrees. */ | 
|  | nr_nodes += RADIX_TREE_MAX_PATH - subtree_height; | 
|  |  | 
|  | /* Root node is shared. */ | 
|  | nr_nodes--; | 
|  |  | 
|  | /* Plus nodes required to build subtrees. */ | 
|  | nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height]; | 
|  |  | 
|  | return __radix_tree_preload(gfp_mask, nr_nodes); | 
|  | } | 
|  |  | 
|  | static unsigned radix_tree_load_root(const struct radix_tree_root *root, | 
|  | struct radix_tree_node **nodep, unsigned long *maxindex) | 
|  | { | 
|  | struct radix_tree_node *node = rcu_dereference_raw(root->rnode); | 
|  |  | 
|  | *nodep = node; | 
|  |  | 
|  | if (likely(radix_tree_is_internal_node(node))) { | 
|  | node = entry_to_node(node); | 
|  | *maxindex = node_maxindex(node); | 
|  | return node->shift + RADIX_TREE_MAP_SHIFT; | 
|  | } | 
|  |  | 
|  | *maxindex = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Extend a radix tree so it can store key @index. | 
|  | */ | 
|  | static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp, | 
|  | unsigned long index, unsigned int shift) | 
|  | { | 
|  | void *entry; | 
|  | unsigned int maxshift; | 
|  | int tag; | 
|  |  | 
|  | /* Figure out what the shift should be.  */ | 
|  | maxshift = shift; | 
|  | while (index > shift_maxindex(maxshift)) | 
|  | maxshift += RADIX_TREE_MAP_SHIFT; | 
|  |  | 
|  | entry = rcu_dereference_raw(root->rnode); | 
|  | if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE))) | 
|  | goto out; | 
|  |  | 
|  | do { | 
|  | struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL, | 
|  | root, shift, 0, 1, 0); | 
|  | if (!node) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (is_idr(root)) { | 
|  | all_tag_set(node, IDR_FREE); | 
|  | if (!root_tag_get(root, IDR_FREE)) { | 
|  | tag_clear(node, IDR_FREE, 0); | 
|  | root_tag_set(root, IDR_FREE); | 
|  | } | 
|  | } else { | 
|  | /* Propagate the aggregated tag info to the new child */ | 
|  | for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { | 
|  | if (root_tag_get(root, tag)) | 
|  | tag_set(node, tag, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | BUG_ON(shift > BITS_PER_LONG); | 
|  | if (radix_tree_is_internal_node(entry)) { | 
|  | entry_to_node(entry)->parent = node; | 
|  | } else if (radix_tree_exceptional_entry(entry)) { | 
|  | /* Moving an exceptional root->rnode to a node */ | 
|  | node->exceptional = 1; | 
|  | } | 
|  | /* | 
|  | * entry was already in the radix tree, so we do not need | 
|  | * rcu_assign_pointer here | 
|  | */ | 
|  | node->slots[0] = (void __rcu *)entry; | 
|  | entry = node_to_entry(node); | 
|  | rcu_assign_pointer(root->rnode, entry); | 
|  | shift += RADIX_TREE_MAP_SHIFT; | 
|  | } while (shift <= maxshift); | 
|  | out: | 
|  | return maxshift + RADIX_TREE_MAP_SHIFT; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	radix_tree_shrink    -    shrink radix tree to minimum height | 
|  | *	@root		radix tree root | 
|  | */ | 
|  | static inline bool radix_tree_shrink(struct radix_tree_root *root, | 
|  | radix_tree_update_node_t update_node, | 
|  | void *private) | 
|  | { | 
|  | bool shrunk = false; | 
|  |  | 
|  | for (;;) { | 
|  | struct radix_tree_node *node = rcu_dereference_raw(root->rnode); | 
|  | struct radix_tree_node *child; | 
|  |  | 
|  | if (!radix_tree_is_internal_node(node)) | 
|  | break; | 
|  | node = entry_to_node(node); | 
|  |  | 
|  | /* | 
|  | * The candidate node has more than one child, or its child | 
|  | * is not at the leftmost slot, or the child is a multiorder | 
|  | * entry, we cannot shrink. | 
|  | */ | 
|  | if (node->count != 1) | 
|  | break; | 
|  | child = rcu_dereference_raw(node->slots[0]); | 
|  | if (!child) | 
|  | break; | 
|  | if (!radix_tree_is_internal_node(child) && node->shift) | 
|  | break; | 
|  |  | 
|  | if (radix_tree_is_internal_node(child)) | 
|  | entry_to_node(child)->parent = NULL; | 
|  |  | 
|  | /* | 
|  | * We don't need rcu_assign_pointer(), since we are simply | 
|  | * moving the node from one part of the tree to another: if it | 
|  | * was safe to dereference the old pointer to it | 
|  | * (node->slots[0]), it will be safe to dereference the new | 
|  | * one (root->rnode) as far as dependent read barriers go. | 
|  | */ | 
|  | root->rnode = (void __rcu *)child; | 
|  | if (is_idr(root) && !tag_get(node, IDR_FREE, 0)) | 
|  | root_tag_clear(root, IDR_FREE); | 
|  |  | 
|  | /* | 
|  | * We have a dilemma here. The node's slot[0] must not be | 
|  | * NULLed in case there are concurrent lookups expecting to | 
|  | * find the item. However if this was a bottom-level node, | 
|  | * then it may be subject to the slot pointer being visible | 
|  | * to callers dereferencing it. If item corresponding to | 
|  | * slot[0] is subsequently deleted, these callers would expect | 
|  | * their slot to become empty sooner or later. | 
|  | * | 
|  | * For example, lockless pagecache will look up a slot, deref | 
|  | * the page pointer, and if the page has 0 refcount it means it | 
|  | * was concurrently deleted from pagecache so try the deref | 
|  | * again. Fortunately there is already a requirement for logic | 
|  | * to retry the entire slot lookup -- the indirect pointer | 
|  | * problem (replacing direct root node with an indirect pointer | 
|  | * also results in a stale slot). So tag the slot as indirect | 
|  | * to force callers to retry. | 
|  | */ | 
|  | node->count = 0; | 
|  | if (!radix_tree_is_internal_node(child)) { | 
|  | node->slots[0] = (void __rcu *)RADIX_TREE_RETRY; | 
|  | if (update_node) | 
|  | update_node(node, private); | 
|  | } | 
|  |  | 
|  | WARN_ON_ONCE(!list_empty(&node->private_list)); | 
|  | radix_tree_node_free(node); | 
|  | shrunk = true; | 
|  | } | 
|  |  | 
|  | return shrunk; | 
|  | } | 
|  |  | 
|  | static bool delete_node(struct radix_tree_root *root, | 
|  | struct radix_tree_node *node, | 
|  | radix_tree_update_node_t update_node, void *private) | 
|  | { | 
|  | bool deleted = false; | 
|  |  | 
|  | do { | 
|  | struct radix_tree_node *parent; | 
|  |  | 
|  | if (node->count) { | 
|  | if (node_to_entry(node) == | 
|  | rcu_dereference_raw(root->rnode)) | 
|  | deleted |= radix_tree_shrink(root, update_node, | 
|  | private); | 
|  | return deleted; | 
|  | } | 
|  |  | 
|  | parent = node->parent; | 
|  | if (parent) { | 
|  | parent->slots[node->offset] = NULL; | 
|  | parent->count--; | 
|  | } else { | 
|  | /* | 
|  | * Shouldn't the tags already have all been cleared | 
|  | * by the caller? | 
|  | */ | 
|  | if (!is_idr(root)) | 
|  | root_tag_clear_all(root); | 
|  | root->rnode = NULL; | 
|  | } | 
|  |  | 
|  | WARN_ON_ONCE(!list_empty(&node->private_list)); | 
|  | radix_tree_node_free(node); | 
|  | deleted = true; | 
|  |  | 
|  | node = parent; | 
|  | } while (node); | 
|  |  | 
|  | return deleted; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	__radix_tree_create	-	create a slot in a radix tree | 
|  | *	@root:		radix tree root | 
|  | *	@index:		index key | 
|  | *	@order:		index occupies 2^order aligned slots | 
|  | *	@nodep:		returns node | 
|  | *	@slotp:		returns slot | 
|  | * | 
|  | *	Create, if necessary, and return the node and slot for an item | 
|  | *	at position @index in the radix tree @root. | 
|  | * | 
|  | *	Until there is more than one item in the tree, no nodes are | 
|  | *	allocated and @root->rnode is used as a direct slot instead of | 
|  | *	pointing to a node, in which case *@nodep will be NULL. | 
|  | * | 
|  | *	Returns -ENOMEM, or 0 for success. | 
|  | */ | 
|  | int __radix_tree_create(struct radix_tree_root *root, unsigned long index, | 
|  | unsigned order, struct radix_tree_node **nodep, | 
|  | void __rcu ***slotp) | 
|  | { | 
|  | struct radix_tree_node *node = NULL, *child; | 
|  | void __rcu **slot = (void __rcu **)&root->rnode; | 
|  | unsigned long maxindex; | 
|  | unsigned int shift, offset = 0; | 
|  | unsigned long max = index | ((1UL << order) - 1); | 
|  | gfp_t gfp = root_gfp_mask(root); | 
|  |  | 
|  | shift = radix_tree_load_root(root, &child, &maxindex); | 
|  |  | 
|  | /* Make sure the tree is high enough.  */ | 
|  | if (order > 0 && max == ((1UL << order) - 1)) | 
|  | max++; | 
|  | if (max > maxindex) { | 
|  | int error = radix_tree_extend(root, gfp, max, shift); | 
|  | if (error < 0) | 
|  | return error; | 
|  | shift = error; | 
|  | child = rcu_dereference_raw(root->rnode); | 
|  | } | 
|  |  | 
|  | while (shift > order) { | 
|  | shift -= RADIX_TREE_MAP_SHIFT; | 
|  | if (child == NULL) { | 
|  | /* Have to add a child node.  */ | 
|  | child = radix_tree_node_alloc(gfp, node, root, shift, | 
|  | offset, 0, 0); | 
|  | if (!child) | 
|  | return -ENOMEM; | 
|  | rcu_assign_pointer(*slot, node_to_entry(child)); | 
|  | if (node) | 
|  | node->count++; | 
|  | } else if (!radix_tree_is_internal_node(child)) | 
|  | break; | 
|  |  | 
|  | /* Go a level down */ | 
|  | node = entry_to_node(child); | 
|  | offset = radix_tree_descend(node, &child, index); | 
|  | slot = &node->slots[offset]; | 
|  | } | 
|  |  | 
|  | if (nodep) | 
|  | *nodep = node; | 
|  | if (slotp) | 
|  | *slotp = slot; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free any nodes below this node.  The tree is presumed to not need | 
|  | * shrinking, and any user data in the tree is presumed to not need a | 
|  | * destructor called on it.  If we need to add a destructor, we can | 
|  | * add that functionality later.  Note that we may not clear tags or | 
|  | * slots from the tree as an RCU walker may still have a pointer into | 
|  | * this subtree.  We could replace the entries with RADIX_TREE_RETRY, | 
|  | * but we'll still have to clear those in rcu_free. | 
|  | */ | 
|  | static void radix_tree_free_nodes(struct radix_tree_node *node) | 
|  | { | 
|  | unsigned offset = 0; | 
|  | struct radix_tree_node *child = entry_to_node(node); | 
|  |  | 
|  | for (;;) { | 
|  | void *entry = rcu_dereference_raw(child->slots[offset]); | 
|  | if (radix_tree_is_internal_node(entry) && | 
|  | !is_sibling_entry(child, entry)) { | 
|  | child = entry_to_node(entry); | 
|  | offset = 0; | 
|  | continue; | 
|  | } | 
|  | offset++; | 
|  | while (offset == RADIX_TREE_MAP_SIZE) { | 
|  | struct radix_tree_node *old = child; | 
|  | offset = child->offset + 1; | 
|  | child = child->parent; | 
|  | WARN_ON_ONCE(!list_empty(&old->private_list)); | 
|  | radix_tree_node_free(old); | 
|  | if (old == entry_to_node(node)) | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_RADIX_TREE_MULTIORDER | 
|  | static inline int insert_entries(struct radix_tree_node *node, | 
|  | void __rcu **slot, void *item, unsigned order, bool replace) | 
|  | { | 
|  | struct radix_tree_node *child; | 
|  | unsigned i, n, tag, offset, tags = 0; | 
|  |  | 
|  | if (node) { | 
|  | if (order > node->shift) | 
|  | n = 1 << (order - node->shift); | 
|  | else | 
|  | n = 1; | 
|  | offset = get_slot_offset(node, slot); | 
|  | } else { | 
|  | n = 1; | 
|  | offset = 0; | 
|  | } | 
|  |  | 
|  | if (n > 1) { | 
|  | offset = offset & ~(n - 1); | 
|  | slot = &node->slots[offset]; | 
|  | } | 
|  | child = node_to_entry(slot); | 
|  |  | 
|  | for (i = 0; i < n; i++) { | 
|  | if (slot[i]) { | 
|  | if (replace) { | 
|  | node->count--; | 
|  | for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) | 
|  | if (tag_get(node, tag, offset + i)) | 
|  | tags |= 1 << tag; | 
|  | } else | 
|  | return -EEXIST; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < n; i++) { | 
|  | struct radix_tree_node *old = rcu_dereference_raw(slot[i]); | 
|  | if (i) { | 
|  | rcu_assign_pointer(slot[i], child); | 
|  | for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) | 
|  | if (tags & (1 << tag)) | 
|  | tag_clear(node, tag, offset + i); | 
|  | } else { | 
|  | rcu_assign_pointer(slot[i], item); | 
|  | for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) | 
|  | if (tags & (1 << tag)) | 
|  | tag_set(node, tag, offset); | 
|  | } | 
|  | if (radix_tree_is_internal_node(old) && | 
|  | !is_sibling_entry(node, old) && | 
|  | (old != RADIX_TREE_RETRY)) | 
|  | radix_tree_free_nodes(old); | 
|  | if (radix_tree_exceptional_entry(old)) | 
|  | node->exceptional--; | 
|  | } | 
|  | if (node) { | 
|  | node->count += n; | 
|  | if (radix_tree_exceptional_entry(item)) | 
|  | node->exceptional += n; | 
|  | } | 
|  | return n; | 
|  | } | 
|  | #else | 
|  | static inline int insert_entries(struct radix_tree_node *node, | 
|  | void __rcu **slot, void *item, unsigned order, bool replace) | 
|  | { | 
|  | if (*slot) | 
|  | return -EEXIST; | 
|  | rcu_assign_pointer(*slot, item); | 
|  | if (node) { | 
|  | node->count++; | 
|  | if (radix_tree_exceptional_entry(item)) | 
|  | node->exceptional++; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | *	__radix_tree_insert    -    insert into a radix tree | 
|  | *	@root:		radix tree root | 
|  | *	@index:		index key | 
|  | *	@order:		key covers the 2^order indices around index | 
|  | *	@item:		item to insert | 
|  | * | 
|  | *	Insert an item into the radix tree at position @index. | 
|  | */ | 
|  | int __radix_tree_insert(struct radix_tree_root *root, unsigned long index, | 
|  | unsigned order, void *item) | 
|  | { | 
|  | struct radix_tree_node *node; | 
|  | void __rcu **slot; | 
|  | int error; | 
|  |  | 
|  | BUG_ON(radix_tree_is_internal_node(item)); | 
|  |  | 
|  | error = __radix_tree_create(root, index, order, &node, &slot); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | error = insert_entries(node, slot, item, order, false); | 
|  | if (error < 0) | 
|  | return error; | 
|  |  | 
|  | if (node) { | 
|  | unsigned offset = get_slot_offset(node, slot); | 
|  | BUG_ON(tag_get(node, 0, offset)); | 
|  | BUG_ON(tag_get(node, 1, offset)); | 
|  | BUG_ON(tag_get(node, 2, offset)); | 
|  | } else { | 
|  | BUG_ON(root_tags_get(root)); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(__radix_tree_insert); | 
|  |  | 
|  | /** | 
|  | *	__radix_tree_lookup	-	lookup an item in a radix tree | 
|  | *	@root:		radix tree root | 
|  | *	@index:		index key | 
|  | *	@nodep:		returns node | 
|  | *	@slotp:		returns slot | 
|  | * | 
|  | *	Lookup and return the item at position @index in the radix | 
|  | *	tree @root. | 
|  | * | 
|  | *	Until there is more than one item in the tree, no nodes are | 
|  | *	allocated and @root->rnode is used as a direct slot instead of | 
|  | *	pointing to a node, in which case *@nodep will be NULL. | 
|  | */ | 
|  | void *__radix_tree_lookup(const struct radix_tree_root *root, | 
|  | unsigned long index, struct radix_tree_node **nodep, | 
|  | void __rcu ***slotp) | 
|  | { | 
|  | struct radix_tree_node *node, *parent; | 
|  | unsigned long maxindex; | 
|  | void __rcu **slot; | 
|  |  | 
|  | restart: | 
|  | parent = NULL; | 
|  | slot = (void __rcu **)&root->rnode; | 
|  | radix_tree_load_root(root, &node, &maxindex); | 
|  | if (index > maxindex) | 
|  | return NULL; | 
|  |  | 
|  | while (radix_tree_is_internal_node(node)) { | 
|  | unsigned offset; | 
|  |  | 
|  | if (node == RADIX_TREE_RETRY) | 
|  | goto restart; | 
|  | parent = entry_to_node(node); | 
|  | offset = radix_tree_descend(parent, &node, index); | 
|  | slot = parent->slots + offset; | 
|  | } | 
|  |  | 
|  | if (nodep) | 
|  | *nodep = parent; | 
|  | if (slotp) | 
|  | *slotp = slot; | 
|  | return node; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	radix_tree_lookup_slot    -    lookup a slot in a radix tree | 
|  | *	@root:		radix tree root | 
|  | *	@index:		index key | 
|  | * | 
|  | *	Returns:  the slot corresponding to the position @index in the | 
|  | *	radix tree @root. This is useful for update-if-exists operations. | 
|  | * | 
|  | *	This function can be called under rcu_read_lock iff the slot is not | 
|  | *	modified by radix_tree_replace_slot, otherwise it must be called | 
|  | *	exclusive from other writers. Any dereference of the slot must be done | 
|  | *	using radix_tree_deref_slot. | 
|  | */ | 
|  | void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root, | 
|  | unsigned long index) | 
|  | { | 
|  | void __rcu **slot; | 
|  |  | 
|  | if (!__radix_tree_lookup(root, index, NULL, &slot)) | 
|  | return NULL; | 
|  | return slot; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_lookup_slot); | 
|  |  | 
|  | /** | 
|  | *	radix_tree_lookup    -    perform lookup operation on a radix tree | 
|  | *	@root:		radix tree root | 
|  | *	@index:		index key | 
|  | * | 
|  | *	Lookup the item at the position @index in the radix tree @root. | 
|  | * | 
|  | *	This function can be called under rcu_read_lock, however the caller | 
|  | *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free | 
|  | *	them safely). No RCU barriers are required to access or modify the | 
|  | *	returned item, however. | 
|  | */ | 
|  | void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index) | 
|  | { | 
|  | return __radix_tree_lookup(root, index, NULL, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_lookup); | 
|  |  | 
|  | static inline void replace_sibling_entries(struct radix_tree_node *node, | 
|  | void __rcu **slot, int count, int exceptional) | 
|  | { | 
|  | #ifdef CONFIG_RADIX_TREE_MULTIORDER | 
|  | void *ptr = node_to_entry(slot); | 
|  | unsigned offset = get_slot_offset(node, slot) + 1; | 
|  |  | 
|  | while (offset < RADIX_TREE_MAP_SIZE) { | 
|  | if (rcu_dereference_raw(node->slots[offset]) != ptr) | 
|  | break; | 
|  | if (count < 0) { | 
|  | node->slots[offset] = NULL; | 
|  | node->count--; | 
|  | } | 
|  | node->exceptional += exceptional; | 
|  | offset++; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void replace_slot(void __rcu **slot, void *item, | 
|  | struct radix_tree_node *node, int count, int exceptional) | 
|  | { | 
|  | if (WARN_ON_ONCE(radix_tree_is_internal_node(item))) | 
|  | return; | 
|  |  | 
|  | if (node && (count || exceptional)) { | 
|  | node->count += count; | 
|  | node->exceptional += exceptional; | 
|  | replace_sibling_entries(node, slot, count, exceptional); | 
|  | } | 
|  |  | 
|  | rcu_assign_pointer(*slot, item); | 
|  | } | 
|  |  | 
|  | static bool node_tag_get(const struct radix_tree_root *root, | 
|  | const struct radix_tree_node *node, | 
|  | unsigned int tag, unsigned int offset) | 
|  | { | 
|  | if (node) | 
|  | return tag_get(node, tag, offset); | 
|  | return root_tag_get(root, tag); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * IDR users want to be able to store NULL in the tree, so if the slot isn't | 
|  | * free, don't adjust the count, even if it's transitioning between NULL and | 
|  | * non-NULL.  For the IDA, we mark slots as being IDR_FREE while they still | 
|  | * have empty bits, but it only stores NULL in slots when they're being | 
|  | * deleted. | 
|  | */ | 
|  | static int calculate_count(struct radix_tree_root *root, | 
|  | struct radix_tree_node *node, void __rcu **slot, | 
|  | void *item, void *old) | 
|  | { | 
|  | if (is_idr(root)) { | 
|  | unsigned offset = get_slot_offset(node, slot); | 
|  | bool free = node_tag_get(root, node, IDR_FREE, offset); | 
|  | if (!free) | 
|  | return 0; | 
|  | if (!old) | 
|  | return 1; | 
|  | } | 
|  | return !!item - !!old; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __radix_tree_replace		- replace item in a slot | 
|  | * @root:		radix tree root | 
|  | * @node:		pointer to tree node | 
|  | * @slot:		pointer to slot in @node | 
|  | * @item:		new item to store in the slot. | 
|  | * @update_node:	callback for changing leaf nodes | 
|  | * @private:		private data to pass to @update_node | 
|  | * | 
|  | * For use with __radix_tree_lookup().  Caller must hold tree write locked | 
|  | * across slot lookup and replacement. | 
|  | */ | 
|  | void __radix_tree_replace(struct radix_tree_root *root, | 
|  | struct radix_tree_node *node, | 
|  | void __rcu **slot, void *item, | 
|  | radix_tree_update_node_t update_node, void *private) | 
|  | { | 
|  | void *old = rcu_dereference_raw(*slot); | 
|  | int exceptional = !!radix_tree_exceptional_entry(item) - | 
|  | !!radix_tree_exceptional_entry(old); | 
|  | int count = calculate_count(root, node, slot, item, old); | 
|  |  | 
|  | /* | 
|  | * This function supports replacing exceptional entries and | 
|  | * deleting entries, but that needs accounting against the | 
|  | * node unless the slot is root->rnode. | 
|  | */ | 
|  | WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->rnode) && | 
|  | (count || exceptional)); | 
|  | replace_slot(slot, item, node, count, exceptional); | 
|  |  | 
|  | if (!node) | 
|  | return; | 
|  |  | 
|  | if (update_node) | 
|  | update_node(node, private); | 
|  |  | 
|  | delete_node(root, node, update_node, private); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * radix_tree_replace_slot	- replace item in a slot | 
|  | * @root:	radix tree root | 
|  | * @slot:	pointer to slot | 
|  | * @item:	new item to store in the slot. | 
|  | * | 
|  | * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(), | 
|  | * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked | 
|  | * across slot lookup and replacement. | 
|  | * | 
|  | * NOTE: This cannot be used to switch between non-entries (empty slots), | 
|  | * regular entries, and exceptional entries, as that requires accounting | 
|  | * inside the radix tree node. When switching from one type of entry or | 
|  | * deleting, use __radix_tree_lookup() and __radix_tree_replace() or | 
|  | * radix_tree_iter_replace(). | 
|  | */ | 
|  | void radix_tree_replace_slot(struct radix_tree_root *root, | 
|  | void __rcu **slot, void *item) | 
|  | { | 
|  | __radix_tree_replace(root, NULL, slot, item, NULL, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_replace_slot); | 
|  |  | 
|  | /** | 
|  | * radix_tree_iter_replace - replace item in a slot | 
|  | * @root:	radix tree root | 
|  | * @slot:	pointer to slot | 
|  | * @item:	new item to store in the slot. | 
|  | * | 
|  | * For use with radix_tree_split() and radix_tree_for_each_slot(). | 
|  | * Caller must hold tree write locked across split and replacement. | 
|  | */ | 
|  | void radix_tree_iter_replace(struct radix_tree_root *root, | 
|  | const struct radix_tree_iter *iter, | 
|  | void __rcu **slot, void *item) | 
|  | { | 
|  | __radix_tree_replace(root, iter->node, slot, item, NULL, NULL); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_RADIX_TREE_MULTIORDER | 
|  | /** | 
|  | * radix_tree_join - replace multiple entries with one multiorder entry | 
|  | * @root: radix tree root | 
|  | * @index: an index inside the new entry | 
|  | * @order: order of the new entry | 
|  | * @item: new entry | 
|  | * | 
|  | * Call this function to replace several entries with one larger entry. | 
|  | * The existing entries are presumed to not need freeing as a result of | 
|  | * this call. | 
|  | * | 
|  | * The replacement entry will have all the tags set on it that were set | 
|  | * on any of the entries it is replacing. | 
|  | */ | 
|  | int radix_tree_join(struct radix_tree_root *root, unsigned long index, | 
|  | unsigned order, void *item) | 
|  | { | 
|  | struct radix_tree_node *node; | 
|  | void __rcu **slot; | 
|  | int error; | 
|  |  | 
|  | BUG_ON(radix_tree_is_internal_node(item)); | 
|  |  | 
|  | error = __radix_tree_create(root, index, order, &node, &slot); | 
|  | if (!error) | 
|  | error = insert_entries(node, slot, item, order, true); | 
|  | if (error > 0) | 
|  | error = 0; | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * radix_tree_split - Split an entry into smaller entries | 
|  | * @root: radix tree root | 
|  | * @index: An index within the large entry | 
|  | * @order: Order of new entries | 
|  | * | 
|  | * Call this function as the first step in replacing a multiorder entry | 
|  | * with several entries of lower order.  After this function returns, | 
|  | * loop over the relevant portion of the tree using radix_tree_for_each_slot() | 
|  | * and call radix_tree_iter_replace() to set up each new entry. | 
|  | * | 
|  | * The tags from this entry are replicated to all the new entries. | 
|  | * | 
|  | * The radix tree should be locked against modification during the entire | 
|  | * replacement operation.  Lock-free lookups will see RADIX_TREE_RETRY which | 
|  | * should prompt RCU walkers to restart the lookup from the root. | 
|  | */ | 
|  | int radix_tree_split(struct radix_tree_root *root, unsigned long index, | 
|  | unsigned order) | 
|  | { | 
|  | struct radix_tree_node *parent, *node, *child; | 
|  | void __rcu **slot; | 
|  | unsigned int offset, end; | 
|  | unsigned n, tag, tags = 0; | 
|  | gfp_t gfp = root_gfp_mask(root); | 
|  |  | 
|  | if (!__radix_tree_lookup(root, index, &parent, &slot)) | 
|  | return -ENOENT; | 
|  | if (!parent) | 
|  | return -ENOENT; | 
|  |  | 
|  | offset = get_slot_offset(parent, slot); | 
|  |  | 
|  | for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) | 
|  | if (tag_get(parent, tag, offset)) | 
|  | tags |= 1 << tag; | 
|  |  | 
|  | for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) { | 
|  | if (!is_sibling_entry(parent, | 
|  | rcu_dereference_raw(parent->slots[end]))) | 
|  | break; | 
|  | for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) | 
|  | if (tags & (1 << tag)) | 
|  | tag_set(parent, tag, end); | 
|  | /* rcu_assign_pointer ensures tags are set before RETRY */ | 
|  | rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY); | 
|  | } | 
|  | rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY); | 
|  | parent->exceptional -= (end - offset); | 
|  |  | 
|  | if (order == parent->shift) | 
|  | return 0; | 
|  | if (order > parent->shift) { | 
|  | while (offset < end) | 
|  | offset += insert_entries(parent, &parent->slots[offset], | 
|  | RADIX_TREE_RETRY, order, true); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | node = parent; | 
|  |  | 
|  | for (;;) { | 
|  | if (node->shift > order) { | 
|  | child = radix_tree_node_alloc(gfp, node, root, | 
|  | node->shift - RADIX_TREE_MAP_SHIFT, | 
|  | offset, 0, 0); | 
|  | if (!child) | 
|  | goto nomem; | 
|  | if (node != parent) { | 
|  | node->count++; | 
|  | rcu_assign_pointer(node->slots[offset], | 
|  | node_to_entry(child)); | 
|  | for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) | 
|  | if (tags & (1 << tag)) | 
|  | tag_set(node, tag, offset); | 
|  | } | 
|  |  | 
|  | node = child; | 
|  | offset = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | n = insert_entries(node, &node->slots[offset], | 
|  | RADIX_TREE_RETRY, order, false); | 
|  | BUG_ON(n > RADIX_TREE_MAP_SIZE); | 
|  |  | 
|  | for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) | 
|  | if (tags & (1 << tag)) | 
|  | tag_set(node, tag, offset); | 
|  | offset += n; | 
|  |  | 
|  | while (offset == RADIX_TREE_MAP_SIZE) { | 
|  | if (node == parent) | 
|  | break; | 
|  | offset = node->offset; | 
|  | child = node; | 
|  | node = node->parent; | 
|  | rcu_assign_pointer(node->slots[offset], | 
|  | node_to_entry(child)); | 
|  | offset++; | 
|  | } | 
|  | if ((node == parent) && (offset == end)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | nomem: | 
|  | /* Shouldn't happen; did user forget to preload? */ | 
|  | /* TODO: free all the allocated nodes */ | 
|  | WARN_ON(1); | 
|  | return -ENOMEM; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void node_tag_set(struct radix_tree_root *root, | 
|  | struct radix_tree_node *node, | 
|  | unsigned int tag, unsigned int offset) | 
|  | { | 
|  | while (node) { | 
|  | if (tag_get(node, tag, offset)) | 
|  | return; | 
|  | tag_set(node, tag, offset); | 
|  | offset = node->offset; | 
|  | node = node->parent; | 
|  | } | 
|  |  | 
|  | if (!root_tag_get(root, tag)) | 
|  | root_tag_set(root, tag); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	radix_tree_tag_set - set a tag on a radix tree node | 
|  | *	@root:		radix tree root | 
|  | *	@index:		index key | 
|  | *	@tag:		tag index | 
|  | * | 
|  | *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS) | 
|  | *	corresponding to @index in the radix tree.  From | 
|  | *	the root all the way down to the leaf node. | 
|  | * | 
|  | *	Returns the address of the tagged item.  Setting a tag on a not-present | 
|  | *	item is a bug. | 
|  | */ | 
|  | void *radix_tree_tag_set(struct radix_tree_root *root, | 
|  | unsigned long index, unsigned int tag) | 
|  | { | 
|  | struct radix_tree_node *node, *parent; | 
|  | unsigned long maxindex; | 
|  |  | 
|  | radix_tree_load_root(root, &node, &maxindex); | 
|  | BUG_ON(index > maxindex); | 
|  |  | 
|  | while (radix_tree_is_internal_node(node)) { | 
|  | unsigned offset; | 
|  |  | 
|  | parent = entry_to_node(node); | 
|  | offset = radix_tree_descend(parent, &node, index); | 
|  | BUG_ON(!node); | 
|  |  | 
|  | if (!tag_get(parent, tag, offset)) | 
|  | tag_set(parent, tag, offset); | 
|  | } | 
|  |  | 
|  | /* set the root's tag bit */ | 
|  | if (!root_tag_get(root, tag)) | 
|  | root_tag_set(root, tag); | 
|  |  | 
|  | return node; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_tag_set); | 
|  |  | 
|  | /** | 
|  | * radix_tree_iter_tag_set - set a tag on the current iterator entry | 
|  | * @root:	radix tree root | 
|  | * @iter:	iterator state | 
|  | * @tag:	tag to set | 
|  | */ | 
|  | void radix_tree_iter_tag_set(struct radix_tree_root *root, | 
|  | const struct radix_tree_iter *iter, unsigned int tag) | 
|  | { | 
|  | node_tag_set(root, iter->node, tag, iter_offset(iter)); | 
|  | } | 
|  |  | 
|  | static void node_tag_clear(struct radix_tree_root *root, | 
|  | struct radix_tree_node *node, | 
|  | unsigned int tag, unsigned int offset) | 
|  | { | 
|  | while (node) { | 
|  | if (!tag_get(node, tag, offset)) | 
|  | return; | 
|  | tag_clear(node, tag, offset); | 
|  | if (any_tag_set(node, tag)) | 
|  | return; | 
|  |  | 
|  | offset = node->offset; | 
|  | node = node->parent; | 
|  | } | 
|  |  | 
|  | /* clear the root's tag bit */ | 
|  | if (root_tag_get(root, tag)) | 
|  | root_tag_clear(root, tag); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	radix_tree_tag_clear - clear a tag on a radix tree node | 
|  | *	@root:		radix tree root | 
|  | *	@index:		index key | 
|  | *	@tag:		tag index | 
|  | * | 
|  | *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS) | 
|  | *	corresponding to @index in the radix tree.  If this causes | 
|  | *	the leaf node to have no tags set then clear the tag in the | 
|  | *	next-to-leaf node, etc. | 
|  | * | 
|  | *	Returns the address of the tagged item on success, else NULL.  ie: | 
|  | *	has the same return value and semantics as radix_tree_lookup(). | 
|  | */ | 
|  | void *radix_tree_tag_clear(struct radix_tree_root *root, | 
|  | unsigned long index, unsigned int tag) | 
|  | { | 
|  | struct radix_tree_node *node, *parent; | 
|  | unsigned long maxindex; | 
|  | int uninitialized_var(offset); | 
|  |  | 
|  | radix_tree_load_root(root, &node, &maxindex); | 
|  | if (index > maxindex) | 
|  | return NULL; | 
|  |  | 
|  | parent = NULL; | 
|  |  | 
|  | while (radix_tree_is_internal_node(node)) { | 
|  | parent = entry_to_node(node); | 
|  | offset = radix_tree_descend(parent, &node, index); | 
|  | } | 
|  |  | 
|  | if (node) | 
|  | node_tag_clear(root, parent, tag, offset); | 
|  |  | 
|  | return node; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_tag_clear); | 
|  |  | 
|  | /** | 
|  | * radix_tree_iter_tag_clear - clear a tag on the current iterator entry | 
|  | * @root: radix tree root | 
|  | * @iter: iterator state | 
|  | * @tag: tag to clear | 
|  | */ | 
|  | void radix_tree_iter_tag_clear(struct radix_tree_root *root, | 
|  | const struct radix_tree_iter *iter, unsigned int tag) | 
|  | { | 
|  | node_tag_clear(root, iter->node, tag, iter_offset(iter)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * radix_tree_tag_get - get a tag on a radix tree node | 
|  | * @root:		radix tree root | 
|  | * @index:		index key | 
|  | * @tag:		tag index (< RADIX_TREE_MAX_TAGS) | 
|  | * | 
|  | * Return values: | 
|  | * | 
|  | *  0: tag not present or not set | 
|  | *  1: tag set | 
|  | * | 
|  | * Note that the return value of this function may not be relied on, even if | 
|  | * the RCU lock is held, unless tag modification and node deletion are excluded | 
|  | * from concurrency. | 
|  | */ | 
|  | int radix_tree_tag_get(const struct radix_tree_root *root, | 
|  | unsigned long index, unsigned int tag) | 
|  | { | 
|  | struct radix_tree_node *node, *parent; | 
|  | unsigned long maxindex; | 
|  |  | 
|  | if (!root_tag_get(root, tag)) | 
|  | return 0; | 
|  |  | 
|  | radix_tree_load_root(root, &node, &maxindex); | 
|  | if (index > maxindex) | 
|  | return 0; | 
|  |  | 
|  | while (radix_tree_is_internal_node(node)) { | 
|  | unsigned offset; | 
|  |  | 
|  | parent = entry_to_node(node); | 
|  | offset = radix_tree_descend(parent, &node, index); | 
|  |  | 
|  | if (!tag_get(parent, tag, offset)) | 
|  | return 0; | 
|  | if (node == RADIX_TREE_RETRY) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_tag_get); | 
|  |  | 
|  | static inline void __set_iter_shift(struct radix_tree_iter *iter, | 
|  | unsigned int shift) | 
|  | { | 
|  | #ifdef CONFIG_RADIX_TREE_MULTIORDER | 
|  | iter->shift = shift; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Construct iter->tags bit-mask from node->tags[tag] array */ | 
|  | static void set_iter_tags(struct radix_tree_iter *iter, | 
|  | struct radix_tree_node *node, unsigned offset, | 
|  | unsigned tag) | 
|  | { | 
|  | unsigned tag_long = offset / BITS_PER_LONG; | 
|  | unsigned tag_bit  = offset % BITS_PER_LONG; | 
|  |  | 
|  | if (!node) { | 
|  | iter->tags = 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | iter->tags = node->tags[tag][tag_long] >> tag_bit; | 
|  |  | 
|  | /* This never happens if RADIX_TREE_TAG_LONGS == 1 */ | 
|  | if (tag_long < RADIX_TREE_TAG_LONGS - 1) { | 
|  | /* Pick tags from next element */ | 
|  | if (tag_bit) | 
|  | iter->tags |= node->tags[tag][tag_long + 1] << | 
|  | (BITS_PER_LONG - tag_bit); | 
|  | /* Clip chunk size, here only BITS_PER_LONG tags */ | 
|  | iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_RADIX_TREE_MULTIORDER | 
|  | static void __rcu **skip_siblings(struct radix_tree_node **nodep, | 
|  | void __rcu **slot, struct radix_tree_iter *iter) | 
|  | { | 
|  | void *sib = node_to_entry(slot - 1); | 
|  |  | 
|  | while (iter->index < iter->next_index) { | 
|  | *nodep = rcu_dereference_raw(*slot); | 
|  | if (*nodep && *nodep != sib) | 
|  | return slot; | 
|  | slot++; | 
|  | iter->index = __radix_tree_iter_add(iter, 1); | 
|  | iter->tags >>= 1; | 
|  | } | 
|  |  | 
|  | *nodep = NULL; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void __rcu **__radix_tree_next_slot(void __rcu **slot, | 
|  | struct radix_tree_iter *iter, unsigned flags) | 
|  | { | 
|  | unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK; | 
|  | struct radix_tree_node *node = rcu_dereference_raw(*slot); | 
|  |  | 
|  | slot = skip_siblings(&node, slot, iter); | 
|  |  | 
|  | while (radix_tree_is_internal_node(node)) { | 
|  | unsigned offset; | 
|  | unsigned long next_index; | 
|  |  | 
|  | if (node == RADIX_TREE_RETRY) | 
|  | return slot; | 
|  | node = entry_to_node(node); | 
|  | iter->node = node; | 
|  | iter->shift = node->shift; | 
|  |  | 
|  | if (flags & RADIX_TREE_ITER_TAGGED) { | 
|  | offset = radix_tree_find_next_bit(node, tag, 0); | 
|  | if (offset == RADIX_TREE_MAP_SIZE) | 
|  | return NULL; | 
|  | slot = &node->slots[offset]; | 
|  | iter->index = __radix_tree_iter_add(iter, offset); | 
|  | set_iter_tags(iter, node, offset, tag); | 
|  | node = rcu_dereference_raw(*slot); | 
|  | } else { | 
|  | offset = 0; | 
|  | slot = &node->slots[0]; | 
|  | for (;;) { | 
|  | node = rcu_dereference_raw(*slot); | 
|  | if (node) | 
|  | break; | 
|  | slot++; | 
|  | offset++; | 
|  | if (offset == RADIX_TREE_MAP_SIZE) | 
|  | return NULL; | 
|  | } | 
|  | iter->index = __radix_tree_iter_add(iter, offset); | 
|  | } | 
|  | if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0)) | 
|  | goto none; | 
|  | next_index = (iter->index | shift_maxindex(iter->shift)) + 1; | 
|  | if (next_index < iter->next_index) | 
|  | iter->next_index = next_index; | 
|  | } | 
|  |  | 
|  | return slot; | 
|  | none: | 
|  | iter->next_index = 0; | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(__radix_tree_next_slot); | 
|  | #else | 
|  | static void __rcu **skip_siblings(struct radix_tree_node **nodep, | 
|  | void __rcu **slot, struct radix_tree_iter *iter) | 
|  | { | 
|  | return slot; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void __rcu **radix_tree_iter_resume(void __rcu **slot, | 
|  | struct radix_tree_iter *iter) | 
|  | { | 
|  | struct radix_tree_node *node; | 
|  |  | 
|  | slot++; | 
|  | iter->index = __radix_tree_iter_add(iter, 1); | 
|  | skip_siblings(&node, slot, iter); | 
|  | iter->next_index = iter->index; | 
|  | iter->tags = 0; | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_iter_resume); | 
|  |  | 
|  | /** | 
|  | * radix_tree_next_chunk - find next chunk of slots for iteration | 
|  | * | 
|  | * @root:	radix tree root | 
|  | * @iter:	iterator state | 
|  | * @flags:	RADIX_TREE_ITER_* flags and tag index | 
|  | * Returns:	pointer to chunk first slot, or NULL if iteration is over | 
|  | */ | 
|  | void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root, | 
|  | struct radix_tree_iter *iter, unsigned flags) | 
|  | { | 
|  | unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK; | 
|  | struct radix_tree_node *node, *child; | 
|  | unsigned long index, offset, maxindex; | 
|  |  | 
|  | if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * Catch next_index overflow after ~0UL. iter->index never overflows | 
|  | * during iterating; it can be zero only at the beginning. | 
|  | * And we cannot overflow iter->next_index in a single step, | 
|  | * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG. | 
|  | * | 
|  | * This condition also used by radix_tree_next_slot() to stop | 
|  | * contiguous iterating, and forbid switching to the next chunk. | 
|  | */ | 
|  | index = iter->next_index; | 
|  | if (!index && iter->index) | 
|  | return NULL; | 
|  |  | 
|  | restart: | 
|  | radix_tree_load_root(root, &child, &maxindex); | 
|  | if (index > maxindex) | 
|  | return NULL; | 
|  | if (!child) | 
|  | return NULL; | 
|  |  | 
|  | if (!radix_tree_is_internal_node(child)) { | 
|  | /* Single-slot tree */ | 
|  | iter->index = index; | 
|  | iter->next_index = maxindex + 1; | 
|  | iter->tags = 1; | 
|  | iter->node = NULL; | 
|  | __set_iter_shift(iter, 0); | 
|  | return (void __rcu **)&root->rnode; | 
|  | } | 
|  |  | 
|  | do { | 
|  | node = entry_to_node(child); | 
|  | offset = radix_tree_descend(node, &child, index); | 
|  |  | 
|  | if ((flags & RADIX_TREE_ITER_TAGGED) ? | 
|  | !tag_get(node, tag, offset) : !child) { | 
|  | /* Hole detected */ | 
|  | if (flags & RADIX_TREE_ITER_CONTIG) | 
|  | return NULL; | 
|  |  | 
|  | if (flags & RADIX_TREE_ITER_TAGGED) | 
|  | offset = radix_tree_find_next_bit(node, tag, | 
|  | offset + 1); | 
|  | else | 
|  | while (++offset	< RADIX_TREE_MAP_SIZE) { | 
|  | void *slot = rcu_dereference_raw( | 
|  | node->slots[offset]); | 
|  | if (is_sibling_entry(node, slot)) | 
|  | continue; | 
|  | if (slot) | 
|  | break; | 
|  | } | 
|  | index &= ~node_maxindex(node); | 
|  | index += offset << node->shift; | 
|  | /* Overflow after ~0UL */ | 
|  | if (!index) | 
|  | return NULL; | 
|  | if (offset == RADIX_TREE_MAP_SIZE) | 
|  | goto restart; | 
|  | child = rcu_dereference_raw(node->slots[offset]); | 
|  | } | 
|  |  | 
|  | if (!child) | 
|  | goto restart; | 
|  | if (child == RADIX_TREE_RETRY) | 
|  | break; | 
|  | } while (radix_tree_is_internal_node(child)); | 
|  |  | 
|  | /* Update the iterator state */ | 
|  | iter->index = (index &~ node_maxindex(node)) | (offset << node->shift); | 
|  | iter->next_index = (index | node_maxindex(node)) + 1; | 
|  | iter->node = node; | 
|  | __set_iter_shift(iter, node->shift); | 
|  |  | 
|  | if (flags & RADIX_TREE_ITER_TAGGED) | 
|  | set_iter_tags(iter, node, offset, tag); | 
|  |  | 
|  | return node->slots + offset; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_next_chunk); | 
|  |  | 
|  | /** | 
|  | *	radix_tree_gang_lookup - perform multiple lookup on a radix tree | 
|  | *	@root:		radix tree root | 
|  | *	@results:	where the results of the lookup are placed | 
|  | *	@first_index:	start the lookup from this key | 
|  | *	@max_items:	place up to this many items at *results | 
|  | * | 
|  | *	Performs an index-ascending scan of the tree for present items.  Places | 
|  | *	them at *@results and returns the number of items which were placed at | 
|  | *	*@results. | 
|  | * | 
|  | *	The implementation is naive. | 
|  | * | 
|  | *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under | 
|  | *	rcu_read_lock. In this case, rather than the returned results being | 
|  | *	an atomic snapshot of the tree at a single point in time, the | 
|  | *	semantics of an RCU protected gang lookup are as though multiple | 
|  | *	radix_tree_lookups have been issued in individual locks, and results | 
|  | *	stored in 'results'. | 
|  | */ | 
|  | unsigned int | 
|  | radix_tree_gang_lookup(const struct radix_tree_root *root, void **results, | 
|  | unsigned long first_index, unsigned int max_items) | 
|  | { | 
|  | struct radix_tree_iter iter; | 
|  | void __rcu **slot; | 
|  | unsigned int ret = 0; | 
|  |  | 
|  | if (unlikely(!max_items)) | 
|  | return 0; | 
|  |  | 
|  | radix_tree_for_each_slot(slot, root, &iter, first_index) { | 
|  | results[ret] = rcu_dereference_raw(*slot); | 
|  | if (!results[ret]) | 
|  | continue; | 
|  | if (radix_tree_is_internal_node(results[ret])) { | 
|  | slot = radix_tree_iter_retry(&iter); | 
|  | continue; | 
|  | } | 
|  | if (++ret == max_items) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_gang_lookup); | 
|  |  | 
|  | /** | 
|  | *	radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree | 
|  | *	@root:		radix tree root | 
|  | *	@results:	where the results of the lookup are placed | 
|  | *	@indices:	where their indices should be placed (but usually NULL) | 
|  | *	@first_index:	start the lookup from this key | 
|  | *	@max_items:	place up to this many items at *results | 
|  | * | 
|  | *	Performs an index-ascending scan of the tree for present items.  Places | 
|  | *	their slots at *@results and returns the number of items which were | 
|  | *	placed at *@results. | 
|  | * | 
|  | *	The implementation is naive. | 
|  | * | 
|  | *	Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must | 
|  | *	be dereferenced with radix_tree_deref_slot, and if using only RCU | 
|  | *	protection, radix_tree_deref_slot may fail requiring a retry. | 
|  | */ | 
|  | unsigned int | 
|  | radix_tree_gang_lookup_slot(const struct radix_tree_root *root, | 
|  | void __rcu ***results, unsigned long *indices, | 
|  | unsigned long first_index, unsigned int max_items) | 
|  | { | 
|  | struct radix_tree_iter iter; | 
|  | void __rcu **slot; | 
|  | unsigned int ret = 0; | 
|  |  | 
|  | if (unlikely(!max_items)) | 
|  | return 0; | 
|  |  | 
|  | radix_tree_for_each_slot(slot, root, &iter, first_index) { | 
|  | results[ret] = slot; | 
|  | if (indices) | 
|  | indices[ret] = iter.index; | 
|  | if (++ret == max_items) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_gang_lookup_slot); | 
|  |  | 
|  | /** | 
|  | *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree | 
|  | *	                             based on a tag | 
|  | *	@root:		radix tree root | 
|  | *	@results:	where the results of the lookup are placed | 
|  | *	@first_index:	start the lookup from this key | 
|  | *	@max_items:	place up to this many items at *results | 
|  | *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS) | 
|  | * | 
|  | *	Performs an index-ascending scan of the tree for present items which | 
|  | *	have the tag indexed by @tag set.  Places the items at *@results and | 
|  | *	returns the number of items which were placed at *@results. | 
|  | */ | 
|  | unsigned int | 
|  | radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results, | 
|  | unsigned long first_index, unsigned int max_items, | 
|  | unsigned int tag) | 
|  | { | 
|  | struct radix_tree_iter iter; | 
|  | void __rcu **slot; | 
|  | unsigned int ret = 0; | 
|  |  | 
|  | if (unlikely(!max_items)) | 
|  | return 0; | 
|  |  | 
|  | radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { | 
|  | results[ret] = rcu_dereference_raw(*slot); | 
|  | if (!results[ret]) | 
|  | continue; | 
|  | if (radix_tree_is_internal_node(results[ret])) { | 
|  | slot = radix_tree_iter_retry(&iter); | 
|  | continue; | 
|  | } | 
|  | if (++ret == max_items) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_gang_lookup_tag); | 
|  |  | 
|  | /** | 
|  | *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a | 
|  | *					  radix tree based on a tag | 
|  | *	@root:		radix tree root | 
|  | *	@results:	where the results of the lookup are placed | 
|  | *	@first_index:	start the lookup from this key | 
|  | *	@max_items:	place up to this many items at *results | 
|  | *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS) | 
|  | * | 
|  | *	Performs an index-ascending scan of the tree for present items which | 
|  | *	have the tag indexed by @tag set.  Places the slots at *@results and | 
|  | *	returns the number of slots which were placed at *@results. | 
|  | */ | 
|  | unsigned int | 
|  | radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root, | 
|  | void __rcu ***results, unsigned long first_index, | 
|  | unsigned int max_items, unsigned int tag) | 
|  | { | 
|  | struct radix_tree_iter iter; | 
|  | void __rcu **slot; | 
|  | unsigned int ret = 0; | 
|  |  | 
|  | if (unlikely(!max_items)) | 
|  | return 0; | 
|  |  | 
|  | radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { | 
|  | results[ret] = slot; | 
|  | if (++ret == max_items) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot); | 
|  |  | 
|  | /** | 
|  | *	__radix_tree_delete_node    -    try to free node after clearing a slot | 
|  | *	@root:		radix tree root | 
|  | *	@node:		node containing @index | 
|  | *	@update_node:	callback for changing leaf nodes | 
|  | *	@private:	private data to pass to @update_node | 
|  | * | 
|  | *	After clearing the slot at @index in @node from radix tree | 
|  | *	rooted at @root, call this function to attempt freeing the | 
|  | *	node and shrinking the tree. | 
|  | */ | 
|  | void __radix_tree_delete_node(struct radix_tree_root *root, | 
|  | struct radix_tree_node *node, | 
|  | radix_tree_update_node_t update_node, | 
|  | void *private) | 
|  | { | 
|  | delete_node(root, node, update_node, private); | 
|  | } | 
|  |  | 
|  | static bool __radix_tree_delete(struct radix_tree_root *root, | 
|  | struct radix_tree_node *node, void __rcu **slot) | 
|  | { | 
|  | void *old = rcu_dereference_raw(*slot); | 
|  | int exceptional = radix_tree_exceptional_entry(old) ? -1 : 0; | 
|  | unsigned offset = get_slot_offset(node, slot); | 
|  | int tag; | 
|  |  | 
|  | if (is_idr(root)) | 
|  | node_tag_set(root, node, IDR_FREE, offset); | 
|  | else | 
|  | for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) | 
|  | node_tag_clear(root, node, tag, offset); | 
|  |  | 
|  | replace_slot(slot, NULL, node, -1, exceptional); | 
|  | return node && delete_node(root, node, NULL, NULL); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * radix_tree_iter_delete - delete the entry at this iterator position | 
|  | * @root: radix tree root | 
|  | * @iter: iterator state | 
|  | * @slot: pointer to slot | 
|  | * | 
|  | * Delete the entry at the position currently pointed to by the iterator. | 
|  | * This may result in the current node being freed; if it is, the iterator | 
|  | * is advanced so that it will not reference the freed memory.  This | 
|  | * function may be called without any locking if there are no other threads | 
|  | * which can access this tree. | 
|  | */ | 
|  | void radix_tree_iter_delete(struct radix_tree_root *root, | 
|  | struct radix_tree_iter *iter, void __rcu **slot) | 
|  | { | 
|  | if (__radix_tree_delete(root, iter->node, slot)) | 
|  | iter->index = iter->next_index; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * radix_tree_delete_item - delete an item from a radix tree | 
|  | * @root: radix tree root | 
|  | * @index: index key | 
|  | * @item: expected item | 
|  | * | 
|  | * Remove @item at @index from the radix tree rooted at @root. | 
|  | * | 
|  | * Return: the deleted entry, or %NULL if it was not present | 
|  | * or the entry at the given @index was not @item. | 
|  | */ | 
|  | void *radix_tree_delete_item(struct radix_tree_root *root, | 
|  | unsigned long index, void *item) | 
|  | { | 
|  | struct radix_tree_node *node = NULL; | 
|  | void __rcu **slot; | 
|  | void *entry; | 
|  |  | 
|  | entry = __radix_tree_lookup(root, index, &node, &slot); | 
|  | if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE, | 
|  | get_slot_offset(node, slot)))) | 
|  | return NULL; | 
|  |  | 
|  | if (item && entry != item) | 
|  | return NULL; | 
|  |  | 
|  | __radix_tree_delete(root, node, slot); | 
|  |  | 
|  | return entry; | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_delete_item); | 
|  |  | 
|  | /** | 
|  | * radix_tree_delete - delete an entry from a radix tree | 
|  | * @root: radix tree root | 
|  | * @index: index key | 
|  | * | 
|  | * Remove the entry at @index from the radix tree rooted at @root. | 
|  | * | 
|  | * Return: The deleted entry, or %NULL if it was not present. | 
|  | */ | 
|  | void *radix_tree_delete(struct radix_tree_root *root, unsigned long index) | 
|  | { | 
|  | return radix_tree_delete_item(root, index, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_delete); | 
|  |  | 
|  | void radix_tree_clear_tags(struct radix_tree_root *root, | 
|  | struct radix_tree_node *node, | 
|  | void __rcu **slot) | 
|  | { | 
|  | if (node) { | 
|  | unsigned int tag, offset = get_slot_offset(node, slot); | 
|  | for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) | 
|  | node_tag_clear(root, node, tag, offset); | 
|  | } else { | 
|  | root_tag_clear_all(root); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	radix_tree_tagged - test whether any items in the tree are tagged | 
|  | *	@root:		radix tree root | 
|  | *	@tag:		tag to test | 
|  | */ | 
|  | int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag) | 
|  | { | 
|  | return root_tag_get(root, tag); | 
|  | } | 
|  | EXPORT_SYMBOL(radix_tree_tagged); | 
|  |  | 
|  | /** | 
|  | * idr_preload - preload for idr_alloc() | 
|  | * @gfp_mask: allocation mask to use for preloading | 
|  | * | 
|  | * Preallocate memory to use for the next call to idr_alloc().  This function | 
|  | * returns with preemption disabled.  It will be enabled by idr_preload_end(). | 
|  | */ | 
|  | void idr_preload(gfp_t gfp_mask) | 
|  | { | 
|  | __radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE); | 
|  | } | 
|  | EXPORT_SYMBOL(idr_preload); | 
|  |  | 
|  | /** | 
|  | * ida_pre_get - reserve resources for ida allocation | 
|  | * @ida: ida handle | 
|  | * @gfp: memory allocation flags | 
|  | * | 
|  | * This function should be called before calling ida_get_new_above().  If it | 
|  | * is unable to allocate memory, it will return %0.  On success, it returns %1. | 
|  | */ | 
|  | int ida_pre_get(struct ida *ida, gfp_t gfp) | 
|  | { | 
|  | __radix_tree_preload(gfp, IDA_PRELOAD_SIZE); | 
|  | /* | 
|  | * The IDA API has no preload_end() equivalent.  Instead, | 
|  | * ida_get_new() can return -EAGAIN, prompting the caller | 
|  | * to return to the ida_pre_get() step. | 
|  | */ | 
|  | preempt_enable(); | 
|  |  | 
|  | if (!this_cpu_read(ida_bitmap)) { | 
|  | struct ida_bitmap *bitmap = kmalloc(sizeof(*bitmap), gfp); | 
|  | if (!bitmap) | 
|  | return 0; | 
|  | if (this_cpu_cmpxchg(ida_bitmap, NULL, bitmap)) | 
|  | kfree(bitmap); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | EXPORT_SYMBOL(ida_pre_get); | 
|  |  | 
|  | void __rcu **idr_get_free(struct radix_tree_root *root, | 
|  | struct radix_tree_iter *iter, gfp_t gfp, int end) | 
|  | { | 
|  | struct radix_tree_node *node = NULL, *child; | 
|  | void __rcu **slot = (void __rcu **)&root->rnode; | 
|  | unsigned long maxindex, start = iter->next_index; | 
|  | unsigned long max = end > 0 ? end - 1 : INT_MAX; | 
|  | unsigned int shift, offset = 0; | 
|  |  | 
|  | grow: | 
|  | shift = radix_tree_load_root(root, &child, &maxindex); | 
|  | if (!radix_tree_tagged(root, IDR_FREE)) | 
|  | start = max(start, maxindex + 1); | 
|  | if (start > max) | 
|  | return ERR_PTR(-ENOSPC); | 
|  |  | 
|  | if (start > maxindex) { | 
|  | int error = radix_tree_extend(root, gfp, start, shift); | 
|  | if (error < 0) | 
|  | return ERR_PTR(error); | 
|  | shift = error; | 
|  | child = rcu_dereference_raw(root->rnode); | 
|  | } | 
|  |  | 
|  | while (shift) { | 
|  | shift -= RADIX_TREE_MAP_SHIFT; | 
|  | if (child == NULL) { | 
|  | /* Have to add a child node.  */ | 
|  | child = radix_tree_node_alloc(gfp, node, root, shift, | 
|  | offset, 0, 0); | 
|  | if (!child) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | all_tag_set(child, IDR_FREE); | 
|  | rcu_assign_pointer(*slot, node_to_entry(child)); | 
|  | if (node) | 
|  | node->count++; | 
|  | } else if (!radix_tree_is_internal_node(child)) | 
|  | break; | 
|  |  | 
|  | node = entry_to_node(child); | 
|  | offset = radix_tree_descend(node, &child, start); | 
|  | if (!tag_get(node, IDR_FREE, offset)) { | 
|  | offset = radix_tree_find_next_bit(node, IDR_FREE, | 
|  | offset + 1); | 
|  | start = next_index(start, node, offset); | 
|  | if (start > max) | 
|  | return ERR_PTR(-ENOSPC); | 
|  | while (offset == RADIX_TREE_MAP_SIZE) { | 
|  | offset = node->offset + 1; | 
|  | node = node->parent; | 
|  | if (!node) | 
|  | goto grow; | 
|  | shift = node->shift; | 
|  | } | 
|  | child = rcu_dereference_raw(node->slots[offset]); | 
|  | } | 
|  | slot = &node->slots[offset]; | 
|  | } | 
|  |  | 
|  | iter->index = start; | 
|  | if (node) | 
|  | iter->next_index = 1 + min(max, (start | node_maxindex(node))); | 
|  | else | 
|  | iter->next_index = 1; | 
|  | iter->node = node; | 
|  | __set_iter_shift(iter, shift); | 
|  | set_iter_tags(iter, node, offset, IDR_FREE); | 
|  |  | 
|  | return slot; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * idr_destroy - release all internal memory from an IDR | 
|  | * @idr: idr handle | 
|  | * | 
|  | * After this function is called, the IDR is empty, and may be reused or | 
|  | * the data structure containing it may be freed. | 
|  | * | 
|  | * A typical clean-up sequence for objects stored in an idr tree will use | 
|  | * idr_for_each() to free all objects, if necessary, then idr_destroy() to | 
|  | * free the memory used to keep track of those objects. | 
|  | */ | 
|  | void idr_destroy(struct idr *idr) | 
|  | { | 
|  | struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.rnode); | 
|  | if (radix_tree_is_internal_node(node)) | 
|  | radix_tree_free_nodes(node); | 
|  | idr->idr_rt.rnode = NULL; | 
|  | root_tag_set(&idr->idr_rt, IDR_FREE); | 
|  | } | 
|  | EXPORT_SYMBOL(idr_destroy); | 
|  |  | 
|  | static void | 
|  | radix_tree_node_ctor(void *arg) | 
|  | { | 
|  | struct radix_tree_node *node = arg; | 
|  |  | 
|  | memset(node, 0, sizeof(*node)); | 
|  | INIT_LIST_HEAD(&node->private_list); | 
|  | } | 
|  |  | 
|  | static __init unsigned long __maxindex(unsigned int height) | 
|  | { | 
|  | unsigned int width = height * RADIX_TREE_MAP_SHIFT; | 
|  | int shift = RADIX_TREE_INDEX_BITS - width; | 
|  |  | 
|  | if (shift < 0) | 
|  | return ~0UL; | 
|  | if (shift >= BITS_PER_LONG) | 
|  | return 0UL; | 
|  | return ~0UL >> shift; | 
|  | } | 
|  |  | 
|  | static __init void radix_tree_init_maxnodes(void) | 
|  | { | 
|  | unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1]; | 
|  | unsigned int i, j; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++) | 
|  | height_to_maxindex[i] = __maxindex(i); | 
|  | for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) { | 
|  | for (j = i; j > 0; j--) | 
|  | height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int radix_tree_cpu_dead(unsigned int cpu) | 
|  | { | 
|  | struct radix_tree_preload *rtp; | 
|  | struct radix_tree_node *node; | 
|  |  | 
|  | /* Free per-cpu pool of preloaded nodes */ | 
|  | rtp = &per_cpu(radix_tree_preloads, cpu); | 
|  | while (rtp->nr) { | 
|  | node = rtp->nodes; | 
|  | rtp->nodes = node->parent; | 
|  | kmem_cache_free(radix_tree_node_cachep, node); | 
|  | rtp->nr--; | 
|  | } | 
|  | kfree(per_cpu(ida_bitmap, cpu)); | 
|  | per_cpu(ida_bitmap, cpu) = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __init radix_tree_init(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32); | 
|  | radix_tree_node_cachep = kmem_cache_create("radix_tree_node", | 
|  | sizeof(struct radix_tree_node), 0, | 
|  | SLAB_PANIC | SLAB_RECLAIM_ACCOUNT, | 
|  | radix_tree_node_ctor); | 
|  | radix_tree_init_maxnodes(); | 
|  | ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead", | 
|  | NULL, radix_tree_cpu_dead); | 
|  | WARN_ON(ret < 0); | 
|  | } |