|  | #include <linux/gfp.h> | 
|  | #include <linux/mm_types.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/kmemcheck.h> | 
|  |  | 
|  | void kmemcheck_alloc_shadow(struct page *page, int order, gfp_t flags, int node) | 
|  | { | 
|  | struct page *shadow; | 
|  | int pages; | 
|  | int i; | 
|  |  | 
|  | pages = 1 << order; | 
|  |  | 
|  | /* | 
|  | * With kmemcheck enabled, we need to allocate a memory area for the | 
|  | * shadow bits as well. | 
|  | */ | 
|  | shadow = alloc_pages_node(node, flags | __GFP_NOTRACK, order); | 
|  | if (!shadow) { | 
|  | if (printk_ratelimit()) | 
|  | printk(KERN_ERR "kmemcheck: failed to allocate " | 
|  | "shadow bitmap\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for(i = 0; i < pages; ++i) | 
|  | page[i].shadow = page_address(&shadow[i]); | 
|  |  | 
|  | /* | 
|  | * Mark it as non-present for the MMU so that our accesses to | 
|  | * this memory will trigger a page fault and let us analyze | 
|  | * the memory accesses. | 
|  | */ | 
|  | kmemcheck_hide_pages(page, pages); | 
|  | } | 
|  |  | 
|  | void kmemcheck_free_shadow(struct page *page, int order) | 
|  | { | 
|  | struct page *shadow; | 
|  | int pages; | 
|  | int i; | 
|  |  | 
|  | if (!kmemcheck_page_is_tracked(page)) | 
|  | return; | 
|  |  | 
|  | pages = 1 << order; | 
|  |  | 
|  | kmemcheck_show_pages(page, pages); | 
|  |  | 
|  | shadow = virt_to_page(page[0].shadow); | 
|  |  | 
|  | for(i = 0; i < pages; ++i) | 
|  | page[i].shadow = NULL; | 
|  |  | 
|  | __free_pages(shadow, order); | 
|  | } | 
|  |  | 
|  | void kmemcheck_slab_alloc(struct kmem_cache *s, gfp_t gfpflags, void *object, | 
|  | size_t size) | 
|  | { | 
|  | /* | 
|  | * Has already been memset(), which initializes the shadow for us | 
|  | * as well. | 
|  | */ | 
|  | if (gfpflags & __GFP_ZERO) | 
|  | return; | 
|  |  | 
|  | /* No need to initialize the shadow of a non-tracked slab. */ | 
|  | if (s->flags & SLAB_NOTRACK) | 
|  | return; | 
|  |  | 
|  | if (!kmemcheck_enabled || gfpflags & __GFP_NOTRACK) { | 
|  | /* | 
|  | * Allow notracked objects to be allocated from | 
|  | * tracked caches. Note however that these objects | 
|  | * will still get page faults on access, they just | 
|  | * won't ever be flagged as uninitialized. If page | 
|  | * faults are not acceptable, the slab cache itself | 
|  | * should be marked NOTRACK. | 
|  | */ | 
|  | kmemcheck_mark_initialized(object, size); | 
|  | } else if (!s->ctor) { | 
|  | /* | 
|  | * New objects should be marked uninitialized before | 
|  | * they're returned to the called. | 
|  | */ | 
|  | kmemcheck_mark_uninitialized(object, size); | 
|  | } | 
|  | } | 
|  |  | 
|  | void kmemcheck_slab_free(struct kmem_cache *s, void *object, size_t size) | 
|  | { | 
|  | /* TODO: RCU freeing is unsupported for now; hide false positives. */ | 
|  | if (!s->ctor && !(s->flags & SLAB_DESTROY_BY_RCU)) | 
|  | kmemcheck_mark_freed(object, size); | 
|  | } | 
|  |  | 
|  | void kmemcheck_pagealloc_alloc(struct page *page, unsigned int order, | 
|  | gfp_t gfpflags) | 
|  | { | 
|  | int pages; | 
|  |  | 
|  | if (gfpflags & (__GFP_HIGHMEM | __GFP_NOTRACK)) | 
|  | return; | 
|  |  | 
|  | pages = 1 << order; | 
|  |  | 
|  | /* | 
|  | * NOTE: We choose to track GFP_ZERO pages too; in fact, they | 
|  | * can become uninitialized by copying uninitialized memory | 
|  | * into them. | 
|  | */ | 
|  |  | 
|  | /* XXX: Can use zone->node for node? */ | 
|  | kmemcheck_alloc_shadow(page, order, gfpflags, -1); | 
|  |  | 
|  | if (gfpflags & __GFP_ZERO) | 
|  | kmemcheck_mark_initialized_pages(page, pages); | 
|  | else | 
|  | kmemcheck_mark_uninitialized_pages(page, pages); | 
|  | } |