|  | /* | 
|  | *    Disk Array driver for HP Smart Array SAS controllers | 
|  | *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P. | 
|  | * | 
|  | *    This program is free software; you can redistribute it and/or modify | 
|  | *    it under the terms of the GNU General Public License as published by | 
|  | *    the Free Software Foundation; version 2 of the License. | 
|  | * | 
|  | *    This program is distributed in the hope that it will be useful, | 
|  | *    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
|  | *    NON INFRINGEMENT.  See the GNU General Public License for more details. | 
|  | * | 
|  | *    You should have received a copy of the GNU General Public License | 
|  | *    along with this program; if not, write to the Free Software | 
|  | *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | * | 
|  | *    Questions/Comments/Bugfixes to iss_storagedev@hp.com | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/pci-aspm.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/timer.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/compat.h> | 
|  | #include <linux/blktrace_api.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/moduleparam.h> | 
|  | #include <scsi/scsi.h> | 
|  | #include <scsi/scsi_cmnd.h> | 
|  | #include <scsi/scsi_device.h> | 
|  | #include <scsi/scsi_host.h> | 
|  | #include <scsi/scsi_tcq.h> | 
|  | #include <linux/cciss_ioctl.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/bitmap.h> | 
|  | #include <linux/atomic.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/percpu-defs.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <asm/div64.h> | 
|  | #include "hpsa_cmd.h" | 
|  | #include "hpsa.h" | 
|  |  | 
|  | /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */ | 
|  | #define HPSA_DRIVER_VERSION "3.4.4-1" | 
|  | #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")" | 
|  | #define HPSA "hpsa" | 
|  |  | 
|  | /* How long to wait (in milliseconds) for board to go into simple mode */ | 
|  | #define MAX_CONFIG_WAIT 30000 | 
|  | #define MAX_IOCTL_CONFIG_WAIT 1000 | 
|  |  | 
|  | /*define how many times we will try a command because of bus resets */ | 
|  | #define MAX_CMD_RETRIES 3 | 
|  |  | 
|  | /* Embedded module documentation macros - see modules.h */ | 
|  | MODULE_AUTHOR("Hewlett-Packard Company"); | 
|  | MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \ | 
|  | HPSA_DRIVER_VERSION); | 
|  | MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers"); | 
|  | MODULE_VERSION(HPSA_DRIVER_VERSION); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | static int hpsa_allow_any; | 
|  | module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR); | 
|  | MODULE_PARM_DESC(hpsa_allow_any, | 
|  | "Allow hpsa driver to access unknown HP Smart Array hardware"); | 
|  | static int hpsa_simple_mode; | 
|  | module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR); | 
|  | MODULE_PARM_DESC(hpsa_simple_mode, | 
|  | "Use 'simple mode' rather than 'performant mode'"); | 
|  |  | 
|  | /* define the PCI info for the cards we can control */ | 
|  | static const struct pci_device_id hpsa_pci_device_id[] = { | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE}, | 
|  | {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076}, | 
|  | {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087}, | 
|  | {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D}, | 
|  | {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088}, | 
|  | {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f}, | 
|  | {PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID, | 
|  | PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, | 
|  | {0,} | 
|  | }; | 
|  |  | 
|  | MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id); | 
|  |  | 
|  | /*  board_id = Subsystem Device ID & Vendor ID | 
|  | *  product = Marketing Name for the board | 
|  | *  access = Address of the struct of function pointers | 
|  | */ | 
|  | static struct board_type products[] = { | 
|  | {0x3241103C, "Smart Array P212", &SA5_access}, | 
|  | {0x3243103C, "Smart Array P410", &SA5_access}, | 
|  | {0x3245103C, "Smart Array P410i", &SA5_access}, | 
|  | {0x3247103C, "Smart Array P411", &SA5_access}, | 
|  | {0x3249103C, "Smart Array P812", &SA5_access}, | 
|  | {0x324A103C, "Smart Array P712m", &SA5_access}, | 
|  | {0x324B103C, "Smart Array P711m", &SA5_access}, | 
|  | {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */ | 
|  | {0x3350103C, "Smart Array P222", &SA5_access}, | 
|  | {0x3351103C, "Smart Array P420", &SA5_access}, | 
|  | {0x3352103C, "Smart Array P421", &SA5_access}, | 
|  | {0x3353103C, "Smart Array P822", &SA5_access}, | 
|  | {0x3354103C, "Smart Array P420i", &SA5_access}, | 
|  | {0x3355103C, "Smart Array P220i", &SA5_access}, | 
|  | {0x3356103C, "Smart Array P721m", &SA5_access}, | 
|  | {0x1921103C, "Smart Array P830i", &SA5_access}, | 
|  | {0x1922103C, "Smart Array P430", &SA5_access}, | 
|  | {0x1923103C, "Smart Array P431", &SA5_access}, | 
|  | {0x1924103C, "Smart Array P830", &SA5_access}, | 
|  | {0x1926103C, "Smart Array P731m", &SA5_access}, | 
|  | {0x1928103C, "Smart Array P230i", &SA5_access}, | 
|  | {0x1929103C, "Smart Array P530", &SA5_access}, | 
|  | {0x21BD103C, "Smart Array", &SA5_access}, | 
|  | {0x21BE103C, "Smart Array", &SA5_access}, | 
|  | {0x21BF103C, "Smart Array", &SA5_access}, | 
|  | {0x21C0103C, "Smart Array", &SA5_access}, | 
|  | {0x21C1103C, "Smart Array", &SA5_access}, | 
|  | {0x21C2103C, "Smart Array", &SA5_access}, | 
|  | {0x21C3103C, "Smart Array", &SA5_access}, | 
|  | {0x21C4103C, "Smart Array", &SA5_access}, | 
|  | {0x21C5103C, "Smart Array", &SA5_access}, | 
|  | {0x21C6103C, "Smart Array", &SA5_access}, | 
|  | {0x21C7103C, "Smart Array", &SA5_access}, | 
|  | {0x21C8103C, "Smart Array", &SA5_access}, | 
|  | {0x21C9103C, "Smart Array", &SA5_access}, | 
|  | {0x21CA103C, "Smart Array", &SA5_access}, | 
|  | {0x21CB103C, "Smart Array", &SA5_access}, | 
|  | {0x21CC103C, "Smart Array", &SA5_access}, | 
|  | {0x21CD103C, "Smart Array", &SA5_access}, | 
|  | {0x21CE103C, "Smart Array", &SA5_access}, | 
|  | {0x00761590, "HP Storage P1224 Array Controller", &SA5_access}, | 
|  | {0x00871590, "HP Storage P1224e Array Controller", &SA5_access}, | 
|  | {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access}, | 
|  | {0x00881590, "HP Storage P1228e Array Controller", &SA5_access}, | 
|  | {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access}, | 
|  | {0xFFFF103C, "Unknown Smart Array", &SA5_access}, | 
|  | }; | 
|  |  | 
|  | static int number_of_controllers; | 
|  |  | 
|  | static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id); | 
|  | static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id); | 
|  | static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg); | 
|  | static void lock_and_start_io(struct ctlr_info *h); | 
|  | static void start_io(struct ctlr_info *h, unsigned long *flags); | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  | static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, | 
|  | void __user *arg); | 
|  | #endif | 
|  |  | 
|  | static void cmd_free(struct ctlr_info *h, struct CommandList *c); | 
|  | static void cmd_special_free(struct ctlr_info *h, struct CommandList *c); | 
|  | static struct CommandList *cmd_alloc(struct ctlr_info *h); | 
|  | static struct CommandList *cmd_special_alloc(struct ctlr_info *h); | 
|  | static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, | 
|  | void *buff, size_t size, u16 page_code, unsigned char *scsi3addr, | 
|  | int cmd_type); | 
|  | #define VPD_PAGE (1 << 8) | 
|  |  | 
|  | static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd); | 
|  | static void hpsa_scan_start(struct Scsi_Host *); | 
|  | static int hpsa_scan_finished(struct Scsi_Host *sh, | 
|  | unsigned long elapsed_time); | 
|  |  | 
|  | static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd); | 
|  | static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd); | 
|  | static int hpsa_slave_alloc(struct scsi_device *sdev); | 
|  | static void hpsa_slave_destroy(struct scsi_device *sdev); | 
|  |  | 
|  | static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno); | 
|  | static int check_for_unit_attention(struct ctlr_info *h, | 
|  | struct CommandList *c); | 
|  | static void check_ioctl_unit_attention(struct ctlr_info *h, | 
|  | struct CommandList *c); | 
|  | /* performant mode helper functions */ | 
|  | static void calc_bucket_map(int *bucket, int num_buckets, | 
|  | int nsgs, int min_blocks, int *bucket_map); | 
|  | static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h); | 
|  | static inline u32 next_command(struct ctlr_info *h, u8 q); | 
|  | static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, | 
|  | u32 *cfg_base_addr, u64 *cfg_base_addr_index, | 
|  | u64 *cfg_offset); | 
|  | static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev, | 
|  | unsigned long *memory_bar); | 
|  | static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id); | 
|  | static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, | 
|  | int wait_for_ready); | 
|  | static inline void finish_cmd(struct CommandList *c); | 
|  | static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h); | 
|  | #define BOARD_NOT_READY 0 | 
|  | #define BOARD_READY 1 | 
|  | static void hpsa_drain_accel_commands(struct ctlr_info *h); | 
|  | static void hpsa_flush_cache(struct ctlr_info *h); | 
|  | static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h, | 
|  | struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, | 
|  | u8 *scsi3addr); | 
|  |  | 
|  | static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev) | 
|  | { | 
|  | unsigned long *priv = shost_priv(sdev->host); | 
|  | return (struct ctlr_info *) *priv; | 
|  | } | 
|  |  | 
|  | static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh) | 
|  | { | 
|  | unsigned long *priv = shost_priv(sh); | 
|  | return (struct ctlr_info *) *priv; | 
|  | } | 
|  |  | 
|  | static int check_for_unit_attention(struct ctlr_info *h, | 
|  | struct CommandList *c) | 
|  | { | 
|  | if (c->err_info->SenseInfo[2] != UNIT_ATTENTION) | 
|  | return 0; | 
|  |  | 
|  | switch (c->err_info->SenseInfo[12]) { | 
|  | case STATE_CHANGED: | 
|  | dev_warn(&h->pdev->dev, HPSA "%d: a state change " | 
|  | "detected, command retried\n", h->ctlr); | 
|  | break; | 
|  | case LUN_FAILED: | 
|  | dev_warn(&h->pdev->dev, | 
|  | HPSA "%d: LUN failure detected\n", h->ctlr); | 
|  | break; | 
|  | case REPORT_LUNS_CHANGED: | 
|  | dev_warn(&h->pdev->dev, | 
|  | HPSA "%d: report LUN data changed\n", h->ctlr); | 
|  | /* | 
|  | * Note: this REPORT_LUNS_CHANGED condition only occurs on the external | 
|  | * target (array) devices. | 
|  | */ | 
|  | break; | 
|  | case POWER_OR_RESET: | 
|  | dev_warn(&h->pdev->dev, HPSA "%d: a power on " | 
|  | "or device reset detected\n", h->ctlr); | 
|  | break; | 
|  | case UNIT_ATTENTION_CLEARED: | 
|  | dev_warn(&h->pdev->dev, HPSA "%d: unit attention " | 
|  | "cleared by another initiator\n", h->ctlr); | 
|  | break; | 
|  | default: | 
|  | dev_warn(&h->pdev->dev, HPSA "%d: unknown " | 
|  | "unit attention detected\n", h->ctlr); | 
|  | break; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int check_for_busy(struct ctlr_info *h, struct CommandList *c) | 
|  | { | 
|  | if (c->err_info->CommandStatus != CMD_TARGET_STATUS || | 
|  | (c->err_info->ScsiStatus != SAM_STAT_BUSY && | 
|  | c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL)) | 
|  | return 0; | 
|  | dev_warn(&h->pdev->dev, HPSA "device busy"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev, | 
|  | struct device_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | int status, len; | 
|  | struct ctlr_info *h; | 
|  | struct Scsi_Host *shost = class_to_shost(dev); | 
|  | char tmpbuf[10]; | 
|  |  | 
|  | if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) | 
|  | return -EACCES; | 
|  | len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count; | 
|  | strncpy(tmpbuf, buf, len); | 
|  | tmpbuf[len] = '\0'; | 
|  | if (sscanf(tmpbuf, "%d", &status) != 1) | 
|  | return -EINVAL; | 
|  | h = shost_to_hba(shost); | 
|  | h->acciopath_status = !!status; | 
|  | dev_warn(&h->pdev->dev, | 
|  | "hpsa: HP SSD Smart Path %s via sysfs update.\n", | 
|  | h->acciopath_status ? "enabled" : "disabled"); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t host_store_raid_offload_debug(struct device *dev, | 
|  | struct device_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | int debug_level, len; | 
|  | struct ctlr_info *h; | 
|  | struct Scsi_Host *shost = class_to_shost(dev); | 
|  | char tmpbuf[10]; | 
|  |  | 
|  | if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) | 
|  | return -EACCES; | 
|  | len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count; | 
|  | strncpy(tmpbuf, buf, len); | 
|  | tmpbuf[len] = '\0'; | 
|  | if (sscanf(tmpbuf, "%d", &debug_level) != 1) | 
|  | return -EINVAL; | 
|  | if (debug_level < 0) | 
|  | debug_level = 0; | 
|  | h = shost_to_hba(shost); | 
|  | h->raid_offload_debug = debug_level; | 
|  | dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n", | 
|  | h->raid_offload_debug); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t host_store_rescan(struct device *dev, | 
|  | struct device_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | struct ctlr_info *h; | 
|  | struct Scsi_Host *shost = class_to_shost(dev); | 
|  | h = shost_to_hba(shost); | 
|  | hpsa_scan_start(h->scsi_host); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t host_show_firmware_revision(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct ctlr_info *h; | 
|  | struct Scsi_Host *shost = class_to_shost(dev); | 
|  | unsigned char *fwrev; | 
|  |  | 
|  | h = shost_to_hba(shost); | 
|  | if (!h->hba_inquiry_data) | 
|  | return 0; | 
|  | fwrev = &h->hba_inquiry_data[32]; | 
|  | return snprintf(buf, 20, "%c%c%c%c\n", | 
|  | fwrev[0], fwrev[1], fwrev[2], fwrev[3]); | 
|  | } | 
|  |  | 
|  | static ssize_t host_show_commands_outstanding(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct Scsi_Host *shost = class_to_shost(dev); | 
|  | struct ctlr_info *h = shost_to_hba(shost); | 
|  |  | 
|  | return snprintf(buf, 20, "%d\n", | 
|  | atomic_read(&h->commands_outstanding)); | 
|  | } | 
|  |  | 
|  | static ssize_t host_show_transport_mode(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct ctlr_info *h; | 
|  | struct Scsi_Host *shost = class_to_shost(dev); | 
|  |  | 
|  | h = shost_to_hba(shost); | 
|  | return snprintf(buf, 20, "%s\n", | 
|  | h->transMethod & CFGTBL_Trans_Performant ? | 
|  | "performant" : "simple"); | 
|  | } | 
|  |  | 
|  | static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct ctlr_info *h; | 
|  | struct Scsi_Host *shost = class_to_shost(dev); | 
|  |  | 
|  | h = shost_to_hba(shost); | 
|  | return snprintf(buf, 30, "HP SSD Smart Path %s\n", | 
|  | (h->acciopath_status == 1) ?  "enabled" : "disabled"); | 
|  | } | 
|  |  | 
|  | /* List of controllers which cannot be hard reset on kexec with reset_devices */ | 
|  | static u32 unresettable_controller[] = { | 
|  | 0x324a103C, /* Smart Array P712m */ | 
|  | 0x324b103C, /* SmartArray P711m */ | 
|  | 0x3223103C, /* Smart Array P800 */ | 
|  | 0x3234103C, /* Smart Array P400 */ | 
|  | 0x3235103C, /* Smart Array P400i */ | 
|  | 0x3211103C, /* Smart Array E200i */ | 
|  | 0x3212103C, /* Smart Array E200 */ | 
|  | 0x3213103C, /* Smart Array E200i */ | 
|  | 0x3214103C, /* Smart Array E200i */ | 
|  | 0x3215103C, /* Smart Array E200i */ | 
|  | 0x3237103C, /* Smart Array E500 */ | 
|  | 0x323D103C, /* Smart Array P700m */ | 
|  | 0x40800E11, /* Smart Array 5i */ | 
|  | 0x409C0E11, /* Smart Array 6400 */ | 
|  | 0x409D0E11, /* Smart Array 6400 EM */ | 
|  | 0x40700E11, /* Smart Array 5300 */ | 
|  | 0x40820E11, /* Smart Array 532 */ | 
|  | 0x40830E11, /* Smart Array 5312 */ | 
|  | 0x409A0E11, /* Smart Array 641 */ | 
|  | 0x409B0E11, /* Smart Array 642 */ | 
|  | 0x40910E11, /* Smart Array 6i */ | 
|  | }; | 
|  |  | 
|  | /* List of controllers which cannot even be soft reset */ | 
|  | static u32 soft_unresettable_controller[] = { | 
|  | 0x40800E11, /* Smart Array 5i */ | 
|  | 0x40700E11, /* Smart Array 5300 */ | 
|  | 0x40820E11, /* Smart Array 532 */ | 
|  | 0x40830E11, /* Smart Array 5312 */ | 
|  | 0x409A0E11, /* Smart Array 641 */ | 
|  | 0x409B0E11, /* Smart Array 642 */ | 
|  | 0x40910E11, /* Smart Array 6i */ | 
|  | /* Exclude 640x boards.  These are two pci devices in one slot | 
|  | * which share a battery backed cache module.  One controls the | 
|  | * cache, the other accesses the cache through the one that controls | 
|  | * it.  If we reset the one controlling the cache, the other will | 
|  | * likely not be happy.  Just forbid resetting this conjoined mess. | 
|  | * The 640x isn't really supported by hpsa anyway. | 
|  | */ | 
|  | 0x409C0E11, /* Smart Array 6400 */ | 
|  | 0x409D0E11, /* Smart Array 6400 EM */ | 
|  | }; | 
|  |  | 
|  | static int ctlr_is_hard_resettable(u32 board_id) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++) | 
|  | if (unresettable_controller[i] == board_id) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int ctlr_is_soft_resettable(u32 board_id) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++) | 
|  | if (soft_unresettable_controller[i] == board_id) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int ctlr_is_resettable(u32 board_id) | 
|  | { | 
|  | return ctlr_is_hard_resettable(board_id) || | 
|  | ctlr_is_soft_resettable(board_id); | 
|  | } | 
|  |  | 
|  | static ssize_t host_show_resettable(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct ctlr_info *h; | 
|  | struct Scsi_Host *shost = class_to_shost(dev); | 
|  |  | 
|  | h = shost_to_hba(shost); | 
|  | return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id)); | 
|  | } | 
|  |  | 
|  | static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[]) | 
|  | { | 
|  | return (scsi3addr[3] & 0xC0) == 0x40; | 
|  | } | 
|  |  | 
|  | static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG", | 
|  | "1(ADM)", "UNKNOWN" | 
|  | }; | 
|  | #define HPSA_RAID_0	0 | 
|  | #define HPSA_RAID_4	1 | 
|  | #define HPSA_RAID_1	2	/* also used for RAID 10 */ | 
|  | #define HPSA_RAID_5	3	/* also used for RAID 50 */ | 
|  | #define HPSA_RAID_51	4 | 
|  | #define HPSA_RAID_6	5	/* also used for RAID 60 */ | 
|  | #define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */ | 
|  | #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1) | 
|  |  | 
|  | static ssize_t raid_level_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | ssize_t l = 0; | 
|  | unsigned char rlevel; | 
|  | struct ctlr_info *h; | 
|  | struct scsi_device *sdev; | 
|  | struct hpsa_scsi_dev_t *hdev; | 
|  | unsigned long flags; | 
|  |  | 
|  | sdev = to_scsi_device(dev); | 
|  | h = sdev_to_hba(sdev); | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | hdev = sdev->hostdata; | 
|  | if (!hdev) { | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* Is this even a logical drive? */ | 
|  | if (!is_logical_dev_addr_mode(hdev->scsi3addr)) { | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | l = snprintf(buf, PAGE_SIZE, "N/A\n"); | 
|  | return l; | 
|  | } | 
|  |  | 
|  | rlevel = hdev->raid_level; | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | if (rlevel > RAID_UNKNOWN) | 
|  | rlevel = RAID_UNKNOWN; | 
|  | l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]); | 
|  | return l; | 
|  | } | 
|  |  | 
|  | static ssize_t lunid_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct ctlr_info *h; | 
|  | struct scsi_device *sdev; | 
|  | struct hpsa_scsi_dev_t *hdev; | 
|  | unsigned long flags; | 
|  | unsigned char lunid[8]; | 
|  |  | 
|  | sdev = to_scsi_device(dev); | 
|  | h = sdev_to_hba(sdev); | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | hdev = sdev->hostdata; | 
|  | if (!hdev) { | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | return -ENODEV; | 
|  | } | 
|  | memcpy(lunid, hdev->scsi3addr, sizeof(lunid)); | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n", | 
|  | lunid[0], lunid[1], lunid[2], lunid[3], | 
|  | lunid[4], lunid[5], lunid[6], lunid[7]); | 
|  | } | 
|  |  | 
|  | static ssize_t unique_id_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct ctlr_info *h; | 
|  | struct scsi_device *sdev; | 
|  | struct hpsa_scsi_dev_t *hdev; | 
|  | unsigned long flags; | 
|  | unsigned char sn[16]; | 
|  |  | 
|  | sdev = to_scsi_device(dev); | 
|  | h = sdev_to_hba(sdev); | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | hdev = sdev->hostdata; | 
|  | if (!hdev) { | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | return -ENODEV; | 
|  | } | 
|  | memcpy(sn, hdev->device_id, sizeof(sn)); | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | return snprintf(buf, 16 * 2 + 2, | 
|  | "%02X%02X%02X%02X%02X%02X%02X%02X" | 
|  | "%02X%02X%02X%02X%02X%02X%02X%02X\n", | 
|  | sn[0], sn[1], sn[2], sn[3], | 
|  | sn[4], sn[5], sn[6], sn[7], | 
|  | sn[8], sn[9], sn[10], sn[11], | 
|  | sn[12], sn[13], sn[14], sn[15]); | 
|  | } | 
|  |  | 
|  | static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct ctlr_info *h; | 
|  | struct scsi_device *sdev; | 
|  | struct hpsa_scsi_dev_t *hdev; | 
|  | unsigned long flags; | 
|  | int offload_enabled; | 
|  |  | 
|  | sdev = to_scsi_device(dev); | 
|  | h = sdev_to_hba(sdev); | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | hdev = sdev->hostdata; | 
|  | if (!hdev) { | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | return -ENODEV; | 
|  | } | 
|  | offload_enabled = hdev->offload_enabled; | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | return snprintf(buf, 20, "%d\n", offload_enabled); | 
|  | } | 
|  |  | 
|  | static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL); | 
|  | static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL); | 
|  | static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL); | 
|  | static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); | 
|  | static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO, | 
|  | host_show_hp_ssd_smart_path_enabled, NULL); | 
|  | static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH, | 
|  | host_show_hp_ssd_smart_path_status, | 
|  | host_store_hp_ssd_smart_path_status); | 
|  | static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL, | 
|  | host_store_raid_offload_debug); | 
|  | static DEVICE_ATTR(firmware_revision, S_IRUGO, | 
|  | host_show_firmware_revision, NULL); | 
|  | static DEVICE_ATTR(commands_outstanding, S_IRUGO, | 
|  | host_show_commands_outstanding, NULL); | 
|  | static DEVICE_ATTR(transport_mode, S_IRUGO, | 
|  | host_show_transport_mode, NULL); | 
|  | static DEVICE_ATTR(resettable, S_IRUGO, | 
|  | host_show_resettable, NULL); | 
|  |  | 
|  | static struct device_attribute *hpsa_sdev_attrs[] = { | 
|  | &dev_attr_raid_level, | 
|  | &dev_attr_lunid, | 
|  | &dev_attr_unique_id, | 
|  | &dev_attr_hp_ssd_smart_path_enabled, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static struct device_attribute *hpsa_shost_attrs[] = { | 
|  | &dev_attr_rescan, | 
|  | &dev_attr_firmware_revision, | 
|  | &dev_attr_commands_outstanding, | 
|  | &dev_attr_transport_mode, | 
|  | &dev_attr_resettable, | 
|  | &dev_attr_hp_ssd_smart_path_status, | 
|  | &dev_attr_raid_offload_debug, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static struct scsi_host_template hpsa_driver_template = { | 
|  | .module			= THIS_MODULE, | 
|  | .name			= HPSA, | 
|  | .proc_name		= HPSA, | 
|  | .queuecommand		= hpsa_scsi_queue_command, | 
|  | .scan_start		= hpsa_scan_start, | 
|  | .scan_finished		= hpsa_scan_finished, | 
|  | .change_queue_depth	= scsi_change_queue_depth, | 
|  | .this_id		= -1, | 
|  | .use_clustering		= ENABLE_CLUSTERING, | 
|  | .eh_abort_handler	= hpsa_eh_abort_handler, | 
|  | .eh_device_reset_handler = hpsa_eh_device_reset_handler, | 
|  | .ioctl			= hpsa_ioctl, | 
|  | .slave_alloc		= hpsa_slave_alloc, | 
|  | .slave_destroy		= hpsa_slave_destroy, | 
|  | #ifdef CONFIG_COMPAT | 
|  | .compat_ioctl		= hpsa_compat_ioctl, | 
|  | #endif | 
|  | .sdev_attrs = hpsa_sdev_attrs, | 
|  | .shost_attrs = hpsa_shost_attrs, | 
|  | .max_sectors = 8192, | 
|  | .no_write_same = 1, | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* Enqueuing and dequeuing functions for cmdlists. */ | 
|  | static inline void addQ(struct list_head *list, struct CommandList *c) | 
|  | { | 
|  | list_add_tail(&c->list, list); | 
|  | } | 
|  |  | 
|  | static inline u32 next_command(struct ctlr_info *h, u8 q) | 
|  | { | 
|  | u32 a; | 
|  | struct reply_queue_buffer *rq = &h->reply_queue[q]; | 
|  |  | 
|  | if (h->transMethod & CFGTBL_Trans_io_accel1) | 
|  | return h->access.command_completed(h, q); | 
|  |  | 
|  | if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) | 
|  | return h->access.command_completed(h, q); | 
|  |  | 
|  | if ((rq->head[rq->current_entry] & 1) == rq->wraparound) { | 
|  | a = rq->head[rq->current_entry]; | 
|  | rq->current_entry++; | 
|  | atomic_dec(&h->commands_outstanding); | 
|  | } else { | 
|  | a = FIFO_EMPTY; | 
|  | } | 
|  | /* Check for wraparound */ | 
|  | if (rq->current_entry == h->max_commands) { | 
|  | rq->current_entry = 0; | 
|  | rq->wraparound ^= 1; | 
|  | } | 
|  | return a; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There are some special bits in the bus address of the | 
|  | * command that we have to set for the controller to know | 
|  | * how to process the command: | 
|  | * | 
|  | * Normal performant mode: | 
|  | * bit 0: 1 means performant mode, 0 means simple mode. | 
|  | * bits 1-3 = block fetch table entry | 
|  | * bits 4-6 = command type (== 0) | 
|  | * | 
|  | * ioaccel1 mode: | 
|  | * bit 0 = "performant mode" bit. | 
|  | * bits 1-3 = block fetch table entry | 
|  | * bits 4-6 = command type (== 110) | 
|  | * (command type is needed because ioaccel1 mode | 
|  | * commands are submitted through the same register as normal | 
|  | * mode commands, so this is how the controller knows whether | 
|  | * the command is normal mode or ioaccel1 mode.) | 
|  | * | 
|  | * ioaccel2 mode: | 
|  | * bit 0 = "performant mode" bit. | 
|  | * bits 1-4 = block fetch table entry (note extra bit) | 
|  | * bits 4-6 = not needed, because ioaccel2 mode has | 
|  | * a separate special register for submitting commands. | 
|  | */ | 
|  |  | 
|  | /* set_performant_mode: Modify the tag for cciss performant | 
|  | * set bit 0 for pull model, bits 3-1 for block fetch | 
|  | * register number | 
|  | */ | 
|  | static void set_performant_mode(struct ctlr_info *h, struct CommandList *c) | 
|  | { | 
|  | if (likely(h->transMethod & CFGTBL_Trans_Performant)) { | 
|  | c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1); | 
|  | if (likely(h->msix_vector > 0)) | 
|  | c->Header.ReplyQueue = | 
|  | raw_smp_processor_id() % h->nreply_queues; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void set_ioaccel1_performant_mode(struct ctlr_info *h, | 
|  | struct CommandList *c) | 
|  | { | 
|  | struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex]; | 
|  |  | 
|  | /* Tell the controller to post the reply to the queue for this | 
|  | * processor.  This seems to give the best I/O throughput. | 
|  | */ | 
|  | cp->ReplyQueue = smp_processor_id() % h->nreply_queues; | 
|  | /* Set the bits in the address sent down to include: | 
|  | *  - performant mode bit (bit 0) | 
|  | *  - pull count (bits 1-3) | 
|  | *  - command type (bits 4-6) | 
|  | */ | 
|  | c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) | | 
|  | IOACCEL1_BUSADDR_CMDTYPE; | 
|  | } | 
|  |  | 
|  | static void set_ioaccel2_performant_mode(struct ctlr_info *h, | 
|  | struct CommandList *c) | 
|  | { | 
|  | struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex]; | 
|  |  | 
|  | /* Tell the controller to post the reply to the queue for this | 
|  | * processor.  This seems to give the best I/O throughput. | 
|  | */ | 
|  | cp->reply_queue = smp_processor_id() % h->nreply_queues; | 
|  | /* Set the bits in the address sent down to include: | 
|  | *  - performant mode bit not used in ioaccel mode 2 | 
|  | *  - pull count (bits 0-3) | 
|  | *  - command type isn't needed for ioaccel2 | 
|  | */ | 
|  | c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]); | 
|  | } | 
|  |  | 
|  | static int is_firmware_flash_cmd(u8 *cdb) | 
|  | { | 
|  | return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * During firmware flash, the heartbeat register may not update as frequently | 
|  | * as it should.  So we dial down lockup detection during firmware flash. and | 
|  | * dial it back up when firmware flash completes. | 
|  | */ | 
|  | #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ) | 
|  | #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ) | 
|  | static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h, | 
|  | struct CommandList *c) | 
|  | { | 
|  | if (!is_firmware_flash_cmd(c->Request.CDB)) | 
|  | return; | 
|  | atomic_inc(&h->firmware_flash_in_progress); | 
|  | h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH; | 
|  | } | 
|  |  | 
|  | static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h, | 
|  | struct CommandList *c) | 
|  | { | 
|  | if (is_firmware_flash_cmd(c->Request.CDB) && | 
|  | atomic_dec_and_test(&h->firmware_flash_in_progress)) | 
|  | h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; | 
|  | } | 
|  |  | 
|  | static void enqueue_cmd_and_start_io(struct ctlr_info *h, | 
|  | struct CommandList *c) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | switch (c->cmd_type) { | 
|  | case CMD_IOACCEL1: | 
|  | set_ioaccel1_performant_mode(h, c); | 
|  | break; | 
|  | case CMD_IOACCEL2: | 
|  | set_ioaccel2_performant_mode(h, c); | 
|  | break; | 
|  | default: | 
|  | set_performant_mode(h, c); | 
|  | } | 
|  | dial_down_lockup_detection_during_fw_flash(h, c); | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | addQ(&h->reqQ, c); | 
|  | h->Qdepth++; | 
|  | start_io(h, &flags); | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | } | 
|  |  | 
|  | static inline void removeQ(struct CommandList *c) | 
|  | { | 
|  | if (WARN_ON(list_empty(&c->list))) | 
|  | return; | 
|  | list_del_init(&c->list); | 
|  | } | 
|  |  | 
|  | static inline int is_hba_lunid(unsigned char scsi3addr[]) | 
|  | { | 
|  | return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0; | 
|  | } | 
|  |  | 
|  | static inline int is_scsi_rev_5(struct ctlr_info *h) | 
|  | { | 
|  | if (!h->hba_inquiry_data) | 
|  | return 0; | 
|  | if ((h->hba_inquiry_data[2] & 0x07) == 5) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int hpsa_find_target_lun(struct ctlr_info *h, | 
|  | unsigned char scsi3addr[], int bus, int *target, int *lun) | 
|  | { | 
|  | /* finds an unused bus, target, lun for a new physical device | 
|  | * assumes h->devlock is held | 
|  | */ | 
|  | int i, found = 0; | 
|  | DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES); | 
|  |  | 
|  | bitmap_zero(lun_taken, HPSA_MAX_DEVICES); | 
|  |  | 
|  | for (i = 0; i < h->ndevices; i++) { | 
|  | if (h->dev[i]->bus == bus && h->dev[i]->target != -1) | 
|  | __set_bit(h->dev[i]->target, lun_taken); | 
|  | } | 
|  |  | 
|  | i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES); | 
|  | if (i < HPSA_MAX_DEVICES) { | 
|  | /* *bus = 1; */ | 
|  | *target = i; | 
|  | *lun = 0; | 
|  | found = 1; | 
|  | } | 
|  | return !found; | 
|  | } | 
|  |  | 
|  | /* Add an entry into h->dev[] array. */ | 
|  | static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno, | 
|  | struct hpsa_scsi_dev_t *device, | 
|  | struct hpsa_scsi_dev_t *added[], int *nadded) | 
|  | { | 
|  | /* assumes h->devlock is held */ | 
|  | int n = h->ndevices; | 
|  | int i; | 
|  | unsigned char addr1[8], addr2[8]; | 
|  | struct hpsa_scsi_dev_t *sd; | 
|  |  | 
|  | if (n >= HPSA_MAX_DEVICES) { | 
|  | dev_err(&h->pdev->dev, "too many devices, some will be " | 
|  | "inaccessible.\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* physical devices do not have lun or target assigned until now. */ | 
|  | if (device->lun != -1) | 
|  | /* Logical device, lun is already assigned. */ | 
|  | goto lun_assigned; | 
|  |  | 
|  | /* If this device a non-zero lun of a multi-lun device | 
|  | * byte 4 of the 8-byte LUN addr will contain the logical | 
|  | * unit no, zero otherise. | 
|  | */ | 
|  | if (device->scsi3addr[4] == 0) { | 
|  | /* This is not a non-zero lun of a multi-lun device */ | 
|  | if (hpsa_find_target_lun(h, device->scsi3addr, | 
|  | device->bus, &device->target, &device->lun) != 0) | 
|  | return -1; | 
|  | goto lun_assigned; | 
|  | } | 
|  |  | 
|  | /* This is a non-zero lun of a multi-lun device. | 
|  | * Search through our list and find the device which | 
|  | * has the same 8 byte LUN address, excepting byte 4. | 
|  | * Assign the same bus and target for this new LUN. | 
|  | * Use the logical unit number from the firmware. | 
|  | */ | 
|  | memcpy(addr1, device->scsi3addr, 8); | 
|  | addr1[4] = 0; | 
|  | for (i = 0; i < n; i++) { | 
|  | sd = h->dev[i]; | 
|  | memcpy(addr2, sd->scsi3addr, 8); | 
|  | addr2[4] = 0; | 
|  | /* differ only in byte 4? */ | 
|  | if (memcmp(addr1, addr2, 8) == 0) { | 
|  | device->bus = sd->bus; | 
|  | device->target = sd->target; | 
|  | device->lun = device->scsi3addr[4]; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (device->lun == -1) { | 
|  | dev_warn(&h->pdev->dev, "physical device with no LUN=0," | 
|  | " suspect firmware bug or unsupported hardware " | 
|  | "configuration.\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | lun_assigned: | 
|  |  | 
|  | h->dev[n] = device; | 
|  | h->ndevices++; | 
|  | added[*nadded] = device; | 
|  | (*nadded)++; | 
|  |  | 
|  | /* initially, (before registering with scsi layer) we don't | 
|  | * know our hostno and we don't want to print anything first | 
|  | * time anyway (the scsi layer's inquiries will show that info) | 
|  | */ | 
|  | /* if (hostno != -1) */ | 
|  | dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n", | 
|  | scsi_device_type(device->devtype), hostno, | 
|  | device->bus, device->target, device->lun); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Update an entry in h->dev[] array. */ | 
|  | static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno, | 
|  | int entry, struct hpsa_scsi_dev_t *new_entry) | 
|  | { | 
|  | /* assumes h->devlock is held */ | 
|  | BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); | 
|  |  | 
|  | /* Raid level changed. */ | 
|  | h->dev[entry]->raid_level = new_entry->raid_level; | 
|  |  | 
|  | /* Raid offload parameters changed. */ | 
|  | h->dev[entry]->offload_config = new_entry->offload_config; | 
|  | h->dev[entry]->offload_enabled = new_entry->offload_enabled; | 
|  | h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle; | 
|  | h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror; | 
|  | h->dev[entry]->raid_map = new_entry->raid_map; | 
|  |  | 
|  | dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n", | 
|  | scsi_device_type(new_entry->devtype), hostno, new_entry->bus, | 
|  | new_entry->target, new_entry->lun); | 
|  | } | 
|  |  | 
|  | /* Replace an entry from h->dev[] array. */ | 
|  | static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno, | 
|  | int entry, struct hpsa_scsi_dev_t *new_entry, | 
|  | struct hpsa_scsi_dev_t *added[], int *nadded, | 
|  | struct hpsa_scsi_dev_t *removed[], int *nremoved) | 
|  | { | 
|  | /* assumes h->devlock is held */ | 
|  | BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); | 
|  | removed[*nremoved] = h->dev[entry]; | 
|  | (*nremoved)++; | 
|  |  | 
|  | /* | 
|  | * New physical devices won't have target/lun assigned yet | 
|  | * so we need to preserve the values in the slot we are replacing. | 
|  | */ | 
|  | if (new_entry->target == -1) { | 
|  | new_entry->target = h->dev[entry]->target; | 
|  | new_entry->lun = h->dev[entry]->lun; | 
|  | } | 
|  |  | 
|  | h->dev[entry] = new_entry; | 
|  | added[*nadded] = new_entry; | 
|  | (*nadded)++; | 
|  | dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n", | 
|  | scsi_device_type(new_entry->devtype), hostno, new_entry->bus, | 
|  | new_entry->target, new_entry->lun); | 
|  | } | 
|  |  | 
|  | /* Remove an entry from h->dev[] array. */ | 
|  | static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry, | 
|  | struct hpsa_scsi_dev_t *removed[], int *nremoved) | 
|  | { | 
|  | /* assumes h->devlock is held */ | 
|  | int i; | 
|  | struct hpsa_scsi_dev_t *sd; | 
|  |  | 
|  | BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES); | 
|  |  | 
|  | sd = h->dev[entry]; | 
|  | removed[*nremoved] = h->dev[entry]; | 
|  | (*nremoved)++; | 
|  |  | 
|  | for (i = entry; i < h->ndevices-1; i++) | 
|  | h->dev[i] = h->dev[i+1]; | 
|  | h->ndevices--; | 
|  | dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n", | 
|  | scsi_device_type(sd->devtype), hostno, sd->bus, sd->target, | 
|  | sd->lun); | 
|  | } | 
|  |  | 
|  | #define SCSI3ADDR_EQ(a, b) ( \ | 
|  | (a)[7] == (b)[7] && \ | 
|  | (a)[6] == (b)[6] && \ | 
|  | (a)[5] == (b)[5] && \ | 
|  | (a)[4] == (b)[4] && \ | 
|  | (a)[3] == (b)[3] && \ | 
|  | (a)[2] == (b)[2] && \ | 
|  | (a)[1] == (b)[1] && \ | 
|  | (a)[0] == (b)[0]) | 
|  |  | 
|  | static void fixup_botched_add(struct ctlr_info *h, | 
|  | struct hpsa_scsi_dev_t *added) | 
|  | { | 
|  | /* called when scsi_add_device fails in order to re-adjust | 
|  | * h->dev[] to match the mid layer's view. | 
|  | */ | 
|  | unsigned long flags; | 
|  | int i, j; | 
|  |  | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | for (i = 0; i < h->ndevices; i++) { | 
|  | if (h->dev[i] == added) { | 
|  | for (j = i; j < h->ndevices-1; j++) | 
|  | h->dev[j] = h->dev[j+1]; | 
|  | h->ndevices--; | 
|  | break; | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | kfree(added); | 
|  | } | 
|  |  | 
|  | static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1, | 
|  | struct hpsa_scsi_dev_t *dev2) | 
|  | { | 
|  | /* we compare everything except lun and target as these | 
|  | * are not yet assigned.  Compare parts likely | 
|  | * to differ first | 
|  | */ | 
|  | if (memcmp(dev1->scsi3addr, dev2->scsi3addr, | 
|  | sizeof(dev1->scsi3addr)) != 0) | 
|  | return 0; | 
|  | if (memcmp(dev1->device_id, dev2->device_id, | 
|  | sizeof(dev1->device_id)) != 0) | 
|  | return 0; | 
|  | if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0) | 
|  | return 0; | 
|  | if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0) | 
|  | return 0; | 
|  | if (dev1->devtype != dev2->devtype) | 
|  | return 0; | 
|  | if (dev1->bus != dev2->bus) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static inline int device_updated(struct hpsa_scsi_dev_t *dev1, | 
|  | struct hpsa_scsi_dev_t *dev2) | 
|  | { | 
|  | /* Device attributes that can change, but don't mean | 
|  | * that the device is a different device, nor that the OS | 
|  | * needs to be told anything about the change. | 
|  | */ | 
|  | if (dev1->raid_level != dev2->raid_level) | 
|  | return 1; | 
|  | if (dev1->offload_config != dev2->offload_config) | 
|  | return 1; | 
|  | if (dev1->offload_enabled != dev2->offload_enabled) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Find needle in haystack.  If exact match found, return DEVICE_SAME, | 
|  | * and return needle location in *index.  If scsi3addr matches, but not | 
|  | * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle | 
|  | * location in *index. | 
|  | * In the case of a minor device attribute change, such as RAID level, just | 
|  | * return DEVICE_UPDATED, along with the updated device's location in index. | 
|  | * If needle not found, return DEVICE_NOT_FOUND. | 
|  | */ | 
|  | static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle, | 
|  | struct hpsa_scsi_dev_t *haystack[], int haystack_size, | 
|  | int *index) | 
|  | { | 
|  | int i; | 
|  | #define DEVICE_NOT_FOUND 0 | 
|  | #define DEVICE_CHANGED 1 | 
|  | #define DEVICE_SAME 2 | 
|  | #define DEVICE_UPDATED 3 | 
|  | for (i = 0; i < haystack_size; i++) { | 
|  | if (haystack[i] == NULL) /* previously removed. */ | 
|  | continue; | 
|  | if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) { | 
|  | *index = i; | 
|  | if (device_is_the_same(needle, haystack[i])) { | 
|  | if (device_updated(needle, haystack[i])) | 
|  | return DEVICE_UPDATED; | 
|  | return DEVICE_SAME; | 
|  | } else { | 
|  | /* Keep offline devices offline */ | 
|  | if (needle->volume_offline) | 
|  | return DEVICE_NOT_FOUND; | 
|  | return DEVICE_CHANGED; | 
|  | } | 
|  | } | 
|  | } | 
|  | *index = -1; | 
|  | return DEVICE_NOT_FOUND; | 
|  | } | 
|  |  | 
|  | static void hpsa_monitor_offline_device(struct ctlr_info *h, | 
|  | unsigned char scsi3addr[]) | 
|  | { | 
|  | struct offline_device_entry *device; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* Check to see if device is already on the list */ | 
|  | spin_lock_irqsave(&h->offline_device_lock, flags); | 
|  | list_for_each_entry(device, &h->offline_device_list, offline_list) { | 
|  | if (memcmp(device->scsi3addr, scsi3addr, | 
|  | sizeof(device->scsi3addr)) == 0) { | 
|  | spin_unlock_irqrestore(&h->offline_device_lock, flags); | 
|  | return; | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&h->offline_device_lock, flags); | 
|  |  | 
|  | /* Device is not on the list, add it. */ | 
|  | device = kmalloc(sizeof(*device), GFP_KERNEL); | 
|  | if (!device) { | 
|  | dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__); | 
|  | return; | 
|  | } | 
|  | memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr)); | 
|  | spin_lock_irqsave(&h->offline_device_lock, flags); | 
|  | list_add_tail(&device->offline_list, &h->offline_device_list); | 
|  | spin_unlock_irqrestore(&h->offline_device_lock, flags); | 
|  | } | 
|  |  | 
|  | /* Print a message explaining various offline volume states */ | 
|  | static void hpsa_show_volume_status(struct ctlr_info *h, | 
|  | struct hpsa_scsi_dev_t *sd) | 
|  | { | 
|  | if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED) | 
|  | dev_info(&h->pdev->dev, | 
|  | "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n", | 
|  | h->scsi_host->host_no, | 
|  | sd->bus, sd->target, sd->lun); | 
|  | switch (sd->volume_offline) { | 
|  | case HPSA_LV_OK: | 
|  | break; | 
|  | case HPSA_LV_UNDERGOING_ERASE: | 
|  | dev_info(&h->pdev->dev, | 
|  | "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n", | 
|  | h->scsi_host->host_no, | 
|  | sd->bus, sd->target, sd->lun); | 
|  | break; | 
|  | case HPSA_LV_UNDERGOING_RPI: | 
|  | dev_info(&h->pdev->dev, | 
|  | "C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n", | 
|  | h->scsi_host->host_no, | 
|  | sd->bus, sd->target, sd->lun); | 
|  | break; | 
|  | case HPSA_LV_PENDING_RPI: | 
|  | dev_info(&h->pdev->dev, | 
|  | "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n", | 
|  | h->scsi_host->host_no, | 
|  | sd->bus, sd->target, sd->lun); | 
|  | break; | 
|  | case HPSA_LV_ENCRYPTED_NO_KEY: | 
|  | dev_info(&h->pdev->dev, | 
|  | "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n", | 
|  | h->scsi_host->host_no, | 
|  | sd->bus, sd->target, sd->lun); | 
|  | break; | 
|  | case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER: | 
|  | dev_info(&h->pdev->dev, | 
|  | "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n", | 
|  | h->scsi_host->host_no, | 
|  | sd->bus, sd->target, sd->lun); | 
|  | break; | 
|  | case HPSA_LV_UNDERGOING_ENCRYPTION: | 
|  | dev_info(&h->pdev->dev, | 
|  | "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n", | 
|  | h->scsi_host->host_no, | 
|  | sd->bus, sd->target, sd->lun); | 
|  | break; | 
|  | case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING: | 
|  | dev_info(&h->pdev->dev, | 
|  | "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n", | 
|  | h->scsi_host->host_no, | 
|  | sd->bus, sd->target, sd->lun); | 
|  | break; | 
|  | case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER: | 
|  | dev_info(&h->pdev->dev, | 
|  | "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n", | 
|  | h->scsi_host->host_no, | 
|  | sd->bus, sd->target, sd->lun); | 
|  | break; | 
|  | case HPSA_LV_PENDING_ENCRYPTION: | 
|  | dev_info(&h->pdev->dev, | 
|  | "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n", | 
|  | h->scsi_host->host_no, | 
|  | sd->bus, sd->target, sd->lun); | 
|  | break; | 
|  | case HPSA_LV_PENDING_ENCRYPTION_REKEYING: | 
|  | dev_info(&h->pdev->dev, | 
|  | "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n", | 
|  | h->scsi_host->host_no, | 
|  | sd->bus, sd->target, sd->lun); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno, | 
|  | struct hpsa_scsi_dev_t *sd[], int nsds) | 
|  | { | 
|  | /* sd contains scsi3 addresses and devtypes, and inquiry | 
|  | * data.  This function takes what's in sd to be the current | 
|  | * reality and updates h->dev[] to reflect that reality. | 
|  | */ | 
|  | int i, entry, device_change, changes = 0; | 
|  | struct hpsa_scsi_dev_t *csd; | 
|  | unsigned long flags; | 
|  | struct hpsa_scsi_dev_t **added, **removed; | 
|  | int nadded, nremoved; | 
|  | struct Scsi_Host *sh = NULL; | 
|  |  | 
|  | added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL); | 
|  | removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL); | 
|  |  | 
|  | if (!added || !removed) { | 
|  | dev_warn(&h->pdev->dev, "out of memory in " | 
|  | "adjust_hpsa_scsi_table\n"); | 
|  | goto free_and_out; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&h->devlock, flags); | 
|  |  | 
|  | /* find any devices in h->dev[] that are not in | 
|  | * sd[] and remove them from h->dev[], and for any | 
|  | * devices which have changed, remove the old device | 
|  | * info and add the new device info. | 
|  | * If minor device attributes change, just update | 
|  | * the existing device structure. | 
|  | */ | 
|  | i = 0; | 
|  | nremoved = 0; | 
|  | nadded = 0; | 
|  | while (i < h->ndevices) { | 
|  | csd = h->dev[i]; | 
|  | device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry); | 
|  | if (device_change == DEVICE_NOT_FOUND) { | 
|  | changes++; | 
|  | hpsa_scsi_remove_entry(h, hostno, i, | 
|  | removed, &nremoved); | 
|  | continue; /* remove ^^^, hence i not incremented */ | 
|  | } else if (device_change == DEVICE_CHANGED) { | 
|  | changes++; | 
|  | hpsa_scsi_replace_entry(h, hostno, i, sd[entry], | 
|  | added, &nadded, removed, &nremoved); | 
|  | /* Set it to NULL to prevent it from being freed | 
|  | * at the bottom of hpsa_update_scsi_devices() | 
|  | */ | 
|  | sd[entry] = NULL; | 
|  | } else if (device_change == DEVICE_UPDATED) { | 
|  | hpsa_scsi_update_entry(h, hostno, i, sd[entry]); | 
|  | } | 
|  | i++; | 
|  | } | 
|  |  | 
|  | /* Now, make sure every device listed in sd[] is also | 
|  | * listed in h->dev[], adding them if they aren't found | 
|  | */ | 
|  |  | 
|  | for (i = 0; i < nsds; i++) { | 
|  | if (!sd[i]) /* if already added above. */ | 
|  | continue; | 
|  |  | 
|  | /* Don't add devices which are NOT READY, FORMAT IN PROGRESS | 
|  | * as the SCSI mid-layer does not handle such devices well. | 
|  | * It relentlessly loops sending TUR at 3Hz, then READ(10) | 
|  | * at 160Hz, and prevents the system from coming up. | 
|  | */ | 
|  | if (sd[i]->volume_offline) { | 
|  | hpsa_show_volume_status(h, sd[i]); | 
|  | dev_info(&h->pdev->dev, "c%db%dt%dl%d: temporarily offline\n", | 
|  | h->scsi_host->host_no, | 
|  | sd[i]->bus, sd[i]->target, sd[i]->lun); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | device_change = hpsa_scsi_find_entry(sd[i], h->dev, | 
|  | h->ndevices, &entry); | 
|  | if (device_change == DEVICE_NOT_FOUND) { | 
|  | changes++; | 
|  | if (hpsa_scsi_add_entry(h, hostno, sd[i], | 
|  | added, &nadded) != 0) | 
|  | break; | 
|  | sd[i] = NULL; /* prevent from being freed later. */ | 
|  | } else if (device_change == DEVICE_CHANGED) { | 
|  | /* should never happen... */ | 
|  | changes++; | 
|  | dev_warn(&h->pdev->dev, | 
|  | "device unexpectedly changed.\n"); | 
|  | /* but if it does happen, we just ignore that device */ | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&h->devlock, flags); | 
|  |  | 
|  | /* Monitor devices which are in one of several NOT READY states to be | 
|  | * brought online later. This must be done without holding h->devlock, | 
|  | * so don't touch h->dev[] | 
|  | */ | 
|  | for (i = 0; i < nsds; i++) { | 
|  | if (!sd[i]) /* if already added above. */ | 
|  | continue; | 
|  | if (sd[i]->volume_offline) | 
|  | hpsa_monitor_offline_device(h, sd[i]->scsi3addr); | 
|  | } | 
|  |  | 
|  | /* Don't notify scsi mid layer of any changes the first time through | 
|  | * (or if there are no changes) scsi_scan_host will do it later the | 
|  | * first time through. | 
|  | */ | 
|  | if (hostno == -1 || !changes) | 
|  | goto free_and_out; | 
|  |  | 
|  | sh = h->scsi_host; | 
|  | /* Notify scsi mid layer of any removed devices */ | 
|  | for (i = 0; i < nremoved; i++) { | 
|  | struct scsi_device *sdev = | 
|  | scsi_device_lookup(sh, removed[i]->bus, | 
|  | removed[i]->target, removed[i]->lun); | 
|  | if (sdev != NULL) { | 
|  | scsi_remove_device(sdev); | 
|  | scsi_device_put(sdev); | 
|  | } else { | 
|  | /* We don't expect to get here. | 
|  | * future cmds to this device will get selection | 
|  | * timeout as if the device was gone. | 
|  | */ | 
|  | dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d " | 
|  | " for removal.", hostno, removed[i]->bus, | 
|  | removed[i]->target, removed[i]->lun); | 
|  | } | 
|  | kfree(removed[i]); | 
|  | removed[i] = NULL; | 
|  | } | 
|  |  | 
|  | /* Notify scsi mid layer of any added devices */ | 
|  | for (i = 0; i < nadded; i++) { | 
|  | if (scsi_add_device(sh, added[i]->bus, | 
|  | added[i]->target, added[i]->lun) == 0) | 
|  | continue; | 
|  | dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, " | 
|  | "device not added.\n", hostno, added[i]->bus, | 
|  | added[i]->target, added[i]->lun); | 
|  | /* now we have to remove it from h->dev, | 
|  | * since it didn't get added to scsi mid layer | 
|  | */ | 
|  | fixup_botched_add(h, added[i]); | 
|  | } | 
|  |  | 
|  | free_and_out: | 
|  | kfree(added); | 
|  | kfree(removed); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t * | 
|  | * Assume's h->devlock is held. | 
|  | */ | 
|  | static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h, | 
|  | int bus, int target, int lun) | 
|  | { | 
|  | int i; | 
|  | struct hpsa_scsi_dev_t *sd; | 
|  |  | 
|  | for (i = 0; i < h->ndevices; i++) { | 
|  | sd = h->dev[i]; | 
|  | if (sd->bus == bus && sd->target == target && sd->lun == lun) | 
|  | return sd; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* link sdev->hostdata to our per-device structure. */ | 
|  | static int hpsa_slave_alloc(struct scsi_device *sdev) | 
|  | { | 
|  | struct hpsa_scsi_dev_t *sd; | 
|  | unsigned long flags; | 
|  | struct ctlr_info *h; | 
|  |  | 
|  | h = sdev_to_hba(sdev); | 
|  | spin_lock_irqsave(&h->devlock, flags); | 
|  | sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev), | 
|  | sdev_id(sdev), sdev->lun); | 
|  | if (sd != NULL) | 
|  | sdev->hostdata = sd; | 
|  | spin_unlock_irqrestore(&h->devlock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void hpsa_slave_destroy(struct scsi_device *sdev) | 
|  | { | 
|  | /* nothing to do. */ | 
|  | } | 
|  |  | 
|  | static void hpsa_free_sg_chain_blocks(struct ctlr_info *h) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!h->cmd_sg_list) | 
|  | return; | 
|  | for (i = 0; i < h->nr_cmds; i++) { | 
|  | kfree(h->cmd_sg_list[i]); | 
|  | h->cmd_sg_list[i] = NULL; | 
|  | } | 
|  | kfree(h->cmd_sg_list); | 
|  | h->cmd_sg_list = NULL; | 
|  | } | 
|  |  | 
|  | static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (h->chainsize <= 0) | 
|  | return 0; | 
|  |  | 
|  | h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds, | 
|  | GFP_KERNEL); | 
|  | if (!h->cmd_sg_list) | 
|  | return -ENOMEM; | 
|  | for (i = 0; i < h->nr_cmds; i++) { | 
|  | h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) * | 
|  | h->chainsize, GFP_KERNEL); | 
|  | if (!h->cmd_sg_list[i]) | 
|  | goto clean; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | clean: | 
|  | hpsa_free_sg_chain_blocks(h); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static int hpsa_map_sg_chain_block(struct ctlr_info *h, | 
|  | struct CommandList *c) | 
|  | { | 
|  | struct SGDescriptor *chain_sg, *chain_block; | 
|  | u64 temp64; | 
|  | u32 chain_len; | 
|  |  | 
|  | chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; | 
|  | chain_block = h->cmd_sg_list[c->cmdindex]; | 
|  | chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN); | 
|  | chain_len = sizeof(*chain_sg) * | 
|  | (c->Header.SGTotal - h->max_cmd_sg_entries); | 
|  | chain_sg->Len = cpu_to_le32(chain_len); | 
|  | temp64 = pci_map_single(h->pdev, chain_block, chain_len, | 
|  | PCI_DMA_TODEVICE); | 
|  | if (dma_mapping_error(&h->pdev->dev, temp64)) { | 
|  | /* prevent subsequent unmapping */ | 
|  | chain_sg->Addr = cpu_to_le64(0); | 
|  | return -1; | 
|  | } | 
|  | chain_sg->Addr = cpu_to_le64(temp64); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void hpsa_unmap_sg_chain_block(struct ctlr_info *h, | 
|  | struct CommandList *c) | 
|  | { | 
|  | struct SGDescriptor *chain_sg; | 
|  |  | 
|  | if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries) | 
|  | return; | 
|  |  | 
|  | chain_sg = &c->SG[h->max_cmd_sg_entries - 1]; | 
|  | pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr), | 
|  | le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Decode the various types of errors on ioaccel2 path. | 
|  | * Return 1 for any error that should generate a RAID path retry. | 
|  | * Return 0 for errors that don't require a RAID path retry. | 
|  | */ | 
|  | static int handle_ioaccel_mode2_error(struct ctlr_info *h, | 
|  | struct CommandList *c, | 
|  | struct scsi_cmnd *cmd, | 
|  | struct io_accel2_cmd *c2) | 
|  | { | 
|  | int data_len; | 
|  | int retry = 0; | 
|  |  | 
|  | switch (c2->error_data.serv_response) { | 
|  | case IOACCEL2_SERV_RESPONSE_COMPLETE: | 
|  | switch (c2->error_data.status) { | 
|  | case IOACCEL2_STATUS_SR_TASK_COMP_GOOD: | 
|  | break; | 
|  | case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND: | 
|  | dev_warn(&h->pdev->dev, | 
|  | "%s: task complete with check condition.\n", | 
|  | "HP SSD Smart Path"); | 
|  | cmd->result |= SAM_STAT_CHECK_CONDITION; | 
|  | if (c2->error_data.data_present != | 
|  | IOACCEL2_SENSE_DATA_PRESENT) { | 
|  | memset(cmd->sense_buffer, 0, | 
|  | SCSI_SENSE_BUFFERSIZE); | 
|  | break; | 
|  | } | 
|  | /* copy the sense data */ | 
|  | data_len = c2->error_data.sense_data_len; | 
|  | if (data_len > SCSI_SENSE_BUFFERSIZE) | 
|  | data_len = SCSI_SENSE_BUFFERSIZE; | 
|  | if (data_len > sizeof(c2->error_data.sense_data_buff)) | 
|  | data_len = | 
|  | sizeof(c2->error_data.sense_data_buff); | 
|  | memcpy(cmd->sense_buffer, | 
|  | c2->error_data.sense_data_buff, data_len); | 
|  | retry = 1; | 
|  | break; | 
|  | case IOACCEL2_STATUS_SR_TASK_COMP_BUSY: | 
|  | dev_warn(&h->pdev->dev, | 
|  | "%s: task complete with BUSY status.\n", | 
|  | "HP SSD Smart Path"); | 
|  | retry = 1; | 
|  | break; | 
|  | case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON: | 
|  | dev_warn(&h->pdev->dev, | 
|  | "%s: task complete with reservation conflict.\n", | 
|  | "HP SSD Smart Path"); | 
|  | retry = 1; | 
|  | break; | 
|  | case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL: | 
|  | /* Make scsi midlayer do unlimited retries */ | 
|  | cmd->result = DID_IMM_RETRY << 16; | 
|  | break; | 
|  | case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED: | 
|  | dev_warn(&h->pdev->dev, | 
|  | "%s: task complete with aborted status.\n", | 
|  | "HP SSD Smart Path"); | 
|  | retry = 1; | 
|  | break; | 
|  | default: | 
|  | dev_warn(&h->pdev->dev, | 
|  | "%s: task complete with unrecognized status: 0x%02x\n", | 
|  | "HP SSD Smart Path", c2->error_data.status); | 
|  | retry = 1; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case IOACCEL2_SERV_RESPONSE_FAILURE: | 
|  | /* don't expect to get here. */ | 
|  | dev_warn(&h->pdev->dev, | 
|  | "unexpected delivery or target failure, status = 0x%02x\n", | 
|  | c2->error_data.status); | 
|  | retry = 1; | 
|  | break; | 
|  | case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE: | 
|  | break; | 
|  | case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS: | 
|  | break; | 
|  | case IOACCEL2_SERV_RESPONSE_TMF_REJECTED: | 
|  | dev_warn(&h->pdev->dev, "task management function rejected.\n"); | 
|  | retry = 1; | 
|  | break; | 
|  | case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN: | 
|  | dev_warn(&h->pdev->dev, "task management function invalid LUN\n"); | 
|  | break; | 
|  | default: | 
|  | dev_warn(&h->pdev->dev, | 
|  | "%s: Unrecognized server response: 0x%02x\n", | 
|  | "HP SSD Smart Path", | 
|  | c2->error_data.serv_response); | 
|  | retry = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return retry;	/* retry on raid path? */ | 
|  | } | 
|  |  | 
|  | static void process_ioaccel2_completion(struct ctlr_info *h, | 
|  | struct CommandList *c, struct scsi_cmnd *cmd, | 
|  | struct hpsa_scsi_dev_t *dev) | 
|  | { | 
|  | struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex]; | 
|  | int raid_retry = 0; | 
|  |  | 
|  | /* check for good status */ | 
|  | if (likely(c2->error_data.serv_response == 0 && | 
|  | c2->error_data.status == 0)) { | 
|  | cmd_free(h, c); | 
|  | cmd->scsi_done(cmd); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Any RAID offload error results in retry which will use | 
|  | * the normal I/O path so the controller can handle whatever's | 
|  | * wrong. | 
|  | */ | 
|  | if (is_logical_dev_addr_mode(dev->scsi3addr) && | 
|  | c2->error_data.serv_response == | 
|  | IOACCEL2_SERV_RESPONSE_FAILURE) { | 
|  | dev->offload_enabled = 0; | 
|  | h->drv_req_rescan = 1;	/* schedule controller for a rescan */ | 
|  | cmd->result = DID_SOFT_ERROR << 16; | 
|  | cmd_free(h, c); | 
|  | cmd->scsi_done(cmd); | 
|  | return; | 
|  | } | 
|  | raid_retry = handle_ioaccel_mode2_error(h, c, cmd, c2); | 
|  | /* If error found, disable Smart Path, schedule a rescan, | 
|  | * and force a retry on the standard path. | 
|  | */ | 
|  | if (raid_retry) { | 
|  | dev_warn(&h->pdev->dev, "%s: Retrying on standard path.\n", | 
|  | "HP SSD Smart Path"); | 
|  | dev->offload_enabled = 0; /* Disable Smart Path */ | 
|  | h->drv_req_rescan = 1;	  /* schedule controller rescan */ | 
|  | cmd->result = DID_SOFT_ERROR << 16; | 
|  | } | 
|  | cmd_free(h, c); | 
|  | cmd->scsi_done(cmd); | 
|  | } | 
|  |  | 
|  | static void complete_scsi_command(struct CommandList *cp) | 
|  | { | 
|  | struct scsi_cmnd *cmd; | 
|  | struct ctlr_info *h; | 
|  | struct ErrorInfo *ei; | 
|  | struct hpsa_scsi_dev_t *dev; | 
|  |  | 
|  | unsigned char sense_key; | 
|  | unsigned char asc;      /* additional sense code */ | 
|  | unsigned char ascq;     /* additional sense code qualifier */ | 
|  | unsigned long sense_data_size; | 
|  |  | 
|  | ei = cp->err_info; | 
|  | cmd = (struct scsi_cmnd *) cp->scsi_cmd; | 
|  | h = cp->h; | 
|  | dev = cmd->device->hostdata; | 
|  |  | 
|  | scsi_dma_unmap(cmd); /* undo the DMA mappings */ | 
|  | if ((cp->cmd_type == CMD_SCSI) && | 
|  | (cp->Header.SGTotal > h->max_cmd_sg_entries)) | 
|  | hpsa_unmap_sg_chain_block(h, cp); | 
|  |  | 
|  | cmd->result = (DID_OK << 16); 		/* host byte */ | 
|  | cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */ | 
|  |  | 
|  | if (cp->cmd_type == CMD_IOACCEL2) | 
|  | return process_ioaccel2_completion(h, cp, cmd, dev); | 
|  |  | 
|  | cmd->result |= ei->ScsiStatus; | 
|  |  | 
|  | scsi_set_resid(cmd, ei->ResidualCnt); | 
|  | if (ei->CommandStatus == 0) { | 
|  | cmd_free(h, cp); | 
|  | cmd->scsi_done(cmd); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* copy the sense data */ | 
|  | if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo)) | 
|  | sense_data_size = SCSI_SENSE_BUFFERSIZE; | 
|  | else | 
|  | sense_data_size = sizeof(ei->SenseInfo); | 
|  | if (ei->SenseLen < sense_data_size) | 
|  | sense_data_size = ei->SenseLen; | 
|  |  | 
|  | memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size); | 
|  |  | 
|  | /* For I/O accelerator commands, copy over some fields to the normal | 
|  | * CISS header used below for error handling. | 
|  | */ | 
|  | if (cp->cmd_type == CMD_IOACCEL1) { | 
|  | struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex]; | 
|  | cp->Header.SGList = cp->Header.SGTotal = scsi_sg_count(cmd); | 
|  | cp->Request.CDBLen = c->io_flags & IOACCEL1_IOFLAGS_CDBLEN_MASK; | 
|  | cp->Header.tag = c->tag; | 
|  | memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8); | 
|  | memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen); | 
|  |  | 
|  | /* Any RAID offload error results in retry which will use | 
|  | * the normal I/O path so the controller can handle whatever's | 
|  | * wrong. | 
|  | */ | 
|  | if (is_logical_dev_addr_mode(dev->scsi3addr)) { | 
|  | if (ei->CommandStatus == CMD_IOACCEL_DISABLED) | 
|  | dev->offload_enabled = 0; | 
|  | cmd->result = DID_SOFT_ERROR << 16; | 
|  | cmd_free(h, cp); | 
|  | cmd->scsi_done(cmd); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* an error has occurred */ | 
|  | switch (ei->CommandStatus) { | 
|  |  | 
|  | case CMD_TARGET_STATUS: | 
|  | if (ei->ScsiStatus) { | 
|  | /* Get sense key */ | 
|  | sense_key = 0xf & ei->SenseInfo[2]; | 
|  | /* Get additional sense code */ | 
|  | asc = ei->SenseInfo[12]; | 
|  | /* Get addition sense code qualifier */ | 
|  | ascq = ei->SenseInfo[13]; | 
|  | } | 
|  | if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) { | 
|  | if (sense_key == ABORTED_COMMAND) { | 
|  | cmd->result |= DID_SOFT_ERROR << 16; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | /* Problem was not a check condition | 
|  | * Pass it up to the upper layers... | 
|  | */ | 
|  | if (ei->ScsiStatus) { | 
|  | dev_warn(&h->pdev->dev, "cp %p has status 0x%x " | 
|  | "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " | 
|  | "Returning result: 0x%x\n", | 
|  | cp, ei->ScsiStatus, | 
|  | sense_key, asc, ascq, | 
|  | cmd->result); | 
|  | } else {  /* scsi status is zero??? How??? */ | 
|  | dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. " | 
|  | "Returning no connection.\n", cp), | 
|  |  | 
|  | /* Ordinarily, this case should never happen, | 
|  | * but there is a bug in some released firmware | 
|  | * revisions that allows it to happen if, for | 
|  | * example, a 4100 backplane loses power and | 
|  | * the tape drive is in it.  We assume that | 
|  | * it's a fatal error of some kind because we | 
|  | * can't show that it wasn't. We will make it | 
|  | * look like selection timeout since that is | 
|  | * the most common reason for this to occur, | 
|  | * and it's severe enough. | 
|  | */ | 
|  |  | 
|  | cmd->result = DID_NO_CONNECT << 16; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ | 
|  | break; | 
|  | case CMD_DATA_OVERRUN: | 
|  | dev_warn(&h->pdev->dev, "cp %p has" | 
|  | " completed with data overrun " | 
|  | "reported\n", cp); | 
|  | break; | 
|  | case CMD_INVALID: { | 
|  | /* print_bytes(cp, sizeof(*cp), 1, 0); | 
|  | print_cmd(cp); */ | 
|  | /* We get CMD_INVALID if you address a non-existent device | 
|  | * instead of a selection timeout (no response).  You will | 
|  | * see this if you yank out a drive, then try to access it. | 
|  | * This is kind of a shame because it means that any other | 
|  | * CMD_INVALID (e.g. driver bug) will get interpreted as a | 
|  | * missing target. */ | 
|  | cmd->result = DID_NO_CONNECT << 16; | 
|  | } | 
|  | break; | 
|  | case CMD_PROTOCOL_ERR: | 
|  | cmd->result = DID_ERROR << 16; | 
|  | dev_warn(&h->pdev->dev, "cp %p has " | 
|  | "protocol error\n", cp); | 
|  | break; | 
|  | case CMD_HARDWARE_ERR: | 
|  | cmd->result = DID_ERROR << 16; | 
|  | dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp); | 
|  | break; | 
|  | case CMD_CONNECTION_LOST: | 
|  | cmd->result = DID_ERROR << 16; | 
|  | dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp); | 
|  | break; | 
|  | case CMD_ABORTED: | 
|  | cmd->result = DID_ABORT << 16; | 
|  | dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n", | 
|  | cp, ei->ScsiStatus); | 
|  | break; | 
|  | case CMD_ABORT_FAILED: | 
|  | cmd->result = DID_ERROR << 16; | 
|  | dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp); | 
|  | break; | 
|  | case CMD_UNSOLICITED_ABORT: | 
|  | cmd->result = DID_SOFT_ERROR << 16; /* retry the command */ | 
|  | dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited " | 
|  | "abort\n", cp); | 
|  | break; | 
|  | case CMD_TIMEOUT: | 
|  | cmd->result = DID_TIME_OUT << 16; | 
|  | dev_warn(&h->pdev->dev, "cp %p timedout\n", cp); | 
|  | break; | 
|  | case CMD_UNABORTABLE: | 
|  | cmd->result = DID_ERROR << 16; | 
|  | dev_warn(&h->pdev->dev, "Command unabortable\n"); | 
|  | break; | 
|  | case CMD_IOACCEL_DISABLED: | 
|  | /* This only handles the direct pass-through case since RAID | 
|  | * offload is handled above.  Just attempt a retry. | 
|  | */ | 
|  | cmd->result = DID_SOFT_ERROR << 16; | 
|  | dev_warn(&h->pdev->dev, | 
|  | "cp %p had HP SSD Smart Path error\n", cp); | 
|  | break; | 
|  | default: | 
|  | cmd->result = DID_ERROR << 16; | 
|  | dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n", | 
|  | cp, ei->CommandStatus); | 
|  | } | 
|  | cmd_free(h, cp); | 
|  | cmd->scsi_done(cmd); | 
|  | } | 
|  |  | 
|  | static void hpsa_pci_unmap(struct pci_dev *pdev, | 
|  | struct CommandList *c, int sg_used, int data_direction) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < sg_used; i++) | 
|  | pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr), | 
|  | le32_to_cpu(c->SG[i].Len), | 
|  | data_direction); | 
|  | } | 
|  |  | 
|  | static int hpsa_map_one(struct pci_dev *pdev, | 
|  | struct CommandList *cp, | 
|  | unsigned char *buf, | 
|  | size_t buflen, | 
|  | int data_direction) | 
|  | { | 
|  | u64 addr64; | 
|  |  | 
|  | if (buflen == 0 || data_direction == PCI_DMA_NONE) { | 
|  | cp->Header.SGList = 0; | 
|  | cp->Header.SGTotal = cpu_to_le16(0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | addr64 = pci_map_single(pdev, buf, buflen, data_direction); | 
|  | if (dma_mapping_error(&pdev->dev, addr64)) { | 
|  | /* Prevent subsequent unmap of something never mapped */ | 
|  | cp->Header.SGList = 0; | 
|  | cp->Header.SGTotal = cpu_to_le16(0); | 
|  | return -1; | 
|  | } | 
|  | cp->SG[0].Addr = cpu_to_le64(addr64); | 
|  | cp->SG[0].Len = cpu_to_le32(buflen); | 
|  | cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */ | 
|  | cp->Header.SGList = 1;   /* no. SGs contig in this cmd */ | 
|  | cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h, | 
|  | struct CommandList *c) | 
|  | { | 
|  | DECLARE_COMPLETION_ONSTACK(wait); | 
|  |  | 
|  | c->waiting = &wait; | 
|  | enqueue_cmd_and_start_io(h, c); | 
|  | wait_for_completion(&wait); | 
|  | } | 
|  |  | 
|  | static u32 lockup_detected(struct ctlr_info *h) | 
|  | { | 
|  | int cpu; | 
|  | u32 rc, *lockup_detected; | 
|  |  | 
|  | cpu = get_cpu(); | 
|  | lockup_detected = per_cpu_ptr(h->lockup_detected, cpu); | 
|  | rc = *lockup_detected; | 
|  | put_cpu(); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h, | 
|  | struct CommandList *c) | 
|  | { | 
|  | /* If controller lockup detected, fake a hardware error. */ | 
|  | if (unlikely(lockup_detected(h))) | 
|  | c->err_info->CommandStatus = CMD_HARDWARE_ERR; | 
|  | else | 
|  | hpsa_scsi_do_simple_cmd_core(h, c); | 
|  | } | 
|  |  | 
|  | #define MAX_DRIVER_CMD_RETRIES 25 | 
|  | static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h, | 
|  | struct CommandList *c, int data_direction) | 
|  | { | 
|  | int backoff_time = 10, retry_count = 0; | 
|  |  | 
|  | do { | 
|  | memset(c->err_info, 0, sizeof(*c->err_info)); | 
|  | hpsa_scsi_do_simple_cmd_core(h, c); | 
|  | retry_count++; | 
|  | if (retry_count > 3) { | 
|  | msleep(backoff_time); | 
|  | if (backoff_time < 1000) | 
|  | backoff_time *= 2; | 
|  | } | 
|  | } while ((check_for_unit_attention(h, c) || | 
|  | check_for_busy(h, c)) && | 
|  | retry_count <= MAX_DRIVER_CMD_RETRIES); | 
|  | hpsa_pci_unmap(h->pdev, c, 1, data_direction); | 
|  | } | 
|  |  | 
|  | static void hpsa_print_cmd(struct ctlr_info *h, char *txt, | 
|  | struct CommandList *c) | 
|  | { | 
|  | const u8 *cdb = c->Request.CDB; | 
|  | const u8 *lun = c->Header.LUN.LunAddrBytes; | 
|  |  | 
|  | dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x" | 
|  | " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", | 
|  | txt, lun[0], lun[1], lun[2], lun[3], | 
|  | lun[4], lun[5], lun[6], lun[7], | 
|  | cdb[0], cdb[1], cdb[2], cdb[3], | 
|  | cdb[4], cdb[5], cdb[6], cdb[7], | 
|  | cdb[8], cdb[9], cdb[10], cdb[11], | 
|  | cdb[12], cdb[13], cdb[14], cdb[15]); | 
|  | } | 
|  |  | 
|  | static void hpsa_scsi_interpret_error(struct ctlr_info *h, | 
|  | struct CommandList *cp) | 
|  | { | 
|  | const struct ErrorInfo *ei = cp->err_info; | 
|  | struct device *d = &cp->h->pdev->dev; | 
|  | const u8 *sd = ei->SenseInfo; | 
|  |  | 
|  | switch (ei->CommandStatus) { | 
|  | case CMD_TARGET_STATUS: | 
|  | hpsa_print_cmd(h, "SCSI status", cp); | 
|  | if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) | 
|  | dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n", | 
|  | sd[2] & 0x0f, sd[12], sd[13]); | 
|  | else | 
|  | dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus); | 
|  | if (ei->ScsiStatus == 0) | 
|  | dev_warn(d, "SCSI status is abnormally zero.  " | 
|  | "(probably indicates selection timeout " | 
|  | "reported incorrectly due to a known " | 
|  | "firmware bug, circa July, 2001.)\n"); | 
|  | break; | 
|  | case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ | 
|  | break; | 
|  | case CMD_DATA_OVERRUN: | 
|  | hpsa_print_cmd(h, "overrun condition", cp); | 
|  | break; | 
|  | case CMD_INVALID: { | 
|  | /* controller unfortunately reports SCSI passthru's | 
|  | * to non-existent targets as invalid commands. | 
|  | */ | 
|  | hpsa_print_cmd(h, "invalid command", cp); | 
|  | dev_warn(d, "probably means device no longer present\n"); | 
|  | } | 
|  | break; | 
|  | case CMD_PROTOCOL_ERR: | 
|  | hpsa_print_cmd(h, "protocol error", cp); | 
|  | break; | 
|  | case CMD_HARDWARE_ERR: | 
|  | hpsa_print_cmd(h, "hardware error", cp); | 
|  | break; | 
|  | case CMD_CONNECTION_LOST: | 
|  | hpsa_print_cmd(h, "connection lost", cp); | 
|  | break; | 
|  | case CMD_ABORTED: | 
|  | hpsa_print_cmd(h, "aborted", cp); | 
|  | break; | 
|  | case CMD_ABORT_FAILED: | 
|  | hpsa_print_cmd(h, "abort failed", cp); | 
|  | break; | 
|  | case CMD_UNSOLICITED_ABORT: | 
|  | hpsa_print_cmd(h, "unsolicited abort", cp); | 
|  | break; | 
|  | case CMD_TIMEOUT: | 
|  | hpsa_print_cmd(h, "timed out", cp); | 
|  | break; | 
|  | case CMD_UNABORTABLE: | 
|  | hpsa_print_cmd(h, "unabortable", cp); | 
|  | break; | 
|  | default: | 
|  | hpsa_print_cmd(h, "unknown status", cp); | 
|  | dev_warn(d, "Unknown command status %x\n", | 
|  | ei->CommandStatus); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr, | 
|  | u16 page, unsigned char *buf, | 
|  | unsigned char bufsize) | 
|  | { | 
|  | int rc = IO_OK; | 
|  | struct CommandList *c; | 
|  | struct ErrorInfo *ei; | 
|  |  | 
|  | c = cmd_special_alloc(h); | 
|  |  | 
|  | if (c == NULL) {			/* trouble... */ | 
|  | dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, | 
|  | page, scsi3addr, TYPE_CMD)) { | 
|  | rc = -1; | 
|  | goto out; | 
|  | } | 
|  | hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); | 
|  | ei = c->err_info; | 
|  | if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { | 
|  | hpsa_scsi_interpret_error(h, c); | 
|  | rc = -1; | 
|  | } | 
|  | out: | 
|  | cmd_special_free(h, c); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h, | 
|  | unsigned char *scsi3addr, unsigned char page, | 
|  | struct bmic_controller_parameters *buf, size_t bufsize) | 
|  | { | 
|  | int rc = IO_OK; | 
|  | struct CommandList *c; | 
|  | struct ErrorInfo *ei; | 
|  |  | 
|  | c = cmd_special_alloc(h); | 
|  |  | 
|  | if (c == NULL) {			/* trouble... */ | 
|  | dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize, | 
|  | page, scsi3addr, TYPE_CMD)) { | 
|  | rc = -1; | 
|  | goto out; | 
|  | } | 
|  | hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); | 
|  | ei = c->err_info; | 
|  | if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { | 
|  | hpsa_scsi_interpret_error(h, c); | 
|  | rc = -1; | 
|  | } | 
|  | out: | 
|  | cmd_special_free(h, c); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr, | 
|  | u8 reset_type) | 
|  | { | 
|  | int rc = IO_OK; | 
|  | struct CommandList *c; | 
|  | struct ErrorInfo *ei; | 
|  |  | 
|  | c = cmd_special_alloc(h); | 
|  |  | 
|  | if (c == NULL) {			/* trouble... */ | 
|  | dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* fill_cmd can't fail here, no data buffer to map. */ | 
|  | (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, | 
|  | scsi3addr, TYPE_MSG); | 
|  | c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */ | 
|  | hpsa_scsi_do_simple_cmd_core(h, c); | 
|  | /* no unmap needed here because no data xfer. */ | 
|  |  | 
|  | ei = c->err_info; | 
|  | if (ei->CommandStatus != 0) { | 
|  | hpsa_scsi_interpret_error(h, c); | 
|  | rc = -1; | 
|  | } | 
|  | cmd_special_free(h, c); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void hpsa_get_raid_level(struct ctlr_info *h, | 
|  | unsigned char *scsi3addr, unsigned char *raid_level) | 
|  | { | 
|  | int rc; | 
|  | unsigned char *buf; | 
|  |  | 
|  | *raid_level = RAID_UNKNOWN; | 
|  | buf = kzalloc(64, GFP_KERNEL); | 
|  | if (!buf) | 
|  | return; | 
|  | rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64); | 
|  | if (rc == 0) | 
|  | *raid_level = buf[8]; | 
|  | if (*raid_level > RAID_UNKNOWN) | 
|  | *raid_level = RAID_UNKNOWN; | 
|  | kfree(buf); | 
|  | return; | 
|  | } | 
|  |  | 
|  | #define HPSA_MAP_DEBUG | 
|  | #ifdef HPSA_MAP_DEBUG | 
|  | static void hpsa_debug_map_buff(struct ctlr_info *h, int rc, | 
|  | struct raid_map_data *map_buff) | 
|  | { | 
|  | struct raid_map_disk_data *dd = &map_buff->data[0]; | 
|  | int map, row, col; | 
|  | u16 map_cnt, row_cnt, disks_per_row; | 
|  |  | 
|  | if (rc != 0) | 
|  | return; | 
|  |  | 
|  | /* Show details only if debugging has been activated. */ | 
|  | if (h->raid_offload_debug < 2) | 
|  | return; | 
|  |  | 
|  | dev_info(&h->pdev->dev, "structure_size = %u\n", | 
|  | le32_to_cpu(map_buff->structure_size)); | 
|  | dev_info(&h->pdev->dev, "volume_blk_size = %u\n", | 
|  | le32_to_cpu(map_buff->volume_blk_size)); | 
|  | dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n", | 
|  | le64_to_cpu(map_buff->volume_blk_cnt)); | 
|  | dev_info(&h->pdev->dev, "physicalBlockShift = %u\n", | 
|  | map_buff->phys_blk_shift); | 
|  | dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n", | 
|  | map_buff->parity_rotation_shift); | 
|  | dev_info(&h->pdev->dev, "strip_size = %u\n", | 
|  | le16_to_cpu(map_buff->strip_size)); | 
|  | dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n", | 
|  | le64_to_cpu(map_buff->disk_starting_blk)); | 
|  | dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n", | 
|  | le64_to_cpu(map_buff->disk_blk_cnt)); | 
|  | dev_info(&h->pdev->dev, "data_disks_per_row = %u\n", | 
|  | le16_to_cpu(map_buff->data_disks_per_row)); | 
|  | dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n", | 
|  | le16_to_cpu(map_buff->metadata_disks_per_row)); | 
|  | dev_info(&h->pdev->dev, "row_cnt = %u\n", | 
|  | le16_to_cpu(map_buff->row_cnt)); | 
|  | dev_info(&h->pdev->dev, "layout_map_count = %u\n", | 
|  | le16_to_cpu(map_buff->layout_map_count)); | 
|  | dev_info(&h->pdev->dev, "flags = %u\n", | 
|  | le16_to_cpu(map_buff->flags)); | 
|  | if (map_buff->flags & RAID_MAP_FLAG_ENCRYPT_ON) | 
|  | dev_info(&h->pdev->dev, "encrypytion = ON\n"); | 
|  | else | 
|  | dev_info(&h->pdev->dev, "encrypytion = OFF\n"); | 
|  | dev_info(&h->pdev->dev, "dekindex = %u\n", | 
|  | le16_to_cpu(map_buff->dekindex)); | 
|  |  | 
|  | map_cnt = le16_to_cpu(map_buff->layout_map_count); | 
|  | for (map = 0; map < map_cnt; map++) { | 
|  | dev_info(&h->pdev->dev, "Map%u:\n", map); | 
|  | row_cnt = le16_to_cpu(map_buff->row_cnt); | 
|  | for (row = 0; row < row_cnt; row++) { | 
|  | dev_info(&h->pdev->dev, "  Row%u:\n", row); | 
|  | disks_per_row = | 
|  | le16_to_cpu(map_buff->data_disks_per_row); | 
|  | for (col = 0; col < disks_per_row; col++, dd++) | 
|  | dev_info(&h->pdev->dev, | 
|  | "    D%02u: h=0x%04x xor=%u,%u\n", | 
|  | col, dd->ioaccel_handle, | 
|  | dd->xor_mult[0], dd->xor_mult[1]); | 
|  | disks_per_row = | 
|  | le16_to_cpu(map_buff->metadata_disks_per_row); | 
|  | for (col = 0; col < disks_per_row; col++, dd++) | 
|  | dev_info(&h->pdev->dev, | 
|  | "    M%02u: h=0x%04x xor=%u,%u\n", | 
|  | col, dd->ioaccel_handle, | 
|  | dd->xor_mult[0], dd->xor_mult[1]); | 
|  | } | 
|  | } | 
|  | } | 
|  | #else | 
|  | static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h, | 
|  | __attribute__((unused)) int rc, | 
|  | __attribute__((unused)) struct raid_map_data *map_buff) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int hpsa_get_raid_map(struct ctlr_info *h, | 
|  | unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device) | 
|  | { | 
|  | int rc = 0; | 
|  | struct CommandList *c; | 
|  | struct ErrorInfo *ei; | 
|  |  | 
|  | c = cmd_special_alloc(h); | 
|  | if (c == NULL) { | 
|  | dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map, | 
|  | sizeof(this_device->raid_map), 0, | 
|  | scsi3addr, TYPE_CMD)) { | 
|  | dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n"); | 
|  | cmd_special_free(h, c); | 
|  | return -ENOMEM; | 
|  | } | 
|  | hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); | 
|  | ei = c->err_info; | 
|  | if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { | 
|  | hpsa_scsi_interpret_error(h, c); | 
|  | cmd_special_free(h, c); | 
|  | return -1; | 
|  | } | 
|  | cmd_special_free(h, c); | 
|  |  | 
|  | /* @todo in the future, dynamically allocate RAID map memory */ | 
|  | if (le32_to_cpu(this_device->raid_map.structure_size) > | 
|  | sizeof(this_device->raid_map)) { | 
|  | dev_warn(&h->pdev->dev, "RAID map size is too large!\n"); | 
|  | rc = -1; | 
|  | } | 
|  | hpsa_debug_map_buff(h, rc, &this_device->raid_map); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int hpsa_vpd_page_supported(struct ctlr_info *h, | 
|  | unsigned char scsi3addr[], u8 page) | 
|  | { | 
|  | int rc; | 
|  | int i; | 
|  | int pages; | 
|  | unsigned char *buf, bufsize; | 
|  |  | 
|  | buf = kzalloc(256, GFP_KERNEL); | 
|  | if (!buf) | 
|  | return 0; | 
|  |  | 
|  | /* Get the size of the page list first */ | 
|  | rc = hpsa_scsi_do_inquiry(h, scsi3addr, | 
|  | VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES, | 
|  | buf, HPSA_VPD_HEADER_SZ); | 
|  | if (rc != 0) | 
|  | goto exit_unsupported; | 
|  | pages = buf[3]; | 
|  | if ((pages + HPSA_VPD_HEADER_SZ) <= 255) | 
|  | bufsize = pages + HPSA_VPD_HEADER_SZ; | 
|  | else | 
|  | bufsize = 255; | 
|  |  | 
|  | /* Get the whole VPD page list */ | 
|  | rc = hpsa_scsi_do_inquiry(h, scsi3addr, | 
|  | VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES, | 
|  | buf, bufsize); | 
|  | if (rc != 0) | 
|  | goto exit_unsupported; | 
|  |  | 
|  | pages = buf[3]; | 
|  | for (i = 1; i <= pages; i++) | 
|  | if (buf[3 + i] == page) | 
|  | goto exit_supported; | 
|  | exit_unsupported: | 
|  | kfree(buf); | 
|  | return 0; | 
|  | exit_supported: | 
|  | kfree(buf); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void hpsa_get_ioaccel_status(struct ctlr_info *h, | 
|  | unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device) | 
|  | { | 
|  | int rc; | 
|  | unsigned char *buf; | 
|  | u8 ioaccel_status; | 
|  |  | 
|  | this_device->offload_config = 0; | 
|  | this_device->offload_enabled = 0; | 
|  |  | 
|  | buf = kzalloc(64, GFP_KERNEL); | 
|  | if (!buf) | 
|  | return; | 
|  | if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS)) | 
|  | goto out; | 
|  | rc = hpsa_scsi_do_inquiry(h, scsi3addr, | 
|  | VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64); | 
|  | if (rc != 0) | 
|  | goto out; | 
|  |  | 
|  | #define IOACCEL_STATUS_BYTE 4 | 
|  | #define OFFLOAD_CONFIGURED_BIT 0x01 | 
|  | #define OFFLOAD_ENABLED_BIT 0x02 | 
|  | ioaccel_status = buf[IOACCEL_STATUS_BYTE]; | 
|  | this_device->offload_config = | 
|  | !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT); | 
|  | if (this_device->offload_config) { | 
|  | this_device->offload_enabled = | 
|  | !!(ioaccel_status & OFFLOAD_ENABLED_BIT); | 
|  | if (hpsa_get_raid_map(h, scsi3addr, this_device)) | 
|  | this_device->offload_enabled = 0; | 
|  | } | 
|  | out: | 
|  | kfree(buf); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Get the device id from inquiry page 0x83 */ | 
|  | static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr, | 
|  | unsigned char *device_id, int buflen) | 
|  | { | 
|  | int rc; | 
|  | unsigned char *buf; | 
|  |  | 
|  | if (buflen > 16) | 
|  | buflen = 16; | 
|  | buf = kzalloc(64, GFP_KERNEL); | 
|  | if (!buf) | 
|  | return -ENOMEM; | 
|  | rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64); | 
|  | if (rc == 0) | 
|  | memcpy(device_id, &buf[8], buflen); | 
|  | kfree(buf); | 
|  | return rc != 0; | 
|  | } | 
|  |  | 
|  | static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical, | 
|  | struct ReportLUNdata *buf, int bufsize, | 
|  | int extended_response) | 
|  | { | 
|  | int rc = IO_OK; | 
|  | struct CommandList *c; | 
|  | unsigned char scsi3addr[8]; | 
|  | struct ErrorInfo *ei; | 
|  |  | 
|  | c = cmd_special_alloc(h); | 
|  | if (c == NULL) {			/* trouble... */ | 
|  | dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); | 
|  | return -1; | 
|  | } | 
|  | /* address the controller */ | 
|  | memset(scsi3addr, 0, sizeof(scsi3addr)); | 
|  | if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h, | 
|  | buf, bufsize, 0, scsi3addr, TYPE_CMD)) { | 
|  | rc = -1; | 
|  | goto out; | 
|  | } | 
|  | if (extended_response) | 
|  | c->Request.CDB[1] = extended_response; | 
|  | hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); | 
|  | ei = c->err_info; | 
|  | if (ei->CommandStatus != 0 && | 
|  | ei->CommandStatus != CMD_DATA_UNDERRUN) { | 
|  | hpsa_scsi_interpret_error(h, c); | 
|  | rc = -1; | 
|  | } else { | 
|  | if (buf->extended_response_flag != extended_response) { | 
|  | dev_err(&h->pdev->dev, | 
|  | "report luns requested format %u, got %u\n", | 
|  | extended_response, | 
|  | buf->extended_response_flag); | 
|  | rc = -1; | 
|  | } | 
|  | } | 
|  | out: | 
|  | cmd_special_free(h, c); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, | 
|  | struct ReportLUNdata *buf, | 
|  | int bufsize, int extended_response) | 
|  | { | 
|  | return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response); | 
|  | } | 
|  |  | 
|  | static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h, | 
|  | struct ReportLUNdata *buf, int bufsize) | 
|  | { | 
|  | return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0); | 
|  | } | 
|  |  | 
|  | static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device, | 
|  | int bus, int target, int lun) | 
|  | { | 
|  | device->bus = bus; | 
|  | device->target = target; | 
|  | device->lun = lun; | 
|  | } | 
|  |  | 
|  | /* Use VPD inquiry to get details of volume status */ | 
|  | static int hpsa_get_volume_status(struct ctlr_info *h, | 
|  | unsigned char scsi3addr[]) | 
|  | { | 
|  | int rc; | 
|  | int status; | 
|  | int size; | 
|  | unsigned char *buf; | 
|  |  | 
|  | buf = kzalloc(64, GFP_KERNEL); | 
|  | if (!buf) | 
|  | return HPSA_VPD_LV_STATUS_UNSUPPORTED; | 
|  |  | 
|  | /* Does controller have VPD for logical volume status? */ | 
|  | if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS)) | 
|  | goto exit_failed; | 
|  |  | 
|  | /* Get the size of the VPD return buffer */ | 
|  | rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS, | 
|  | buf, HPSA_VPD_HEADER_SZ); | 
|  | if (rc != 0) | 
|  | goto exit_failed; | 
|  | size = buf[3]; | 
|  |  | 
|  | /* Now get the whole VPD buffer */ | 
|  | rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS, | 
|  | buf, size + HPSA_VPD_HEADER_SZ); | 
|  | if (rc != 0) | 
|  | goto exit_failed; | 
|  | status = buf[4]; /* status byte */ | 
|  |  | 
|  | kfree(buf); | 
|  | return status; | 
|  | exit_failed: | 
|  | kfree(buf); | 
|  | return HPSA_VPD_LV_STATUS_UNSUPPORTED; | 
|  | } | 
|  |  | 
|  | /* Determine offline status of a volume. | 
|  | * Return either: | 
|  | *  0 (not offline) | 
|  | *  0xff (offline for unknown reasons) | 
|  | *  # (integer code indicating one of several NOT READY states | 
|  | *     describing why a volume is to be kept offline) | 
|  | */ | 
|  | static int hpsa_volume_offline(struct ctlr_info *h, | 
|  | unsigned char scsi3addr[]) | 
|  | { | 
|  | struct CommandList *c; | 
|  | unsigned char *sense, sense_key, asc, ascq; | 
|  | int ldstat = 0; | 
|  | u16 cmd_status; | 
|  | u8 scsi_status; | 
|  | #define ASC_LUN_NOT_READY 0x04 | 
|  | #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04 | 
|  | #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02 | 
|  |  | 
|  | c = cmd_alloc(h); | 
|  | if (!c) | 
|  | return 0; | 
|  | (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD); | 
|  | hpsa_scsi_do_simple_cmd_core(h, c); | 
|  | sense = c->err_info->SenseInfo; | 
|  | sense_key = sense[2]; | 
|  | asc = sense[12]; | 
|  | ascq = sense[13]; | 
|  | cmd_status = c->err_info->CommandStatus; | 
|  | scsi_status = c->err_info->ScsiStatus; | 
|  | cmd_free(h, c); | 
|  | /* Is the volume 'not ready'? */ | 
|  | if (cmd_status != CMD_TARGET_STATUS || | 
|  | scsi_status != SAM_STAT_CHECK_CONDITION || | 
|  | sense_key != NOT_READY || | 
|  | asc != ASC_LUN_NOT_READY)  { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Determine the reason for not ready state */ | 
|  | ldstat = hpsa_get_volume_status(h, scsi3addr); | 
|  |  | 
|  | /* Keep volume offline in certain cases: */ | 
|  | switch (ldstat) { | 
|  | case HPSA_LV_UNDERGOING_ERASE: | 
|  | case HPSA_LV_UNDERGOING_RPI: | 
|  | case HPSA_LV_PENDING_RPI: | 
|  | case HPSA_LV_ENCRYPTED_NO_KEY: | 
|  | case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER: | 
|  | case HPSA_LV_UNDERGOING_ENCRYPTION: | 
|  | case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING: | 
|  | case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER: | 
|  | return ldstat; | 
|  | case HPSA_VPD_LV_STATUS_UNSUPPORTED: | 
|  | /* If VPD status page isn't available, | 
|  | * use ASC/ASCQ to determine state | 
|  | */ | 
|  | if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) || | 
|  | (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ)) | 
|  | return ldstat; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int hpsa_update_device_info(struct ctlr_info *h, | 
|  | unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device, | 
|  | unsigned char *is_OBDR_device) | 
|  | { | 
|  |  | 
|  | #define OBDR_SIG_OFFSET 43 | 
|  | #define OBDR_TAPE_SIG "$DR-10" | 
|  | #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1) | 
|  | #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN) | 
|  |  | 
|  | unsigned char *inq_buff; | 
|  | unsigned char *obdr_sig; | 
|  |  | 
|  | inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); | 
|  | if (!inq_buff) | 
|  | goto bail_out; | 
|  |  | 
|  | /* Do an inquiry to the device to see what it is. */ | 
|  | if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff, | 
|  | (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) { | 
|  | /* Inquiry failed (msg printed already) */ | 
|  | dev_err(&h->pdev->dev, | 
|  | "hpsa_update_device_info: inquiry failed\n"); | 
|  | goto bail_out; | 
|  | } | 
|  |  | 
|  | this_device->devtype = (inq_buff[0] & 0x1f); | 
|  | memcpy(this_device->scsi3addr, scsi3addr, 8); | 
|  | memcpy(this_device->vendor, &inq_buff[8], | 
|  | sizeof(this_device->vendor)); | 
|  | memcpy(this_device->model, &inq_buff[16], | 
|  | sizeof(this_device->model)); | 
|  | memset(this_device->device_id, 0, | 
|  | sizeof(this_device->device_id)); | 
|  | hpsa_get_device_id(h, scsi3addr, this_device->device_id, | 
|  | sizeof(this_device->device_id)); | 
|  |  | 
|  | if (this_device->devtype == TYPE_DISK && | 
|  | is_logical_dev_addr_mode(scsi3addr)) { | 
|  | int volume_offline; | 
|  |  | 
|  | hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level); | 
|  | if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC) | 
|  | hpsa_get_ioaccel_status(h, scsi3addr, this_device); | 
|  | volume_offline = hpsa_volume_offline(h, scsi3addr); | 
|  | if (volume_offline < 0 || volume_offline > 0xff) | 
|  | volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED; | 
|  | this_device->volume_offline = volume_offline & 0xff; | 
|  | } else { | 
|  | this_device->raid_level = RAID_UNKNOWN; | 
|  | this_device->offload_config = 0; | 
|  | this_device->offload_enabled = 0; | 
|  | this_device->volume_offline = 0; | 
|  | } | 
|  |  | 
|  | if (is_OBDR_device) { | 
|  | /* See if this is a One-Button-Disaster-Recovery device | 
|  | * by looking for "$DR-10" at offset 43 in inquiry data. | 
|  | */ | 
|  | obdr_sig = &inq_buff[OBDR_SIG_OFFSET]; | 
|  | *is_OBDR_device = (this_device->devtype == TYPE_ROM && | 
|  | strncmp(obdr_sig, OBDR_TAPE_SIG, | 
|  | OBDR_SIG_LEN) == 0); | 
|  | } | 
|  |  | 
|  | kfree(inq_buff); | 
|  | return 0; | 
|  |  | 
|  | bail_out: | 
|  | kfree(inq_buff); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static unsigned char *ext_target_model[] = { | 
|  | "MSA2012", | 
|  | "MSA2024", | 
|  | "MSA2312", | 
|  | "MSA2324", | 
|  | "P2000 G3 SAS", | 
|  | "MSA 2040 SAS", | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; ext_target_model[i]; i++) | 
|  | if (strncmp(device->model, ext_target_model[i], | 
|  | strlen(ext_target_model[i])) == 0) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Helper function to assign bus, target, lun mapping of devices. | 
|  | * Puts non-external target logical volumes on bus 0, external target logical | 
|  | * volumes on bus 1, physical devices on bus 2. and the hba on bus 3. | 
|  | * Logical drive target and lun are assigned at this time, but | 
|  | * physical device lun and target assignment are deferred (assigned | 
|  | * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.) | 
|  | */ | 
|  | static void figure_bus_target_lun(struct ctlr_info *h, | 
|  | u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device) | 
|  | { | 
|  | u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes)); | 
|  |  | 
|  | if (!is_logical_dev_addr_mode(lunaddrbytes)) { | 
|  | /* physical device, target and lun filled in later */ | 
|  | if (is_hba_lunid(lunaddrbytes)) | 
|  | hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff); | 
|  | else | 
|  | /* defer target, lun assignment for physical devices */ | 
|  | hpsa_set_bus_target_lun(device, 2, -1, -1); | 
|  | return; | 
|  | } | 
|  | /* It's a logical device */ | 
|  | if (is_ext_target(h, device)) { | 
|  | /* external target way, put logicals on bus 1 | 
|  | * and match target/lun numbers box | 
|  | * reports, other smart array, bus 0, target 0, match lunid | 
|  | */ | 
|  | hpsa_set_bus_target_lun(device, | 
|  | 1, (lunid >> 16) & 0x3fff, lunid & 0x00ff); | 
|  | return; | 
|  | } | 
|  | hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there is no lun 0 on a target, linux won't find any devices. | 
|  | * For the external targets (arrays), we have to manually detect the enclosure | 
|  | * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report | 
|  | * it for some reason.  *tmpdevice is the target we're adding, | 
|  | * this_device is a pointer into the current element of currentsd[] | 
|  | * that we're building up in update_scsi_devices(), below. | 
|  | * lunzerobits is a bitmap that tracks which targets already have a | 
|  | * lun 0 assigned. | 
|  | * Returns 1 if an enclosure was added, 0 if not. | 
|  | */ | 
|  | static int add_ext_target_dev(struct ctlr_info *h, | 
|  | struct hpsa_scsi_dev_t *tmpdevice, | 
|  | struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes, | 
|  | unsigned long lunzerobits[], int *n_ext_target_devs) | 
|  | { | 
|  | unsigned char scsi3addr[8]; | 
|  |  | 
|  | if (test_bit(tmpdevice->target, lunzerobits)) | 
|  | return 0; /* There is already a lun 0 on this target. */ | 
|  |  | 
|  | if (!is_logical_dev_addr_mode(lunaddrbytes)) | 
|  | return 0; /* It's the logical targets that may lack lun 0. */ | 
|  |  | 
|  | if (!is_ext_target(h, tmpdevice)) | 
|  | return 0; /* Only external target devices have this problem. */ | 
|  |  | 
|  | if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */ | 
|  | return 0; | 
|  |  | 
|  | memset(scsi3addr, 0, 8); | 
|  | scsi3addr[3] = tmpdevice->target; | 
|  | if (is_hba_lunid(scsi3addr)) | 
|  | return 0; /* Don't add the RAID controller here. */ | 
|  |  | 
|  | if (is_scsi_rev_5(h)) | 
|  | return 0; /* p1210m doesn't need to do this. */ | 
|  |  | 
|  | if (*n_ext_target_devs >= MAX_EXT_TARGETS) { | 
|  | dev_warn(&h->pdev->dev, "Maximum number of external " | 
|  | "target devices exceeded.  Check your hardware " | 
|  | "configuration."); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (hpsa_update_device_info(h, scsi3addr, this_device, NULL)) | 
|  | return 0; | 
|  | (*n_ext_target_devs)++; | 
|  | hpsa_set_bus_target_lun(this_device, | 
|  | tmpdevice->bus, tmpdevice->target, 0); | 
|  | set_bit(tmpdevice->target, lunzerobits); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get address of physical disk used for an ioaccel2 mode command: | 
|  | *	1. Extract ioaccel2 handle from the command. | 
|  | *	2. Find a matching ioaccel2 handle from list of physical disks. | 
|  | *	3. Return: | 
|  | *		1 and set scsi3addr to address of matching physical | 
|  | *		0 if no matching physical disk was found. | 
|  | */ | 
|  | static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h, | 
|  | struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr) | 
|  | { | 
|  | struct ReportExtendedLUNdata *physicals = NULL; | 
|  | int responsesize = 24;	/* size of physical extended response */ | 
|  | int extended = 2;	/* flag forces reporting 'other dev info'. */ | 
|  | int reportsize = sizeof(*physicals) + HPSA_MAX_PHYS_LUN * responsesize; | 
|  | u32 nphysicals = 0;	/* number of reported physical devs */ | 
|  | int found = 0;		/* found match (1) or not (0) */ | 
|  | u32 find;		/* handle we need to match */ | 
|  | int i; | 
|  | struct scsi_cmnd *scmd;	/* scsi command within request being aborted */ | 
|  | struct hpsa_scsi_dev_t *d; /* device of request being aborted */ | 
|  | struct io_accel2_cmd *c2a; /* ioaccel2 command to abort */ | 
|  | u32 it_nexus;		/* 4 byte device handle for the ioaccel2 cmd */ | 
|  | u32 scsi_nexus;		/* 4 byte device handle for the ioaccel2 cmd */ | 
|  |  | 
|  | if (ioaccel2_cmd_to_abort->cmd_type != CMD_IOACCEL2) | 
|  | return 0; /* no match */ | 
|  |  | 
|  | /* point to the ioaccel2 device handle */ | 
|  | c2a = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex]; | 
|  | if (c2a == NULL) | 
|  | return 0; /* no match */ | 
|  |  | 
|  | scmd = (struct scsi_cmnd *) ioaccel2_cmd_to_abort->scsi_cmd; | 
|  | if (scmd == NULL) | 
|  | return 0; /* no match */ | 
|  |  | 
|  | d = scmd->device->hostdata; | 
|  | if (d == NULL) | 
|  | return 0; /* no match */ | 
|  |  | 
|  | it_nexus = cpu_to_le32(d->ioaccel_handle); | 
|  | scsi_nexus = cpu_to_le32(c2a->scsi_nexus); | 
|  | find = c2a->scsi_nexus; | 
|  |  | 
|  | if (h->raid_offload_debug > 0) | 
|  | dev_info(&h->pdev->dev, | 
|  | "%s: scsi_nexus:0x%08x device id: 0x%02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n", | 
|  | __func__, scsi_nexus, | 
|  | d->device_id[0], d->device_id[1], d->device_id[2], | 
|  | d->device_id[3], d->device_id[4], d->device_id[5], | 
|  | d->device_id[6], d->device_id[7], d->device_id[8], | 
|  | d->device_id[9], d->device_id[10], d->device_id[11], | 
|  | d->device_id[12], d->device_id[13], d->device_id[14], | 
|  | d->device_id[15]); | 
|  |  | 
|  | /* Get the list of physical devices */ | 
|  | physicals = kzalloc(reportsize, GFP_KERNEL); | 
|  | if (physicals == NULL) | 
|  | return 0; | 
|  | if (hpsa_scsi_do_report_phys_luns(h, (struct ReportLUNdata *) physicals, | 
|  | reportsize, extended)) { | 
|  | dev_err(&h->pdev->dev, | 
|  | "Can't lookup %s device handle: report physical LUNs failed.\n", | 
|  | "HP SSD Smart Path"); | 
|  | kfree(physicals); | 
|  | return 0; | 
|  | } | 
|  | nphysicals = be32_to_cpu(*((__be32 *)physicals->LUNListLength)) / | 
|  | responsesize; | 
|  |  | 
|  | /* find ioaccel2 handle in list of physicals: */ | 
|  | for (i = 0; i < nphysicals; i++) { | 
|  | struct ext_report_lun_entry *entry = &physicals->LUN[i]; | 
|  |  | 
|  | /* handle is in bytes 28-31 of each lun */ | 
|  | if (entry->ioaccel_handle != find) | 
|  | continue; /* didn't match */ | 
|  | found = 1; | 
|  | memcpy(scsi3addr, entry->lunid, 8); | 
|  | if (h->raid_offload_debug > 0) | 
|  | dev_info(&h->pdev->dev, | 
|  | "%s: Searched h=0x%08x, Found h=0x%08x, scsiaddr 0x%8phN\n", | 
|  | __func__, find, | 
|  | entry->ioaccel_handle, scsi3addr); | 
|  | break; /* found it */ | 
|  | } | 
|  |  | 
|  | kfree(physicals); | 
|  | if (found) | 
|  | return 1; | 
|  | else | 
|  | return 0; | 
|  |  | 
|  | } | 
|  | /* | 
|  | * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev, | 
|  | * logdev.  The number of luns in physdev and logdev are returned in | 
|  | * *nphysicals and *nlogicals, respectively. | 
|  | * Returns 0 on success, -1 otherwise. | 
|  | */ | 
|  | static int hpsa_gather_lun_info(struct ctlr_info *h, | 
|  | int reportphyslunsize, int reportloglunsize, | 
|  | struct ReportLUNdata *physdev, u32 *nphysicals, int *physical_mode, | 
|  | struct ReportLUNdata *logdev, u32 *nlogicals) | 
|  | { | 
|  | int physical_entry_size = 8; | 
|  |  | 
|  | *physical_mode = 0; | 
|  |  | 
|  | /* For I/O accelerator mode we need to read physical device handles */ | 
|  | if (h->transMethod & CFGTBL_Trans_io_accel1 || | 
|  | h->transMethod & CFGTBL_Trans_io_accel2) { | 
|  | *physical_mode = HPSA_REPORT_PHYS_EXTENDED; | 
|  | physical_entry_size = 24; | 
|  | } | 
|  | if (hpsa_scsi_do_report_phys_luns(h, physdev, reportphyslunsize, | 
|  | *physical_mode)) { | 
|  | dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); | 
|  | return -1; | 
|  | } | 
|  | *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / | 
|  | physical_entry_size; | 
|  | if (*nphysicals > HPSA_MAX_PHYS_LUN) { | 
|  | dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded." | 
|  | "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, | 
|  | *nphysicals - HPSA_MAX_PHYS_LUN); | 
|  | *nphysicals = HPSA_MAX_PHYS_LUN; | 
|  | } | 
|  | if (hpsa_scsi_do_report_log_luns(h, logdev, reportloglunsize)) { | 
|  | dev_err(&h->pdev->dev, "report logical LUNs failed.\n"); | 
|  | return -1; | 
|  | } | 
|  | *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8; | 
|  | /* Reject Logicals in excess of our max capability. */ | 
|  | if (*nlogicals > HPSA_MAX_LUN) { | 
|  | dev_warn(&h->pdev->dev, | 
|  | "maximum logical LUNs (%d) exceeded.  " | 
|  | "%d LUNs ignored.\n", HPSA_MAX_LUN, | 
|  | *nlogicals - HPSA_MAX_LUN); | 
|  | *nlogicals = HPSA_MAX_LUN; | 
|  | } | 
|  | if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) { | 
|  | dev_warn(&h->pdev->dev, | 
|  | "maximum logical + physical LUNs (%d) exceeded. " | 
|  | "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, | 
|  | *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN); | 
|  | *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, | 
|  | int i, int nphysicals, int nlogicals, | 
|  | struct ReportExtendedLUNdata *physdev_list, | 
|  | struct ReportLUNdata *logdev_list) | 
|  | { | 
|  | /* Helper function, figure out where the LUN ID info is coming from | 
|  | * given index i, lists of physical and logical devices, where in | 
|  | * the list the raid controller is supposed to appear (first or last) | 
|  | */ | 
|  |  | 
|  | int logicals_start = nphysicals + (raid_ctlr_position == 0); | 
|  | int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0); | 
|  |  | 
|  | if (i == raid_ctlr_position) | 
|  | return RAID_CTLR_LUNID; | 
|  |  | 
|  | if (i < logicals_start) | 
|  | return &physdev_list->LUN[i - | 
|  | (raid_ctlr_position == 0)].lunid[0]; | 
|  |  | 
|  | if (i < last_device) | 
|  | return &logdev_list->LUN[i - nphysicals - | 
|  | (raid_ctlr_position == 0)][0]; | 
|  | BUG(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int hpsa_hba_mode_enabled(struct ctlr_info *h) | 
|  | { | 
|  | int rc; | 
|  | int hba_mode_enabled; | 
|  | struct bmic_controller_parameters *ctlr_params; | 
|  | ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters), | 
|  | GFP_KERNEL); | 
|  |  | 
|  | if (!ctlr_params) | 
|  | return -ENOMEM; | 
|  | rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params, | 
|  | sizeof(struct bmic_controller_parameters)); | 
|  | if (rc) { | 
|  | kfree(ctlr_params); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | hba_mode_enabled = | 
|  | ((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0); | 
|  | kfree(ctlr_params); | 
|  | return hba_mode_enabled; | 
|  | } | 
|  |  | 
|  | static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno) | 
|  | { | 
|  | /* the idea here is we could get notified | 
|  | * that some devices have changed, so we do a report | 
|  | * physical luns and report logical luns cmd, and adjust | 
|  | * our list of devices accordingly. | 
|  | * | 
|  | * The scsi3addr's of devices won't change so long as the | 
|  | * adapter is not reset.  That means we can rescan and | 
|  | * tell which devices we already know about, vs. new | 
|  | * devices, vs.  disappearing devices. | 
|  | */ | 
|  | struct ReportExtendedLUNdata *physdev_list = NULL; | 
|  | struct ReportLUNdata *logdev_list = NULL; | 
|  | u32 nphysicals = 0; | 
|  | u32 nlogicals = 0; | 
|  | int physical_mode = 0; | 
|  | u32 ndev_allocated = 0; | 
|  | struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice; | 
|  | int ncurrent = 0; | 
|  | int i, n_ext_target_devs, ndevs_to_allocate; | 
|  | int raid_ctlr_position; | 
|  | int rescan_hba_mode; | 
|  | DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS); | 
|  |  | 
|  | currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL); | 
|  | physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL); | 
|  | logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL); | 
|  | tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL); | 
|  |  | 
|  | if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) { | 
|  | dev_err(&h->pdev->dev, "out of memory\n"); | 
|  | goto out; | 
|  | } | 
|  | memset(lunzerobits, 0, sizeof(lunzerobits)); | 
|  |  | 
|  | rescan_hba_mode = hpsa_hba_mode_enabled(h); | 
|  | if (rescan_hba_mode < 0) | 
|  | goto out; | 
|  |  | 
|  | if (!h->hba_mode_enabled && rescan_hba_mode) | 
|  | dev_warn(&h->pdev->dev, "HBA mode enabled\n"); | 
|  | else if (h->hba_mode_enabled && !rescan_hba_mode) | 
|  | dev_warn(&h->pdev->dev, "HBA mode disabled\n"); | 
|  |  | 
|  | h->hba_mode_enabled = rescan_hba_mode; | 
|  |  | 
|  | if (hpsa_gather_lun_info(h, | 
|  | sizeof(*physdev_list), sizeof(*logdev_list), | 
|  | (struct ReportLUNdata *) physdev_list, &nphysicals, | 
|  | &physical_mode, logdev_list, &nlogicals)) | 
|  | goto out; | 
|  |  | 
|  | /* We might see up to the maximum number of logical and physical disks | 
|  | * plus external target devices, and a device for the local RAID | 
|  | * controller. | 
|  | */ | 
|  | ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1; | 
|  |  | 
|  | /* Allocate the per device structures */ | 
|  | for (i = 0; i < ndevs_to_allocate; i++) { | 
|  | if (i >= HPSA_MAX_DEVICES) { | 
|  | dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded." | 
|  | "  %d devices ignored.\n", HPSA_MAX_DEVICES, | 
|  | ndevs_to_allocate - HPSA_MAX_DEVICES); | 
|  | break; | 
|  | } | 
|  |  | 
|  | currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL); | 
|  | if (!currentsd[i]) { | 
|  | dev_warn(&h->pdev->dev, "out of memory at %s:%d\n", | 
|  | __FILE__, __LINE__); | 
|  | goto out; | 
|  | } | 
|  | ndev_allocated++; | 
|  | } | 
|  |  | 
|  | if (is_scsi_rev_5(h)) | 
|  | raid_ctlr_position = 0; | 
|  | else | 
|  | raid_ctlr_position = nphysicals + nlogicals; | 
|  |  | 
|  | /* adjust our table of devices */ | 
|  | n_ext_target_devs = 0; | 
|  | for (i = 0; i < nphysicals + nlogicals + 1; i++) { | 
|  | u8 *lunaddrbytes, is_OBDR = 0; | 
|  |  | 
|  | /* Figure out where the LUN ID info is coming from */ | 
|  | lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position, | 
|  | i, nphysicals, nlogicals, physdev_list, logdev_list); | 
|  | /* skip masked physical devices. */ | 
|  | if (lunaddrbytes[3] & 0xC0 && | 
|  | i < nphysicals + (raid_ctlr_position == 0)) | 
|  | continue; | 
|  |  | 
|  | /* Get device type, vendor, model, device id */ | 
|  | if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice, | 
|  | &is_OBDR)) | 
|  | continue; /* skip it if we can't talk to it. */ | 
|  | figure_bus_target_lun(h, lunaddrbytes, tmpdevice); | 
|  | this_device = currentsd[ncurrent]; | 
|  |  | 
|  | /* | 
|  | * For external target devices, we have to insert a LUN 0 which | 
|  | * doesn't show up in CCISS_REPORT_PHYSICAL data, but there | 
|  | * is nonetheless an enclosure device there.  We have to | 
|  | * present that otherwise linux won't find anything if | 
|  | * there is no lun 0. | 
|  | */ | 
|  | if (add_ext_target_dev(h, tmpdevice, this_device, | 
|  | lunaddrbytes, lunzerobits, | 
|  | &n_ext_target_devs)) { | 
|  | ncurrent++; | 
|  | this_device = currentsd[ncurrent]; | 
|  | } | 
|  |  | 
|  | *this_device = *tmpdevice; | 
|  |  | 
|  | switch (this_device->devtype) { | 
|  | case TYPE_ROM: | 
|  | /* We don't *really* support actual CD-ROM devices, | 
|  | * just "One Button Disaster Recovery" tape drive | 
|  | * which temporarily pretends to be a CD-ROM drive. | 
|  | * So we check that the device is really an OBDR tape | 
|  | * device by checking for "$DR-10" in bytes 43-48 of | 
|  | * the inquiry data. | 
|  | */ | 
|  | if (is_OBDR) | 
|  | ncurrent++; | 
|  | break; | 
|  | case TYPE_DISK: | 
|  | if (h->hba_mode_enabled) { | 
|  | /* never use raid mapper in HBA mode */ | 
|  | this_device->offload_enabled = 0; | 
|  | ncurrent++; | 
|  | break; | 
|  | } else if (h->acciopath_status) { | 
|  | if (i >= nphysicals) { | 
|  | ncurrent++; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | if (i < nphysicals) | 
|  | break; | 
|  | ncurrent++; | 
|  | break; | 
|  | } | 
|  | if (physical_mode == HPSA_REPORT_PHYS_EXTENDED) { | 
|  | memcpy(&this_device->ioaccel_handle, | 
|  | &lunaddrbytes[20], | 
|  | sizeof(this_device->ioaccel_handle)); | 
|  | ncurrent++; | 
|  | } | 
|  | break; | 
|  | case TYPE_TAPE: | 
|  | case TYPE_MEDIUM_CHANGER: | 
|  | ncurrent++; | 
|  | break; | 
|  | case TYPE_RAID: | 
|  | /* Only present the Smartarray HBA as a RAID controller. | 
|  | * If it's a RAID controller other than the HBA itself | 
|  | * (an external RAID controller, MSA500 or similar) | 
|  | * don't present it. | 
|  | */ | 
|  | if (!is_hba_lunid(lunaddrbytes)) | 
|  | break; | 
|  | ncurrent++; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | if (ncurrent >= HPSA_MAX_DEVICES) | 
|  | break; | 
|  | } | 
|  | adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent); | 
|  | out: | 
|  | kfree(tmpdevice); | 
|  | for (i = 0; i < ndev_allocated; i++) | 
|  | kfree(currentsd[i]); | 
|  | kfree(currentsd); | 
|  | kfree(physdev_list); | 
|  | kfree(logdev_list); | 
|  | } | 
|  |  | 
|  | /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci | 
|  | * dma mapping  and fills in the scatter gather entries of the | 
|  | * hpsa command, cp. | 
|  | */ | 
|  | static int hpsa_scatter_gather(struct ctlr_info *h, | 
|  | struct CommandList *cp, | 
|  | struct scsi_cmnd *cmd) | 
|  | { | 
|  | unsigned int len; | 
|  | struct scatterlist *sg; | 
|  | u64 addr64; | 
|  | int use_sg, i, sg_index, chained; | 
|  | struct SGDescriptor *curr_sg; | 
|  |  | 
|  | BUG_ON(scsi_sg_count(cmd) > h->maxsgentries); | 
|  |  | 
|  | use_sg = scsi_dma_map(cmd); | 
|  | if (use_sg < 0) | 
|  | return use_sg; | 
|  |  | 
|  | if (!use_sg) | 
|  | goto sglist_finished; | 
|  |  | 
|  | curr_sg = cp->SG; | 
|  | chained = 0; | 
|  | sg_index = 0; | 
|  | scsi_for_each_sg(cmd, sg, use_sg, i) { | 
|  | if (i == h->max_cmd_sg_entries - 1 && | 
|  | use_sg > h->max_cmd_sg_entries) { | 
|  | chained = 1; | 
|  | curr_sg = h->cmd_sg_list[cp->cmdindex]; | 
|  | sg_index = 0; | 
|  | } | 
|  | addr64 = (u64) sg_dma_address(sg); | 
|  | len  = sg_dma_len(sg); | 
|  | curr_sg->Addr = cpu_to_le64(addr64); | 
|  | curr_sg->Len = cpu_to_le32(len); | 
|  | curr_sg->Ext = cpu_to_le32(0); | 
|  | curr_sg++; | 
|  | } | 
|  | (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST); | 
|  |  | 
|  | if (use_sg + chained > h->maxSG) | 
|  | h->maxSG = use_sg + chained; | 
|  |  | 
|  | if (chained) { | 
|  | cp->Header.SGList = h->max_cmd_sg_entries; | 
|  | cp->Header.SGTotal = cpu_to_le16(use_sg + 1); | 
|  | if (hpsa_map_sg_chain_block(h, cp)) { | 
|  | scsi_dma_unmap(cmd); | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | sglist_finished: | 
|  |  | 
|  | cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */ | 
|  | cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in this cmd list */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define IO_ACCEL_INELIGIBLE (1) | 
|  | static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len) | 
|  | { | 
|  | int is_write = 0; | 
|  | u32 block; | 
|  | u32 block_cnt; | 
|  |  | 
|  | /* Perform some CDB fixups if needed using 10 byte reads/writes only */ | 
|  | switch (cdb[0]) { | 
|  | case WRITE_6: | 
|  | case WRITE_12: | 
|  | is_write = 1; | 
|  | case READ_6: | 
|  | case READ_12: | 
|  | if (*cdb_len == 6) { | 
|  | block = (((u32) cdb[2]) << 8) | cdb[3]; | 
|  | block_cnt = cdb[4]; | 
|  | } else { | 
|  | BUG_ON(*cdb_len != 12); | 
|  | block = (((u32) cdb[2]) << 24) | | 
|  | (((u32) cdb[3]) << 16) | | 
|  | (((u32) cdb[4]) << 8) | | 
|  | cdb[5]; | 
|  | block_cnt = | 
|  | (((u32) cdb[6]) << 24) | | 
|  | (((u32) cdb[7]) << 16) | | 
|  | (((u32) cdb[8]) << 8) | | 
|  | cdb[9]; | 
|  | } | 
|  | if (block_cnt > 0xffff) | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  |  | 
|  | cdb[0] = is_write ? WRITE_10 : READ_10; | 
|  | cdb[1] = 0; | 
|  | cdb[2] = (u8) (block >> 24); | 
|  | cdb[3] = (u8) (block >> 16); | 
|  | cdb[4] = (u8) (block >> 8); | 
|  | cdb[5] = (u8) (block); | 
|  | cdb[6] = 0; | 
|  | cdb[7] = (u8) (block_cnt >> 8); | 
|  | cdb[8] = (u8) (block_cnt); | 
|  | cdb[9] = 0; | 
|  | *cdb_len = 10; | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h, | 
|  | struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, | 
|  | u8 *scsi3addr) | 
|  | { | 
|  | struct scsi_cmnd *cmd = c->scsi_cmd; | 
|  | struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex]; | 
|  | unsigned int len; | 
|  | unsigned int total_len = 0; | 
|  | struct scatterlist *sg; | 
|  | u64 addr64; | 
|  | int use_sg, i; | 
|  | struct SGDescriptor *curr_sg; | 
|  | u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE; | 
|  |  | 
|  | /* TODO: implement chaining support */ | 
|  | if (scsi_sg_count(cmd) > h->ioaccel_maxsg) | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  |  | 
|  | BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX); | 
|  |  | 
|  | if (fixup_ioaccel_cdb(cdb, &cdb_len)) | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  |  | 
|  | c->cmd_type = CMD_IOACCEL1; | 
|  |  | 
|  | /* Adjust the DMA address to point to the accelerated command buffer */ | 
|  | c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle + | 
|  | (c->cmdindex * sizeof(*cp)); | 
|  | BUG_ON(c->busaddr & 0x0000007F); | 
|  |  | 
|  | use_sg = scsi_dma_map(cmd); | 
|  | if (use_sg < 0) | 
|  | return use_sg; | 
|  |  | 
|  | if (use_sg) { | 
|  | curr_sg = cp->SG; | 
|  | scsi_for_each_sg(cmd, sg, use_sg, i) { | 
|  | addr64 = (u64) sg_dma_address(sg); | 
|  | len  = sg_dma_len(sg); | 
|  | total_len += len; | 
|  | curr_sg->Addr = cpu_to_le64(addr64); | 
|  | curr_sg->Len = cpu_to_le32(len); | 
|  | curr_sg->Ext = cpu_to_le32(0); | 
|  | curr_sg++; | 
|  | } | 
|  | (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST); | 
|  |  | 
|  | switch (cmd->sc_data_direction) { | 
|  | case DMA_TO_DEVICE: | 
|  | control |= IOACCEL1_CONTROL_DATA_OUT; | 
|  | break; | 
|  | case DMA_FROM_DEVICE: | 
|  | control |= IOACCEL1_CONTROL_DATA_IN; | 
|  | break; | 
|  | case DMA_NONE: | 
|  | control |= IOACCEL1_CONTROL_NODATAXFER; | 
|  | break; | 
|  | default: | 
|  | dev_err(&h->pdev->dev, "unknown data direction: %d\n", | 
|  | cmd->sc_data_direction); | 
|  | BUG(); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | control |= IOACCEL1_CONTROL_NODATAXFER; | 
|  | } | 
|  |  | 
|  | c->Header.SGList = use_sg; | 
|  | /* Fill out the command structure to submit */ | 
|  | cp->dev_handle = ioaccel_handle & 0xFFFF; | 
|  | cp->transfer_len = total_len; | 
|  | cp->io_flags = IOACCEL1_IOFLAGS_IO_REQ | | 
|  | (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK); | 
|  | cp->control = control; | 
|  | memcpy(cp->CDB, cdb, cdb_len); | 
|  | memcpy(cp->CISS_LUN, scsi3addr, 8); | 
|  | /* Tag was already set at init time. */ | 
|  | enqueue_cmd_and_start_io(h, c); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Queue a command directly to a device behind the controller using the | 
|  | * I/O accelerator path. | 
|  | */ | 
|  | static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h, | 
|  | struct CommandList *c) | 
|  | { | 
|  | struct scsi_cmnd *cmd = c->scsi_cmd; | 
|  | struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; | 
|  |  | 
|  | return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle, | 
|  | cmd->cmnd, cmd->cmd_len, dev->scsi3addr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set encryption parameters for the ioaccel2 request | 
|  | */ | 
|  | static void set_encrypt_ioaccel2(struct ctlr_info *h, | 
|  | struct CommandList *c, struct io_accel2_cmd *cp) | 
|  | { | 
|  | struct scsi_cmnd *cmd = c->scsi_cmd; | 
|  | struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; | 
|  | struct raid_map_data *map = &dev->raid_map; | 
|  | u64 first_block; | 
|  |  | 
|  | BUG_ON(!(dev->offload_config && dev->offload_enabled)); | 
|  |  | 
|  | /* Are we doing encryption on this device */ | 
|  | if (!(map->flags & RAID_MAP_FLAG_ENCRYPT_ON)) | 
|  | return; | 
|  | /* Set the data encryption key index. */ | 
|  | cp->dekindex = map->dekindex; | 
|  |  | 
|  | /* Set the encryption enable flag, encoded into direction field. */ | 
|  | cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK; | 
|  |  | 
|  | /* Set encryption tweak values based on logical block address | 
|  | * If block size is 512, tweak value is LBA. | 
|  | * For other block sizes, tweak is (LBA * block size)/ 512) | 
|  | */ | 
|  | switch (cmd->cmnd[0]) { | 
|  | /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */ | 
|  | case WRITE_6: | 
|  | case READ_6: | 
|  | if (map->volume_blk_size == 512) { | 
|  | cp->tweak_lower = | 
|  | (((u32) cmd->cmnd[2]) << 8) | | 
|  | cmd->cmnd[3]; | 
|  | cp->tweak_upper = 0; | 
|  | } else { | 
|  | first_block = | 
|  | (((u64) cmd->cmnd[2]) << 8) | | 
|  | cmd->cmnd[3]; | 
|  | first_block = (first_block * map->volume_blk_size)/512; | 
|  | cp->tweak_lower = (u32)first_block; | 
|  | cp->tweak_upper = (u32)(first_block >> 32); | 
|  | } | 
|  | break; | 
|  | case WRITE_10: | 
|  | case READ_10: | 
|  | if (map->volume_blk_size == 512) { | 
|  | cp->tweak_lower = | 
|  | (((u32) cmd->cmnd[2]) << 24) | | 
|  | (((u32) cmd->cmnd[3]) << 16) | | 
|  | (((u32) cmd->cmnd[4]) << 8) | | 
|  | cmd->cmnd[5]; | 
|  | cp->tweak_upper = 0; | 
|  | } else { | 
|  | first_block = | 
|  | (((u64) cmd->cmnd[2]) << 24) | | 
|  | (((u64) cmd->cmnd[3]) << 16) | | 
|  | (((u64) cmd->cmnd[4]) << 8) | | 
|  | cmd->cmnd[5]; | 
|  | first_block = (first_block * map->volume_blk_size)/512; | 
|  | cp->tweak_lower = (u32)first_block; | 
|  | cp->tweak_upper = (u32)(first_block >> 32); | 
|  | } | 
|  | break; | 
|  | /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */ | 
|  | case WRITE_12: | 
|  | case READ_12: | 
|  | if (map->volume_blk_size == 512) { | 
|  | cp->tweak_lower = | 
|  | (((u32) cmd->cmnd[2]) << 24) | | 
|  | (((u32) cmd->cmnd[3]) << 16) | | 
|  | (((u32) cmd->cmnd[4]) << 8) | | 
|  | cmd->cmnd[5]; | 
|  | cp->tweak_upper = 0; | 
|  | } else { | 
|  | first_block = | 
|  | (((u64) cmd->cmnd[2]) << 24) | | 
|  | (((u64) cmd->cmnd[3]) << 16) | | 
|  | (((u64) cmd->cmnd[4]) << 8) | | 
|  | cmd->cmnd[5]; | 
|  | first_block = (first_block * map->volume_blk_size)/512; | 
|  | cp->tweak_lower = (u32)first_block; | 
|  | cp->tweak_upper = (u32)(first_block >> 32); | 
|  | } | 
|  | break; | 
|  | case WRITE_16: | 
|  | case READ_16: | 
|  | if (map->volume_blk_size == 512) { | 
|  | cp->tweak_lower = | 
|  | (((u32) cmd->cmnd[6]) << 24) | | 
|  | (((u32) cmd->cmnd[7]) << 16) | | 
|  | (((u32) cmd->cmnd[8]) << 8) | | 
|  | cmd->cmnd[9]; | 
|  | cp->tweak_upper = | 
|  | (((u32) cmd->cmnd[2]) << 24) | | 
|  | (((u32) cmd->cmnd[3]) << 16) | | 
|  | (((u32) cmd->cmnd[4]) << 8) | | 
|  | cmd->cmnd[5]; | 
|  | } else { | 
|  | first_block = | 
|  | (((u64) cmd->cmnd[2]) << 56) | | 
|  | (((u64) cmd->cmnd[3]) << 48) | | 
|  | (((u64) cmd->cmnd[4]) << 40) | | 
|  | (((u64) cmd->cmnd[5]) << 32) | | 
|  | (((u64) cmd->cmnd[6]) << 24) | | 
|  | (((u64) cmd->cmnd[7]) << 16) | | 
|  | (((u64) cmd->cmnd[8]) << 8) | | 
|  | cmd->cmnd[9]; | 
|  | first_block = (first_block * map->volume_blk_size)/512; | 
|  | cp->tweak_lower = (u32)first_block; | 
|  | cp->tweak_upper = (u32)(first_block >> 32); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | dev_err(&h->pdev->dev, | 
|  | "ERROR: %s: IOACCEL request CDB size not supported for encryption\n", | 
|  | __func__); | 
|  | BUG(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h, | 
|  | struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, | 
|  | u8 *scsi3addr) | 
|  | { | 
|  | struct scsi_cmnd *cmd = c->scsi_cmd; | 
|  | struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex]; | 
|  | struct ioaccel2_sg_element *curr_sg; | 
|  | int use_sg, i; | 
|  | struct scatterlist *sg; | 
|  | u64 addr64; | 
|  | u32 len; | 
|  | u32 total_len = 0; | 
|  |  | 
|  | if (scsi_sg_count(cmd) > h->ioaccel_maxsg) | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  |  | 
|  | if (fixup_ioaccel_cdb(cdb, &cdb_len)) | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  | c->cmd_type = CMD_IOACCEL2; | 
|  | /* Adjust the DMA address to point to the accelerated command buffer */ | 
|  | c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle + | 
|  | (c->cmdindex * sizeof(*cp)); | 
|  | BUG_ON(c->busaddr & 0x0000007F); | 
|  |  | 
|  | memset(cp, 0, sizeof(*cp)); | 
|  | cp->IU_type = IOACCEL2_IU_TYPE; | 
|  |  | 
|  | use_sg = scsi_dma_map(cmd); | 
|  | if (use_sg < 0) | 
|  | return use_sg; | 
|  |  | 
|  | if (use_sg) { | 
|  | BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES); | 
|  | curr_sg = cp->sg; | 
|  | scsi_for_each_sg(cmd, sg, use_sg, i) { | 
|  | addr64 = (u64) sg_dma_address(sg); | 
|  | len  = sg_dma_len(sg); | 
|  | total_len += len; | 
|  | curr_sg->address = cpu_to_le64(addr64); | 
|  | curr_sg->length = cpu_to_le32(len); | 
|  | curr_sg->reserved[0] = 0; | 
|  | curr_sg->reserved[1] = 0; | 
|  | curr_sg->reserved[2] = 0; | 
|  | curr_sg->chain_indicator = 0; | 
|  | curr_sg++; | 
|  | } | 
|  |  | 
|  | switch (cmd->sc_data_direction) { | 
|  | case DMA_TO_DEVICE: | 
|  | cp->direction &= ~IOACCEL2_DIRECTION_MASK; | 
|  | cp->direction |= IOACCEL2_DIR_DATA_OUT; | 
|  | break; | 
|  | case DMA_FROM_DEVICE: | 
|  | cp->direction &= ~IOACCEL2_DIRECTION_MASK; | 
|  | cp->direction |= IOACCEL2_DIR_DATA_IN; | 
|  | break; | 
|  | case DMA_NONE: | 
|  | cp->direction &= ~IOACCEL2_DIRECTION_MASK; | 
|  | cp->direction |= IOACCEL2_DIR_NO_DATA; | 
|  | break; | 
|  | default: | 
|  | dev_err(&h->pdev->dev, "unknown data direction: %d\n", | 
|  | cmd->sc_data_direction); | 
|  | BUG(); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | cp->direction &= ~IOACCEL2_DIRECTION_MASK; | 
|  | cp->direction |= IOACCEL2_DIR_NO_DATA; | 
|  | } | 
|  |  | 
|  | /* Set encryption parameters, if necessary */ | 
|  | set_encrypt_ioaccel2(h, c, cp); | 
|  |  | 
|  | cp->scsi_nexus = ioaccel_handle; | 
|  | cp->Tag = (c->cmdindex << DIRECT_LOOKUP_SHIFT) | | 
|  | DIRECT_LOOKUP_BIT; | 
|  | memcpy(cp->cdb, cdb, sizeof(cp->cdb)); | 
|  |  | 
|  | /* fill in sg elements */ | 
|  | cp->sg_count = (u8) use_sg; | 
|  |  | 
|  | cp->data_len = cpu_to_le32(total_len); | 
|  | cp->err_ptr = cpu_to_le64(c->busaddr + | 
|  | offsetof(struct io_accel2_cmd, error_data)); | 
|  | cp->err_len = cpu_to_le32(sizeof(cp->error_data)); | 
|  |  | 
|  | enqueue_cmd_and_start_io(h, c); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Queue a command to the correct I/O accelerator path. | 
|  | */ | 
|  | static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h, | 
|  | struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len, | 
|  | u8 *scsi3addr) | 
|  | { | 
|  | if (h->transMethod & CFGTBL_Trans_io_accel1) | 
|  | return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle, | 
|  | cdb, cdb_len, scsi3addr); | 
|  | else | 
|  | return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle, | 
|  | cdb, cdb_len, scsi3addr); | 
|  | } | 
|  |  | 
|  | static void raid_map_helper(struct raid_map_data *map, | 
|  | int offload_to_mirror, u32 *map_index, u32 *current_group) | 
|  | { | 
|  | if (offload_to_mirror == 0)  { | 
|  | /* use physical disk in the first mirrored group. */ | 
|  | *map_index %= map->data_disks_per_row; | 
|  | return; | 
|  | } | 
|  | do { | 
|  | /* determine mirror group that *map_index indicates */ | 
|  | *current_group = *map_index / map->data_disks_per_row; | 
|  | if (offload_to_mirror == *current_group) | 
|  | continue; | 
|  | if (*current_group < (map->layout_map_count - 1)) { | 
|  | /* select map index from next group */ | 
|  | *map_index += map->data_disks_per_row; | 
|  | (*current_group)++; | 
|  | } else { | 
|  | /* select map index from first group */ | 
|  | *map_index %= map->data_disks_per_row; | 
|  | *current_group = 0; | 
|  | } | 
|  | } while (offload_to_mirror != *current_group); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attempt to perform offload RAID mapping for a logical volume I/O. | 
|  | */ | 
|  | static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h, | 
|  | struct CommandList *c) | 
|  | { | 
|  | struct scsi_cmnd *cmd = c->scsi_cmd; | 
|  | struct hpsa_scsi_dev_t *dev = cmd->device->hostdata; | 
|  | struct raid_map_data *map = &dev->raid_map; | 
|  | struct raid_map_disk_data *dd = &map->data[0]; | 
|  | int is_write = 0; | 
|  | u32 map_index; | 
|  | u64 first_block, last_block; | 
|  | u32 block_cnt; | 
|  | u32 blocks_per_row; | 
|  | u64 first_row, last_row; | 
|  | u32 first_row_offset, last_row_offset; | 
|  | u32 first_column, last_column; | 
|  | u64 r0_first_row, r0_last_row; | 
|  | u32 r5or6_blocks_per_row; | 
|  | u64 r5or6_first_row, r5or6_last_row; | 
|  | u32 r5or6_first_row_offset, r5or6_last_row_offset; | 
|  | u32 r5or6_first_column, r5or6_last_column; | 
|  | u32 total_disks_per_row; | 
|  | u32 stripesize; | 
|  | u32 first_group, last_group, current_group; | 
|  | u32 map_row; | 
|  | u32 disk_handle; | 
|  | u64 disk_block; | 
|  | u32 disk_block_cnt; | 
|  | u8 cdb[16]; | 
|  | u8 cdb_len; | 
|  | #if BITS_PER_LONG == 32 | 
|  | u64 tmpdiv; | 
|  | #endif | 
|  | int offload_to_mirror; | 
|  |  | 
|  | BUG_ON(!(dev->offload_config && dev->offload_enabled)); | 
|  |  | 
|  | /* check for valid opcode, get LBA and block count */ | 
|  | switch (cmd->cmnd[0]) { | 
|  | case WRITE_6: | 
|  | is_write = 1; | 
|  | case READ_6: | 
|  | first_block = | 
|  | (((u64) cmd->cmnd[2]) << 8) | | 
|  | cmd->cmnd[3]; | 
|  | block_cnt = cmd->cmnd[4]; | 
|  | if (block_cnt == 0) | 
|  | block_cnt = 256; | 
|  | break; | 
|  | case WRITE_10: | 
|  | is_write = 1; | 
|  | case READ_10: | 
|  | first_block = | 
|  | (((u64) cmd->cmnd[2]) << 24) | | 
|  | (((u64) cmd->cmnd[3]) << 16) | | 
|  | (((u64) cmd->cmnd[4]) << 8) | | 
|  | cmd->cmnd[5]; | 
|  | block_cnt = | 
|  | (((u32) cmd->cmnd[7]) << 8) | | 
|  | cmd->cmnd[8]; | 
|  | break; | 
|  | case WRITE_12: | 
|  | is_write = 1; | 
|  | case READ_12: | 
|  | first_block = | 
|  | (((u64) cmd->cmnd[2]) << 24) | | 
|  | (((u64) cmd->cmnd[3]) << 16) | | 
|  | (((u64) cmd->cmnd[4]) << 8) | | 
|  | cmd->cmnd[5]; | 
|  | block_cnt = | 
|  | (((u32) cmd->cmnd[6]) << 24) | | 
|  | (((u32) cmd->cmnd[7]) << 16) | | 
|  | (((u32) cmd->cmnd[8]) << 8) | | 
|  | cmd->cmnd[9]; | 
|  | break; | 
|  | case WRITE_16: | 
|  | is_write = 1; | 
|  | case READ_16: | 
|  | first_block = | 
|  | (((u64) cmd->cmnd[2]) << 56) | | 
|  | (((u64) cmd->cmnd[3]) << 48) | | 
|  | (((u64) cmd->cmnd[4]) << 40) | | 
|  | (((u64) cmd->cmnd[5]) << 32) | | 
|  | (((u64) cmd->cmnd[6]) << 24) | | 
|  | (((u64) cmd->cmnd[7]) << 16) | | 
|  | (((u64) cmd->cmnd[8]) << 8) | | 
|  | cmd->cmnd[9]; | 
|  | block_cnt = | 
|  | (((u32) cmd->cmnd[10]) << 24) | | 
|  | (((u32) cmd->cmnd[11]) << 16) | | 
|  | (((u32) cmd->cmnd[12]) << 8) | | 
|  | cmd->cmnd[13]; | 
|  | break; | 
|  | default: | 
|  | return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */ | 
|  | } | 
|  | last_block = first_block + block_cnt - 1; | 
|  |  | 
|  | /* check for write to non-RAID-0 */ | 
|  | if (is_write && dev->raid_level != 0) | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  |  | 
|  | /* check for invalid block or wraparound */ | 
|  | if (last_block >= map->volume_blk_cnt || last_block < first_block) | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  |  | 
|  | /* calculate stripe information for the request */ | 
|  | blocks_per_row = map->data_disks_per_row * map->strip_size; | 
|  | #if BITS_PER_LONG == 32 | 
|  | tmpdiv = first_block; | 
|  | (void) do_div(tmpdiv, blocks_per_row); | 
|  | first_row = tmpdiv; | 
|  | tmpdiv = last_block; | 
|  | (void) do_div(tmpdiv, blocks_per_row); | 
|  | last_row = tmpdiv; | 
|  | first_row_offset = (u32) (first_block - (first_row * blocks_per_row)); | 
|  | last_row_offset = (u32) (last_block - (last_row * blocks_per_row)); | 
|  | tmpdiv = first_row_offset; | 
|  | (void) do_div(tmpdiv,  map->strip_size); | 
|  | first_column = tmpdiv; | 
|  | tmpdiv = last_row_offset; | 
|  | (void) do_div(tmpdiv, map->strip_size); | 
|  | last_column = tmpdiv; | 
|  | #else | 
|  | first_row = first_block / blocks_per_row; | 
|  | last_row = last_block / blocks_per_row; | 
|  | first_row_offset = (u32) (first_block - (first_row * blocks_per_row)); | 
|  | last_row_offset = (u32) (last_block - (last_row * blocks_per_row)); | 
|  | first_column = first_row_offset / map->strip_size; | 
|  | last_column = last_row_offset / map->strip_size; | 
|  | #endif | 
|  |  | 
|  | /* if this isn't a single row/column then give to the controller */ | 
|  | if ((first_row != last_row) || (first_column != last_column)) | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  |  | 
|  | /* proceeding with driver mapping */ | 
|  | total_disks_per_row = map->data_disks_per_row + | 
|  | map->metadata_disks_per_row; | 
|  | map_row = ((u32)(first_row >> map->parity_rotation_shift)) % | 
|  | map->row_cnt; | 
|  | map_index = (map_row * total_disks_per_row) + first_column; | 
|  |  | 
|  | switch (dev->raid_level) { | 
|  | case HPSA_RAID_0: | 
|  | break; /* nothing special to do */ | 
|  | case HPSA_RAID_1: | 
|  | /* Handles load balance across RAID 1 members. | 
|  | * (2-drive R1 and R10 with even # of drives.) | 
|  | * Appropriate for SSDs, not optimal for HDDs | 
|  | */ | 
|  | BUG_ON(map->layout_map_count != 2); | 
|  | if (dev->offload_to_mirror) | 
|  | map_index += map->data_disks_per_row; | 
|  | dev->offload_to_mirror = !dev->offload_to_mirror; | 
|  | break; | 
|  | case HPSA_RAID_ADM: | 
|  | /* Handles N-way mirrors  (R1-ADM) | 
|  | * and R10 with # of drives divisible by 3.) | 
|  | */ | 
|  | BUG_ON(map->layout_map_count != 3); | 
|  |  | 
|  | offload_to_mirror = dev->offload_to_mirror; | 
|  | raid_map_helper(map, offload_to_mirror, | 
|  | &map_index, ¤t_group); | 
|  | /* set mirror group to use next time */ | 
|  | offload_to_mirror = | 
|  | (offload_to_mirror >= map->layout_map_count - 1) | 
|  | ? 0 : offload_to_mirror + 1; | 
|  | dev->offload_to_mirror = offload_to_mirror; | 
|  | /* Avoid direct use of dev->offload_to_mirror within this | 
|  | * function since multiple threads might simultaneously | 
|  | * increment it beyond the range of dev->layout_map_count -1. | 
|  | */ | 
|  | break; | 
|  | case HPSA_RAID_5: | 
|  | case HPSA_RAID_6: | 
|  | if (map->layout_map_count <= 1) | 
|  | break; | 
|  |  | 
|  | /* Verify first and last block are in same RAID group */ | 
|  | r5or6_blocks_per_row = | 
|  | map->strip_size * map->data_disks_per_row; | 
|  | BUG_ON(r5or6_blocks_per_row == 0); | 
|  | stripesize = r5or6_blocks_per_row * map->layout_map_count; | 
|  | #if BITS_PER_LONG == 32 | 
|  | tmpdiv = first_block; | 
|  | first_group = do_div(tmpdiv, stripesize); | 
|  | tmpdiv = first_group; | 
|  | (void) do_div(tmpdiv, r5or6_blocks_per_row); | 
|  | first_group = tmpdiv; | 
|  | tmpdiv = last_block; | 
|  | last_group = do_div(tmpdiv, stripesize); | 
|  | tmpdiv = last_group; | 
|  | (void) do_div(tmpdiv, r5or6_blocks_per_row); | 
|  | last_group = tmpdiv; | 
|  | #else | 
|  | first_group = (first_block % stripesize) / r5or6_blocks_per_row; | 
|  | last_group = (last_block % stripesize) / r5or6_blocks_per_row; | 
|  | #endif | 
|  | if (first_group != last_group) | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  |  | 
|  | /* Verify request is in a single row of RAID 5/6 */ | 
|  | #if BITS_PER_LONG == 32 | 
|  | tmpdiv = first_block; | 
|  | (void) do_div(tmpdiv, stripesize); | 
|  | first_row = r5or6_first_row = r0_first_row = tmpdiv; | 
|  | tmpdiv = last_block; | 
|  | (void) do_div(tmpdiv, stripesize); | 
|  | r5or6_last_row = r0_last_row = tmpdiv; | 
|  | #else | 
|  | first_row = r5or6_first_row = r0_first_row = | 
|  | first_block / stripesize; | 
|  | r5or6_last_row = r0_last_row = last_block / stripesize; | 
|  | #endif | 
|  | if (r5or6_first_row != r5or6_last_row) | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  |  | 
|  |  | 
|  | /* Verify request is in a single column */ | 
|  | #if BITS_PER_LONG == 32 | 
|  | tmpdiv = first_block; | 
|  | first_row_offset = do_div(tmpdiv, stripesize); | 
|  | tmpdiv = first_row_offset; | 
|  | first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row); | 
|  | r5or6_first_row_offset = first_row_offset; | 
|  | tmpdiv = last_block; | 
|  | r5or6_last_row_offset = do_div(tmpdiv, stripesize); | 
|  | tmpdiv = r5or6_last_row_offset; | 
|  | r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row); | 
|  | tmpdiv = r5or6_first_row_offset; | 
|  | (void) do_div(tmpdiv, map->strip_size); | 
|  | first_column = r5or6_first_column = tmpdiv; | 
|  | tmpdiv = r5or6_last_row_offset; | 
|  | (void) do_div(tmpdiv, map->strip_size); | 
|  | r5or6_last_column = tmpdiv; | 
|  | #else | 
|  | first_row_offset = r5or6_first_row_offset = | 
|  | (u32)((first_block % stripesize) % | 
|  | r5or6_blocks_per_row); | 
|  |  | 
|  | r5or6_last_row_offset = | 
|  | (u32)((last_block % stripesize) % | 
|  | r5or6_blocks_per_row); | 
|  |  | 
|  | first_column = r5or6_first_column = | 
|  | r5or6_first_row_offset / map->strip_size; | 
|  | r5or6_last_column = | 
|  | r5or6_last_row_offset / map->strip_size; | 
|  | #endif | 
|  | if (r5or6_first_column != r5or6_last_column) | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  |  | 
|  | /* Request is eligible */ | 
|  | map_row = ((u32)(first_row >> map->parity_rotation_shift)) % | 
|  | map->row_cnt; | 
|  |  | 
|  | map_index = (first_group * | 
|  | (map->row_cnt * total_disks_per_row)) + | 
|  | (map_row * total_disks_per_row) + first_column; | 
|  | break; | 
|  | default: | 
|  | return IO_ACCEL_INELIGIBLE; | 
|  | } | 
|  |  | 
|  | disk_handle = dd[map_index].ioaccel_handle; | 
|  | disk_block = map->disk_starting_blk + (first_row * map->strip_size) + | 
|  | (first_row_offset - (first_column * map->strip_size)); | 
|  | disk_block_cnt = block_cnt; | 
|  |  | 
|  | /* handle differing logical/physical block sizes */ | 
|  | if (map->phys_blk_shift) { | 
|  | disk_block <<= map->phys_blk_shift; | 
|  | disk_block_cnt <<= map->phys_blk_shift; | 
|  | } | 
|  | BUG_ON(disk_block_cnt > 0xffff); | 
|  |  | 
|  | /* build the new CDB for the physical disk I/O */ | 
|  | if (disk_block > 0xffffffff) { | 
|  | cdb[0] = is_write ? WRITE_16 : READ_16; | 
|  | cdb[1] = 0; | 
|  | cdb[2] = (u8) (disk_block >> 56); | 
|  | cdb[3] = (u8) (disk_block >> 48); | 
|  | cdb[4] = (u8) (disk_block >> 40); | 
|  | cdb[5] = (u8) (disk_block >> 32); | 
|  | cdb[6] = (u8) (disk_block >> 24); | 
|  | cdb[7] = (u8) (disk_block >> 16); | 
|  | cdb[8] = (u8) (disk_block >> 8); | 
|  | cdb[9] = (u8) (disk_block); | 
|  | cdb[10] = (u8) (disk_block_cnt >> 24); | 
|  | cdb[11] = (u8) (disk_block_cnt >> 16); | 
|  | cdb[12] = (u8) (disk_block_cnt >> 8); | 
|  | cdb[13] = (u8) (disk_block_cnt); | 
|  | cdb[14] = 0; | 
|  | cdb[15] = 0; | 
|  | cdb_len = 16; | 
|  | } else { | 
|  | cdb[0] = is_write ? WRITE_10 : READ_10; | 
|  | cdb[1] = 0; | 
|  | cdb[2] = (u8) (disk_block >> 24); | 
|  | cdb[3] = (u8) (disk_block >> 16); | 
|  | cdb[4] = (u8) (disk_block >> 8); | 
|  | cdb[5] = (u8) (disk_block); | 
|  | cdb[6] = 0; | 
|  | cdb[7] = (u8) (disk_block_cnt >> 8); | 
|  | cdb[8] = (u8) (disk_block_cnt); | 
|  | cdb[9] = 0; | 
|  | cdb_len = 10; | 
|  | } | 
|  | return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len, | 
|  | dev->scsi3addr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Running in struct Scsi_Host->host_lock less mode using LLD internal | 
|  | * struct ctlr_info *h->lock w/ spin_lock_irqsave() protection. | 
|  | */ | 
|  | static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd) | 
|  | { | 
|  | struct ctlr_info *h; | 
|  | struct hpsa_scsi_dev_t *dev; | 
|  | unsigned char scsi3addr[8]; | 
|  | struct CommandList *c; | 
|  | int rc = 0; | 
|  |  | 
|  | /* Get the ptr to our adapter structure out of cmd->host. */ | 
|  | h = sdev_to_hba(cmd->device); | 
|  | dev = cmd->device->hostdata; | 
|  | if (!dev) { | 
|  | cmd->result = DID_NO_CONNECT << 16; | 
|  | cmd->scsi_done(cmd); | 
|  | return 0; | 
|  | } | 
|  | memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr)); | 
|  |  | 
|  | if (unlikely(lockup_detected(h))) { | 
|  | cmd->result = DID_ERROR << 16; | 
|  | cmd->scsi_done(cmd); | 
|  | return 0; | 
|  | } | 
|  | c = cmd_alloc(h); | 
|  | if (c == NULL) {			/* trouble... */ | 
|  | dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n"); | 
|  | return SCSI_MLQUEUE_HOST_BUSY; | 
|  | } | 
|  |  | 
|  | /* Fill in the command list header */ | 
|  | /* save c in case we have to abort it  */ | 
|  | cmd->host_scribble = (unsigned char *) c; | 
|  |  | 
|  | c->cmd_type = CMD_SCSI; | 
|  | c->scsi_cmd = cmd; | 
|  |  | 
|  | /* Call alternate submit routine for I/O accelerated commands. | 
|  | * Retries always go down the normal I/O path. | 
|  | */ | 
|  | if (likely(cmd->retries == 0 && | 
|  | cmd->request->cmd_type == REQ_TYPE_FS && | 
|  | h->acciopath_status)) { | 
|  | if (dev->offload_enabled) { | 
|  | rc = hpsa_scsi_ioaccel_raid_map(h, c); | 
|  | if (rc == 0) | 
|  | return 0; /* Sent on ioaccel path */ | 
|  | if (rc < 0) {   /* scsi_dma_map failed. */ | 
|  | cmd_free(h, c); | 
|  | return SCSI_MLQUEUE_HOST_BUSY; | 
|  | } | 
|  | } else if (dev->ioaccel_handle) { | 
|  | rc = hpsa_scsi_ioaccel_direct_map(h, c); | 
|  | if (rc == 0) | 
|  | return 0; /* Sent on direct map path */ | 
|  | if (rc < 0) {   /* scsi_dma_map failed. */ | 
|  | cmd_free(h, c); | 
|  | return SCSI_MLQUEUE_HOST_BUSY; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | c->Header.ReplyQueue = 0;  /* unused in simple mode */ | 
|  | memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8); | 
|  | c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT) | | 
|  | DIRECT_LOOKUP_BIT); | 
|  |  | 
|  | /* Fill in the request block... */ | 
|  |  | 
|  | c->Request.Timeout = 0; | 
|  | memset(c->Request.CDB, 0, sizeof(c->Request.CDB)); | 
|  | BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB)); | 
|  | c->Request.CDBLen = cmd->cmd_len; | 
|  | memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len); | 
|  | switch (cmd->sc_data_direction) { | 
|  | case DMA_TO_DEVICE: | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE); | 
|  | break; | 
|  | case DMA_FROM_DEVICE: | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ); | 
|  | break; | 
|  | case DMA_NONE: | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE); | 
|  | break; | 
|  | case DMA_BIDIRECTIONAL: | 
|  | /* This can happen if a buggy application does a scsi passthru | 
|  | * and sets both inlen and outlen to non-zero. ( see | 
|  | * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() ) | 
|  | */ | 
|  |  | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD); | 
|  | /* This is technically wrong, and hpsa controllers should | 
|  | * reject it with CMD_INVALID, which is the most correct | 
|  | * response, but non-fibre backends appear to let it | 
|  | * slide by, and give the same results as if this field | 
|  | * were set correctly.  Either way is acceptable for | 
|  | * our purposes here. | 
|  | */ | 
|  |  | 
|  | break; | 
|  |  | 
|  | default: | 
|  | dev_err(&h->pdev->dev, "unknown data direction: %d\n", | 
|  | cmd->sc_data_direction); | 
|  | BUG(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */ | 
|  | cmd_free(h, c); | 
|  | return SCSI_MLQUEUE_HOST_BUSY; | 
|  | } | 
|  | enqueue_cmd_and_start_io(h, c); | 
|  | /* the cmd'll come back via intr handler in complete_scsi_command()  */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int do_not_scan_if_controller_locked_up(struct ctlr_info *h) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * Don't let rescans be initiated on a controller known | 
|  | * to be locked up.  If the controller locks up *during* | 
|  | * a rescan, that thread is probably hosed, but at least | 
|  | * we can prevent new rescan threads from piling up on a | 
|  | * locked up controller. | 
|  | */ | 
|  | if (unlikely(lockup_detected(h))) { | 
|  | spin_lock_irqsave(&h->scan_lock, flags); | 
|  | h->scan_finished = 1; | 
|  | wake_up_all(&h->scan_wait_queue); | 
|  | spin_unlock_irqrestore(&h->scan_lock, flags); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void hpsa_scan_start(struct Scsi_Host *sh) | 
|  | { | 
|  | struct ctlr_info *h = shost_to_hba(sh); | 
|  | unsigned long flags; | 
|  |  | 
|  | if (do_not_scan_if_controller_locked_up(h)) | 
|  | return; | 
|  |  | 
|  | /* wait until any scan already in progress is finished. */ | 
|  | while (1) { | 
|  | spin_lock_irqsave(&h->scan_lock, flags); | 
|  | if (h->scan_finished) | 
|  | break; | 
|  | spin_unlock_irqrestore(&h->scan_lock, flags); | 
|  | wait_event(h->scan_wait_queue, h->scan_finished); | 
|  | /* Note: We don't need to worry about a race between this | 
|  | * thread and driver unload because the midlayer will | 
|  | * have incremented the reference count, so unload won't | 
|  | * happen if we're in here. | 
|  | */ | 
|  | } | 
|  | h->scan_finished = 0; /* mark scan as in progress */ | 
|  | spin_unlock_irqrestore(&h->scan_lock, flags); | 
|  |  | 
|  | if (do_not_scan_if_controller_locked_up(h)) | 
|  | return; | 
|  |  | 
|  | hpsa_update_scsi_devices(h, h->scsi_host->host_no); | 
|  |  | 
|  | spin_lock_irqsave(&h->scan_lock, flags); | 
|  | h->scan_finished = 1; /* mark scan as finished. */ | 
|  | wake_up_all(&h->scan_wait_queue); | 
|  | spin_unlock_irqrestore(&h->scan_lock, flags); | 
|  | } | 
|  |  | 
|  | static int hpsa_scan_finished(struct Scsi_Host *sh, | 
|  | unsigned long elapsed_time) | 
|  | { | 
|  | struct ctlr_info *h = shost_to_hba(sh); | 
|  | unsigned long flags; | 
|  | int finished; | 
|  |  | 
|  | spin_lock_irqsave(&h->scan_lock, flags); | 
|  | finished = h->scan_finished; | 
|  | spin_unlock_irqrestore(&h->scan_lock, flags); | 
|  | return finished; | 
|  | } | 
|  |  | 
|  | static void hpsa_unregister_scsi(struct ctlr_info *h) | 
|  | { | 
|  | /* we are being forcibly unloaded, and may not refuse. */ | 
|  | scsi_remove_host(h->scsi_host); | 
|  | scsi_host_put(h->scsi_host); | 
|  | h->scsi_host = NULL; | 
|  | } | 
|  |  | 
|  | static int hpsa_register_scsi(struct ctlr_info *h) | 
|  | { | 
|  | struct Scsi_Host *sh; | 
|  | int error; | 
|  |  | 
|  | sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h)); | 
|  | if (sh == NULL) | 
|  | goto fail; | 
|  |  | 
|  | sh->io_port = 0; | 
|  | sh->n_io_port = 0; | 
|  | sh->this_id = -1; | 
|  | sh->max_channel = 3; | 
|  | sh->max_cmd_len = MAX_COMMAND_SIZE; | 
|  | sh->max_lun = HPSA_MAX_LUN; | 
|  | sh->max_id = HPSA_MAX_LUN; | 
|  | sh->can_queue = h->nr_cmds; | 
|  | if (h->hba_mode_enabled) | 
|  | sh->cmd_per_lun = 7; | 
|  | else | 
|  | sh->cmd_per_lun = h->nr_cmds; | 
|  | sh->sg_tablesize = h->maxsgentries; | 
|  | h->scsi_host = sh; | 
|  | sh->hostdata[0] = (unsigned long) h; | 
|  | sh->irq = h->intr[h->intr_mode]; | 
|  | sh->unique_id = sh->irq; | 
|  | error = scsi_add_host(sh, &h->pdev->dev); | 
|  | if (error) | 
|  | goto fail_host_put; | 
|  | scsi_scan_host(sh); | 
|  | return 0; | 
|  |  | 
|  | fail_host_put: | 
|  | dev_err(&h->pdev->dev, "%s: scsi_add_host" | 
|  | " failed for controller %d\n", __func__, h->ctlr); | 
|  | scsi_host_put(sh); | 
|  | return error; | 
|  | fail: | 
|  | dev_err(&h->pdev->dev, "%s: scsi_host_alloc" | 
|  | " failed for controller %d\n", __func__, h->ctlr); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static int wait_for_device_to_become_ready(struct ctlr_info *h, | 
|  | unsigned char lunaddr[]) | 
|  | { | 
|  | int rc; | 
|  | int count = 0; | 
|  | int waittime = 1; /* seconds */ | 
|  | struct CommandList *c; | 
|  |  | 
|  | c = cmd_special_alloc(h); | 
|  | if (!c) { | 
|  | dev_warn(&h->pdev->dev, "out of memory in " | 
|  | "wait_for_device_to_become_ready.\n"); | 
|  | return IO_ERROR; | 
|  | } | 
|  |  | 
|  | /* Send test unit ready until device ready, or give up. */ | 
|  | while (count < HPSA_TUR_RETRY_LIMIT) { | 
|  |  | 
|  | /* Wait for a bit.  do this first, because if we send | 
|  | * the TUR right away, the reset will just abort it. | 
|  | */ | 
|  | msleep(1000 * waittime); | 
|  | count++; | 
|  | rc = 0; /* Device ready. */ | 
|  |  | 
|  | /* Increase wait time with each try, up to a point. */ | 
|  | if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS) | 
|  | waittime = waittime * 2; | 
|  |  | 
|  | /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */ | 
|  | (void) fill_cmd(c, TEST_UNIT_READY, h, | 
|  | NULL, 0, 0, lunaddr, TYPE_CMD); | 
|  | hpsa_scsi_do_simple_cmd_core(h, c); | 
|  | /* no unmap needed here because no data xfer. */ | 
|  |  | 
|  | if (c->err_info->CommandStatus == CMD_SUCCESS) | 
|  | break; | 
|  |  | 
|  | if (c->err_info->CommandStatus == CMD_TARGET_STATUS && | 
|  | c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION && | 
|  | (c->err_info->SenseInfo[2] == NO_SENSE || | 
|  | c->err_info->SenseInfo[2] == UNIT_ATTENTION)) | 
|  | break; | 
|  |  | 
|  | dev_warn(&h->pdev->dev, "waiting %d secs " | 
|  | "for device to become ready.\n", waittime); | 
|  | rc = 1; /* device not ready. */ | 
|  | } | 
|  |  | 
|  | if (rc) | 
|  | dev_warn(&h->pdev->dev, "giving up on device.\n"); | 
|  | else | 
|  | dev_warn(&h->pdev->dev, "device is ready.\n"); | 
|  |  | 
|  | cmd_special_free(h, c); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Need at least one of these error handlers to keep ../scsi/hosts.c from | 
|  | * complaining.  Doing a host- or bus-reset can't do anything good here. | 
|  | */ | 
|  | static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd) | 
|  | { | 
|  | int rc; | 
|  | struct ctlr_info *h; | 
|  | struct hpsa_scsi_dev_t *dev; | 
|  |  | 
|  | /* find the controller to which the command to be aborted was sent */ | 
|  | h = sdev_to_hba(scsicmd->device); | 
|  | if (h == NULL) /* paranoia */ | 
|  | return FAILED; | 
|  | dev = scsicmd->device->hostdata; | 
|  | if (!dev) { | 
|  | dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: " | 
|  | "device lookup failed.\n"); | 
|  | return FAILED; | 
|  | } | 
|  | dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n", | 
|  | h->scsi_host->host_no, dev->bus, dev->target, dev->lun); | 
|  | /* send a reset to the SCSI LUN which the command was sent to */ | 
|  | rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN); | 
|  | if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0) | 
|  | return SUCCESS; | 
|  |  | 
|  | dev_warn(&h->pdev->dev, "resetting device failed.\n"); | 
|  | return FAILED; | 
|  | } | 
|  |  | 
|  | static void swizzle_abort_tag(u8 *tag) | 
|  | { | 
|  | u8 original_tag[8]; | 
|  |  | 
|  | memcpy(original_tag, tag, 8); | 
|  | tag[0] = original_tag[3]; | 
|  | tag[1] = original_tag[2]; | 
|  | tag[2] = original_tag[1]; | 
|  | tag[3] = original_tag[0]; | 
|  | tag[4] = original_tag[7]; | 
|  | tag[5] = original_tag[6]; | 
|  | tag[6] = original_tag[5]; | 
|  | tag[7] = original_tag[4]; | 
|  | } | 
|  |  | 
|  | static void hpsa_get_tag(struct ctlr_info *h, | 
|  | struct CommandList *c, u32 *taglower, u32 *tagupper) | 
|  | { | 
|  | if (c->cmd_type == CMD_IOACCEL1) { | 
|  | struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *) | 
|  | &h->ioaccel_cmd_pool[c->cmdindex]; | 
|  | *tagupper = (u32) (cm1->tag >> 32); | 
|  | *taglower = (u32) (cm1->tag & 0x0ffffffffULL); | 
|  | return; | 
|  | } | 
|  | if (c->cmd_type == CMD_IOACCEL2) { | 
|  | struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *) | 
|  | &h->ioaccel2_cmd_pool[c->cmdindex]; | 
|  | /* upper tag not used in ioaccel2 mode */ | 
|  | memset(tagupper, 0, sizeof(*tagupper)); | 
|  | *taglower = cm2->Tag; | 
|  | return; | 
|  | } | 
|  | *tagupper = (u32) (c->Header.tag >> 32); | 
|  | *taglower = (u32) (c->Header.tag & 0x0ffffffffULL); | 
|  | } | 
|  |  | 
|  | static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr, | 
|  | struct CommandList *abort, int swizzle) | 
|  | { | 
|  | int rc = IO_OK; | 
|  | struct CommandList *c; | 
|  | struct ErrorInfo *ei; | 
|  | u32 tagupper, taglower; | 
|  |  | 
|  | c = cmd_special_alloc(h); | 
|  | if (c == NULL) {	/* trouble... */ | 
|  | dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* fill_cmd can't fail here, no buffer to map */ | 
|  | (void) fill_cmd(c, HPSA_ABORT_MSG, h, abort, | 
|  | 0, 0, scsi3addr, TYPE_MSG); | 
|  | if (swizzle) | 
|  | swizzle_abort_tag(&c->Request.CDB[4]); | 
|  | hpsa_scsi_do_simple_cmd_core(h, c); | 
|  | hpsa_get_tag(h, abort, &taglower, &tagupper); | 
|  | dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n", | 
|  | __func__, tagupper, taglower); | 
|  | /* no unmap needed here because no data xfer. */ | 
|  |  | 
|  | ei = c->err_info; | 
|  | switch (ei->CommandStatus) { | 
|  | case CMD_SUCCESS: | 
|  | break; | 
|  | case CMD_UNABORTABLE: /* Very common, don't make noise. */ | 
|  | rc = -1; | 
|  | break; | 
|  | default: | 
|  | dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n", | 
|  | __func__, tagupper, taglower); | 
|  | hpsa_scsi_interpret_error(h, c); | 
|  | rc = -1; | 
|  | break; | 
|  | } | 
|  | cmd_special_free(h, c); | 
|  | dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", | 
|  | __func__, tagupper, taglower); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hpsa_find_cmd_in_queue | 
|  | * | 
|  | * Used to determine whether a command (find) is still present | 
|  | * in queue_head.   Optionally excludes the last element of queue_head. | 
|  | * | 
|  | * This is used to avoid unnecessary aborts.  Commands in h->reqQ have | 
|  | * not yet been submitted, and so can be aborted by the driver without | 
|  | * sending an abort to the hardware. | 
|  | * | 
|  | * Returns pointer to command if found in queue, NULL otherwise. | 
|  | */ | 
|  | static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h, | 
|  | struct scsi_cmnd *find, struct list_head *queue_head) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct CommandList *c = NULL;	/* ptr into cmpQ */ | 
|  |  | 
|  | if (!find) | 
|  | return NULL; | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | list_for_each_entry(c, queue_head, list) { | 
|  | if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */ | 
|  | continue; | 
|  | if (c->scsi_cmd == find) { | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | return c; | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h, | 
|  | u8 *tag, struct list_head *queue_head) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct CommandList *c; | 
|  |  | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | list_for_each_entry(c, queue_head, list) { | 
|  | if (memcmp(&c->Header.tag, tag, 8) != 0) | 
|  | continue; | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | return c; | 
|  | } | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* ioaccel2 path firmware cannot handle abort task requests. | 
|  | * Change abort requests to physical target reset, and send to the | 
|  | * address of the physical disk used for the ioaccel 2 command. | 
|  | * Return 0 on success (IO_OK) | 
|  | *	 -1 on failure | 
|  | */ | 
|  |  | 
|  | static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h, | 
|  | unsigned char *scsi3addr, struct CommandList *abort) | 
|  | { | 
|  | int rc = IO_OK; | 
|  | struct scsi_cmnd *scmd; /* scsi command within request being aborted */ | 
|  | struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */ | 
|  | unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */ | 
|  | unsigned char *psa = &phys_scsi3addr[0]; | 
|  |  | 
|  | /* Get a pointer to the hpsa logical device. */ | 
|  | scmd = (struct scsi_cmnd *) abort->scsi_cmd; | 
|  | dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata); | 
|  | if (dev == NULL) { | 
|  | dev_warn(&h->pdev->dev, | 
|  | "Cannot abort: no device pointer for command.\n"); | 
|  | return -1; /* not abortable */ | 
|  | } | 
|  |  | 
|  | if (h->raid_offload_debug > 0) | 
|  | dev_info(&h->pdev->dev, | 
|  | "Reset as abort: Abort requested on C%d:B%d:T%d:L%d scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", | 
|  | h->scsi_host->host_no, dev->bus, dev->target, dev->lun, | 
|  | scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3], | 
|  | scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]); | 
|  |  | 
|  | if (!dev->offload_enabled) { | 
|  | dev_warn(&h->pdev->dev, | 
|  | "Can't abort: device is not operating in HP SSD Smart Path mode.\n"); | 
|  | return -1; /* not abortable */ | 
|  | } | 
|  |  | 
|  | /* Incoming scsi3addr is logical addr. We need physical disk addr. */ | 
|  | if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) { | 
|  | dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n"); | 
|  | return -1; /* not abortable */ | 
|  | } | 
|  |  | 
|  | /* send the reset */ | 
|  | if (h->raid_offload_debug > 0) | 
|  | dev_info(&h->pdev->dev, | 
|  | "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", | 
|  | psa[0], psa[1], psa[2], psa[3], | 
|  | psa[4], psa[5], psa[6], psa[7]); | 
|  | rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET); | 
|  | if (rc != 0) { | 
|  | dev_warn(&h->pdev->dev, | 
|  | "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", | 
|  | psa[0], psa[1], psa[2], psa[3], | 
|  | psa[4], psa[5], psa[6], psa[7]); | 
|  | return rc; /* failed to reset */ | 
|  | } | 
|  |  | 
|  | /* wait for device to recover */ | 
|  | if (wait_for_device_to_become_ready(h, psa) != 0) { | 
|  | dev_warn(&h->pdev->dev, | 
|  | "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", | 
|  | psa[0], psa[1], psa[2], psa[3], | 
|  | psa[4], psa[5], psa[6], psa[7]); | 
|  | return -1;  /* failed to recover */ | 
|  | } | 
|  |  | 
|  | /* device recovered */ | 
|  | dev_info(&h->pdev->dev, | 
|  | "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n", | 
|  | psa[0], psa[1], psa[2], psa[3], | 
|  | psa[4], psa[5], psa[6], psa[7]); | 
|  |  | 
|  | return rc; /* success */ | 
|  | } | 
|  |  | 
|  | /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to | 
|  | * tell which kind we're dealing with, so we send the abort both ways.  There | 
|  | * shouldn't be any collisions between swizzled and unswizzled tags due to the | 
|  | * way we construct our tags but we check anyway in case the assumptions which | 
|  | * make this true someday become false. | 
|  | */ | 
|  | static int hpsa_send_abort_both_ways(struct ctlr_info *h, | 
|  | unsigned char *scsi3addr, struct CommandList *abort) | 
|  | { | 
|  | u8 swizzled_tag[8]; | 
|  | struct CommandList *c; | 
|  | int rc = 0, rc2 = 0; | 
|  |  | 
|  | /* ioccelerator mode 2 commands should be aborted via the | 
|  | * accelerated path, since RAID path is unaware of these commands, | 
|  | * but underlying firmware can't handle abort TMF. | 
|  | * Change abort to physical device reset. | 
|  | */ | 
|  | if (abort->cmd_type == CMD_IOACCEL2) | 
|  | return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort); | 
|  |  | 
|  | /* we do not expect to find the swizzled tag in our queue, but | 
|  | * check anyway just to be sure the assumptions which make this | 
|  | * the case haven't become wrong. | 
|  | */ | 
|  | memcpy(swizzled_tag, &abort->Request.CDB[4], 8); | 
|  | swizzle_abort_tag(swizzled_tag); | 
|  | c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ); | 
|  | if (c != NULL) { | 
|  | dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n"); | 
|  | return hpsa_send_abort(h, scsi3addr, abort, 0); | 
|  | } | 
|  | rc = hpsa_send_abort(h, scsi3addr, abort, 0); | 
|  |  | 
|  | /* if the command is still in our queue, we can't conclude that it was | 
|  | * aborted (it might have just completed normally) but in any case | 
|  | * we don't need to try to abort it another way. | 
|  | */ | 
|  | c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ); | 
|  | if (c) | 
|  | rc2 = hpsa_send_abort(h, scsi3addr, abort, 1); | 
|  | return rc && rc2; | 
|  | } | 
|  |  | 
|  | /* Send an abort for the specified command. | 
|  | *	If the device and controller support it, | 
|  | *		send a task abort request. | 
|  | */ | 
|  | static int hpsa_eh_abort_handler(struct scsi_cmnd *sc) | 
|  | { | 
|  |  | 
|  | int i, rc; | 
|  | struct ctlr_info *h; | 
|  | struct hpsa_scsi_dev_t *dev; | 
|  | struct CommandList *abort; /* pointer to command to be aborted */ | 
|  | struct CommandList *found; | 
|  | struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */ | 
|  | char msg[256];		/* For debug messaging. */ | 
|  | int ml = 0; | 
|  | u32 tagupper, taglower; | 
|  |  | 
|  | /* Find the controller of the command to be aborted */ | 
|  | h = sdev_to_hba(sc->device); | 
|  | if (WARN(h == NULL, | 
|  | "ABORT REQUEST FAILED, Controller lookup failed.\n")) | 
|  | return FAILED; | 
|  |  | 
|  | /* Check that controller supports some kind of task abort */ | 
|  | if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) && | 
|  | !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags)) | 
|  | return FAILED; | 
|  |  | 
|  | memset(msg, 0, sizeof(msg)); | 
|  | ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%llu ", | 
|  | h->scsi_host->host_no, sc->device->channel, | 
|  | sc->device->id, sc->device->lun); | 
|  |  | 
|  | /* Find the device of the command to be aborted */ | 
|  | dev = sc->device->hostdata; | 
|  | if (!dev) { | 
|  | dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n", | 
|  | msg); | 
|  | return FAILED; | 
|  | } | 
|  |  | 
|  | /* Get SCSI command to be aborted */ | 
|  | abort = (struct CommandList *) sc->host_scribble; | 
|  | if (abort == NULL) { | 
|  | dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n", | 
|  | msg); | 
|  | return FAILED; | 
|  | } | 
|  | hpsa_get_tag(h, abort, &taglower, &tagupper); | 
|  | ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower); | 
|  | as  = (struct scsi_cmnd *) abort->scsi_cmd; | 
|  | if (as != NULL) | 
|  | ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ", | 
|  | as->cmnd[0], as->serial_number); | 
|  | dev_dbg(&h->pdev->dev, "%s\n", msg); | 
|  | dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n", | 
|  | h->scsi_host->host_no, dev->bus, dev->target, dev->lun); | 
|  |  | 
|  | /* Search reqQ to See if command is queued but not submitted, | 
|  | * if so, complete the command with aborted status and remove | 
|  | * it from the reqQ. | 
|  | */ | 
|  | found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ); | 
|  | if (found) { | 
|  | found->err_info->CommandStatus = CMD_ABORTED; | 
|  | finish_cmd(found); | 
|  | dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n", | 
|  | msg); | 
|  | return SUCCESS; | 
|  | } | 
|  |  | 
|  | /* not in reqQ, if also not in cmpQ, must have already completed */ | 
|  | found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ); | 
|  | if (!found)  { | 
|  | dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n", | 
|  | msg); | 
|  | return SUCCESS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Command is in flight, or possibly already completed | 
|  | * by the firmware (but not to the scsi mid layer) but we can't | 
|  | * distinguish which.  Send the abort down. | 
|  | */ | 
|  | rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort); | 
|  | if (rc != 0) { | 
|  | dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg); | 
|  | dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n", | 
|  | h->scsi_host->host_no, | 
|  | dev->bus, dev->target, dev->lun); | 
|  | return FAILED; | 
|  | } | 
|  | dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg); | 
|  |  | 
|  | /* If the abort(s) above completed and actually aborted the | 
|  | * command, then the command to be aborted should already be | 
|  | * completed.  If not, wait around a bit more to see if they | 
|  | * manage to complete normally. | 
|  | */ | 
|  | #define ABORT_COMPLETE_WAIT_SECS 30 | 
|  | for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) { | 
|  | found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ); | 
|  | if (!found) | 
|  | return SUCCESS; | 
|  | msleep(100); | 
|  | } | 
|  | dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n", | 
|  | msg, ABORT_COMPLETE_WAIT_SECS); | 
|  | return FAILED; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * For operations that cannot sleep, a command block is allocated at init, | 
|  | * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track | 
|  | * which ones are free or in use.  Lock must be held when calling this. | 
|  | * cmd_free() is the complement. | 
|  | */ | 
|  | static struct CommandList *cmd_alloc(struct ctlr_info *h) | 
|  | { | 
|  | struct CommandList *c; | 
|  | int i; | 
|  | union u64bit temp64; | 
|  | dma_addr_t cmd_dma_handle, err_dma_handle; | 
|  | int loopcount; | 
|  |  | 
|  | /* There is some *extremely* small but non-zero chance that that | 
|  | * multiple threads could get in here, and one thread could | 
|  | * be scanning through the list of bits looking for a free | 
|  | * one, but the free ones are always behind him, and other | 
|  | * threads sneak in behind him and eat them before he can | 
|  | * get to them, so that while there is always a free one, a | 
|  | * very unlucky thread might be starved anyway, never able to | 
|  | * beat the other threads.  In reality, this happens so | 
|  | * infrequently as to be indistinguishable from never. | 
|  | */ | 
|  |  | 
|  | loopcount = 0; | 
|  | do { | 
|  | i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds); | 
|  | if (i == h->nr_cmds) | 
|  | i = 0; | 
|  | loopcount++; | 
|  | } while (test_and_set_bit(i & (BITS_PER_LONG - 1), | 
|  | h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0 && | 
|  | loopcount < 10); | 
|  |  | 
|  | /* Thread got starved?  We do not expect this to ever happen. */ | 
|  | if (loopcount >= 10) | 
|  | return NULL; | 
|  |  | 
|  | c = h->cmd_pool + i; | 
|  | memset(c, 0, sizeof(*c)); | 
|  | cmd_dma_handle = h->cmd_pool_dhandle | 
|  | + i * sizeof(*c); | 
|  | c->err_info = h->errinfo_pool + i; | 
|  | memset(c->err_info, 0, sizeof(*c->err_info)); | 
|  | err_dma_handle = h->errinfo_pool_dhandle | 
|  | + i * sizeof(*c->err_info); | 
|  |  | 
|  | c->cmdindex = i; | 
|  |  | 
|  | INIT_LIST_HEAD(&c->list); | 
|  | c->busaddr = (u32) cmd_dma_handle; | 
|  | temp64.val = (u64) err_dma_handle; | 
|  | c->ErrDesc.Addr = cpu_to_le64(err_dma_handle); | 
|  | c->ErrDesc.Len = cpu_to_le32(sizeof(*c->err_info)); | 
|  |  | 
|  | c->h = h; | 
|  | return c; | 
|  | } | 
|  |  | 
|  | /* For operations that can wait for kmalloc to possibly sleep, | 
|  | * this routine can be called. Lock need not be held to call | 
|  | * cmd_special_alloc. cmd_special_free() is the complement. | 
|  | */ | 
|  | static struct CommandList *cmd_special_alloc(struct ctlr_info *h) | 
|  | { | 
|  | struct CommandList *c; | 
|  | dma_addr_t cmd_dma_handle, err_dma_handle; | 
|  |  | 
|  | c = pci_zalloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle); | 
|  | if (c == NULL) | 
|  | return NULL; | 
|  |  | 
|  | c->cmd_type = CMD_SCSI; | 
|  | c->cmdindex = -1; | 
|  |  | 
|  | c->err_info = pci_zalloc_consistent(h->pdev, sizeof(*c->err_info), | 
|  | &err_dma_handle); | 
|  |  | 
|  | if (c->err_info == NULL) { | 
|  | pci_free_consistent(h->pdev, | 
|  | sizeof(*c), c, cmd_dma_handle); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | INIT_LIST_HEAD(&c->list); | 
|  | c->busaddr = (u32) cmd_dma_handle; | 
|  | c->ErrDesc.Addr = cpu_to_le64(err_dma_handle); | 
|  | c->ErrDesc.Len = cpu_to_le32(sizeof(*c->err_info)); | 
|  |  | 
|  | c->h = h; | 
|  | return c; | 
|  | } | 
|  |  | 
|  | static void cmd_free(struct ctlr_info *h, struct CommandList *c) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | i = c - h->cmd_pool; | 
|  | clear_bit(i & (BITS_PER_LONG - 1), | 
|  | h->cmd_pool_bits + (i / BITS_PER_LONG)); | 
|  | } | 
|  |  | 
|  | static void cmd_special_free(struct ctlr_info *h, struct CommandList *c) | 
|  | { | 
|  | pci_free_consistent(h->pdev, sizeof(*c->err_info), | 
|  | c->err_info, | 
|  | (dma_addr_t) le64_to_cpu(c->ErrDesc.Addr)); | 
|  | pci_free_consistent(h->pdev, sizeof(*c), | 
|  | c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  |  | 
|  | static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, | 
|  | void __user *arg) | 
|  | { | 
|  | IOCTL32_Command_struct __user *arg32 = | 
|  | (IOCTL32_Command_struct __user *) arg; | 
|  | IOCTL_Command_struct arg64; | 
|  | IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); | 
|  | int err; | 
|  | u32 cp; | 
|  |  | 
|  | memset(&arg64, 0, sizeof(arg64)); | 
|  | err = 0; | 
|  | err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, | 
|  | sizeof(arg64.LUN_info)); | 
|  | err |= copy_from_user(&arg64.Request, &arg32->Request, | 
|  | sizeof(arg64.Request)); | 
|  | err |= copy_from_user(&arg64.error_info, &arg32->error_info, | 
|  | sizeof(arg64.error_info)); | 
|  | err |= get_user(arg64.buf_size, &arg32->buf_size); | 
|  | err |= get_user(cp, &arg32->buf); | 
|  | arg64.buf = compat_ptr(cp); | 
|  | err |= copy_to_user(p, &arg64, sizeof(arg64)); | 
|  |  | 
|  | if (err) | 
|  | return -EFAULT; | 
|  |  | 
|  | err = hpsa_ioctl(dev, CCISS_PASSTHRU, p); | 
|  | if (err) | 
|  | return err; | 
|  | err |= copy_in_user(&arg32->error_info, &p->error_info, | 
|  | sizeof(arg32->error_info)); | 
|  | if (err) | 
|  | return -EFAULT; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, | 
|  | int cmd, void __user *arg) | 
|  | { | 
|  | BIG_IOCTL32_Command_struct __user *arg32 = | 
|  | (BIG_IOCTL32_Command_struct __user *) arg; | 
|  | BIG_IOCTL_Command_struct arg64; | 
|  | BIG_IOCTL_Command_struct __user *p = | 
|  | compat_alloc_user_space(sizeof(arg64)); | 
|  | int err; | 
|  | u32 cp; | 
|  |  | 
|  | memset(&arg64, 0, sizeof(arg64)); | 
|  | err = 0; | 
|  | err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, | 
|  | sizeof(arg64.LUN_info)); | 
|  | err |= copy_from_user(&arg64.Request, &arg32->Request, | 
|  | sizeof(arg64.Request)); | 
|  | err |= copy_from_user(&arg64.error_info, &arg32->error_info, | 
|  | sizeof(arg64.error_info)); | 
|  | err |= get_user(arg64.buf_size, &arg32->buf_size); | 
|  | err |= get_user(arg64.malloc_size, &arg32->malloc_size); | 
|  | err |= get_user(cp, &arg32->buf); | 
|  | arg64.buf = compat_ptr(cp); | 
|  | err |= copy_to_user(p, &arg64, sizeof(arg64)); | 
|  |  | 
|  | if (err) | 
|  | return -EFAULT; | 
|  |  | 
|  | err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p); | 
|  | if (err) | 
|  | return err; | 
|  | err |= copy_in_user(&arg32->error_info, &p->error_info, | 
|  | sizeof(arg32->error_info)); | 
|  | if (err) | 
|  | return -EFAULT; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg) | 
|  | { | 
|  | switch (cmd) { | 
|  | case CCISS_GETPCIINFO: | 
|  | case CCISS_GETINTINFO: | 
|  | case CCISS_SETINTINFO: | 
|  | case CCISS_GETNODENAME: | 
|  | case CCISS_SETNODENAME: | 
|  | case CCISS_GETHEARTBEAT: | 
|  | case CCISS_GETBUSTYPES: | 
|  | case CCISS_GETFIRMVER: | 
|  | case CCISS_GETDRIVVER: | 
|  | case CCISS_REVALIDVOLS: | 
|  | case CCISS_DEREGDISK: | 
|  | case CCISS_REGNEWDISK: | 
|  | case CCISS_REGNEWD: | 
|  | case CCISS_RESCANDISK: | 
|  | case CCISS_GETLUNINFO: | 
|  | return hpsa_ioctl(dev, cmd, arg); | 
|  |  | 
|  | case CCISS_PASSTHRU32: | 
|  | return hpsa_ioctl32_passthru(dev, cmd, arg); | 
|  | case CCISS_BIG_PASSTHRU32: | 
|  | return hpsa_ioctl32_big_passthru(dev, cmd, arg); | 
|  |  | 
|  | default: | 
|  | return -ENOIOCTLCMD; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp) | 
|  | { | 
|  | struct hpsa_pci_info pciinfo; | 
|  |  | 
|  | if (!argp) | 
|  | return -EINVAL; | 
|  | pciinfo.domain = pci_domain_nr(h->pdev->bus); | 
|  | pciinfo.bus = h->pdev->bus->number; | 
|  | pciinfo.dev_fn = h->pdev->devfn; | 
|  | pciinfo.board_id = h->board_id; | 
|  | if (copy_to_user(argp, &pciinfo, sizeof(pciinfo))) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp) | 
|  | { | 
|  | DriverVer_type DriverVer; | 
|  | unsigned char vmaj, vmin, vsubmin; | 
|  | int rc; | 
|  |  | 
|  | rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu", | 
|  | &vmaj, &vmin, &vsubmin); | 
|  | if (rc != 3) { | 
|  | dev_info(&h->pdev->dev, "driver version string '%s' " | 
|  | "unrecognized.", HPSA_DRIVER_VERSION); | 
|  | vmaj = 0; | 
|  | vmin = 0; | 
|  | vsubmin = 0; | 
|  | } | 
|  | DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin; | 
|  | if (!argp) | 
|  | return -EINVAL; | 
|  | if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp) | 
|  | { | 
|  | IOCTL_Command_struct iocommand; | 
|  | struct CommandList *c; | 
|  | char *buff = NULL; | 
|  | u64 temp64; | 
|  | int rc = 0; | 
|  |  | 
|  | if (!argp) | 
|  | return -EINVAL; | 
|  | if (!capable(CAP_SYS_RAWIO)) | 
|  | return -EPERM; | 
|  | if (copy_from_user(&iocommand, argp, sizeof(iocommand))) | 
|  | return -EFAULT; | 
|  | if ((iocommand.buf_size < 1) && | 
|  | (iocommand.Request.Type.Direction != XFER_NONE)) { | 
|  | return -EINVAL; | 
|  | } | 
|  | if (iocommand.buf_size > 0) { | 
|  | buff = kmalloc(iocommand.buf_size, GFP_KERNEL); | 
|  | if (buff == NULL) | 
|  | return -EFAULT; | 
|  | if (iocommand.Request.Type.Direction & XFER_WRITE) { | 
|  | /* Copy the data into the buffer we created */ | 
|  | if (copy_from_user(buff, iocommand.buf, | 
|  | iocommand.buf_size)) { | 
|  | rc = -EFAULT; | 
|  | goto out_kfree; | 
|  | } | 
|  | } else { | 
|  | memset(buff, 0, iocommand.buf_size); | 
|  | } | 
|  | } | 
|  | c = cmd_special_alloc(h); | 
|  | if (c == NULL) { | 
|  | rc = -ENOMEM; | 
|  | goto out_kfree; | 
|  | } | 
|  | /* Fill in the command type */ | 
|  | c->cmd_type = CMD_IOCTL_PEND; | 
|  | /* Fill in Command Header */ | 
|  | c->Header.ReplyQueue = 0; /* unused in simple mode */ | 
|  | if (iocommand.buf_size > 0) {	/* buffer to fill */ | 
|  | c->Header.SGList = 1; | 
|  | c->Header.SGTotal = cpu_to_le16(1); | 
|  | } else	{ /* no buffers to fill */ | 
|  | c->Header.SGList = 0; | 
|  | c->Header.SGTotal = cpu_to_le16(0); | 
|  | } | 
|  | memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN)); | 
|  | /* use the kernel address the cmd block for tag */ | 
|  | c->Header.tag = c->busaddr; | 
|  |  | 
|  | /* Fill in Request block */ | 
|  | memcpy(&c->Request, &iocommand.Request, | 
|  | sizeof(c->Request)); | 
|  |  | 
|  | /* Fill in the scatter gather information */ | 
|  | if (iocommand.buf_size > 0) { | 
|  | temp64 = pci_map_single(h->pdev, buff, | 
|  | iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); | 
|  | if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) { | 
|  | c->SG[0].Addr = cpu_to_le64(0); | 
|  | c->SG[0].Len = cpu_to_le32(0); | 
|  | rc = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | c->SG[0].Addr = cpu_to_le64(temp64); | 
|  | c->SG[0].Len = cpu_to_le32(iocommand.buf_size); | 
|  | c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */ | 
|  | } | 
|  | hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c); | 
|  | if (iocommand.buf_size > 0) | 
|  | hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL); | 
|  | check_ioctl_unit_attention(h, c); | 
|  |  | 
|  | /* Copy the error information out */ | 
|  | memcpy(&iocommand.error_info, c->err_info, | 
|  | sizeof(iocommand.error_info)); | 
|  | if (copy_to_user(argp, &iocommand, sizeof(iocommand))) { | 
|  | rc = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | if ((iocommand.Request.Type.Direction & XFER_READ) && | 
|  | iocommand.buf_size > 0) { | 
|  | /* Copy the data out of the buffer we created */ | 
|  | if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) { | 
|  | rc = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | out: | 
|  | cmd_special_free(h, c); | 
|  | out_kfree: | 
|  | kfree(buff); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp) | 
|  | { | 
|  | BIG_IOCTL_Command_struct *ioc; | 
|  | struct CommandList *c; | 
|  | unsigned char **buff = NULL; | 
|  | int *buff_size = NULL; | 
|  | u64 temp64; | 
|  | BYTE sg_used = 0; | 
|  | int status = 0; | 
|  | int i; | 
|  | u32 left; | 
|  | u32 sz; | 
|  | BYTE __user *data_ptr; | 
|  |  | 
|  | if (!argp) | 
|  | return -EINVAL; | 
|  | if (!capable(CAP_SYS_RAWIO)) | 
|  | return -EPERM; | 
|  | ioc = (BIG_IOCTL_Command_struct *) | 
|  | kmalloc(sizeof(*ioc), GFP_KERNEL); | 
|  | if (!ioc) { | 
|  | status = -ENOMEM; | 
|  | goto cleanup1; | 
|  | } | 
|  | if (copy_from_user(ioc, argp, sizeof(*ioc))) { | 
|  | status = -EFAULT; | 
|  | goto cleanup1; | 
|  | } | 
|  | if ((ioc->buf_size < 1) && | 
|  | (ioc->Request.Type.Direction != XFER_NONE)) { | 
|  | status = -EINVAL; | 
|  | goto cleanup1; | 
|  | } | 
|  | /* Check kmalloc limits  using all SGs */ | 
|  | if (ioc->malloc_size > MAX_KMALLOC_SIZE) { | 
|  | status = -EINVAL; | 
|  | goto cleanup1; | 
|  | } | 
|  | if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) { | 
|  | status = -EINVAL; | 
|  | goto cleanup1; | 
|  | } | 
|  | buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL); | 
|  | if (!buff) { | 
|  | status = -ENOMEM; | 
|  | goto cleanup1; | 
|  | } | 
|  | buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL); | 
|  | if (!buff_size) { | 
|  | status = -ENOMEM; | 
|  | goto cleanup1; | 
|  | } | 
|  | left = ioc->buf_size; | 
|  | data_ptr = ioc->buf; | 
|  | while (left) { | 
|  | sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; | 
|  | buff_size[sg_used] = sz; | 
|  | buff[sg_used] = kmalloc(sz, GFP_KERNEL); | 
|  | if (buff[sg_used] == NULL) { | 
|  | status = -ENOMEM; | 
|  | goto cleanup1; | 
|  | } | 
|  | if (ioc->Request.Type.Direction & XFER_WRITE) { | 
|  | if (copy_from_user(buff[sg_used], data_ptr, sz)) { | 
|  | status = -EFAULT; | 
|  | goto cleanup1; | 
|  | } | 
|  | } else | 
|  | memset(buff[sg_used], 0, sz); | 
|  | left -= sz; | 
|  | data_ptr += sz; | 
|  | sg_used++; | 
|  | } | 
|  | c = cmd_special_alloc(h); | 
|  | if (c == NULL) { | 
|  | status = -ENOMEM; | 
|  | goto cleanup1; | 
|  | } | 
|  | c->cmd_type = CMD_IOCTL_PEND; | 
|  | c->Header.ReplyQueue = 0; | 
|  | c->Header.SGList = (u8) sg_used; | 
|  | c->Header.SGTotal = cpu_to_le16(sg_used); | 
|  | memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN)); | 
|  | c->Header.tag = c->busaddr; | 
|  | memcpy(&c->Request, &ioc->Request, sizeof(c->Request)); | 
|  | if (ioc->buf_size > 0) { | 
|  | int i; | 
|  | for (i = 0; i < sg_used; i++) { | 
|  | temp64 = pci_map_single(h->pdev, buff[i], | 
|  | buff_size[i], PCI_DMA_BIDIRECTIONAL); | 
|  | if (dma_mapping_error(&h->pdev->dev, | 
|  | (dma_addr_t) temp64)) { | 
|  | c->SG[i].Addr = cpu_to_le64(0); | 
|  | c->SG[i].Len = cpu_to_le32(0); | 
|  | hpsa_pci_unmap(h->pdev, c, i, | 
|  | PCI_DMA_BIDIRECTIONAL); | 
|  | status = -ENOMEM; | 
|  | goto cleanup0; | 
|  | } | 
|  | c->SG[i].Addr = cpu_to_le64(temp64); | 
|  | c->SG[i].Len = cpu_to_le32(buff_size[i]); | 
|  | c->SG[i].Ext = cpu_to_le32(0); | 
|  | } | 
|  | c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST); | 
|  | } | 
|  | hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c); | 
|  | if (sg_used) | 
|  | hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL); | 
|  | check_ioctl_unit_attention(h, c); | 
|  | /* Copy the error information out */ | 
|  | memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info)); | 
|  | if (copy_to_user(argp, ioc, sizeof(*ioc))) { | 
|  | status = -EFAULT; | 
|  | goto cleanup0; | 
|  | } | 
|  | if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) { | 
|  | /* Copy the data out of the buffer we created */ | 
|  | BYTE __user *ptr = ioc->buf; | 
|  | for (i = 0; i < sg_used; i++) { | 
|  | if (copy_to_user(ptr, buff[i], buff_size[i])) { | 
|  | status = -EFAULT; | 
|  | goto cleanup0; | 
|  | } | 
|  | ptr += buff_size[i]; | 
|  | } | 
|  | } | 
|  | status = 0; | 
|  | cleanup0: | 
|  | cmd_special_free(h, c); | 
|  | cleanup1: | 
|  | if (buff) { | 
|  | for (i = 0; i < sg_used; i++) | 
|  | kfree(buff[i]); | 
|  | kfree(buff); | 
|  | } | 
|  | kfree(buff_size); | 
|  | kfree(ioc); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static void check_ioctl_unit_attention(struct ctlr_info *h, | 
|  | struct CommandList *c) | 
|  | { | 
|  | if (c->err_info->CommandStatus == CMD_TARGET_STATUS && | 
|  | c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) | 
|  | (void) check_for_unit_attention(h, c); | 
|  | } | 
|  |  | 
|  | static int increment_passthru_count(struct ctlr_info *h) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&h->passthru_count_lock, flags); | 
|  | if (h->passthru_count >= HPSA_MAX_CONCURRENT_PASSTHRUS) { | 
|  | spin_unlock_irqrestore(&h->passthru_count_lock, flags); | 
|  | return -1; | 
|  | } | 
|  | h->passthru_count++; | 
|  | spin_unlock_irqrestore(&h->passthru_count_lock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void decrement_passthru_count(struct ctlr_info *h) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&h->passthru_count_lock, flags); | 
|  | if (h->passthru_count <= 0) { | 
|  | spin_unlock_irqrestore(&h->passthru_count_lock, flags); | 
|  | /* not expecting to get here. */ | 
|  | dev_warn(&h->pdev->dev, "Bug detected, passthru_count seems to be incorrect.\n"); | 
|  | return; | 
|  | } | 
|  | h->passthru_count--; | 
|  | spin_unlock_irqrestore(&h->passthru_count_lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ioctl | 
|  | */ | 
|  | static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg) | 
|  | { | 
|  | struct ctlr_info *h; | 
|  | void __user *argp = (void __user *)arg; | 
|  | int rc; | 
|  |  | 
|  | h = sdev_to_hba(dev); | 
|  |  | 
|  | switch (cmd) { | 
|  | case CCISS_DEREGDISK: | 
|  | case CCISS_REGNEWDISK: | 
|  | case CCISS_REGNEWD: | 
|  | hpsa_scan_start(h->scsi_host); | 
|  | return 0; | 
|  | case CCISS_GETPCIINFO: | 
|  | return hpsa_getpciinfo_ioctl(h, argp); | 
|  | case CCISS_GETDRIVVER: | 
|  | return hpsa_getdrivver_ioctl(h, argp); | 
|  | case CCISS_PASSTHRU: | 
|  | if (increment_passthru_count(h)) | 
|  | return -EAGAIN; | 
|  | rc = hpsa_passthru_ioctl(h, argp); | 
|  | decrement_passthru_count(h); | 
|  | return rc; | 
|  | case CCISS_BIG_PASSTHRU: | 
|  | if (increment_passthru_count(h)) | 
|  | return -EAGAIN; | 
|  | rc = hpsa_big_passthru_ioctl(h, argp); | 
|  | decrement_passthru_count(h); | 
|  | return rc; | 
|  | default: | 
|  | return -ENOTTY; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr, | 
|  | u8 reset_type) | 
|  | { | 
|  | struct CommandList *c; | 
|  |  | 
|  | c = cmd_alloc(h); | 
|  | if (!c) | 
|  | return -ENOMEM; | 
|  | /* fill_cmd can't fail here, no data buffer to map */ | 
|  | (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, | 
|  | RAID_CTLR_LUNID, TYPE_MSG); | 
|  | c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */ | 
|  | c->waiting = NULL; | 
|  | enqueue_cmd_and_start_io(h, c); | 
|  | /* Don't wait for completion, the reset won't complete.  Don't free | 
|  | * the command either.  This is the last command we will send before | 
|  | * re-initializing everything, so it doesn't matter and won't leak. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h, | 
|  | void *buff, size_t size, u16 page_code, unsigned char *scsi3addr, | 
|  | int cmd_type) | 
|  | { | 
|  | int pci_dir = XFER_NONE; | 
|  | struct CommandList *a; /* for commands to be aborted */ | 
|  | u32 tupper, tlower; | 
|  |  | 
|  | c->cmd_type = CMD_IOCTL_PEND; | 
|  | c->Header.ReplyQueue = 0; | 
|  | if (buff != NULL && size > 0) { | 
|  | c->Header.SGList = 1; | 
|  | c->Header.SGTotal = cpu_to_le16(1); | 
|  | } else { | 
|  | c->Header.SGList = 0; | 
|  | c->Header.SGTotal = cpu_to_le16(0); | 
|  | } | 
|  | c->Header.tag = c->busaddr; | 
|  | memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); | 
|  |  | 
|  | if (cmd_type == TYPE_CMD) { | 
|  | switch (cmd) { | 
|  | case HPSA_INQUIRY: | 
|  | /* are we trying to read a vital product page */ | 
|  | if (page_code & VPD_PAGE) { | 
|  | c->Request.CDB[1] = 0x01; | 
|  | c->Request.CDB[2] = (page_code & 0xff); | 
|  | } | 
|  | c->Request.CDBLen = 6; | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); | 
|  | c->Request.Timeout = 0; | 
|  | c->Request.CDB[0] = HPSA_INQUIRY; | 
|  | c->Request.CDB[4] = size & 0xFF; | 
|  | break; | 
|  | case HPSA_REPORT_LOG: | 
|  | case HPSA_REPORT_PHYS: | 
|  | /* Talking to controller so It's a physical command | 
|  | mode = 00 target = 0.  Nothing to write. | 
|  | */ | 
|  | c->Request.CDBLen = 12; | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); | 
|  | c->Request.Timeout = 0; | 
|  | c->Request.CDB[0] = cmd; | 
|  | c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ | 
|  | c->Request.CDB[7] = (size >> 16) & 0xFF; | 
|  | c->Request.CDB[8] = (size >> 8) & 0xFF; | 
|  | c->Request.CDB[9] = size & 0xFF; | 
|  | break; | 
|  | case HPSA_CACHE_FLUSH: | 
|  | c->Request.CDBLen = 12; | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(cmd_type, | 
|  | ATTR_SIMPLE, XFER_WRITE); | 
|  | c->Request.Timeout = 0; | 
|  | c->Request.CDB[0] = BMIC_WRITE; | 
|  | c->Request.CDB[6] = BMIC_CACHE_FLUSH; | 
|  | c->Request.CDB[7] = (size >> 8) & 0xFF; | 
|  | c->Request.CDB[8] = size & 0xFF; | 
|  | break; | 
|  | case TEST_UNIT_READY: | 
|  | c->Request.CDBLen = 6; | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); | 
|  | c->Request.Timeout = 0; | 
|  | break; | 
|  | case HPSA_GET_RAID_MAP: | 
|  | c->Request.CDBLen = 12; | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); | 
|  | c->Request.Timeout = 0; | 
|  | c->Request.CDB[0] = HPSA_CISS_READ; | 
|  | c->Request.CDB[1] = cmd; | 
|  | c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ | 
|  | c->Request.CDB[7] = (size >> 16) & 0xFF; | 
|  | c->Request.CDB[8] = (size >> 8) & 0xFF; | 
|  | c->Request.CDB[9] = size & 0xFF; | 
|  | break; | 
|  | case BMIC_SENSE_CONTROLLER_PARAMETERS: | 
|  | c->Request.CDBLen = 10; | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ); | 
|  | c->Request.Timeout = 0; | 
|  | c->Request.CDB[0] = BMIC_READ; | 
|  | c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS; | 
|  | c->Request.CDB[7] = (size >> 16) & 0xFF; | 
|  | c->Request.CDB[8] = (size >> 8) & 0xFF; | 
|  | break; | 
|  | default: | 
|  | dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd); | 
|  | BUG(); | 
|  | return -1; | 
|  | } | 
|  | } else if (cmd_type == TYPE_MSG) { | 
|  | switch (cmd) { | 
|  |  | 
|  | case  HPSA_DEVICE_RESET_MSG: | 
|  | c->Request.CDBLen = 16; | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE); | 
|  | c->Request.Timeout = 0; /* Don't time out */ | 
|  | memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB)); | 
|  | c->Request.CDB[0] =  cmd; | 
|  | c->Request.CDB[1] = HPSA_RESET_TYPE_LUN; | 
|  | /* If bytes 4-7 are zero, it means reset the */ | 
|  | /* LunID device */ | 
|  | c->Request.CDB[4] = 0x00; | 
|  | c->Request.CDB[5] = 0x00; | 
|  | c->Request.CDB[6] = 0x00; | 
|  | c->Request.CDB[7] = 0x00; | 
|  | break; | 
|  | case  HPSA_ABORT_MSG: | 
|  | a = buff;       /* point to command to be aborted */ | 
|  | dev_dbg(&h->pdev->dev, "Abort Tag:0x%016llx using request Tag:0x%016llx", | 
|  | a->Header.tag, c->Header.tag); | 
|  | tlower = (u32) (a->Header.tag >> 32); | 
|  | tupper = (u32) (a->Header.tag & 0x0ffffffffULL); | 
|  | c->Request.CDBLen = 16; | 
|  | c->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(cmd_type, | 
|  | ATTR_SIMPLE, XFER_WRITE); | 
|  | c->Request.Timeout = 0; /* Don't time out */ | 
|  | c->Request.CDB[0] = HPSA_TASK_MANAGEMENT; | 
|  | c->Request.CDB[1] = HPSA_TMF_ABORT_TASK; | 
|  | c->Request.CDB[2] = 0x00; /* reserved */ | 
|  | c->Request.CDB[3] = 0x00; /* reserved */ | 
|  | /* Tag to abort goes in CDB[4]-CDB[11] */ | 
|  | c->Request.CDB[4] = tlower & 0xFF; | 
|  | c->Request.CDB[5] = (tlower >> 8) & 0xFF; | 
|  | c->Request.CDB[6] = (tlower >> 16) & 0xFF; | 
|  | c->Request.CDB[7] = (tlower >> 24) & 0xFF; | 
|  | c->Request.CDB[8] = tupper & 0xFF; | 
|  | c->Request.CDB[9] = (tupper >> 8) & 0xFF; | 
|  | c->Request.CDB[10] = (tupper >> 16) & 0xFF; | 
|  | c->Request.CDB[11] = (tupper >> 24) & 0xFF; | 
|  | c->Request.CDB[12] = 0x00; /* reserved */ | 
|  | c->Request.CDB[13] = 0x00; /* reserved */ | 
|  | c->Request.CDB[14] = 0x00; /* reserved */ | 
|  | c->Request.CDB[15] = 0x00; /* reserved */ | 
|  | break; | 
|  | default: | 
|  | dev_warn(&h->pdev->dev, "unknown message type %d\n", | 
|  | cmd); | 
|  | BUG(); | 
|  | } | 
|  | } else { | 
|  | dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | switch (GET_DIR(c->Request.type_attr_dir)) { | 
|  | case XFER_READ: | 
|  | pci_dir = PCI_DMA_FROMDEVICE; | 
|  | break; | 
|  | case XFER_WRITE: | 
|  | pci_dir = PCI_DMA_TODEVICE; | 
|  | break; | 
|  | case XFER_NONE: | 
|  | pci_dir = PCI_DMA_NONE; | 
|  | break; | 
|  | default: | 
|  | pci_dir = PCI_DMA_BIDIRECTIONAL; | 
|  | } | 
|  | if (hpsa_map_one(h->pdev, c, buff, size, pci_dir)) | 
|  | return -1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Map (physical) PCI mem into (virtual) kernel space | 
|  | */ | 
|  | static void __iomem *remap_pci_mem(ulong base, ulong size) | 
|  | { | 
|  | ulong page_base = ((ulong) base) & PAGE_MASK; | 
|  | ulong page_offs = ((ulong) base) - page_base; | 
|  | void __iomem *page_remapped = ioremap_nocache(page_base, | 
|  | page_offs + size); | 
|  |  | 
|  | return page_remapped ? (page_remapped + page_offs) : NULL; | 
|  | } | 
|  |  | 
|  | /* Takes cmds off the submission queue and sends them to the hardware, | 
|  | * then puts them on the queue of cmds waiting for completion. | 
|  | * Assumes h->lock is held | 
|  | */ | 
|  | static void start_io(struct ctlr_info *h, unsigned long *flags) | 
|  | { | 
|  | struct CommandList *c; | 
|  |  | 
|  | while (!list_empty(&h->reqQ)) { | 
|  | c = list_entry(h->reqQ.next, struct CommandList, list); | 
|  | /* can't do anything if fifo is full */ | 
|  | if ((h->access.fifo_full(h))) { | 
|  | h->fifo_recently_full = 1; | 
|  | dev_warn(&h->pdev->dev, "fifo full\n"); | 
|  | break; | 
|  | } | 
|  | h->fifo_recently_full = 0; | 
|  |  | 
|  | /* Get the first entry from the Request Q */ | 
|  | removeQ(c); | 
|  | h->Qdepth--; | 
|  |  | 
|  | /* Put job onto the completed Q */ | 
|  | addQ(&h->cmpQ, c); | 
|  | atomic_inc(&h->commands_outstanding); | 
|  | spin_unlock_irqrestore(&h->lock, *flags); | 
|  | /* Tell the controller execute command */ | 
|  | h->access.submit_command(h, c); | 
|  | spin_lock_irqsave(&h->lock, *flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void lock_and_start_io(struct ctlr_info *h) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | start_io(h, &flags); | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | } | 
|  |  | 
|  | static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q) | 
|  | { | 
|  | return h->access.command_completed(h, q); | 
|  | } | 
|  |  | 
|  | static inline bool interrupt_pending(struct ctlr_info *h) | 
|  | { | 
|  | return h->access.intr_pending(h); | 
|  | } | 
|  |  | 
|  | static inline long interrupt_not_for_us(struct ctlr_info *h) | 
|  | { | 
|  | return (h->access.intr_pending(h) == 0) || | 
|  | (h->interrupts_enabled == 0); | 
|  | } | 
|  |  | 
|  | static inline int bad_tag(struct ctlr_info *h, u32 tag_index, | 
|  | u32 raw_tag) | 
|  | { | 
|  | if (unlikely(tag_index >= h->nr_cmds)) { | 
|  | dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void finish_cmd(struct CommandList *c) | 
|  | { | 
|  | unsigned long flags; | 
|  | int io_may_be_stalled = 0; | 
|  | struct ctlr_info *h = c->h; | 
|  | int count; | 
|  |  | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | removeQ(c); | 
|  |  | 
|  | /* | 
|  | * Check for possibly stalled i/o. | 
|  | * | 
|  | * If a fifo_full condition is encountered, requests will back up | 
|  | * in h->reqQ.  This queue is only emptied out by start_io which is | 
|  | * only called when a new i/o request comes in.  If no i/o's are | 
|  | * forthcoming, the i/o's in h->reqQ can get stuck.  So we call | 
|  | * start_io from here if we detect such a danger. | 
|  | * | 
|  | * Normally, we shouldn't hit this case, but pounding on the | 
|  | * CCISS_PASSTHRU ioctl can provoke it.  Only call start_io if | 
|  | * commands_outstanding is low.  We want to avoid calling | 
|  | * start_io from in here as much as possible, and esp. don't | 
|  | * want to get in a cycle where we call start_io every time | 
|  | * through here. | 
|  | */ | 
|  | count = atomic_read(&h->commands_outstanding); | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | if (unlikely(h->fifo_recently_full) && count < 5) | 
|  | io_may_be_stalled = 1; | 
|  |  | 
|  | dial_up_lockup_detection_on_fw_flash_complete(c->h, c); | 
|  | if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI | 
|  | || c->cmd_type == CMD_IOACCEL2)) | 
|  | complete_scsi_command(c); | 
|  | else if (c->cmd_type == CMD_IOCTL_PEND) | 
|  | complete(c->waiting); | 
|  | if (unlikely(io_may_be_stalled)) | 
|  | lock_and_start_io(h); | 
|  | } | 
|  |  | 
|  | static inline u32 hpsa_tag_contains_index(u32 tag) | 
|  | { | 
|  | return tag & DIRECT_LOOKUP_BIT; | 
|  | } | 
|  |  | 
|  | static inline u32 hpsa_tag_to_index(u32 tag) | 
|  | { | 
|  | return tag >> DIRECT_LOOKUP_SHIFT; | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag) | 
|  | { | 
|  | #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1) | 
|  | #define HPSA_SIMPLE_ERROR_BITS 0x03 | 
|  | if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant))) | 
|  | return tag & ~HPSA_SIMPLE_ERROR_BITS; | 
|  | return tag & ~HPSA_PERF_ERROR_BITS; | 
|  | } | 
|  |  | 
|  | /* process completion of an indexed ("direct lookup") command */ | 
|  | static inline void process_indexed_cmd(struct ctlr_info *h, | 
|  | u32 raw_tag) | 
|  | { | 
|  | u32 tag_index; | 
|  | struct CommandList *c; | 
|  |  | 
|  | tag_index = hpsa_tag_to_index(raw_tag); | 
|  | if (!bad_tag(h, tag_index, raw_tag)) { | 
|  | c = h->cmd_pool + tag_index; | 
|  | finish_cmd(c); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* process completion of a non-indexed command */ | 
|  | static inline void process_nonindexed_cmd(struct ctlr_info *h, | 
|  | u32 raw_tag) | 
|  | { | 
|  | u32 tag; | 
|  | struct CommandList *c = NULL; | 
|  | unsigned long flags; | 
|  |  | 
|  | tag = hpsa_tag_discard_error_bits(h, raw_tag); | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | list_for_each_entry(c, &h->cmpQ, list) { | 
|  | if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) { | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | finish_cmd(c); | 
|  | return; | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | bad_tag(h, h->nr_cmds + 1, raw_tag); | 
|  | } | 
|  |  | 
|  | /* Some controllers, like p400, will give us one interrupt | 
|  | * after a soft reset, even if we turned interrupts off. | 
|  | * Only need to check for this in the hpsa_xxx_discard_completions | 
|  | * functions. | 
|  | */ | 
|  | static int ignore_bogus_interrupt(struct ctlr_info *h) | 
|  | { | 
|  | if (likely(!reset_devices)) | 
|  | return 0; | 
|  |  | 
|  | if (likely(h->interrupts_enabled)) | 
|  | return 0; | 
|  |  | 
|  | dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled " | 
|  | "(known firmware bug.)  Ignoring.\n"); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert &h->q[x] (passed to interrupt handlers) back to h. | 
|  | * Relies on (h-q[x] == x) being true for x such that | 
|  | * 0 <= x < MAX_REPLY_QUEUES. | 
|  | */ | 
|  | static struct ctlr_info *queue_to_hba(u8 *queue) | 
|  | { | 
|  | return container_of((queue - *queue), struct ctlr_info, q[0]); | 
|  | } | 
|  |  | 
|  | static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue) | 
|  | { | 
|  | struct ctlr_info *h = queue_to_hba(queue); | 
|  | u8 q = *(u8 *) queue; | 
|  | u32 raw_tag; | 
|  |  | 
|  | if (ignore_bogus_interrupt(h)) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | if (interrupt_not_for_us(h)) | 
|  | return IRQ_NONE; | 
|  | h->last_intr_timestamp = get_jiffies_64(); | 
|  | while (interrupt_pending(h)) { | 
|  | raw_tag = get_next_completion(h, q); | 
|  | while (raw_tag != FIFO_EMPTY) | 
|  | raw_tag = next_command(h, q); | 
|  | } | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue) | 
|  | { | 
|  | struct ctlr_info *h = queue_to_hba(queue); | 
|  | u32 raw_tag; | 
|  | u8 q = *(u8 *) queue; | 
|  |  | 
|  | if (ignore_bogus_interrupt(h)) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | h->last_intr_timestamp = get_jiffies_64(); | 
|  | raw_tag = get_next_completion(h, q); | 
|  | while (raw_tag != FIFO_EMPTY) | 
|  | raw_tag = next_command(h, q); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static irqreturn_t do_hpsa_intr_intx(int irq, void *queue) | 
|  | { | 
|  | struct ctlr_info *h = queue_to_hba((u8 *) queue); | 
|  | u32 raw_tag; | 
|  | u8 q = *(u8 *) queue; | 
|  |  | 
|  | if (interrupt_not_for_us(h)) | 
|  | return IRQ_NONE; | 
|  | h->last_intr_timestamp = get_jiffies_64(); | 
|  | while (interrupt_pending(h)) { | 
|  | raw_tag = get_next_completion(h, q); | 
|  | while (raw_tag != FIFO_EMPTY) { | 
|  | if (likely(hpsa_tag_contains_index(raw_tag))) | 
|  | process_indexed_cmd(h, raw_tag); | 
|  | else | 
|  | process_nonindexed_cmd(h, raw_tag); | 
|  | raw_tag = next_command(h, q); | 
|  | } | 
|  | } | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static irqreturn_t do_hpsa_intr_msi(int irq, void *queue) | 
|  | { | 
|  | struct ctlr_info *h = queue_to_hba(queue); | 
|  | u32 raw_tag; | 
|  | u8 q = *(u8 *) queue; | 
|  |  | 
|  | h->last_intr_timestamp = get_jiffies_64(); | 
|  | raw_tag = get_next_completion(h, q); | 
|  | while (raw_tag != FIFO_EMPTY) { | 
|  | if (likely(hpsa_tag_contains_index(raw_tag))) | 
|  | process_indexed_cmd(h, raw_tag); | 
|  | else | 
|  | process_nonindexed_cmd(h, raw_tag); | 
|  | raw_tag = next_command(h, q); | 
|  | } | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* Send a message CDB to the firmware. Careful, this only works | 
|  | * in simple mode, not performant mode due to the tag lookup. | 
|  | * We only ever use this immediately after a controller reset. | 
|  | */ | 
|  | static int hpsa_message(struct pci_dev *pdev, unsigned char opcode, | 
|  | unsigned char type) | 
|  | { | 
|  | struct Command { | 
|  | struct CommandListHeader CommandHeader; | 
|  | struct RequestBlock Request; | 
|  | struct ErrDescriptor ErrorDescriptor; | 
|  | }; | 
|  | struct Command *cmd; | 
|  | static const size_t cmd_sz = sizeof(*cmd) + | 
|  | sizeof(cmd->ErrorDescriptor); | 
|  | dma_addr_t paddr64; | 
|  | uint32_t paddr32, tag; | 
|  | void __iomem *vaddr; | 
|  | int i, err; | 
|  |  | 
|  | vaddr = pci_ioremap_bar(pdev, 0); | 
|  | if (vaddr == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* The Inbound Post Queue only accepts 32-bit physical addresses for the | 
|  | * CCISS commands, so they must be allocated from the lower 4GiB of | 
|  | * memory. | 
|  | */ | 
|  | err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); | 
|  | if (err) { | 
|  | iounmap(vaddr); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64); | 
|  | if (cmd == NULL) { | 
|  | iounmap(vaddr); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* This must fit, because of the 32-bit consistent DMA mask.  Also, | 
|  | * although there's no guarantee, we assume that the address is at | 
|  | * least 4-byte aligned (most likely, it's page-aligned). | 
|  | */ | 
|  | paddr32 = paddr64; | 
|  |  | 
|  | cmd->CommandHeader.ReplyQueue = 0; | 
|  | cmd->CommandHeader.SGList = 0; | 
|  | cmd->CommandHeader.SGTotal = cpu_to_le16(0); | 
|  | cmd->CommandHeader.tag = paddr32; | 
|  | memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); | 
|  |  | 
|  | cmd->Request.CDBLen = 16; | 
|  | cmd->Request.type_attr_dir = | 
|  | TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE); | 
|  | cmd->Request.Timeout = 0; /* Don't time out */ | 
|  | cmd->Request.CDB[0] = opcode; | 
|  | cmd->Request.CDB[1] = type; | 
|  | memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */ | 
|  | cmd->ErrorDescriptor.Addr = | 
|  | cpu_to_le64((paddr32 + sizeof(*cmd))); | 
|  | cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo)); | 
|  |  | 
|  | writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET); | 
|  |  | 
|  | for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) { | 
|  | tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); | 
|  | if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32) | 
|  | break; | 
|  | msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS); | 
|  | } | 
|  |  | 
|  | iounmap(vaddr); | 
|  |  | 
|  | /* we leak the DMA buffer here ... no choice since the controller could | 
|  | *  still complete the command. | 
|  | */ | 
|  | if (i == HPSA_MSG_SEND_RETRY_LIMIT) { | 
|  | dev_err(&pdev->dev, "controller message %02x:%02x timed out\n", | 
|  | opcode, type); | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | pci_free_consistent(pdev, cmd_sz, cmd, paddr64); | 
|  |  | 
|  | if (tag & HPSA_ERROR_BIT) { | 
|  | dev_err(&pdev->dev, "controller message %02x:%02x failed\n", | 
|  | opcode, type); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", | 
|  | opcode, type); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define hpsa_noop(p) hpsa_message(p, 3, 0) | 
|  |  | 
|  | static int hpsa_controller_hard_reset(struct pci_dev *pdev, | 
|  | void __iomem *vaddr, u32 use_doorbell) | 
|  | { | 
|  | u16 pmcsr; | 
|  | int pos; | 
|  |  | 
|  | if (use_doorbell) { | 
|  | /* For everything after the P600, the PCI power state method | 
|  | * of resetting the controller doesn't work, so we have this | 
|  | * other way using the doorbell register. | 
|  | */ | 
|  | dev_info(&pdev->dev, "using doorbell to reset controller\n"); | 
|  | writel(use_doorbell, vaddr + SA5_DOORBELL); | 
|  |  | 
|  | /* PMC hardware guys tell us we need a 10 second delay after | 
|  | * doorbell reset and before any attempt to talk to the board | 
|  | * at all to ensure that this actually works and doesn't fall | 
|  | * over in some weird corner cases. | 
|  | */ | 
|  | msleep(10000); | 
|  | } else { /* Try to do it the PCI power state way */ | 
|  |  | 
|  | /* Quoting from the Open CISS Specification: "The Power | 
|  | * Management Control/Status Register (CSR) controls the power | 
|  | * state of the device.  The normal operating state is D0, | 
|  | * CSR=00h.  The software off state is D3, CSR=03h.  To reset | 
|  | * the controller, place the interface device in D3 then to D0, | 
|  | * this causes a secondary PCI reset which will reset the | 
|  | * controller." */ | 
|  |  | 
|  | pos = pci_find_capability(pdev, PCI_CAP_ID_PM); | 
|  | if (pos == 0) { | 
|  | dev_err(&pdev->dev, | 
|  | "hpsa_reset_controller: " | 
|  | "PCI PM not supported\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | dev_info(&pdev->dev, "using PCI PM to reset controller\n"); | 
|  | /* enter the D3hot power management state */ | 
|  | pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr); | 
|  | pmcsr &= ~PCI_PM_CTRL_STATE_MASK; | 
|  | pmcsr |= PCI_D3hot; | 
|  | pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); | 
|  |  | 
|  | msleep(500); | 
|  |  | 
|  | /* enter the D0 power management state */ | 
|  | pmcsr &= ~PCI_PM_CTRL_STATE_MASK; | 
|  | pmcsr |= PCI_D0; | 
|  | pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); | 
|  |  | 
|  | /* | 
|  | * The P600 requires a small delay when changing states. | 
|  | * Otherwise we may think the board did not reset and we bail. | 
|  | * This for kdump only and is particular to the P600. | 
|  | */ | 
|  | msleep(500); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void init_driver_version(char *driver_version, int len) | 
|  | { | 
|  | memset(driver_version, 0, len); | 
|  | strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1); | 
|  | } | 
|  |  | 
|  | static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable) | 
|  | { | 
|  | char *driver_version; | 
|  | int i, size = sizeof(cfgtable->driver_version); | 
|  |  | 
|  | driver_version = kmalloc(size, GFP_KERNEL); | 
|  | if (!driver_version) | 
|  | return -ENOMEM; | 
|  |  | 
|  | init_driver_version(driver_version, size); | 
|  | for (i = 0; i < size; i++) | 
|  | writeb(driver_version[i], &cfgtable->driver_version[i]); | 
|  | kfree(driver_version); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable, | 
|  | unsigned char *driver_ver) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < sizeof(cfgtable->driver_version); i++) | 
|  | driver_ver[i] = readb(&cfgtable->driver_version[i]); | 
|  | } | 
|  |  | 
|  | static int controller_reset_failed(struct CfgTable __iomem *cfgtable) | 
|  | { | 
|  |  | 
|  | char *driver_ver, *old_driver_ver; | 
|  | int rc, size = sizeof(cfgtable->driver_version); | 
|  |  | 
|  | old_driver_ver = kmalloc(2 * size, GFP_KERNEL); | 
|  | if (!old_driver_ver) | 
|  | return -ENOMEM; | 
|  | driver_ver = old_driver_ver + size; | 
|  |  | 
|  | /* After a reset, the 32 bytes of "driver version" in the cfgtable | 
|  | * should have been changed, otherwise we know the reset failed. | 
|  | */ | 
|  | init_driver_version(old_driver_ver, size); | 
|  | read_driver_ver_from_cfgtable(cfgtable, driver_ver); | 
|  | rc = !memcmp(driver_ver, old_driver_ver, size); | 
|  | kfree(old_driver_ver); | 
|  | return rc; | 
|  | } | 
|  | /* This does a hard reset of the controller using PCI power management | 
|  | * states or the using the doorbell register. | 
|  | */ | 
|  | static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev) | 
|  | { | 
|  | u64 cfg_offset; | 
|  | u32 cfg_base_addr; | 
|  | u64 cfg_base_addr_index; | 
|  | void __iomem *vaddr; | 
|  | unsigned long paddr; | 
|  | u32 misc_fw_support; | 
|  | int rc; | 
|  | struct CfgTable __iomem *cfgtable; | 
|  | u32 use_doorbell; | 
|  | u32 board_id; | 
|  | u16 command_register; | 
|  |  | 
|  | /* For controllers as old as the P600, this is very nearly | 
|  | * the same thing as | 
|  | * | 
|  | * pci_save_state(pci_dev); | 
|  | * pci_set_power_state(pci_dev, PCI_D3hot); | 
|  | * pci_set_power_state(pci_dev, PCI_D0); | 
|  | * pci_restore_state(pci_dev); | 
|  | * | 
|  | * For controllers newer than the P600, the pci power state | 
|  | * method of resetting doesn't work so we have another way | 
|  | * using the doorbell register. | 
|  | */ | 
|  |  | 
|  | rc = hpsa_lookup_board_id(pdev, &board_id); | 
|  | if (rc < 0 || !ctlr_is_resettable(board_id)) { | 
|  | dev_warn(&pdev->dev, "Not resetting device.\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* if controller is soft- but not hard resettable... */ | 
|  | if (!ctlr_is_hard_resettable(board_id)) | 
|  | return -ENOTSUPP; /* try soft reset later. */ | 
|  |  | 
|  | /* Save the PCI command register */ | 
|  | pci_read_config_word(pdev, 4, &command_register); | 
|  | pci_save_state(pdev); | 
|  |  | 
|  | /* find the first memory BAR, so we can find the cfg table */ | 
|  | rc = hpsa_pci_find_memory_BAR(pdev, &paddr); | 
|  | if (rc) | 
|  | return rc; | 
|  | vaddr = remap_pci_mem(paddr, 0x250); | 
|  | if (!vaddr) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* find cfgtable in order to check if reset via doorbell is supported */ | 
|  | rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr, | 
|  | &cfg_base_addr_index, &cfg_offset); | 
|  | if (rc) | 
|  | goto unmap_vaddr; | 
|  | cfgtable = remap_pci_mem(pci_resource_start(pdev, | 
|  | cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable)); | 
|  | if (!cfgtable) { | 
|  | rc = -ENOMEM; | 
|  | goto unmap_vaddr; | 
|  | } | 
|  | rc = write_driver_ver_to_cfgtable(cfgtable); | 
|  | if (rc) | 
|  | goto unmap_vaddr; | 
|  |  | 
|  | /* If reset via doorbell register is supported, use that. | 
|  | * There are two such methods.  Favor the newest method. | 
|  | */ | 
|  | misc_fw_support = readl(&cfgtable->misc_fw_support); | 
|  | use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2; | 
|  | if (use_doorbell) { | 
|  | use_doorbell = DOORBELL_CTLR_RESET2; | 
|  | } else { | 
|  | use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET; | 
|  | if (use_doorbell) { | 
|  | dev_warn(&pdev->dev, "Soft reset not supported. " | 
|  | "Firmware update is required.\n"); | 
|  | rc = -ENOTSUPP; /* try soft reset */ | 
|  | goto unmap_cfgtable; | 
|  | } | 
|  | } | 
|  |  | 
|  | rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell); | 
|  | if (rc) | 
|  | goto unmap_cfgtable; | 
|  |  | 
|  | pci_restore_state(pdev); | 
|  | pci_write_config_word(pdev, 4, command_register); | 
|  |  | 
|  | /* Some devices (notably the HP Smart Array 5i Controller) | 
|  | need a little pause here */ | 
|  | msleep(HPSA_POST_RESET_PAUSE_MSECS); | 
|  |  | 
|  | rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY); | 
|  | if (rc) { | 
|  | dev_warn(&pdev->dev, | 
|  | "failed waiting for board to become ready " | 
|  | "after hard reset\n"); | 
|  | goto unmap_cfgtable; | 
|  | } | 
|  |  | 
|  | rc = controller_reset_failed(vaddr); | 
|  | if (rc < 0) | 
|  | goto unmap_cfgtable; | 
|  | if (rc) { | 
|  | dev_warn(&pdev->dev, "Unable to successfully reset " | 
|  | "controller. Will try soft reset.\n"); | 
|  | rc = -ENOTSUPP; | 
|  | } else { | 
|  | dev_info(&pdev->dev, "board ready after hard reset.\n"); | 
|  | } | 
|  |  | 
|  | unmap_cfgtable: | 
|  | iounmap(cfgtable); | 
|  |  | 
|  | unmap_vaddr: | 
|  | iounmap(vaddr); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  We cannot read the structure directly, for portability we must use | 
|  | *   the io functions. | 
|  | *   This is for debug only. | 
|  | */ | 
|  | static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb) | 
|  | { | 
|  | #ifdef HPSA_DEBUG | 
|  | int i; | 
|  | char temp_name[17]; | 
|  |  | 
|  | dev_info(dev, "Controller Configuration information\n"); | 
|  | dev_info(dev, "------------------------------------\n"); | 
|  | for (i = 0; i < 4; i++) | 
|  | temp_name[i] = readb(&(tb->Signature[i])); | 
|  | temp_name[4] = '\0'; | 
|  | dev_info(dev, "   Signature = %s\n", temp_name); | 
|  | dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence))); | 
|  | dev_info(dev, "   Transport methods supported = 0x%x\n", | 
|  | readl(&(tb->TransportSupport))); | 
|  | dev_info(dev, "   Transport methods active = 0x%x\n", | 
|  | readl(&(tb->TransportActive))); | 
|  | dev_info(dev, "   Requested transport Method = 0x%x\n", | 
|  | readl(&(tb->HostWrite.TransportRequest))); | 
|  | dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n", | 
|  | readl(&(tb->HostWrite.CoalIntDelay))); | 
|  | dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n", | 
|  | readl(&(tb->HostWrite.CoalIntCount))); | 
|  | dev_info(dev, "   Max outstanding commands = 0x%d\n", | 
|  | readl(&(tb->CmdsOutMax))); | 
|  | dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes))); | 
|  | for (i = 0; i < 16; i++) | 
|  | temp_name[i] = readb(&(tb->ServerName[i])); | 
|  | temp_name[16] = '\0'; | 
|  | dev_info(dev, "   Server Name = %s\n", temp_name); | 
|  | dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n", | 
|  | readl(&(tb->HeartBeat))); | 
|  | #endif				/* HPSA_DEBUG */ | 
|  | } | 
|  |  | 
|  | static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) | 
|  | { | 
|  | int i, offset, mem_type, bar_type; | 
|  |  | 
|  | if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */ | 
|  | return 0; | 
|  | offset = 0; | 
|  | for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { | 
|  | bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; | 
|  | if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) | 
|  | offset += 4; | 
|  | else { | 
|  | mem_type = pci_resource_flags(pdev, i) & | 
|  | PCI_BASE_ADDRESS_MEM_TYPE_MASK; | 
|  | switch (mem_type) { | 
|  | case PCI_BASE_ADDRESS_MEM_TYPE_32: | 
|  | case PCI_BASE_ADDRESS_MEM_TYPE_1M: | 
|  | offset += 4;	/* 32 bit */ | 
|  | break; | 
|  | case PCI_BASE_ADDRESS_MEM_TYPE_64: | 
|  | offset += 8; | 
|  | break; | 
|  | default:	/* reserved in PCI 2.2 */ | 
|  | dev_warn(&pdev->dev, | 
|  | "base address is invalid\n"); | 
|  | return -1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) | 
|  | return i + 1; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* If MSI/MSI-X is supported by the kernel we will try to enable it on | 
|  | * controllers that are capable. If not, we use IO-APIC mode. | 
|  | */ | 
|  |  | 
|  | static void hpsa_interrupt_mode(struct ctlr_info *h) | 
|  | { | 
|  | #ifdef CONFIG_PCI_MSI | 
|  | int err, i; | 
|  | struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES]; | 
|  |  | 
|  | for (i = 0; i < MAX_REPLY_QUEUES; i++) { | 
|  | hpsa_msix_entries[i].vector = 0; | 
|  | hpsa_msix_entries[i].entry = i; | 
|  | } | 
|  |  | 
|  | /* Some boards advertise MSI but don't really support it */ | 
|  | if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) || | 
|  | (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11)) | 
|  | goto default_int_mode; | 
|  | if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) { | 
|  | dev_info(&h->pdev->dev, "MSIX\n"); | 
|  | h->msix_vector = MAX_REPLY_QUEUES; | 
|  | if (h->msix_vector > num_online_cpus()) | 
|  | h->msix_vector = num_online_cpus(); | 
|  | err = pci_enable_msix_range(h->pdev, hpsa_msix_entries, | 
|  | 1, h->msix_vector); | 
|  | if (err < 0) { | 
|  | dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err); | 
|  | h->msix_vector = 0; | 
|  | goto single_msi_mode; | 
|  | } else if (err < h->msix_vector) { | 
|  | dev_warn(&h->pdev->dev, "only %d MSI-X vectors " | 
|  | "available\n", err); | 
|  | } | 
|  | h->msix_vector = err; | 
|  | for (i = 0; i < h->msix_vector; i++) | 
|  | h->intr[i] = hpsa_msix_entries[i].vector; | 
|  | return; | 
|  | } | 
|  | single_msi_mode: | 
|  | if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) { | 
|  | dev_info(&h->pdev->dev, "MSI\n"); | 
|  | if (!pci_enable_msi(h->pdev)) | 
|  | h->msi_vector = 1; | 
|  | else | 
|  | dev_warn(&h->pdev->dev, "MSI init failed\n"); | 
|  | } | 
|  | default_int_mode: | 
|  | #endif				/* CONFIG_PCI_MSI */ | 
|  | /* if we get here we're going to use the default interrupt mode */ | 
|  | h->intr[h->intr_mode] = h->pdev->irq; | 
|  | } | 
|  |  | 
|  | static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id) | 
|  | { | 
|  | int i; | 
|  | u32 subsystem_vendor_id, subsystem_device_id; | 
|  |  | 
|  | subsystem_vendor_id = pdev->subsystem_vendor; | 
|  | subsystem_device_id = pdev->subsystem_device; | 
|  | *board_id = ((subsystem_device_id << 16) & 0xffff0000) | | 
|  | subsystem_vendor_id; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(products); i++) | 
|  | if (*board_id == products[i].board_id) | 
|  | return i; | 
|  |  | 
|  | if ((subsystem_vendor_id != PCI_VENDOR_ID_HP && | 
|  | subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) || | 
|  | !hpsa_allow_any) { | 
|  | dev_warn(&pdev->dev, "unrecognized board ID: " | 
|  | "0x%08x, ignoring.\n", *board_id); | 
|  | return -ENODEV; | 
|  | } | 
|  | return ARRAY_SIZE(products) - 1; /* generic unknown smart array */ | 
|  | } | 
|  |  | 
|  | static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev, | 
|  | unsigned long *memory_bar) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) | 
|  | if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) { | 
|  | /* addressing mode bits already removed */ | 
|  | *memory_bar = pci_resource_start(pdev, i); | 
|  | dev_dbg(&pdev->dev, "memory BAR = %lx\n", | 
|  | *memory_bar); | 
|  | return 0; | 
|  | } | 
|  | dev_warn(&pdev->dev, "no memory BAR found\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr, | 
|  | int wait_for_ready) | 
|  | { | 
|  | int i, iterations; | 
|  | u32 scratchpad; | 
|  | if (wait_for_ready) | 
|  | iterations = HPSA_BOARD_READY_ITERATIONS; | 
|  | else | 
|  | iterations = HPSA_BOARD_NOT_READY_ITERATIONS; | 
|  |  | 
|  | for (i = 0; i < iterations; i++) { | 
|  | scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET); | 
|  | if (wait_for_ready) { | 
|  | if (scratchpad == HPSA_FIRMWARE_READY) | 
|  | return 0; | 
|  | } else { | 
|  | if (scratchpad != HPSA_FIRMWARE_READY) | 
|  | return 0; | 
|  | } | 
|  | msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS); | 
|  | } | 
|  | dev_warn(&pdev->dev, "board not ready, timed out.\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr, | 
|  | u32 *cfg_base_addr, u64 *cfg_base_addr_index, | 
|  | u64 *cfg_offset) | 
|  | { | 
|  | *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET); | 
|  | *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET); | 
|  | *cfg_base_addr &= (u32) 0x0000ffff; | 
|  | *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr); | 
|  | if (*cfg_base_addr_index == -1) { | 
|  | dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int hpsa_find_cfgtables(struct ctlr_info *h) | 
|  | { | 
|  | u64 cfg_offset; | 
|  | u32 cfg_base_addr; | 
|  | u64 cfg_base_addr_index; | 
|  | u32 trans_offset; | 
|  | int rc; | 
|  |  | 
|  | rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, | 
|  | &cfg_base_addr_index, &cfg_offset); | 
|  | if (rc) | 
|  | return rc; | 
|  | h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev, | 
|  | cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable)); | 
|  | if (!h->cfgtable) | 
|  | return -ENOMEM; | 
|  | rc = write_driver_ver_to_cfgtable(h->cfgtable); | 
|  | if (rc) | 
|  | return rc; | 
|  | /* Find performant mode table. */ | 
|  | trans_offset = readl(&h->cfgtable->TransMethodOffset); | 
|  | h->transtable = remap_pci_mem(pci_resource_start(h->pdev, | 
|  | cfg_base_addr_index)+cfg_offset+trans_offset, | 
|  | sizeof(*h->transtable)); | 
|  | if (!h->transtable) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h) | 
|  | { | 
|  | h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands)); | 
|  |  | 
|  | /* Limit commands in memory limited kdump scenario. */ | 
|  | if (reset_devices && h->max_commands > 32) | 
|  | h->max_commands = 32; | 
|  |  | 
|  | if (h->max_commands < 16) { | 
|  | dev_warn(&h->pdev->dev, "Controller reports " | 
|  | "max supported commands of %d, an obvious lie. " | 
|  | "Using 16.  Ensure that firmware is up to date.\n", | 
|  | h->max_commands); | 
|  | h->max_commands = 16; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Interrogate the hardware for some limits: | 
|  | * max commands, max SG elements without chaining, and with chaining, | 
|  | * SG chain block size, etc. | 
|  | */ | 
|  | static void hpsa_find_board_params(struct ctlr_info *h) | 
|  | { | 
|  | hpsa_get_max_perf_mode_cmds(h); | 
|  | h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */ | 
|  | h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements)); | 
|  | h->fw_support = readl(&(h->cfgtable->misc_fw_support)); | 
|  | /* | 
|  | * Limit in-command s/g elements to 32 save dma'able memory. | 
|  | * Howvever spec says if 0, use 31 | 
|  | */ | 
|  | h->max_cmd_sg_entries = 31; | 
|  | if (h->maxsgentries > 512) { | 
|  | h->max_cmd_sg_entries = 32; | 
|  | h->chainsize = h->maxsgentries - h->max_cmd_sg_entries; | 
|  | h->maxsgentries--; /* save one for chain pointer */ | 
|  | } else { | 
|  | h->chainsize = 0; | 
|  | h->maxsgentries = 31; /* default to traditional values */ | 
|  | } | 
|  |  | 
|  | /* Find out what task management functions are supported and cache */ | 
|  | h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags)); | 
|  | if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags)) | 
|  | dev_warn(&h->pdev->dev, "Physical aborts not supported\n"); | 
|  | if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags)) | 
|  | dev_warn(&h->pdev->dev, "Logical aborts not supported\n"); | 
|  | } | 
|  |  | 
|  | static inline bool hpsa_CISS_signature_present(struct ctlr_info *h) | 
|  | { | 
|  | if (!check_signature(h->cfgtable->Signature, "CISS", 4)) { | 
|  | dev_warn(&h->pdev->dev, "not a valid CISS config table\n"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static inline void hpsa_set_driver_support_bits(struct ctlr_info *h) | 
|  | { | 
|  | u32 driver_support; | 
|  |  | 
|  | driver_support = readl(&(h->cfgtable->driver_support)); | 
|  | /* Need to enable prefetch in the SCSI core for 6400 in x86 */ | 
|  | #ifdef CONFIG_X86 | 
|  | driver_support |= ENABLE_SCSI_PREFETCH; | 
|  | #endif | 
|  | driver_support |= ENABLE_UNIT_ATTN; | 
|  | writel(driver_support, &(h->cfgtable->driver_support)); | 
|  | } | 
|  |  | 
|  | /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result | 
|  | * in a prefetch beyond physical memory. | 
|  | */ | 
|  | static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h) | 
|  | { | 
|  | u32 dma_prefetch; | 
|  |  | 
|  | if (h->board_id != 0x3225103C) | 
|  | return; | 
|  | dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); | 
|  | dma_prefetch |= 0x8000; | 
|  | writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); | 
|  | } | 
|  |  | 
|  | static void hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h) | 
|  | { | 
|  | int i; | 
|  | u32 doorbell_value; | 
|  | unsigned long flags; | 
|  | /* wait until the clear_event_notify bit 6 is cleared by controller. */ | 
|  | for (i = 0; i < MAX_CONFIG_WAIT; i++) { | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | doorbell_value = readl(h->vaddr + SA5_DOORBELL); | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | if (!(doorbell_value & DOORBELL_CLEAR_EVENTS)) | 
|  | break; | 
|  | /* delay and try again */ | 
|  | msleep(20); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h) | 
|  | { | 
|  | int i; | 
|  | u32 doorbell_value; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* under certain very rare conditions, this can take awhile. | 
|  | * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right | 
|  | * as we enter this code.) | 
|  | */ | 
|  | for (i = 0; i < MAX_CONFIG_WAIT; i++) { | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | doorbell_value = readl(h->vaddr + SA5_DOORBELL); | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | if (!(doorbell_value & CFGTBL_ChangeReq)) | 
|  | break; | 
|  | /* delay and try again */ | 
|  | usleep_range(10000, 20000); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int hpsa_enter_simple_mode(struct ctlr_info *h) | 
|  | { | 
|  | u32 trans_support; | 
|  |  | 
|  | trans_support = readl(&(h->cfgtable->TransportSupport)); | 
|  | if (!(trans_support & SIMPLE_MODE)) | 
|  | return -ENOTSUPP; | 
|  |  | 
|  | h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); | 
|  |  | 
|  | /* Update the field, and then ring the doorbell */ | 
|  | writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest)); | 
|  | writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi); | 
|  | writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); | 
|  | hpsa_wait_for_mode_change_ack(h); | 
|  | print_cfg_table(&h->pdev->dev, h->cfgtable); | 
|  | if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) | 
|  | goto error; | 
|  | h->transMethod = CFGTBL_Trans_Simple; | 
|  | return 0; | 
|  | error: | 
|  | dev_warn(&h->pdev->dev, "unable to get board into simple mode\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | static int hpsa_pci_init(struct ctlr_info *h) | 
|  | { | 
|  | int prod_index, err; | 
|  |  | 
|  | prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id); | 
|  | if (prod_index < 0) | 
|  | return -ENODEV; | 
|  | h->product_name = products[prod_index].product_name; | 
|  | h->access = *(products[prod_index].access); | 
|  |  | 
|  | pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S | | 
|  | PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM); | 
|  |  | 
|  | err = pci_enable_device(h->pdev); | 
|  | if (err) { | 
|  | dev_warn(&h->pdev->dev, "unable to enable PCI device\n"); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | err = pci_request_regions(h->pdev, HPSA); | 
|  | if (err) { | 
|  | dev_err(&h->pdev->dev, | 
|  | "cannot obtain PCI resources, aborting\n"); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | pci_set_master(h->pdev); | 
|  |  | 
|  | hpsa_interrupt_mode(h); | 
|  | err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr); | 
|  | if (err) | 
|  | goto err_out_free_res; | 
|  | h->vaddr = remap_pci_mem(h->paddr, 0x250); | 
|  | if (!h->vaddr) { | 
|  | err = -ENOMEM; | 
|  | goto err_out_free_res; | 
|  | } | 
|  | err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY); | 
|  | if (err) | 
|  | goto err_out_free_res; | 
|  | err = hpsa_find_cfgtables(h); | 
|  | if (err) | 
|  | goto err_out_free_res; | 
|  | hpsa_find_board_params(h); | 
|  |  | 
|  | if (!hpsa_CISS_signature_present(h)) { | 
|  | err = -ENODEV; | 
|  | goto err_out_free_res; | 
|  | } | 
|  | hpsa_set_driver_support_bits(h); | 
|  | hpsa_p600_dma_prefetch_quirk(h); | 
|  | err = hpsa_enter_simple_mode(h); | 
|  | if (err) | 
|  | goto err_out_free_res; | 
|  | return 0; | 
|  |  | 
|  | err_out_free_res: | 
|  | if (h->transtable) | 
|  | iounmap(h->transtable); | 
|  | if (h->cfgtable) | 
|  | iounmap(h->cfgtable); | 
|  | if (h->vaddr) | 
|  | iounmap(h->vaddr); | 
|  | pci_disable_device(h->pdev); | 
|  | pci_release_regions(h->pdev); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void hpsa_hba_inquiry(struct ctlr_info *h) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | #define HBA_INQUIRY_BYTE_COUNT 64 | 
|  | h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL); | 
|  | if (!h->hba_inquiry_data) | 
|  | return; | 
|  | rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0, | 
|  | h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT); | 
|  | if (rc != 0) { | 
|  | kfree(h->hba_inquiry_data); | 
|  | h->hba_inquiry_data = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int hpsa_init_reset_devices(struct pci_dev *pdev) | 
|  | { | 
|  | int rc, i; | 
|  |  | 
|  | if (!reset_devices) | 
|  | return 0; | 
|  |  | 
|  | /* kdump kernel is loading, we don't know in which state is | 
|  | * the pci interface. The dev->enable_cnt is equal zero | 
|  | * so we call enable+disable, wait a while and switch it on. | 
|  | */ | 
|  | rc = pci_enable_device(pdev); | 
|  | if (rc) { | 
|  | dev_warn(&pdev->dev, "Failed to enable PCI device\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | pci_disable_device(pdev); | 
|  | msleep(260);			/* a randomly chosen number */ | 
|  | rc = pci_enable_device(pdev); | 
|  | if (rc) { | 
|  | dev_warn(&pdev->dev, "failed to enable device.\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | pci_set_master(pdev); | 
|  |  | 
|  | /* Reset the controller with a PCI power-cycle or via doorbell */ | 
|  | rc = hpsa_kdump_hard_reset_controller(pdev); | 
|  |  | 
|  | /* -ENOTSUPP here means we cannot reset the controller | 
|  | * but it's already (and still) up and running in | 
|  | * "performant mode".  Or, it might be 640x, which can't reset | 
|  | * due to concerns about shared bbwc between 6402/6404 pair. | 
|  | */ | 
|  | if (rc) { | 
|  | if (rc != -ENOTSUPP) /* just try to do the kdump anyhow. */ | 
|  | rc = -ENODEV; | 
|  | goto out_disable; | 
|  | } | 
|  |  | 
|  | /* Now try to get the controller to respond to a no-op */ | 
|  | dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n"); | 
|  | for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) { | 
|  | if (hpsa_noop(pdev) == 0) | 
|  | break; | 
|  | else | 
|  | dev_warn(&pdev->dev, "no-op failed%s\n", | 
|  | (i < 11 ? "; re-trying" : "")); | 
|  | } | 
|  |  | 
|  | out_disable: | 
|  |  | 
|  | pci_disable_device(pdev); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int hpsa_allocate_cmd_pool(struct ctlr_info *h) | 
|  | { | 
|  | h->cmd_pool_bits = kzalloc( | 
|  | DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) * | 
|  | sizeof(unsigned long), GFP_KERNEL); | 
|  | h->cmd_pool = pci_alloc_consistent(h->pdev, | 
|  | h->nr_cmds * sizeof(*h->cmd_pool), | 
|  | &(h->cmd_pool_dhandle)); | 
|  | h->errinfo_pool = pci_alloc_consistent(h->pdev, | 
|  | h->nr_cmds * sizeof(*h->errinfo_pool), | 
|  | &(h->errinfo_pool_dhandle)); | 
|  | if ((h->cmd_pool_bits == NULL) | 
|  | || (h->cmd_pool == NULL) | 
|  | || (h->errinfo_pool == NULL)) { | 
|  | dev_err(&h->pdev->dev, "out of memory in %s", __func__); | 
|  | return -ENOMEM; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void hpsa_free_cmd_pool(struct ctlr_info *h) | 
|  | { | 
|  | kfree(h->cmd_pool_bits); | 
|  | if (h->cmd_pool) | 
|  | pci_free_consistent(h->pdev, | 
|  | h->nr_cmds * sizeof(struct CommandList), | 
|  | h->cmd_pool, h->cmd_pool_dhandle); | 
|  | if (h->ioaccel2_cmd_pool) | 
|  | pci_free_consistent(h->pdev, | 
|  | h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), | 
|  | h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle); | 
|  | if (h->errinfo_pool) | 
|  | pci_free_consistent(h->pdev, | 
|  | h->nr_cmds * sizeof(struct ErrorInfo), | 
|  | h->errinfo_pool, | 
|  | h->errinfo_pool_dhandle); | 
|  | if (h->ioaccel_cmd_pool) | 
|  | pci_free_consistent(h->pdev, | 
|  | h->nr_cmds * sizeof(struct io_accel1_cmd), | 
|  | h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle); | 
|  | } | 
|  |  | 
|  | static void hpsa_irq_affinity_hints(struct ctlr_info *h) | 
|  | { | 
|  | int i, cpu, rc; | 
|  |  | 
|  | cpu = cpumask_first(cpu_online_mask); | 
|  | for (i = 0; i < h->msix_vector; i++) { | 
|  | rc = irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu)); | 
|  | cpu = cpumask_next(cpu, cpu_online_mask); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int hpsa_request_irq(struct ctlr_info *h, | 
|  | irqreturn_t (*msixhandler)(int, void *), | 
|  | irqreturn_t (*intxhandler)(int, void *)) | 
|  | { | 
|  | int rc, i; | 
|  |  | 
|  | /* | 
|  | * initialize h->q[x] = x so that interrupt handlers know which | 
|  | * queue to process. | 
|  | */ | 
|  | for (i = 0; i < MAX_REPLY_QUEUES; i++) | 
|  | h->q[i] = (u8) i; | 
|  |  | 
|  | if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) { | 
|  | /* If performant mode and MSI-X, use multiple reply queues */ | 
|  | for (i = 0; i < h->msix_vector; i++) | 
|  | rc = request_irq(h->intr[i], msixhandler, | 
|  | 0, h->devname, | 
|  | &h->q[i]); | 
|  | hpsa_irq_affinity_hints(h); | 
|  | } else { | 
|  | /* Use single reply pool */ | 
|  | if (h->msix_vector > 0 || h->msi_vector) { | 
|  | rc = request_irq(h->intr[h->intr_mode], | 
|  | msixhandler, 0, h->devname, | 
|  | &h->q[h->intr_mode]); | 
|  | } else { | 
|  | rc = request_irq(h->intr[h->intr_mode], | 
|  | intxhandler, IRQF_SHARED, h->devname, | 
|  | &h->q[h->intr_mode]); | 
|  | } | 
|  | } | 
|  | if (rc) { | 
|  | dev_err(&h->pdev->dev, "unable to get irq %d for %s\n", | 
|  | h->intr[h->intr_mode], h->devname); | 
|  | return -ENODEV; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int hpsa_kdump_soft_reset(struct ctlr_info *h) | 
|  | { | 
|  | if (hpsa_send_host_reset(h, RAID_CTLR_LUNID, | 
|  | HPSA_RESET_TYPE_CONTROLLER)) { | 
|  | dev_warn(&h->pdev->dev, "Resetting array controller failed.\n"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n"); | 
|  | if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) { | 
|  | dev_warn(&h->pdev->dev, "Soft reset had no effect.\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n"); | 
|  | if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) { | 
|  | dev_warn(&h->pdev->dev, "Board failed to become ready " | 
|  | "after soft reset.\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void free_irqs(struct ctlr_info *h) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) { | 
|  | /* Single reply queue, only one irq to free */ | 
|  | i = h->intr_mode; | 
|  | irq_set_affinity_hint(h->intr[i], NULL); | 
|  | free_irq(h->intr[i], &h->q[i]); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < h->msix_vector; i++) { | 
|  | irq_set_affinity_hint(h->intr[i], NULL); | 
|  | free_irq(h->intr[i], &h->q[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h) | 
|  | { | 
|  | free_irqs(h); | 
|  | #ifdef CONFIG_PCI_MSI | 
|  | if (h->msix_vector) { | 
|  | if (h->pdev->msix_enabled) | 
|  | pci_disable_msix(h->pdev); | 
|  | } else if (h->msi_vector) { | 
|  | if (h->pdev->msi_enabled) | 
|  | pci_disable_msi(h->pdev); | 
|  | } | 
|  | #endif /* CONFIG_PCI_MSI */ | 
|  | } | 
|  |  | 
|  | static void hpsa_free_reply_queues(struct ctlr_info *h) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < h->nreply_queues; i++) { | 
|  | if (!h->reply_queue[i].head) | 
|  | continue; | 
|  | pci_free_consistent(h->pdev, h->reply_queue_size, | 
|  | h->reply_queue[i].head, h->reply_queue[i].busaddr); | 
|  | h->reply_queue[i].head = NULL; | 
|  | h->reply_queue[i].busaddr = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h) | 
|  | { | 
|  | hpsa_free_irqs_and_disable_msix(h); | 
|  | hpsa_free_sg_chain_blocks(h); | 
|  | hpsa_free_cmd_pool(h); | 
|  | kfree(h->ioaccel1_blockFetchTable); | 
|  | kfree(h->blockFetchTable); | 
|  | hpsa_free_reply_queues(h); | 
|  | if (h->vaddr) | 
|  | iounmap(h->vaddr); | 
|  | if (h->transtable) | 
|  | iounmap(h->transtable); | 
|  | if (h->cfgtable) | 
|  | iounmap(h->cfgtable); | 
|  | pci_disable_device(h->pdev); | 
|  | pci_release_regions(h->pdev); | 
|  | kfree(h); | 
|  | } | 
|  |  | 
|  | /* Called when controller lockup detected. */ | 
|  | static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list) | 
|  | { | 
|  | struct CommandList *c = NULL; | 
|  |  | 
|  | assert_spin_locked(&h->lock); | 
|  | /* Mark all outstanding commands as failed and complete them. */ | 
|  | while (!list_empty(list)) { | 
|  | c = list_entry(list->next, struct CommandList, list); | 
|  | c->err_info->CommandStatus = CMD_HARDWARE_ERR; | 
|  | finish_cmd(c); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value) | 
|  | { | 
|  | int i, cpu; | 
|  |  | 
|  | cpu = cpumask_first(cpu_online_mask); | 
|  | for (i = 0; i < num_online_cpus(); i++) { | 
|  | u32 *lockup_detected; | 
|  | lockup_detected = per_cpu_ptr(h->lockup_detected, cpu); | 
|  | *lockup_detected = value; | 
|  | cpu = cpumask_next(cpu, cpu_online_mask); | 
|  | } | 
|  | wmb(); /* be sure the per-cpu variables are out to memory */ | 
|  | } | 
|  |  | 
|  | static void controller_lockup_detected(struct ctlr_info *h) | 
|  | { | 
|  | unsigned long flags; | 
|  | u32 lockup_detected; | 
|  |  | 
|  | h->access.set_intr_mask(h, HPSA_INTR_OFF); | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET); | 
|  | if (!lockup_detected) { | 
|  | /* no heartbeat, but controller gave us a zero. */ | 
|  | dev_warn(&h->pdev->dev, | 
|  | "lockup detected but scratchpad register is zero\n"); | 
|  | lockup_detected = 0xffffffff; | 
|  | } | 
|  | set_lockup_detected_for_all_cpus(h, lockup_detected); | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n", | 
|  | lockup_detected); | 
|  | pci_disable_device(h->pdev); | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | fail_all_cmds_on_list(h, &h->cmpQ); | 
|  | fail_all_cmds_on_list(h, &h->reqQ); | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | } | 
|  |  | 
|  | static void detect_controller_lockup(struct ctlr_info *h) | 
|  | { | 
|  | u64 now; | 
|  | u32 heartbeat; | 
|  | unsigned long flags; | 
|  |  | 
|  | now = get_jiffies_64(); | 
|  | /* If we've received an interrupt recently, we're ok. */ | 
|  | if (time_after64(h->last_intr_timestamp + | 
|  | (h->heartbeat_sample_interval), now)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If we've already checked the heartbeat recently, we're ok. | 
|  | * This could happen if someone sends us a signal. We | 
|  | * otherwise don't care about signals in this thread. | 
|  | */ | 
|  | if (time_after64(h->last_heartbeat_timestamp + | 
|  | (h->heartbeat_sample_interval), now)) | 
|  | return; | 
|  |  | 
|  | /* If heartbeat has not changed since we last looked, we're not ok. */ | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | heartbeat = readl(&h->cfgtable->HeartBeat); | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | if (h->last_heartbeat == heartbeat) { | 
|  | controller_lockup_detected(h); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* We're ok. */ | 
|  | h->last_heartbeat = heartbeat; | 
|  | h->last_heartbeat_timestamp = now; | 
|  | } | 
|  |  | 
|  | static void hpsa_ack_ctlr_events(struct ctlr_info *h) | 
|  | { | 
|  | int i; | 
|  | char *event_type; | 
|  |  | 
|  | /* Clear the driver-requested rescan flag */ | 
|  | h->drv_req_rescan = 0; | 
|  |  | 
|  | /* Ask the controller to clear the events we're handling. */ | 
|  | if ((h->transMethod & (CFGTBL_Trans_io_accel1 | 
|  | | CFGTBL_Trans_io_accel2)) && | 
|  | (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE || | 
|  | h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) { | 
|  |  | 
|  | if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE) | 
|  | event_type = "state change"; | 
|  | if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE) | 
|  | event_type = "configuration change"; | 
|  | /* Stop sending new RAID offload reqs via the IO accelerator */ | 
|  | scsi_block_requests(h->scsi_host); | 
|  | for (i = 0; i < h->ndevices; i++) | 
|  | h->dev[i]->offload_enabled = 0; | 
|  | hpsa_drain_accel_commands(h); | 
|  | /* Set 'accelerator path config change' bit */ | 
|  | dev_warn(&h->pdev->dev, | 
|  | "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n", | 
|  | h->events, event_type); | 
|  | writel(h->events, &(h->cfgtable->clear_event_notify)); | 
|  | /* Set the "clear event notify field update" bit 6 */ | 
|  | writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL); | 
|  | /* Wait until ctlr clears 'clear event notify field', bit 6 */ | 
|  | hpsa_wait_for_clear_event_notify_ack(h); | 
|  | scsi_unblock_requests(h->scsi_host); | 
|  | } else { | 
|  | /* Acknowledge controller notification events. */ | 
|  | writel(h->events, &(h->cfgtable->clear_event_notify)); | 
|  | writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL); | 
|  | hpsa_wait_for_clear_event_notify_ack(h); | 
|  | #if 0 | 
|  | writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); | 
|  | hpsa_wait_for_mode_change_ack(h); | 
|  | #endif | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Check a register on the controller to see if there are configuration | 
|  | * changes (added/changed/removed logical drives, etc.) which mean that | 
|  | * we should rescan the controller for devices. | 
|  | * Also check flag for driver-initiated rescan. | 
|  | */ | 
|  | static int hpsa_ctlr_needs_rescan(struct ctlr_info *h) | 
|  | { | 
|  | if (h->drv_req_rescan) | 
|  | return 1; | 
|  |  | 
|  | if (!(h->fw_support & MISC_FW_EVENT_NOTIFY)) | 
|  | return 0; | 
|  |  | 
|  | h->events = readl(&(h->cfgtable->event_notify)); | 
|  | return h->events & RESCAN_REQUIRED_EVENT_BITS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if any of the offline devices have become ready | 
|  | */ | 
|  | static int hpsa_offline_devices_ready(struct ctlr_info *h) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct offline_device_entry *d; | 
|  | struct list_head *this, *tmp; | 
|  |  | 
|  | spin_lock_irqsave(&h->offline_device_lock, flags); | 
|  | list_for_each_safe(this, tmp, &h->offline_device_list) { | 
|  | d = list_entry(this, struct offline_device_entry, | 
|  | offline_list); | 
|  | spin_unlock_irqrestore(&h->offline_device_lock, flags); | 
|  | if (!hpsa_volume_offline(h, d->scsi3addr)) { | 
|  | spin_lock_irqsave(&h->offline_device_lock, flags); | 
|  | list_del(&d->offline_list); | 
|  | spin_unlock_irqrestore(&h->offline_device_lock, flags); | 
|  | return 1; | 
|  | } | 
|  | spin_lock_irqsave(&h->offline_device_lock, flags); | 
|  | } | 
|  | spin_unlock_irqrestore(&h->offline_device_lock, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void hpsa_monitor_ctlr_worker(struct work_struct *work) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct ctlr_info *h = container_of(to_delayed_work(work), | 
|  | struct ctlr_info, monitor_ctlr_work); | 
|  | detect_controller_lockup(h); | 
|  | if (lockup_detected(h)) | 
|  | return; | 
|  |  | 
|  | if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) { | 
|  | scsi_host_get(h->scsi_host); | 
|  | h->drv_req_rescan = 0; | 
|  | hpsa_ack_ctlr_events(h); | 
|  | hpsa_scan_start(h->scsi_host); | 
|  | scsi_host_put(h->scsi_host); | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | if (h->remove_in_progress) { | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | return; | 
|  | } | 
|  | schedule_delayed_work(&h->monitor_ctlr_work, | 
|  | h->heartbeat_sample_interval); | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | } | 
|  |  | 
|  | static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) | 
|  | { | 
|  | int dac, rc; | 
|  | struct ctlr_info *h; | 
|  | int try_soft_reset = 0; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (number_of_controllers == 0) | 
|  | printk(KERN_INFO DRIVER_NAME "\n"); | 
|  |  | 
|  | rc = hpsa_init_reset_devices(pdev); | 
|  | if (rc) { | 
|  | if (rc != -ENOTSUPP) | 
|  | return rc; | 
|  | /* If the reset fails in a particular way (it has no way to do | 
|  | * a proper hard reset, so returns -ENOTSUPP) we can try to do | 
|  | * a soft reset once we get the controller configured up to the | 
|  | * point that it can accept a command. | 
|  | */ | 
|  | try_soft_reset = 1; | 
|  | rc = 0; | 
|  | } | 
|  |  | 
|  | reinit_after_soft_reset: | 
|  |  | 
|  | /* Command structures must be aligned on a 32-byte boundary because | 
|  | * the 5 lower bits of the address are used by the hardware. and by | 
|  | * the driver.  See comments in hpsa.h for more info. | 
|  | */ | 
|  | BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT); | 
|  | h = kzalloc(sizeof(*h), GFP_KERNEL); | 
|  | if (!h) | 
|  | return -ENOMEM; | 
|  |  | 
|  | h->pdev = pdev; | 
|  | h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT; | 
|  | INIT_LIST_HEAD(&h->cmpQ); | 
|  | INIT_LIST_HEAD(&h->reqQ); | 
|  | INIT_LIST_HEAD(&h->offline_device_list); | 
|  | spin_lock_init(&h->lock); | 
|  | spin_lock_init(&h->offline_device_lock); | 
|  | spin_lock_init(&h->scan_lock); | 
|  | spin_lock_init(&h->passthru_count_lock); | 
|  |  | 
|  | /* Allocate and clear per-cpu variable lockup_detected */ | 
|  | h->lockup_detected = alloc_percpu(u32); | 
|  | if (!h->lockup_detected) { | 
|  | rc = -ENOMEM; | 
|  | goto clean1; | 
|  | } | 
|  | set_lockup_detected_for_all_cpus(h, 0); | 
|  |  | 
|  | rc = hpsa_pci_init(h); | 
|  | if (rc != 0) | 
|  | goto clean1; | 
|  |  | 
|  | sprintf(h->devname, HPSA "%d", number_of_controllers); | 
|  | h->ctlr = number_of_controllers; | 
|  | number_of_controllers++; | 
|  |  | 
|  | /* configure PCI DMA stuff */ | 
|  | rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); | 
|  | if (rc == 0) { | 
|  | dac = 1; | 
|  | } else { | 
|  | rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); | 
|  | if (rc == 0) { | 
|  | dac = 0; | 
|  | } else { | 
|  | dev_err(&pdev->dev, "no suitable DMA available\n"); | 
|  | goto clean1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* make sure the board interrupts are off */ | 
|  | h->access.set_intr_mask(h, HPSA_INTR_OFF); | 
|  |  | 
|  | if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx)) | 
|  | goto clean2; | 
|  | dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n", | 
|  | h->devname, pdev->device, | 
|  | h->intr[h->intr_mode], dac ? "" : " not"); | 
|  | if (hpsa_allocate_cmd_pool(h)) | 
|  | goto clean4; | 
|  | if (hpsa_allocate_sg_chain_blocks(h)) | 
|  | goto clean4; | 
|  | init_waitqueue_head(&h->scan_wait_queue); | 
|  | h->scan_finished = 1; /* no scan currently in progress */ | 
|  |  | 
|  | pci_set_drvdata(pdev, h); | 
|  | h->ndevices = 0; | 
|  | h->hba_mode_enabled = 0; | 
|  | h->scsi_host = NULL; | 
|  | spin_lock_init(&h->devlock); | 
|  | hpsa_put_ctlr_into_performant_mode(h); | 
|  |  | 
|  | /* At this point, the controller is ready to take commands. | 
|  | * Now, if reset_devices and the hard reset didn't work, try | 
|  | * the soft reset and see if that works. | 
|  | */ | 
|  | if (try_soft_reset) { | 
|  |  | 
|  | /* This is kind of gross.  We may or may not get a completion | 
|  | * from the soft reset command, and if we do, then the value | 
|  | * from the fifo may or may not be valid.  So, we wait 10 secs | 
|  | * after the reset throwing away any completions we get during | 
|  | * that time.  Unregister the interrupt handler and register | 
|  | * fake ones to scoop up any residual completions. | 
|  | */ | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | h->access.set_intr_mask(h, HPSA_INTR_OFF); | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | free_irqs(h); | 
|  | rc = hpsa_request_irq(h, hpsa_msix_discard_completions, | 
|  | hpsa_intx_discard_completions); | 
|  | if (rc) { | 
|  | dev_warn(&h->pdev->dev, "Failed to request_irq after " | 
|  | "soft reset.\n"); | 
|  | goto clean4; | 
|  | } | 
|  |  | 
|  | rc = hpsa_kdump_soft_reset(h); | 
|  | if (rc) | 
|  | /* Neither hard nor soft reset worked, we're hosed. */ | 
|  | goto clean4; | 
|  |  | 
|  | dev_info(&h->pdev->dev, "Board READY.\n"); | 
|  | dev_info(&h->pdev->dev, | 
|  | "Waiting for stale completions to drain.\n"); | 
|  | h->access.set_intr_mask(h, HPSA_INTR_ON); | 
|  | msleep(10000); | 
|  | h->access.set_intr_mask(h, HPSA_INTR_OFF); | 
|  |  | 
|  | rc = controller_reset_failed(h->cfgtable); | 
|  | if (rc) | 
|  | dev_info(&h->pdev->dev, | 
|  | "Soft reset appears to have failed.\n"); | 
|  |  | 
|  | /* since the controller's reset, we have to go back and re-init | 
|  | * everything.  Easiest to just forget what we've done and do it | 
|  | * all over again. | 
|  | */ | 
|  | hpsa_undo_allocations_after_kdump_soft_reset(h); | 
|  | try_soft_reset = 0; | 
|  | if (rc) | 
|  | /* don't go to clean4, we already unallocated */ | 
|  | return -ENODEV; | 
|  |  | 
|  | goto reinit_after_soft_reset; | 
|  | } | 
|  |  | 
|  | /* Enable Accelerated IO path at driver layer */ | 
|  | h->acciopath_status = 1; | 
|  |  | 
|  | h->drv_req_rescan = 0; | 
|  |  | 
|  | /* Turn the interrupts on so we can service requests */ | 
|  | h->access.set_intr_mask(h, HPSA_INTR_ON); | 
|  |  | 
|  | hpsa_hba_inquiry(h); | 
|  | hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */ | 
|  |  | 
|  | /* Monitor the controller for firmware lockups */ | 
|  | h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL; | 
|  | INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker); | 
|  | schedule_delayed_work(&h->monitor_ctlr_work, | 
|  | h->heartbeat_sample_interval); | 
|  | return 0; | 
|  |  | 
|  | clean4: | 
|  | hpsa_free_sg_chain_blocks(h); | 
|  | hpsa_free_cmd_pool(h); | 
|  | free_irqs(h); | 
|  | clean2: | 
|  | clean1: | 
|  | if (h->lockup_detected) | 
|  | free_percpu(h->lockup_detected); | 
|  | kfree(h); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void hpsa_flush_cache(struct ctlr_info *h) | 
|  | { | 
|  | char *flush_buf; | 
|  | struct CommandList *c; | 
|  |  | 
|  | /* Don't bother trying to flush the cache if locked up */ | 
|  | if (unlikely(lockup_detected(h))) | 
|  | return; | 
|  | flush_buf = kzalloc(4, GFP_KERNEL); | 
|  | if (!flush_buf) | 
|  | return; | 
|  |  | 
|  | c = cmd_special_alloc(h); | 
|  | if (!c) { | 
|  | dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); | 
|  | goto out_of_memory; | 
|  | } | 
|  | if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0, | 
|  | RAID_CTLR_LUNID, TYPE_CMD)) { | 
|  | goto out; | 
|  | } | 
|  | hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE); | 
|  | if (c->err_info->CommandStatus != 0) | 
|  | out: | 
|  | dev_warn(&h->pdev->dev, | 
|  | "error flushing cache on controller\n"); | 
|  | cmd_special_free(h, c); | 
|  | out_of_memory: | 
|  | kfree(flush_buf); | 
|  | } | 
|  |  | 
|  | static void hpsa_shutdown(struct pci_dev *pdev) | 
|  | { | 
|  | struct ctlr_info *h; | 
|  |  | 
|  | h = pci_get_drvdata(pdev); | 
|  | /* Turn board interrupts off  and send the flush cache command | 
|  | * sendcmd will turn off interrupt, and send the flush... | 
|  | * To write all data in the battery backed cache to disks | 
|  | */ | 
|  | hpsa_flush_cache(h); | 
|  | h->access.set_intr_mask(h, HPSA_INTR_OFF); | 
|  | hpsa_free_irqs_and_disable_msix(h); | 
|  | } | 
|  |  | 
|  | static void hpsa_free_device_info(struct ctlr_info *h) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < h->ndevices; i++) | 
|  | kfree(h->dev[i]); | 
|  | } | 
|  |  | 
|  | static void hpsa_remove_one(struct pci_dev *pdev) | 
|  | { | 
|  | struct ctlr_info *h; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (pci_get_drvdata(pdev) == NULL) { | 
|  | dev_err(&pdev->dev, "unable to remove device\n"); | 
|  | return; | 
|  | } | 
|  | h = pci_get_drvdata(pdev); | 
|  |  | 
|  | /* Get rid of any controller monitoring work items */ | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | h->remove_in_progress = 1; | 
|  | cancel_delayed_work(&h->monitor_ctlr_work); | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  |  | 
|  | hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */ | 
|  | hpsa_shutdown(pdev); | 
|  | iounmap(h->vaddr); | 
|  | iounmap(h->transtable); | 
|  | iounmap(h->cfgtable); | 
|  | hpsa_free_device_info(h); | 
|  | hpsa_free_sg_chain_blocks(h); | 
|  | pci_free_consistent(h->pdev, | 
|  | h->nr_cmds * sizeof(struct CommandList), | 
|  | h->cmd_pool, h->cmd_pool_dhandle); | 
|  | pci_free_consistent(h->pdev, | 
|  | h->nr_cmds * sizeof(struct ErrorInfo), | 
|  | h->errinfo_pool, h->errinfo_pool_dhandle); | 
|  | hpsa_free_reply_queues(h); | 
|  | kfree(h->cmd_pool_bits); | 
|  | kfree(h->blockFetchTable); | 
|  | kfree(h->ioaccel1_blockFetchTable); | 
|  | kfree(h->ioaccel2_blockFetchTable); | 
|  | kfree(h->hba_inquiry_data); | 
|  | pci_disable_device(pdev); | 
|  | pci_release_regions(pdev); | 
|  | free_percpu(h->lockup_detected); | 
|  | kfree(h); | 
|  | } | 
|  |  | 
|  | static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev, | 
|  | __attribute__((unused)) pm_message_t state) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | static struct pci_driver hpsa_pci_driver = { | 
|  | .name = HPSA, | 
|  | .probe = hpsa_init_one, | 
|  | .remove = hpsa_remove_one, | 
|  | .id_table = hpsa_pci_device_id,	/* id_table */ | 
|  | .shutdown = hpsa_shutdown, | 
|  | .suspend = hpsa_suspend, | 
|  | .resume = hpsa_resume, | 
|  | }; | 
|  |  | 
|  | /* Fill in bucket_map[], given nsgs (the max number of | 
|  | * scatter gather elements supported) and bucket[], | 
|  | * which is an array of 8 integers.  The bucket[] array | 
|  | * contains 8 different DMA transfer sizes (in 16 | 
|  | * byte increments) which the controller uses to fetch | 
|  | * commands.  This function fills in bucket_map[], which | 
|  | * maps a given number of scatter gather elements to one of | 
|  | * the 8 DMA transfer sizes.  The point of it is to allow the | 
|  | * controller to only do as much DMA as needed to fetch the | 
|  | * command, with the DMA transfer size encoded in the lower | 
|  | * bits of the command address. | 
|  | */ | 
|  | static void  calc_bucket_map(int bucket[], int num_buckets, | 
|  | int nsgs, int min_blocks, int *bucket_map) | 
|  | { | 
|  | int i, j, b, size; | 
|  |  | 
|  | /* Note, bucket_map must have nsgs+1 entries. */ | 
|  | for (i = 0; i <= nsgs; i++) { | 
|  | /* Compute size of a command with i SG entries */ | 
|  | size = i + min_blocks; | 
|  | b = num_buckets; /* Assume the biggest bucket */ | 
|  | /* Find the bucket that is just big enough */ | 
|  | for (j = 0; j < num_buckets; j++) { | 
|  | if (bucket[j] >= size) { | 
|  | b = j; | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* for a command with i SG entries, use bucket b. */ | 
|  | bucket_map[i] = b; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support) | 
|  | { | 
|  | int i; | 
|  | unsigned long register_value; | 
|  | unsigned long transMethod = CFGTBL_Trans_Performant | | 
|  | (trans_support & CFGTBL_Trans_use_short_tags) | | 
|  | CFGTBL_Trans_enable_directed_msix | | 
|  | (trans_support & (CFGTBL_Trans_io_accel1 | | 
|  | CFGTBL_Trans_io_accel2)); | 
|  | struct access_method access = SA5_performant_access; | 
|  |  | 
|  | /* This is a bit complicated.  There are 8 registers on | 
|  | * the controller which we write to to tell it 8 different | 
|  | * sizes of commands which there may be.  It's a way of | 
|  | * reducing the DMA done to fetch each command.  Encoded into | 
|  | * each command's tag are 3 bits which communicate to the controller | 
|  | * which of the eight sizes that command fits within.  The size of | 
|  | * each command depends on how many scatter gather entries there are. | 
|  | * Each SG entry requires 16 bytes.  The eight registers are programmed | 
|  | * with the number of 16-byte blocks a command of that size requires. | 
|  | * The smallest command possible requires 5 such 16 byte blocks. | 
|  | * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte | 
|  | * blocks.  Note, this only extends to the SG entries contained | 
|  | * within the command block, and does not extend to chained blocks | 
|  | * of SG elements.   bft[] contains the eight values we write to | 
|  | * the registers.  They are not evenly distributed, but have more | 
|  | * sizes for small commands, and fewer sizes for larger commands. | 
|  | */ | 
|  | int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4}; | 
|  | #define MIN_IOACCEL2_BFT_ENTRY 5 | 
|  | #define HPSA_IOACCEL2_HEADER_SZ 4 | 
|  | int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12, | 
|  | 13, 14, 15, 16, 17, 18, 19, | 
|  | HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES}; | 
|  | BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16); | 
|  | BUILD_BUG_ON(ARRAY_SIZE(bft) != 8); | 
|  | BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) > | 
|  | 16 * MIN_IOACCEL2_BFT_ENTRY); | 
|  | BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16); | 
|  | BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4); | 
|  | /*  5 = 1 s/g entry or 4k | 
|  | *  6 = 2 s/g entry or 8k | 
|  | *  8 = 4 s/g entry or 16k | 
|  | * 10 = 6 s/g entry or 24k | 
|  | */ | 
|  |  | 
|  | /* If the controller supports either ioaccel method then | 
|  | * we can also use the RAID stack submit path that does not | 
|  | * perform the superfluous readl() after each command submission. | 
|  | */ | 
|  | if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2)) | 
|  | access = SA5_performant_access_no_read; | 
|  |  | 
|  | /* Controller spec: zero out this buffer. */ | 
|  | for (i = 0; i < h->nreply_queues; i++) | 
|  | memset(h->reply_queue[i].head, 0, h->reply_queue_size); | 
|  |  | 
|  | bft[7] = SG_ENTRIES_IN_CMD + 4; | 
|  | calc_bucket_map(bft, ARRAY_SIZE(bft), | 
|  | SG_ENTRIES_IN_CMD, 4, h->blockFetchTable); | 
|  | for (i = 0; i < 8; i++) | 
|  | writel(bft[i], &h->transtable->BlockFetch[i]); | 
|  |  | 
|  | /* size of controller ring buffer */ | 
|  | writel(h->max_commands, &h->transtable->RepQSize); | 
|  | writel(h->nreply_queues, &h->transtable->RepQCount); | 
|  | writel(0, &h->transtable->RepQCtrAddrLow32); | 
|  | writel(0, &h->transtable->RepQCtrAddrHigh32); | 
|  |  | 
|  | for (i = 0; i < h->nreply_queues; i++) { | 
|  | writel(0, &h->transtable->RepQAddr[i].upper); | 
|  | writel(h->reply_queue[i].busaddr, | 
|  | &h->transtable->RepQAddr[i].lower); | 
|  | } | 
|  |  | 
|  | writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi); | 
|  | writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest)); | 
|  | /* | 
|  | * enable outbound interrupt coalescing in accelerator mode; | 
|  | */ | 
|  | if (trans_support & CFGTBL_Trans_io_accel1) { | 
|  | access = SA5_ioaccel_mode1_access; | 
|  | writel(10, &h->cfgtable->HostWrite.CoalIntDelay); | 
|  | writel(4, &h->cfgtable->HostWrite.CoalIntCount); | 
|  | } else { | 
|  | if (trans_support & CFGTBL_Trans_io_accel2) { | 
|  | access = SA5_ioaccel_mode2_access; | 
|  | writel(10, &h->cfgtable->HostWrite.CoalIntDelay); | 
|  | writel(4, &h->cfgtable->HostWrite.CoalIntCount); | 
|  | } | 
|  | } | 
|  | writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); | 
|  | hpsa_wait_for_mode_change_ack(h); | 
|  | register_value = readl(&(h->cfgtable->TransportActive)); | 
|  | if (!(register_value & CFGTBL_Trans_Performant)) { | 
|  | dev_warn(&h->pdev->dev, "unable to get board into" | 
|  | " performant mode\n"); | 
|  | return; | 
|  | } | 
|  | /* Change the access methods to the performant access methods */ | 
|  | h->access = access; | 
|  | h->transMethod = transMethod; | 
|  |  | 
|  | if (!((trans_support & CFGTBL_Trans_io_accel1) || | 
|  | (trans_support & CFGTBL_Trans_io_accel2))) | 
|  | return; | 
|  |  | 
|  | if (trans_support & CFGTBL_Trans_io_accel1) { | 
|  | /* Set up I/O accelerator mode */ | 
|  | for (i = 0; i < h->nreply_queues; i++) { | 
|  | writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX); | 
|  | h->reply_queue[i].current_entry = | 
|  | readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX); | 
|  | } | 
|  | bft[7] = h->ioaccel_maxsg + 8; | 
|  | calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8, | 
|  | h->ioaccel1_blockFetchTable); | 
|  |  | 
|  | /* initialize all reply queue entries to unused */ | 
|  | for (i = 0; i < h->nreply_queues; i++) | 
|  | memset(h->reply_queue[i].head, | 
|  | (u8) IOACCEL_MODE1_REPLY_UNUSED, | 
|  | h->reply_queue_size); | 
|  |  | 
|  | /* set all the constant fields in the accelerator command | 
|  | * frames once at init time to save CPU cycles later. | 
|  | */ | 
|  | for (i = 0; i < h->nr_cmds; i++) { | 
|  | struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i]; | 
|  |  | 
|  | cp->function = IOACCEL1_FUNCTION_SCSIIO; | 
|  | cp->err_info = (u32) (h->errinfo_pool_dhandle + | 
|  | (i * sizeof(struct ErrorInfo))); | 
|  | cp->err_info_len = sizeof(struct ErrorInfo); | 
|  | cp->sgl_offset = IOACCEL1_SGLOFFSET; | 
|  | cp->host_context_flags = IOACCEL1_HCFLAGS_CISS_FORMAT; | 
|  | cp->timeout_sec = 0; | 
|  | cp->ReplyQueue = 0; | 
|  | cp->tag = | 
|  | cpu_to_le64((i << DIRECT_LOOKUP_SHIFT) | | 
|  | DIRECT_LOOKUP_BIT); | 
|  | cp->host_addr = | 
|  | cpu_to_le64(h->ioaccel_cmd_pool_dhandle + | 
|  | (i * sizeof(struct io_accel1_cmd))); | 
|  | } | 
|  | } else if (trans_support & CFGTBL_Trans_io_accel2) { | 
|  | u64 cfg_offset, cfg_base_addr_index; | 
|  | u32 bft2_offset, cfg_base_addr; | 
|  | int rc; | 
|  |  | 
|  | rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr, | 
|  | &cfg_base_addr_index, &cfg_offset); | 
|  | BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64); | 
|  | bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ; | 
|  | calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg, | 
|  | 4, h->ioaccel2_blockFetchTable); | 
|  | bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset); | 
|  | BUILD_BUG_ON(offsetof(struct CfgTable, | 
|  | io_accel_request_size_offset) != 0xb8); | 
|  | h->ioaccel2_bft2_regs = | 
|  | remap_pci_mem(pci_resource_start(h->pdev, | 
|  | cfg_base_addr_index) + | 
|  | cfg_offset + bft2_offset, | 
|  | ARRAY_SIZE(bft2) * | 
|  | sizeof(*h->ioaccel2_bft2_regs)); | 
|  | for (i = 0; i < ARRAY_SIZE(bft2); i++) | 
|  | writel(bft2[i], &h->ioaccel2_bft2_regs[i]); | 
|  | } | 
|  | writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); | 
|  | hpsa_wait_for_mode_change_ack(h); | 
|  | } | 
|  |  | 
|  | static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h) | 
|  | { | 
|  | h->ioaccel_maxsg = | 
|  | readl(&(h->cfgtable->io_accel_max_embedded_sg_count)); | 
|  | if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES) | 
|  | h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES; | 
|  |  | 
|  | /* Command structures must be aligned on a 128-byte boundary | 
|  | * because the 7 lower bits of the address are used by the | 
|  | * hardware. | 
|  | */ | 
|  | BUILD_BUG_ON(sizeof(struct io_accel1_cmd) % | 
|  | IOACCEL1_COMMANDLIST_ALIGNMENT); | 
|  | h->ioaccel_cmd_pool = | 
|  | pci_alloc_consistent(h->pdev, | 
|  | h->nr_cmds * sizeof(*h->ioaccel_cmd_pool), | 
|  | &(h->ioaccel_cmd_pool_dhandle)); | 
|  |  | 
|  | h->ioaccel1_blockFetchTable = | 
|  | kmalloc(((h->ioaccel_maxsg + 1) * | 
|  | sizeof(u32)), GFP_KERNEL); | 
|  |  | 
|  | if ((h->ioaccel_cmd_pool == NULL) || | 
|  | (h->ioaccel1_blockFetchTable == NULL)) | 
|  | goto clean_up; | 
|  |  | 
|  | memset(h->ioaccel_cmd_pool, 0, | 
|  | h->nr_cmds * sizeof(*h->ioaccel_cmd_pool)); | 
|  | return 0; | 
|  |  | 
|  | clean_up: | 
|  | if (h->ioaccel_cmd_pool) | 
|  | pci_free_consistent(h->pdev, | 
|  | h->nr_cmds * sizeof(*h->ioaccel_cmd_pool), | 
|  | h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle); | 
|  | kfree(h->ioaccel1_blockFetchTable); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h) | 
|  | { | 
|  | /* Allocate ioaccel2 mode command blocks and block fetch table */ | 
|  |  | 
|  | h->ioaccel_maxsg = | 
|  | readl(&(h->cfgtable->io_accel_max_embedded_sg_count)); | 
|  | if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES) | 
|  | h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES; | 
|  |  | 
|  | BUILD_BUG_ON(sizeof(struct io_accel2_cmd) % | 
|  | IOACCEL2_COMMANDLIST_ALIGNMENT); | 
|  | h->ioaccel2_cmd_pool = | 
|  | pci_alloc_consistent(h->pdev, | 
|  | h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), | 
|  | &(h->ioaccel2_cmd_pool_dhandle)); | 
|  |  | 
|  | h->ioaccel2_blockFetchTable = | 
|  | kmalloc(((h->ioaccel_maxsg + 1) * | 
|  | sizeof(u32)), GFP_KERNEL); | 
|  |  | 
|  | if ((h->ioaccel2_cmd_pool == NULL) || | 
|  | (h->ioaccel2_blockFetchTable == NULL)) | 
|  | goto clean_up; | 
|  |  | 
|  | memset(h->ioaccel2_cmd_pool, 0, | 
|  | h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool)); | 
|  | return 0; | 
|  |  | 
|  | clean_up: | 
|  | if (h->ioaccel2_cmd_pool) | 
|  | pci_free_consistent(h->pdev, | 
|  | h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool), | 
|  | h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle); | 
|  | kfree(h->ioaccel2_blockFetchTable); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h) | 
|  | { | 
|  | u32 trans_support; | 
|  | unsigned long transMethod = CFGTBL_Trans_Performant | | 
|  | CFGTBL_Trans_use_short_tags; | 
|  | int i; | 
|  |  | 
|  | if (hpsa_simple_mode) | 
|  | return; | 
|  |  | 
|  | trans_support = readl(&(h->cfgtable->TransportSupport)); | 
|  | if (!(trans_support & PERFORMANT_MODE)) | 
|  | return; | 
|  |  | 
|  | /* Check for I/O accelerator mode support */ | 
|  | if (trans_support & CFGTBL_Trans_io_accel1) { | 
|  | transMethod |= CFGTBL_Trans_io_accel1 | | 
|  | CFGTBL_Trans_enable_directed_msix; | 
|  | if (hpsa_alloc_ioaccel_cmd_and_bft(h)) | 
|  | goto clean_up; | 
|  | } else { | 
|  | if (trans_support & CFGTBL_Trans_io_accel2) { | 
|  | transMethod |= CFGTBL_Trans_io_accel2 | | 
|  | CFGTBL_Trans_enable_directed_msix; | 
|  | if (ioaccel2_alloc_cmds_and_bft(h)) | 
|  | goto clean_up; | 
|  | } | 
|  | } | 
|  |  | 
|  | h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1; | 
|  | hpsa_get_max_perf_mode_cmds(h); | 
|  | /* Performant mode ring buffer and supporting data structures */ | 
|  | h->reply_queue_size = h->max_commands * sizeof(u64); | 
|  |  | 
|  | for (i = 0; i < h->nreply_queues; i++) { | 
|  | h->reply_queue[i].head = pci_alloc_consistent(h->pdev, | 
|  | h->reply_queue_size, | 
|  | &(h->reply_queue[i].busaddr)); | 
|  | if (!h->reply_queue[i].head) | 
|  | goto clean_up; | 
|  | h->reply_queue[i].size = h->max_commands; | 
|  | h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */ | 
|  | h->reply_queue[i].current_entry = 0; | 
|  | } | 
|  |  | 
|  | /* Need a block fetch table for performant mode */ | 
|  | h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) * | 
|  | sizeof(u32)), GFP_KERNEL); | 
|  | if (!h->blockFetchTable) | 
|  | goto clean_up; | 
|  |  | 
|  | hpsa_enter_performant_mode(h, trans_support); | 
|  | return; | 
|  |  | 
|  | clean_up: | 
|  | hpsa_free_reply_queues(h); | 
|  | kfree(h->blockFetchTable); | 
|  | } | 
|  |  | 
|  | static int is_accelerated_cmd(struct CommandList *c) | 
|  | { | 
|  | return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2; | 
|  | } | 
|  |  | 
|  | static void hpsa_drain_accel_commands(struct ctlr_info *h) | 
|  | { | 
|  | struct CommandList *c = NULL; | 
|  | unsigned long flags; | 
|  | int accel_cmds_out; | 
|  |  | 
|  | do { /* wait for all outstanding commands to drain out */ | 
|  | accel_cmds_out = 0; | 
|  | spin_lock_irqsave(&h->lock, flags); | 
|  | list_for_each_entry(c, &h->cmpQ, list) | 
|  | accel_cmds_out += is_accelerated_cmd(c); | 
|  | list_for_each_entry(c, &h->reqQ, list) | 
|  | accel_cmds_out += is_accelerated_cmd(c); | 
|  | spin_unlock_irqrestore(&h->lock, flags); | 
|  | if (accel_cmds_out <= 0) | 
|  | break; | 
|  | msleep(100); | 
|  | } while (1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  This is it.  Register the PCI driver information for the cards we control | 
|  | *  the OS will call our registered routines when it finds one of our cards. | 
|  | */ | 
|  | static int __init hpsa_init(void) | 
|  | { | 
|  | return pci_register_driver(&hpsa_pci_driver); | 
|  | } | 
|  |  | 
|  | static void __exit hpsa_cleanup(void) | 
|  | { | 
|  | pci_unregister_driver(&hpsa_pci_driver); | 
|  | } | 
|  |  | 
|  | static void __attribute__((unused)) verify_offsets(void) | 
|  | { | 
|  | #define VERIFY_OFFSET(member, offset) \ | 
|  | BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset) | 
|  |  | 
|  | VERIFY_OFFSET(structure_size, 0); | 
|  | VERIFY_OFFSET(volume_blk_size, 4); | 
|  | VERIFY_OFFSET(volume_blk_cnt, 8); | 
|  | VERIFY_OFFSET(phys_blk_shift, 16); | 
|  | VERIFY_OFFSET(parity_rotation_shift, 17); | 
|  | VERIFY_OFFSET(strip_size, 18); | 
|  | VERIFY_OFFSET(disk_starting_blk, 20); | 
|  | VERIFY_OFFSET(disk_blk_cnt, 28); | 
|  | VERIFY_OFFSET(data_disks_per_row, 36); | 
|  | VERIFY_OFFSET(metadata_disks_per_row, 38); | 
|  | VERIFY_OFFSET(row_cnt, 40); | 
|  | VERIFY_OFFSET(layout_map_count, 42); | 
|  | VERIFY_OFFSET(flags, 44); | 
|  | VERIFY_OFFSET(dekindex, 46); | 
|  | /* VERIFY_OFFSET(reserved, 48 */ | 
|  | VERIFY_OFFSET(data, 64); | 
|  |  | 
|  | #undef VERIFY_OFFSET | 
|  |  | 
|  | #define VERIFY_OFFSET(member, offset) \ | 
|  | BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset) | 
|  |  | 
|  | VERIFY_OFFSET(IU_type, 0); | 
|  | VERIFY_OFFSET(direction, 1); | 
|  | VERIFY_OFFSET(reply_queue, 2); | 
|  | /* VERIFY_OFFSET(reserved1, 3);  */ | 
|  | VERIFY_OFFSET(scsi_nexus, 4); | 
|  | VERIFY_OFFSET(Tag, 8); | 
|  | VERIFY_OFFSET(cdb, 16); | 
|  | VERIFY_OFFSET(cciss_lun, 32); | 
|  | VERIFY_OFFSET(data_len, 40); | 
|  | VERIFY_OFFSET(cmd_priority_task_attr, 44); | 
|  | VERIFY_OFFSET(sg_count, 45); | 
|  | /* VERIFY_OFFSET(reserved3 */ | 
|  | VERIFY_OFFSET(err_ptr, 48); | 
|  | VERIFY_OFFSET(err_len, 56); | 
|  | /* VERIFY_OFFSET(reserved4  */ | 
|  | VERIFY_OFFSET(sg, 64); | 
|  |  | 
|  | #undef VERIFY_OFFSET | 
|  |  | 
|  | #define VERIFY_OFFSET(member, offset) \ | 
|  | BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset) | 
|  |  | 
|  | VERIFY_OFFSET(dev_handle, 0x00); | 
|  | VERIFY_OFFSET(reserved1, 0x02); | 
|  | VERIFY_OFFSET(function, 0x03); | 
|  | VERIFY_OFFSET(reserved2, 0x04); | 
|  | VERIFY_OFFSET(err_info, 0x0C); | 
|  | VERIFY_OFFSET(reserved3, 0x10); | 
|  | VERIFY_OFFSET(err_info_len, 0x12); | 
|  | VERIFY_OFFSET(reserved4, 0x13); | 
|  | VERIFY_OFFSET(sgl_offset, 0x14); | 
|  | VERIFY_OFFSET(reserved5, 0x15); | 
|  | VERIFY_OFFSET(transfer_len, 0x1C); | 
|  | VERIFY_OFFSET(reserved6, 0x20); | 
|  | VERIFY_OFFSET(io_flags, 0x24); | 
|  | VERIFY_OFFSET(reserved7, 0x26); | 
|  | VERIFY_OFFSET(LUN, 0x34); | 
|  | VERIFY_OFFSET(control, 0x3C); | 
|  | VERIFY_OFFSET(CDB, 0x40); | 
|  | VERIFY_OFFSET(reserved8, 0x50); | 
|  | VERIFY_OFFSET(host_context_flags, 0x60); | 
|  | VERIFY_OFFSET(timeout_sec, 0x62); | 
|  | VERIFY_OFFSET(ReplyQueue, 0x64); | 
|  | VERIFY_OFFSET(reserved9, 0x65); | 
|  | VERIFY_OFFSET(tag, 0x68); | 
|  | VERIFY_OFFSET(host_addr, 0x70); | 
|  | VERIFY_OFFSET(CISS_LUN, 0x78); | 
|  | VERIFY_OFFSET(SG, 0x78 + 8); | 
|  | #undef VERIFY_OFFSET | 
|  | } | 
|  |  | 
|  | module_init(hpsa_init); | 
|  | module_exit(hpsa_cleanup); |