|  | /* | 
|  | * Copyright (C) 2008 Oracle.  All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public | 
|  | * License v2 as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public | 
|  | * License along with this program; if not, write to the | 
|  | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
|  | * Boston, MA 021110-1307, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/mpage.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/bit_spinlock.h> | 
|  | #include <linux/slab.h> | 
|  | #include "ctree.h" | 
|  | #include "disk-io.h" | 
|  | #include "transaction.h" | 
|  | #include "btrfs_inode.h" | 
|  | #include "volumes.h" | 
|  | #include "ordered-data.h" | 
|  | #include "compression.h" | 
|  | #include "extent_io.h" | 
|  | #include "extent_map.h" | 
|  |  | 
|  | struct compressed_bio { | 
|  | /* number of bios pending for this compressed extent */ | 
|  | atomic_t pending_bios; | 
|  |  | 
|  | /* the pages with the compressed data on them */ | 
|  | struct page **compressed_pages; | 
|  |  | 
|  | /* inode that owns this data */ | 
|  | struct inode *inode; | 
|  |  | 
|  | /* starting offset in the inode for our pages */ | 
|  | u64 start; | 
|  |  | 
|  | /* number of bytes in the inode we're working on */ | 
|  | unsigned long len; | 
|  |  | 
|  | /* number of bytes on disk */ | 
|  | unsigned long compressed_len; | 
|  |  | 
|  | /* the compression algorithm for this bio */ | 
|  | int compress_type; | 
|  |  | 
|  | /* number of compressed pages in the array */ | 
|  | unsigned long nr_pages; | 
|  |  | 
|  | /* IO errors */ | 
|  | int errors; | 
|  | int mirror_num; | 
|  |  | 
|  | /* for reads, this is the bio we are copying the data into */ | 
|  | struct bio *orig_bio; | 
|  |  | 
|  | /* | 
|  | * the start of a variable length array of checksums only | 
|  | * used by reads | 
|  | */ | 
|  | u32 sums; | 
|  | }; | 
|  |  | 
|  | static int btrfs_decompress_biovec(int type, struct page **pages_in, | 
|  | u64 disk_start, struct bio_vec *bvec, | 
|  | int vcnt, size_t srclen); | 
|  |  | 
|  | static inline int compressed_bio_size(struct btrfs_root *root, | 
|  | unsigned long disk_size) | 
|  | { | 
|  | u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); | 
|  |  | 
|  | return sizeof(struct compressed_bio) + | 
|  | (DIV_ROUND_UP(disk_size, root->sectorsize)) * csum_size; | 
|  | } | 
|  |  | 
|  | static struct bio *compressed_bio_alloc(struct block_device *bdev, | 
|  | u64 first_byte, gfp_t gfp_flags) | 
|  | { | 
|  | int nr_vecs; | 
|  |  | 
|  | nr_vecs = bio_get_nr_vecs(bdev); | 
|  | return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags); | 
|  | } | 
|  |  | 
|  | static int check_compressed_csum(struct inode *inode, | 
|  | struct compressed_bio *cb, | 
|  | u64 disk_start) | 
|  | { | 
|  | int ret; | 
|  | struct page *page; | 
|  | unsigned long i; | 
|  | char *kaddr; | 
|  | u32 csum; | 
|  | u32 *cb_sum = &cb->sums; | 
|  |  | 
|  | if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) | 
|  | return 0; | 
|  |  | 
|  | for (i = 0; i < cb->nr_pages; i++) { | 
|  | page = cb->compressed_pages[i]; | 
|  | csum = ~(u32)0; | 
|  |  | 
|  | kaddr = kmap_atomic(page); | 
|  | csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE); | 
|  | btrfs_csum_final(csum, (char *)&csum); | 
|  | kunmap_atomic(kaddr); | 
|  |  | 
|  | if (csum != *cb_sum) { | 
|  | btrfs_info(BTRFS_I(inode)->root->fs_info, | 
|  | "csum failed ino %llu extent %llu csum %u wanted %u mirror %d", | 
|  | btrfs_ino(inode), disk_start, csum, *cb_sum, | 
|  | cb->mirror_num); | 
|  | ret = -EIO; | 
|  | goto fail; | 
|  | } | 
|  | cb_sum++; | 
|  |  | 
|  | } | 
|  | ret = 0; | 
|  | fail: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* when we finish reading compressed pages from the disk, we | 
|  | * decompress them and then run the bio end_io routines on the | 
|  | * decompressed pages (in the inode address space). | 
|  | * | 
|  | * This allows the checksumming and other IO error handling routines | 
|  | * to work normally | 
|  | * | 
|  | * The compressed pages are freed here, and it must be run | 
|  | * in process context | 
|  | */ | 
|  | static void end_compressed_bio_read(struct bio *bio, int err) | 
|  | { | 
|  | struct compressed_bio *cb = bio->bi_private; | 
|  | struct inode *inode; | 
|  | struct page *page; | 
|  | unsigned long index; | 
|  | int ret; | 
|  |  | 
|  | if (err) | 
|  | cb->errors = 1; | 
|  |  | 
|  | /* if there are more bios still pending for this compressed | 
|  | * extent, just exit | 
|  | */ | 
|  | if (!atomic_dec_and_test(&cb->pending_bios)) | 
|  | goto out; | 
|  |  | 
|  | inode = cb->inode; | 
|  | ret = check_compressed_csum(inode, cb, | 
|  | (u64)bio->bi_iter.bi_sector << 9); | 
|  | if (ret) | 
|  | goto csum_failed; | 
|  |  | 
|  | /* ok, we're the last bio for this extent, lets start | 
|  | * the decompression. | 
|  | */ | 
|  | ret = btrfs_decompress_biovec(cb->compress_type, | 
|  | cb->compressed_pages, | 
|  | cb->start, | 
|  | cb->orig_bio->bi_io_vec, | 
|  | cb->orig_bio->bi_vcnt, | 
|  | cb->compressed_len); | 
|  | csum_failed: | 
|  | if (ret) | 
|  | cb->errors = 1; | 
|  |  | 
|  | /* release the compressed pages */ | 
|  | index = 0; | 
|  | for (index = 0; index < cb->nr_pages; index++) { | 
|  | page = cb->compressed_pages[index]; | 
|  | page->mapping = NULL; | 
|  | page_cache_release(page); | 
|  | } | 
|  |  | 
|  | /* do io completion on the original bio */ | 
|  | if (cb->errors) { | 
|  | bio_io_error(cb->orig_bio); | 
|  | } else { | 
|  | int i; | 
|  | struct bio_vec *bvec; | 
|  |  | 
|  | /* | 
|  | * we have verified the checksum already, set page | 
|  | * checked so the end_io handlers know about it | 
|  | */ | 
|  | bio_for_each_segment_all(bvec, cb->orig_bio, i) | 
|  | SetPageChecked(bvec->bv_page); | 
|  |  | 
|  | bio_endio(cb->orig_bio, 0); | 
|  | } | 
|  |  | 
|  | /* finally free the cb struct */ | 
|  | kfree(cb->compressed_pages); | 
|  | kfree(cb); | 
|  | out: | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear the writeback bits on all of the file | 
|  | * pages for a compressed write | 
|  | */ | 
|  | static noinline void end_compressed_writeback(struct inode *inode, | 
|  | const struct compressed_bio *cb) | 
|  | { | 
|  | unsigned long index = cb->start >> PAGE_CACHE_SHIFT; | 
|  | unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_CACHE_SHIFT; | 
|  | struct page *pages[16]; | 
|  | unsigned long nr_pages = end_index - index + 1; | 
|  | int i; | 
|  | int ret; | 
|  |  | 
|  | if (cb->errors) | 
|  | mapping_set_error(inode->i_mapping, -EIO); | 
|  |  | 
|  | while (nr_pages > 0) { | 
|  | ret = find_get_pages_contig(inode->i_mapping, index, | 
|  | min_t(unsigned long, | 
|  | nr_pages, ARRAY_SIZE(pages)), pages); | 
|  | if (ret == 0) { | 
|  | nr_pages -= 1; | 
|  | index += 1; | 
|  | continue; | 
|  | } | 
|  | for (i = 0; i < ret; i++) { | 
|  | if (cb->errors) | 
|  | SetPageError(pages[i]); | 
|  | end_page_writeback(pages[i]); | 
|  | page_cache_release(pages[i]); | 
|  | } | 
|  | nr_pages -= ret; | 
|  | index += ret; | 
|  | } | 
|  | /* the inode may be gone now */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * do the cleanup once all the compressed pages hit the disk. | 
|  | * This will clear writeback on the file pages and free the compressed | 
|  | * pages. | 
|  | * | 
|  | * This also calls the writeback end hooks for the file pages so that | 
|  | * metadata and checksums can be updated in the file. | 
|  | */ | 
|  | static void end_compressed_bio_write(struct bio *bio, int err) | 
|  | { | 
|  | struct extent_io_tree *tree; | 
|  | struct compressed_bio *cb = bio->bi_private; | 
|  | struct inode *inode; | 
|  | struct page *page; | 
|  | unsigned long index; | 
|  |  | 
|  | if (err) | 
|  | cb->errors = 1; | 
|  |  | 
|  | /* if there are more bios still pending for this compressed | 
|  | * extent, just exit | 
|  | */ | 
|  | if (!atomic_dec_and_test(&cb->pending_bios)) | 
|  | goto out; | 
|  |  | 
|  | /* ok, we're the last bio for this extent, step one is to | 
|  | * call back into the FS and do all the end_io operations | 
|  | */ | 
|  | inode = cb->inode; | 
|  | tree = &BTRFS_I(inode)->io_tree; | 
|  | cb->compressed_pages[0]->mapping = cb->inode->i_mapping; | 
|  | tree->ops->writepage_end_io_hook(cb->compressed_pages[0], | 
|  | cb->start, | 
|  | cb->start + cb->len - 1, | 
|  | NULL, | 
|  | err ? 0 : 1); | 
|  | cb->compressed_pages[0]->mapping = NULL; | 
|  |  | 
|  | end_compressed_writeback(inode, cb); | 
|  | /* note, our inode could be gone now */ | 
|  |  | 
|  | /* | 
|  | * release the compressed pages, these came from alloc_page and | 
|  | * are not attached to the inode at all | 
|  | */ | 
|  | index = 0; | 
|  | for (index = 0; index < cb->nr_pages; index++) { | 
|  | page = cb->compressed_pages[index]; | 
|  | page->mapping = NULL; | 
|  | page_cache_release(page); | 
|  | } | 
|  |  | 
|  | /* finally free the cb struct */ | 
|  | kfree(cb->compressed_pages); | 
|  | kfree(cb); | 
|  | out: | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * worker function to build and submit bios for previously compressed pages. | 
|  | * The corresponding pages in the inode should be marked for writeback | 
|  | * and the compressed pages should have a reference on them for dropping | 
|  | * when the IO is complete. | 
|  | * | 
|  | * This also checksums the file bytes and gets things ready for | 
|  | * the end io hooks. | 
|  | */ | 
|  | int btrfs_submit_compressed_write(struct inode *inode, u64 start, | 
|  | unsigned long len, u64 disk_start, | 
|  | unsigned long compressed_len, | 
|  | struct page **compressed_pages, | 
|  | unsigned long nr_pages) | 
|  | { | 
|  | struct bio *bio = NULL; | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | struct compressed_bio *cb; | 
|  | unsigned long bytes_left; | 
|  | struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | 
|  | int pg_index = 0; | 
|  | struct page *page; | 
|  | u64 first_byte = disk_start; | 
|  | struct block_device *bdev; | 
|  | int ret; | 
|  | int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; | 
|  |  | 
|  | WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1)); | 
|  | cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS); | 
|  | if (!cb) | 
|  | return -ENOMEM; | 
|  | atomic_set(&cb->pending_bios, 0); | 
|  | cb->errors = 0; | 
|  | cb->inode = inode; | 
|  | cb->start = start; | 
|  | cb->len = len; | 
|  | cb->mirror_num = 0; | 
|  | cb->compressed_pages = compressed_pages; | 
|  | cb->compressed_len = compressed_len; | 
|  | cb->orig_bio = NULL; | 
|  | cb->nr_pages = nr_pages; | 
|  |  | 
|  | bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; | 
|  |  | 
|  | bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS); | 
|  | if (!bio) { | 
|  | kfree(cb); | 
|  | return -ENOMEM; | 
|  | } | 
|  | bio->bi_private = cb; | 
|  | bio->bi_end_io = end_compressed_bio_write; | 
|  | atomic_inc(&cb->pending_bios); | 
|  |  | 
|  | /* create and submit bios for the compressed pages */ | 
|  | bytes_left = compressed_len; | 
|  | for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { | 
|  | page = compressed_pages[pg_index]; | 
|  | page->mapping = inode->i_mapping; | 
|  | if (bio->bi_iter.bi_size) | 
|  | ret = io_tree->ops->merge_bio_hook(WRITE, page, 0, | 
|  | PAGE_CACHE_SIZE, | 
|  | bio, 0); | 
|  | else | 
|  | ret = 0; | 
|  |  | 
|  | page->mapping = NULL; | 
|  | if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < | 
|  | PAGE_CACHE_SIZE) { | 
|  | bio_get(bio); | 
|  |  | 
|  | /* | 
|  | * inc the count before we submit the bio so | 
|  | * we know the end IO handler won't happen before | 
|  | * we inc the count.  Otherwise, the cb might get | 
|  | * freed before we're done setting it up | 
|  | */ | 
|  | atomic_inc(&cb->pending_bios); | 
|  | ret = btrfs_bio_wq_end_io(root->fs_info, bio, | 
|  | BTRFS_WQ_ENDIO_DATA); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  |  | 
|  | if (!skip_sum) { | 
|  | ret = btrfs_csum_one_bio(root, inode, bio, | 
|  | start, 1); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | } | 
|  |  | 
|  | ret = btrfs_map_bio(root, WRITE, bio, 0, 1); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  |  | 
|  | bio_put(bio); | 
|  |  | 
|  | bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS); | 
|  | BUG_ON(!bio); | 
|  | bio->bi_private = cb; | 
|  | bio->bi_end_io = end_compressed_bio_write; | 
|  | bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); | 
|  | } | 
|  | if (bytes_left < PAGE_CACHE_SIZE) { | 
|  | btrfs_info(BTRFS_I(inode)->root->fs_info, | 
|  | "bytes left %lu compress len %lu nr %lu", | 
|  | bytes_left, cb->compressed_len, cb->nr_pages); | 
|  | } | 
|  | bytes_left -= PAGE_CACHE_SIZE; | 
|  | first_byte += PAGE_CACHE_SIZE; | 
|  | cond_resched(); | 
|  | } | 
|  | bio_get(bio); | 
|  |  | 
|  | ret = btrfs_bio_wq_end_io(root->fs_info, bio, BTRFS_WQ_ENDIO_DATA); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  |  | 
|  | if (!skip_sum) { | 
|  | ret = btrfs_csum_one_bio(root, inode, bio, start, 1); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | } | 
|  |  | 
|  | ret = btrfs_map_bio(root, WRITE, bio, 0, 1); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  |  | 
|  | bio_put(bio); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline int add_ra_bio_pages(struct inode *inode, | 
|  | u64 compressed_end, | 
|  | struct compressed_bio *cb) | 
|  | { | 
|  | unsigned long end_index; | 
|  | unsigned long pg_index; | 
|  | u64 last_offset; | 
|  | u64 isize = i_size_read(inode); | 
|  | int ret; | 
|  | struct page *page; | 
|  | unsigned long nr_pages = 0; | 
|  | struct extent_map *em; | 
|  | struct address_space *mapping = inode->i_mapping; | 
|  | struct extent_map_tree *em_tree; | 
|  | struct extent_io_tree *tree; | 
|  | u64 end; | 
|  | int misses = 0; | 
|  |  | 
|  | page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page; | 
|  | last_offset = (page_offset(page) + PAGE_CACHE_SIZE); | 
|  | em_tree = &BTRFS_I(inode)->extent_tree; | 
|  | tree = &BTRFS_I(inode)->io_tree; | 
|  |  | 
|  | if (isize == 0) | 
|  | return 0; | 
|  |  | 
|  | end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT; | 
|  |  | 
|  | while (last_offset < compressed_end) { | 
|  | pg_index = last_offset >> PAGE_CACHE_SHIFT; | 
|  |  | 
|  | if (pg_index > end_index) | 
|  | break; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | page = radix_tree_lookup(&mapping->page_tree, pg_index); | 
|  | rcu_read_unlock(); | 
|  | if (page && !radix_tree_exceptional_entry(page)) { | 
|  | misses++; | 
|  | if (misses > 4) | 
|  | break; | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | page = __page_cache_alloc(mapping_gfp_mask(mapping) & | 
|  | ~__GFP_FS); | 
|  | if (!page) | 
|  | break; | 
|  |  | 
|  | if (add_to_page_cache_lru(page, mapping, pg_index, | 
|  | GFP_NOFS)) { | 
|  | page_cache_release(page); | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | end = last_offset + PAGE_CACHE_SIZE - 1; | 
|  | /* | 
|  | * at this point, we have a locked page in the page cache | 
|  | * for these bytes in the file.  But, we have to make | 
|  | * sure they map to this compressed extent on disk. | 
|  | */ | 
|  | set_page_extent_mapped(page); | 
|  | lock_extent(tree, last_offset, end); | 
|  | read_lock(&em_tree->lock); | 
|  | em = lookup_extent_mapping(em_tree, last_offset, | 
|  | PAGE_CACHE_SIZE); | 
|  | read_unlock(&em_tree->lock); | 
|  |  | 
|  | if (!em || last_offset < em->start || | 
|  | (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) || | 
|  | (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { | 
|  | free_extent_map(em); | 
|  | unlock_extent(tree, last_offset, end); | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | break; | 
|  | } | 
|  | free_extent_map(em); | 
|  |  | 
|  | if (page->index == end_index) { | 
|  | char *userpage; | 
|  | size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1); | 
|  |  | 
|  | if (zero_offset) { | 
|  | int zeros; | 
|  | zeros = PAGE_CACHE_SIZE - zero_offset; | 
|  | userpage = kmap_atomic(page); | 
|  | memset(userpage + zero_offset, 0, zeros); | 
|  | flush_dcache_page(page); | 
|  | kunmap_atomic(userpage); | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = bio_add_page(cb->orig_bio, page, | 
|  | PAGE_CACHE_SIZE, 0); | 
|  |  | 
|  | if (ret == PAGE_CACHE_SIZE) { | 
|  | nr_pages++; | 
|  | page_cache_release(page); | 
|  | } else { | 
|  | unlock_extent(tree, last_offset, end); | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | break; | 
|  | } | 
|  | next: | 
|  | last_offset += PAGE_CACHE_SIZE; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * for a compressed read, the bio we get passed has all the inode pages | 
|  | * in it.  We don't actually do IO on those pages but allocate new ones | 
|  | * to hold the compressed pages on disk. | 
|  | * | 
|  | * bio->bi_iter.bi_sector points to the compressed extent on disk | 
|  | * bio->bi_io_vec points to all of the inode pages | 
|  | * bio->bi_vcnt is a count of pages | 
|  | * | 
|  | * After the compressed pages are read, we copy the bytes into the | 
|  | * bio we were passed and then call the bio end_io calls | 
|  | */ | 
|  | int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, | 
|  | int mirror_num, unsigned long bio_flags) | 
|  | { | 
|  | struct extent_io_tree *tree; | 
|  | struct extent_map_tree *em_tree; | 
|  | struct compressed_bio *cb; | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  | unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE; | 
|  | unsigned long compressed_len; | 
|  | unsigned long nr_pages; | 
|  | unsigned long pg_index; | 
|  | struct page *page; | 
|  | struct block_device *bdev; | 
|  | struct bio *comp_bio; | 
|  | u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9; | 
|  | u64 em_len; | 
|  | u64 em_start; | 
|  | struct extent_map *em; | 
|  | int ret = -ENOMEM; | 
|  | int faili = 0; | 
|  | u32 *sums; | 
|  |  | 
|  | tree = &BTRFS_I(inode)->io_tree; | 
|  | em_tree = &BTRFS_I(inode)->extent_tree; | 
|  |  | 
|  | /* we need the actual starting offset of this extent in the file */ | 
|  | read_lock(&em_tree->lock); | 
|  | em = lookup_extent_mapping(em_tree, | 
|  | page_offset(bio->bi_io_vec->bv_page), | 
|  | PAGE_CACHE_SIZE); | 
|  | read_unlock(&em_tree->lock); | 
|  | if (!em) | 
|  | return -EIO; | 
|  |  | 
|  | compressed_len = em->block_len; | 
|  | cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS); | 
|  | if (!cb) | 
|  | goto out; | 
|  |  | 
|  | atomic_set(&cb->pending_bios, 0); | 
|  | cb->errors = 0; | 
|  | cb->inode = inode; | 
|  | cb->mirror_num = mirror_num; | 
|  | sums = &cb->sums; | 
|  |  | 
|  | cb->start = em->orig_start; | 
|  | em_len = em->len; | 
|  | em_start = em->start; | 
|  |  | 
|  | free_extent_map(em); | 
|  | em = NULL; | 
|  |  | 
|  | cb->len = uncompressed_len; | 
|  | cb->compressed_len = compressed_len; | 
|  | cb->compress_type = extent_compress_type(bio_flags); | 
|  | cb->orig_bio = bio; | 
|  |  | 
|  | nr_pages = DIV_ROUND_UP(compressed_len, PAGE_CACHE_SIZE); | 
|  | cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages, | 
|  | GFP_NOFS); | 
|  | if (!cb->compressed_pages) | 
|  | goto fail1; | 
|  |  | 
|  | bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; | 
|  |  | 
|  | for (pg_index = 0; pg_index < nr_pages; pg_index++) { | 
|  | cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | | 
|  | __GFP_HIGHMEM); | 
|  | if (!cb->compressed_pages[pg_index]) { | 
|  | faili = pg_index - 1; | 
|  | ret = -ENOMEM; | 
|  | goto fail2; | 
|  | } | 
|  | } | 
|  | faili = nr_pages - 1; | 
|  | cb->nr_pages = nr_pages; | 
|  |  | 
|  | /* In the parent-locked case, we only locked the range we are | 
|  | * interested in.  In all other cases, we can opportunistically | 
|  | * cache decompressed data that goes beyond the requested range. */ | 
|  | if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED)) | 
|  | add_ra_bio_pages(inode, em_start + em_len, cb); | 
|  |  | 
|  | /* include any pages we added in add_ra-bio_pages */ | 
|  | uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE; | 
|  | cb->len = uncompressed_len; | 
|  |  | 
|  | comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS); | 
|  | if (!comp_bio) | 
|  | goto fail2; | 
|  | comp_bio->bi_private = cb; | 
|  | comp_bio->bi_end_io = end_compressed_bio_read; | 
|  | atomic_inc(&cb->pending_bios); | 
|  |  | 
|  | for (pg_index = 0; pg_index < nr_pages; pg_index++) { | 
|  | page = cb->compressed_pages[pg_index]; | 
|  | page->mapping = inode->i_mapping; | 
|  | page->index = em_start >> PAGE_CACHE_SHIFT; | 
|  |  | 
|  | if (comp_bio->bi_iter.bi_size) | 
|  | ret = tree->ops->merge_bio_hook(READ, page, 0, | 
|  | PAGE_CACHE_SIZE, | 
|  | comp_bio, 0); | 
|  | else | 
|  | ret = 0; | 
|  |  | 
|  | page->mapping = NULL; | 
|  | if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) < | 
|  | PAGE_CACHE_SIZE) { | 
|  | bio_get(comp_bio); | 
|  |  | 
|  | ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, | 
|  | BTRFS_WQ_ENDIO_DATA); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  |  | 
|  | /* | 
|  | * inc the count before we submit the bio so | 
|  | * we know the end IO handler won't happen before | 
|  | * we inc the count.  Otherwise, the cb might get | 
|  | * freed before we're done setting it up | 
|  | */ | 
|  | atomic_inc(&cb->pending_bios); | 
|  |  | 
|  | if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { | 
|  | ret = btrfs_lookup_bio_sums(root, inode, | 
|  | comp_bio, sums); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | } | 
|  | sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size, | 
|  | root->sectorsize); | 
|  |  | 
|  | ret = btrfs_map_bio(root, READ, comp_bio, | 
|  | mirror_num, 0); | 
|  | if (ret) | 
|  | bio_endio(comp_bio, ret); | 
|  |  | 
|  | bio_put(comp_bio); | 
|  |  | 
|  | comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, | 
|  | GFP_NOFS); | 
|  | BUG_ON(!comp_bio); | 
|  | comp_bio->bi_private = cb; | 
|  | comp_bio->bi_end_io = end_compressed_bio_read; | 
|  |  | 
|  | bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0); | 
|  | } | 
|  | cur_disk_byte += PAGE_CACHE_SIZE; | 
|  | } | 
|  | bio_get(comp_bio); | 
|  |  | 
|  | ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, | 
|  | BTRFS_WQ_ENDIO_DATA); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  |  | 
|  | if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { | 
|  | ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | } | 
|  |  | 
|  | ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0); | 
|  | if (ret) | 
|  | bio_endio(comp_bio, ret); | 
|  |  | 
|  | bio_put(comp_bio); | 
|  | return 0; | 
|  |  | 
|  | fail2: | 
|  | while (faili >= 0) { | 
|  | __free_page(cb->compressed_pages[faili]); | 
|  | faili--; | 
|  | } | 
|  |  | 
|  | kfree(cb->compressed_pages); | 
|  | fail1: | 
|  | kfree(cb); | 
|  | out: | 
|  | free_extent_map(em); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES]; | 
|  | static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES]; | 
|  | static int comp_num_workspace[BTRFS_COMPRESS_TYPES]; | 
|  | static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES]; | 
|  | static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES]; | 
|  |  | 
|  | static struct btrfs_compress_op *btrfs_compress_op[] = { | 
|  | &btrfs_zlib_compress, | 
|  | &btrfs_lzo_compress, | 
|  | }; | 
|  |  | 
|  | void __init btrfs_init_compress(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { | 
|  | INIT_LIST_HEAD(&comp_idle_workspace[i]); | 
|  | spin_lock_init(&comp_workspace_lock[i]); | 
|  | atomic_set(&comp_alloc_workspace[i], 0); | 
|  | init_waitqueue_head(&comp_workspace_wait[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this finds an available workspace or allocates a new one | 
|  | * ERR_PTR is returned if things go bad. | 
|  | */ | 
|  | static struct list_head *find_workspace(int type) | 
|  | { | 
|  | struct list_head *workspace; | 
|  | int cpus = num_online_cpus(); | 
|  | int idx = type - 1; | 
|  |  | 
|  | struct list_head *idle_workspace	= &comp_idle_workspace[idx]; | 
|  | spinlock_t *workspace_lock		= &comp_workspace_lock[idx]; | 
|  | atomic_t *alloc_workspace		= &comp_alloc_workspace[idx]; | 
|  | wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx]; | 
|  | int *num_workspace			= &comp_num_workspace[idx]; | 
|  | again: | 
|  | spin_lock(workspace_lock); | 
|  | if (!list_empty(idle_workspace)) { | 
|  | workspace = idle_workspace->next; | 
|  | list_del(workspace); | 
|  | (*num_workspace)--; | 
|  | spin_unlock(workspace_lock); | 
|  | return workspace; | 
|  |  | 
|  | } | 
|  | if (atomic_read(alloc_workspace) > cpus) { | 
|  | DEFINE_WAIT(wait); | 
|  |  | 
|  | spin_unlock(workspace_lock); | 
|  | prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE); | 
|  | if (atomic_read(alloc_workspace) > cpus && !*num_workspace) | 
|  | schedule(); | 
|  | finish_wait(workspace_wait, &wait); | 
|  | goto again; | 
|  | } | 
|  | atomic_inc(alloc_workspace); | 
|  | spin_unlock(workspace_lock); | 
|  |  | 
|  | workspace = btrfs_compress_op[idx]->alloc_workspace(); | 
|  | if (IS_ERR(workspace)) { | 
|  | atomic_dec(alloc_workspace); | 
|  | wake_up(workspace_wait); | 
|  | } | 
|  | return workspace; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * put a workspace struct back on the list or free it if we have enough | 
|  | * idle ones sitting around | 
|  | */ | 
|  | static void free_workspace(int type, struct list_head *workspace) | 
|  | { | 
|  | int idx = type - 1; | 
|  | struct list_head *idle_workspace	= &comp_idle_workspace[idx]; | 
|  | spinlock_t *workspace_lock		= &comp_workspace_lock[idx]; | 
|  | atomic_t *alloc_workspace		= &comp_alloc_workspace[idx]; | 
|  | wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx]; | 
|  | int *num_workspace			= &comp_num_workspace[idx]; | 
|  |  | 
|  | spin_lock(workspace_lock); | 
|  | if (*num_workspace < num_online_cpus()) { | 
|  | list_add(workspace, idle_workspace); | 
|  | (*num_workspace)++; | 
|  | spin_unlock(workspace_lock); | 
|  | goto wake; | 
|  | } | 
|  | spin_unlock(workspace_lock); | 
|  |  | 
|  | btrfs_compress_op[idx]->free_workspace(workspace); | 
|  | atomic_dec(alloc_workspace); | 
|  | wake: | 
|  | smp_mb(); | 
|  | if (waitqueue_active(workspace_wait)) | 
|  | wake_up(workspace_wait); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cleanup function for module exit | 
|  | */ | 
|  | static void free_workspaces(void) | 
|  | { | 
|  | struct list_head *workspace; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { | 
|  | while (!list_empty(&comp_idle_workspace[i])) { | 
|  | workspace = comp_idle_workspace[i].next; | 
|  | list_del(workspace); | 
|  | btrfs_compress_op[i]->free_workspace(workspace); | 
|  | atomic_dec(&comp_alloc_workspace[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * given an address space and start/len, compress the bytes. | 
|  | * | 
|  | * pages are allocated to hold the compressed result and stored | 
|  | * in 'pages' | 
|  | * | 
|  | * out_pages is used to return the number of pages allocated.  There | 
|  | * may be pages allocated even if we return an error | 
|  | * | 
|  | * total_in is used to return the number of bytes actually read.  It | 
|  | * may be smaller then len if we had to exit early because we | 
|  | * ran out of room in the pages array or because we cross the | 
|  | * max_out threshold. | 
|  | * | 
|  | * total_out is used to return the total number of compressed bytes | 
|  | * | 
|  | * max_out tells us the max number of bytes that we're allowed to | 
|  | * stuff into pages | 
|  | */ | 
|  | int btrfs_compress_pages(int type, struct address_space *mapping, | 
|  | u64 start, unsigned long len, | 
|  | struct page **pages, | 
|  | unsigned long nr_dest_pages, | 
|  | unsigned long *out_pages, | 
|  | unsigned long *total_in, | 
|  | unsigned long *total_out, | 
|  | unsigned long max_out) | 
|  | { | 
|  | struct list_head *workspace; | 
|  | int ret; | 
|  |  | 
|  | workspace = find_workspace(type); | 
|  | if (IS_ERR(workspace)) | 
|  | return PTR_ERR(workspace); | 
|  |  | 
|  | ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping, | 
|  | start, len, pages, | 
|  | nr_dest_pages, out_pages, | 
|  | total_in, total_out, | 
|  | max_out); | 
|  | free_workspace(type, workspace); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pages_in is an array of pages with compressed data. | 
|  | * | 
|  | * disk_start is the starting logical offset of this array in the file | 
|  | * | 
|  | * bvec is a bio_vec of pages from the file that we want to decompress into | 
|  | * | 
|  | * vcnt is the count of pages in the biovec | 
|  | * | 
|  | * srclen is the number of bytes in pages_in | 
|  | * | 
|  | * The basic idea is that we have a bio that was created by readpages. | 
|  | * The pages in the bio are for the uncompressed data, and they may not | 
|  | * be contiguous.  They all correspond to the range of bytes covered by | 
|  | * the compressed extent. | 
|  | */ | 
|  | static int btrfs_decompress_biovec(int type, struct page **pages_in, | 
|  | u64 disk_start, struct bio_vec *bvec, | 
|  | int vcnt, size_t srclen) | 
|  | { | 
|  | struct list_head *workspace; | 
|  | int ret; | 
|  |  | 
|  | workspace = find_workspace(type); | 
|  | if (IS_ERR(workspace)) | 
|  | return PTR_ERR(workspace); | 
|  |  | 
|  | ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in, | 
|  | disk_start, | 
|  | bvec, vcnt, srclen); | 
|  | free_workspace(type, workspace); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * a less complex decompression routine.  Our compressed data fits in a | 
|  | * single page, and we want to read a single page out of it. | 
|  | * start_byte tells us the offset into the compressed data we're interested in | 
|  | */ | 
|  | int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, | 
|  | unsigned long start_byte, size_t srclen, size_t destlen) | 
|  | { | 
|  | struct list_head *workspace; | 
|  | int ret; | 
|  |  | 
|  | workspace = find_workspace(type); | 
|  | if (IS_ERR(workspace)) | 
|  | return PTR_ERR(workspace); | 
|  |  | 
|  | ret = btrfs_compress_op[type-1]->decompress(workspace, data_in, | 
|  | dest_page, start_byte, | 
|  | srclen, destlen); | 
|  |  | 
|  | free_workspace(type, workspace); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_exit_compress(void) | 
|  | { | 
|  | free_workspaces(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy uncompressed data from working buffer to pages. | 
|  | * | 
|  | * buf_start is the byte offset we're of the start of our workspace buffer. | 
|  | * | 
|  | * total_out is the last byte of the buffer | 
|  | */ | 
|  | int btrfs_decompress_buf2page(char *buf, unsigned long buf_start, | 
|  | unsigned long total_out, u64 disk_start, | 
|  | struct bio_vec *bvec, int vcnt, | 
|  | unsigned long *pg_index, | 
|  | unsigned long *pg_offset) | 
|  | { | 
|  | unsigned long buf_offset; | 
|  | unsigned long current_buf_start; | 
|  | unsigned long start_byte; | 
|  | unsigned long working_bytes = total_out - buf_start; | 
|  | unsigned long bytes; | 
|  | char *kaddr; | 
|  | struct page *page_out = bvec[*pg_index].bv_page; | 
|  |  | 
|  | /* | 
|  | * start byte is the first byte of the page we're currently | 
|  | * copying into relative to the start of the compressed data. | 
|  | */ | 
|  | start_byte = page_offset(page_out) - disk_start; | 
|  |  | 
|  | /* we haven't yet hit data corresponding to this page */ | 
|  | if (total_out <= start_byte) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * the start of the data we care about is offset into | 
|  | * the middle of our working buffer | 
|  | */ | 
|  | if (total_out > start_byte && buf_start < start_byte) { | 
|  | buf_offset = start_byte - buf_start; | 
|  | working_bytes -= buf_offset; | 
|  | } else { | 
|  | buf_offset = 0; | 
|  | } | 
|  | current_buf_start = buf_start; | 
|  |  | 
|  | /* copy bytes from the working buffer into the pages */ | 
|  | while (working_bytes > 0) { | 
|  | bytes = min(PAGE_CACHE_SIZE - *pg_offset, | 
|  | PAGE_CACHE_SIZE - buf_offset); | 
|  | bytes = min(bytes, working_bytes); | 
|  | kaddr = kmap_atomic(page_out); | 
|  | memcpy(kaddr + *pg_offset, buf + buf_offset, bytes); | 
|  | kunmap_atomic(kaddr); | 
|  | flush_dcache_page(page_out); | 
|  |  | 
|  | *pg_offset += bytes; | 
|  | buf_offset += bytes; | 
|  | working_bytes -= bytes; | 
|  | current_buf_start += bytes; | 
|  |  | 
|  | /* check if we need to pick another page */ | 
|  | if (*pg_offset == PAGE_CACHE_SIZE) { | 
|  | (*pg_index)++; | 
|  | if (*pg_index >= vcnt) | 
|  | return 0; | 
|  |  | 
|  | page_out = bvec[*pg_index].bv_page; | 
|  | *pg_offset = 0; | 
|  | start_byte = page_offset(page_out) - disk_start; | 
|  |  | 
|  | /* | 
|  | * make sure our new page is covered by this | 
|  | * working buffer | 
|  | */ | 
|  | if (total_out <= start_byte) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * the next page in the biovec might not be adjacent | 
|  | * to the last page, but it might still be found | 
|  | * inside this working buffer. bump our offset pointer | 
|  | */ | 
|  | if (total_out > start_byte && | 
|  | current_buf_start < start_byte) { | 
|  | buf_offset = start_byte - buf_start; | 
|  | working_bytes = total_out - start_byte; | 
|  | current_buf_start = buf_start + buf_offset; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When uncompressing data, we need to make sure and zero any parts of | 
|  | * the biovec that were not filled in by the decompression code.  pg_index | 
|  | * and pg_offset indicate the last page and the last offset of that page | 
|  | * that have been filled in.  This will zero everything remaining in the | 
|  | * biovec. | 
|  | */ | 
|  | void btrfs_clear_biovec_end(struct bio_vec *bvec, int vcnt, | 
|  | unsigned long pg_index, | 
|  | unsigned long pg_offset) | 
|  | { | 
|  | while (pg_index < vcnt) { | 
|  | struct page *page = bvec[pg_index].bv_page; | 
|  | unsigned long off = bvec[pg_index].bv_offset; | 
|  | unsigned long len = bvec[pg_index].bv_len; | 
|  |  | 
|  | if (pg_offset < off) | 
|  | pg_offset = off; | 
|  | if (pg_offset < off + len) { | 
|  | unsigned long bytes = off + len - pg_offset; | 
|  | char *kaddr; | 
|  |  | 
|  | kaddr = kmap_atomic(page); | 
|  | memset(kaddr + pg_offset, 0, bytes); | 
|  | kunmap_atomic(kaddr); | 
|  | } | 
|  | pg_index++; | 
|  | pg_offset = 0; | 
|  | } | 
|  | } |