|  | /* | 
|  | * Copyright (C) 2011 STRATO.  All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public | 
|  | * License v2 as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public | 
|  | * License along with this program; if not, write to the | 
|  | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
|  | * Boston, MA 021110-1307, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/sched.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/rbtree.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include "ctree.h" | 
|  | #include "volumes.h" | 
|  | #include "disk-io.h" | 
|  | #include "transaction.h" | 
|  | #include "dev-replace.h" | 
|  |  | 
|  | #undef DEBUG | 
|  |  | 
|  | /* | 
|  | * This is the implementation for the generic read ahead framework. | 
|  | * | 
|  | * To trigger a readahead, btrfs_reada_add must be called. It will start | 
|  | * a read ahead for the given range [start, end) on tree root. The returned | 
|  | * handle can either be used to wait on the readahead to finish | 
|  | * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach). | 
|  | * | 
|  | * The read ahead works as follows: | 
|  | * On btrfs_reada_add, the root of the tree is inserted into a radix_tree. | 
|  | * reada_start_machine will then search for extents to prefetch and trigger | 
|  | * some reads. When a read finishes for a node, all contained node/leaf | 
|  | * pointers that lie in the given range will also be enqueued. The reads will | 
|  | * be triggered in sequential order, thus giving a big win over a naive | 
|  | * enumeration. It will also make use of multi-device layouts. Each disk | 
|  | * will have its on read pointer and all disks will by utilized in parallel. | 
|  | * Also will no two disks read both sides of a mirror simultaneously, as this | 
|  | * would waste seeking capacity. Instead both disks will read different parts | 
|  | * of the filesystem. | 
|  | * Any number of readaheads can be started in parallel. The read order will be | 
|  | * determined globally, i.e. 2 parallel readaheads will normally finish faster | 
|  | * than the 2 started one after another. | 
|  | */ | 
|  |  | 
|  | #define MAX_IN_FLIGHT 6 | 
|  |  | 
|  | struct reada_extctl { | 
|  | struct list_head	list; | 
|  | struct reada_control	*rc; | 
|  | u64			generation; | 
|  | }; | 
|  |  | 
|  | struct reada_extent { | 
|  | u64			logical; | 
|  | struct btrfs_key	top; | 
|  | u32			blocksize; | 
|  | int			err; | 
|  | struct list_head	extctl; | 
|  | int 			refcnt; | 
|  | spinlock_t		lock; | 
|  | struct reada_zone	*zones[BTRFS_MAX_MIRRORS]; | 
|  | int			nzones; | 
|  | struct btrfs_device	*scheduled_for; | 
|  | }; | 
|  |  | 
|  | struct reada_zone { | 
|  | u64			start; | 
|  | u64			end; | 
|  | u64			elems; | 
|  | struct list_head	list; | 
|  | spinlock_t		lock; | 
|  | int			locked; | 
|  | struct btrfs_device	*device; | 
|  | struct btrfs_device	*devs[BTRFS_MAX_MIRRORS]; /* full list, incl | 
|  | * self */ | 
|  | int			ndevs; | 
|  | struct kref		refcnt; | 
|  | }; | 
|  |  | 
|  | struct reada_machine_work { | 
|  | struct btrfs_work	work; | 
|  | struct btrfs_fs_info	*fs_info; | 
|  | }; | 
|  |  | 
|  | static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *); | 
|  | static void reada_control_release(struct kref *kref); | 
|  | static void reada_zone_release(struct kref *kref); | 
|  | static void reada_start_machine(struct btrfs_fs_info *fs_info); | 
|  | static void __reada_start_machine(struct btrfs_fs_info *fs_info); | 
|  |  | 
|  | static int reada_add_block(struct reada_control *rc, u64 logical, | 
|  | struct btrfs_key *top, int level, u64 generation); | 
|  |  | 
|  | /* recurses */ | 
|  | /* in case of err, eb might be NULL */ | 
|  | static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb, | 
|  | u64 start, int err) | 
|  | { | 
|  | int level = 0; | 
|  | int nritems; | 
|  | int i; | 
|  | u64 bytenr; | 
|  | u64 generation; | 
|  | struct reada_extent *re; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct list_head list; | 
|  | unsigned long index = start >> PAGE_CACHE_SHIFT; | 
|  | struct btrfs_device *for_dev; | 
|  |  | 
|  | if (eb) | 
|  | level = btrfs_header_level(eb); | 
|  |  | 
|  | /* find extent */ | 
|  | spin_lock(&fs_info->reada_lock); | 
|  | re = radix_tree_lookup(&fs_info->reada_tree, index); | 
|  | if (re) | 
|  | re->refcnt++; | 
|  | spin_unlock(&fs_info->reada_lock); | 
|  |  | 
|  | if (!re) | 
|  | return -1; | 
|  |  | 
|  | spin_lock(&re->lock); | 
|  | /* | 
|  | * just take the full list from the extent. afterwards we | 
|  | * don't need the lock anymore | 
|  | */ | 
|  | list_replace_init(&re->extctl, &list); | 
|  | for_dev = re->scheduled_for; | 
|  | re->scheduled_for = NULL; | 
|  | spin_unlock(&re->lock); | 
|  |  | 
|  | if (err == 0) { | 
|  | nritems = level ? btrfs_header_nritems(eb) : 0; | 
|  | generation = btrfs_header_generation(eb); | 
|  | /* | 
|  | * FIXME: currently we just set nritems to 0 if this is a leaf, | 
|  | * effectively ignoring the content. In a next step we could | 
|  | * trigger more readahead depending from the content, e.g. | 
|  | * fetch the checksums for the extents in the leaf. | 
|  | */ | 
|  | } else { | 
|  | /* | 
|  | * this is the error case, the extent buffer has not been | 
|  | * read correctly. We won't access anything from it and | 
|  | * just cleanup our data structures. Effectively this will | 
|  | * cut the branch below this node from read ahead. | 
|  | */ | 
|  | nritems = 0; | 
|  | generation = 0; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nritems; i++) { | 
|  | struct reada_extctl *rec; | 
|  | u64 n_gen; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key next_key; | 
|  |  | 
|  | btrfs_node_key_to_cpu(eb, &key, i); | 
|  | if (i + 1 < nritems) | 
|  | btrfs_node_key_to_cpu(eb, &next_key, i + 1); | 
|  | else | 
|  | next_key = re->top; | 
|  | bytenr = btrfs_node_blockptr(eb, i); | 
|  | n_gen = btrfs_node_ptr_generation(eb, i); | 
|  |  | 
|  | list_for_each_entry(rec, &list, list) { | 
|  | struct reada_control *rc = rec->rc; | 
|  |  | 
|  | /* | 
|  | * if the generation doesn't match, just ignore this | 
|  | * extctl. This will probably cut off a branch from | 
|  | * prefetch. Alternatively one could start a new (sub-) | 
|  | * prefetch for this branch, starting again from root. | 
|  | * FIXME: move the generation check out of this loop | 
|  | */ | 
|  | #ifdef DEBUG | 
|  | if (rec->generation != generation) { | 
|  | btrfs_debug(root->fs_info, | 
|  | "generation mismatch for (%llu,%d,%llu) %llu != %llu", | 
|  | key.objectid, key.type, key.offset, | 
|  | rec->generation, generation); | 
|  | } | 
|  | #endif | 
|  | if (rec->generation == generation && | 
|  | btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 && | 
|  | btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0) | 
|  | reada_add_block(rc, bytenr, &next_key, | 
|  | level - 1, n_gen); | 
|  | } | 
|  | } | 
|  | /* | 
|  | * free extctl records | 
|  | */ | 
|  | while (!list_empty(&list)) { | 
|  | struct reada_control *rc; | 
|  | struct reada_extctl *rec; | 
|  |  | 
|  | rec = list_first_entry(&list, struct reada_extctl, list); | 
|  | list_del(&rec->list); | 
|  | rc = rec->rc; | 
|  | kfree(rec); | 
|  |  | 
|  | kref_get(&rc->refcnt); | 
|  | if (atomic_dec_and_test(&rc->elems)) { | 
|  | kref_put(&rc->refcnt, reada_control_release); | 
|  | wake_up(&rc->wait); | 
|  | } | 
|  | kref_put(&rc->refcnt, reada_control_release); | 
|  |  | 
|  | reada_extent_put(fs_info, re);	/* one ref for each entry */ | 
|  | } | 
|  | reada_extent_put(fs_info, re);	/* our ref */ | 
|  | if (for_dev) | 
|  | atomic_dec(&for_dev->reada_in_flight); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * start is passed separately in case eb in NULL, which may be the case with | 
|  | * failed I/O | 
|  | */ | 
|  | int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb, | 
|  | u64 start, int err) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = __readahead_hook(root, eb, start, err); | 
|  |  | 
|  | reada_start_machine(root->fs_info); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_device *dev, u64 logical, | 
|  | struct btrfs_bio *bbio) | 
|  | { | 
|  | int ret; | 
|  | struct reada_zone *zone; | 
|  | struct btrfs_block_group_cache *cache = NULL; | 
|  | u64 start; | 
|  | u64 end; | 
|  | int i; | 
|  |  | 
|  | zone = NULL; | 
|  | spin_lock(&fs_info->reada_lock); | 
|  | ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone, | 
|  | logical >> PAGE_CACHE_SHIFT, 1); | 
|  | if (ret == 1) | 
|  | kref_get(&zone->refcnt); | 
|  | spin_unlock(&fs_info->reada_lock); | 
|  |  | 
|  | if (ret == 1) { | 
|  | if (logical >= zone->start && logical < zone->end) | 
|  | return zone; | 
|  | spin_lock(&fs_info->reada_lock); | 
|  | kref_put(&zone->refcnt, reada_zone_release); | 
|  | spin_unlock(&fs_info->reada_lock); | 
|  | } | 
|  |  | 
|  | cache = btrfs_lookup_block_group(fs_info, logical); | 
|  | if (!cache) | 
|  | return NULL; | 
|  |  | 
|  | start = cache->key.objectid; | 
|  | end = start + cache->key.offset - 1; | 
|  | btrfs_put_block_group(cache); | 
|  |  | 
|  | zone = kzalloc(sizeof(*zone), GFP_NOFS); | 
|  | if (!zone) | 
|  | return NULL; | 
|  |  | 
|  | zone->start = start; | 
|  | zone->end = end; | 
|  | INIT_LIST_HEAD(&zone->list); | 
|  | spin_lock_init(&zone->lock); | 
|  | zone->locked = 0; | 
|  | kref_init(&zone->refcnt); | 
|  | zone->elems = 0; | 
|  | zone->device = dev; /* our device always sits at index 0 */ | 
|  | for (i = 0; i < bbio->num_stripes; ++i) { | 
|  | /* bounds have already been checked */ | 
|  | zone->devs[i] = bbio->stripes[i].dev; | 
|  | } | 
|  | zone->ndevs = bbio->num_stripes; | 
|  |  | 
|  | spin_lock(&fs_info->reada_lock); | 
|  | ret = radix_tree_insert(&dev->reada_zones, | 
|  | (unsigned long)(zone->end >> PAGE_CACHE_SHIFT), | 
|  | zone); | 
|  |  | 
|  | if (ret == -EEXIST) { | 
|  | kfree(zone); | 
|  | ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone, | 
|  | logical >> PAGE_CACHE_SHIFT, 1); | 
|  | if (ret == 1) | 
|  | kref_get(&zone->refcnt); | 
|  | } | 
|  | spin_unlock(&fs_info->reada_lock); | 
|  |  | 
|  | return zone; | 
|  | } | 
|  |  | 
|  | static struct reada_extent *reada_find_extent(struct btrfs_root *root, | 
|  | u64 logical, | 
|  | struct btrfs_key *top, int level) | 
|  | { | 
|  | int ret; | 
|  | struct reada_extent *re = NULL; | 
|  | struct reada_extent *re_exist = NULL; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_bio *bbio = NULL; | 
|  | struct btrfs_device *dev; | 
|  | struct btrfs_device *prev_dev; | 
|  | u32 blocksize; | 
|  | u64 length; | 
|  | int nzones = 0; | 
|  | int i; | 
|  | unsigned long index = logical >> PAGE_CACHE_SHIFT; | 
|  | int dev_replace_is_ongoing; | 
|  |  | 
|  | spin_lock(&fs_info->reada_lock); | 
|  | re = radix_tree_lookup(&fs_info->reada_tree, index); | 
|  | if (re) | 
|  | re->refcnt++; | 
|  | spin_unlock(&fs_info->reada_lock); | 
|  |  | 
|  | if (re) | 
|  | return re; | 
|  |  | 
|  | re = kzalloc(sizeof(*re), GFP_NOFS); | 
|  | if (!re) | 
|  | return NULL; | 
|  |  | 
|  | blocksize = root->nodesize; | 
|  | re->logical = logical; | 
|  | re->blocksize = blocksize; | 
|  | re->top = *top; | 
|  | INIT_LIST_HEAD(&re->extctl); | 
|  | spin_lock_init(&re->lock); | 
|  | re->refcnt = 1; | 
|  |  | 
|  | /* | 
|  | * map block | 
|  | */ | 
|  | length = blocksize; | 
|  | ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical, &length, | 
|  | &bbio, 0); | 
|  | if (ret || !bbio || length < blocksize) | 
|  | goto error; | 
|  |  | 
|  | if (bbio->num_stripes > BTRFS_MAX_MIRRORS) { | 
|  | btrfs_err(root->fs_info, | 
|  | "readahead: more than %d copies not supported", | 
|  | BTRFS_MAX_MIRRORS); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | for (nzones = 0; nzones < bbio->num_stripes; ++nzones) { | 
|  | struct reada_zone *zone; | 
|  |  | 
|  | dev = bbio->stripes[nzones].dev; | 
|  | zone = reada_find_zone(fs_info, dev, logical, bbio); | 
|  | if (!zone) | 
|  | break; | 
|  |  | 
|  | re->zones[nzones] = zone; | 
|  | spin_lock(&zone->lock); | 
|  | if (!zone->elems) | 
|  | kref_get(&zone->refcnt); | 
|  | ++zone->elems; | 
|  | spin_unlock(&zone->lock); | 
|  | spin_lock(&fs_info->reada_lock); | 
|  | kref_put(&zone->refcnt, reada_zone_release); | 
|  | spin_unlock(&fs_info->reada_lock); | 
|  | } | 
|  | re->nzones = nzones; | 
|  | if (nzones == 0) { | 
|  | /* not a single zone found, error and out */ | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | /* insert extent in reada_tree + all per-device trees, all or nothing */ | 
|  | btrfs_dev_replace_lock(&fs_info->dev_replace); | 
|  | spin_lock(&fs_info->reada_lock); | 
|  | ret = radix_tree_insert(&fs_info->reada_tree, index, re); | 
|  | if (ret == -EEXIST) { | 
|  | re_exist = radix_tree_lookup(&fs_info->reada_tree, index); | 
|  | BUG_ON(!re_exist); | 
|  | re_exist->refcnt++; | 
|  | spin_unlock(&fs_info->reada_lock); | 
|  | btrfs_dev_replace_unlock(&fs_info->dev_replace); | 
|  | goto error; | 
|  | } | 
|  | if (ret) { | 
|  | spin_unlock(&fs_info->reada_lock); | 
|  | btrfs_dev_replace_unlock(&fs_info->dev_replace); | 
|  | goto error; | 
|  | } | 
|  | prev_dev = NULL; | 
|  | dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing( | 
|  | &fs_info->dev_replace); | 
|  | for (i = 0; i < nzones; ++i) { | 
|  | dev = bbio->stripes[i].dev; | 
|  | if (dev == prev_dev) { | 
|  | /* | 
|  | * in case of DUP, just add the first zone. As both | 
|  | * are on the same device, there's nothing to gain | 
|  | * from adding both. | 
|  | * Also, it wouldn't work, as the tree is per device | 
|  | * and adding would fail with EEXIST | 
|  | */ | 
|  | continue; | 
|  | } | 
|  | if (!dev->bdev) { | 
|  | /* | 
|  | * cannot read ahead on missing device, but for RAID5/6, | 
|  | * REQ_GET_READ_MIRRORS return 1. So don't skip missing | 
|  | * device for such case. | 
|  | */ | 
|  | if (nzones > 1) | 
|  | continue; | 
|  | } | 
|  | if (dev_replace_is_ongoing && | 
|  | dev == fs_info->dev_replace.tgtdev) { | 
|  | /* | 
|  | * as this device is selected for reading only as | 
|  | * a last resort, skip it for read ahead. | 
|  | */ | 
|  | continue; | 
|  | } | 
|  | prev_dev = dev; | 
|  | ret = radix_tree_insert(&dev->reada_extents, index, re); | 
|  | if (ret) { | 
|  | while (--i >= 0) { | 
|  | dev = bbio->stripes[i].dev; | 
|  | BUG_ON(dev == NULL); | 
|  | /* ignore whether the entry was inserted */ | 
|  | radix_tree_delete(&dev->reada_extents, index); | 
|  | } | 
|  | BUG_ON(fs_info == NULL); | 
|  | radix_tree_delete(&fs_info->reada_tree, index); | 
|  | spin_unlock(&fs_info->reada_lock); | 
|  | btrfs_dev_replace_unlock(&fs_info->dev_replace); | 
|  | goto error; | 
|  | } | 
|  | } | 
|  | spin_unlock(&fs_info->reada_lock); | 
|  | btrfs_dev_replace_unlock(&fs_info->dev_replace); | 
|  |  | 
|  | kfree(bbio); | 
|  | return re; | 
|  |  | 
|  | error: | 
|  | while (nzones) { | 
|  | struct reada_zone *zone; | 
|  |  | 
|  | --nzones; | 
|  | zone = re->zones[nzones]; | 
|  | kref_get(&zone->refcnt); | 
|  | spin_lock(&zone->lock); | 
|  | --zone->elems; | 
|  | if (zone->elems == 0) { | 
|  | /* | 
|  | * no fs_info->reada_lock needed, as this can't be | 
|  | * the last ref | 
|  | */ | 
|  | kref_put(&zone->refcnt, reada_zone_release); | 
|  | } | 
|  | spin_unlock(&zone->lock); | 
|  |  | 
|  | spin_lock(&fs_info->reada_lock); | 
|  | kref_put(&zone->refcnt, reada_zone_release); | 
|  | spin_unlock(&fs_info->reada_lock); | 
|  | } | 
|  | kfree(bbio); | 
|  | kfree(re); | 
|  | return re_exist; | 
|  | } | 
|  |  | 
|  | static void reada_extent_put(struct btrfs_fs_info *fs_info, | 
|  | struct reada_extent *re) | 
|  | { | 
|  | int i; | 
|  | unsigned long index = re->logical >> PAGE_CACHE_SHIFT; | 
|  |  | 
|  | spin_lock(&fs_info->reada_lock); | 
|  | if (--re->refcnt) { | 
|  | spin_unlock(&fs_info->reada_lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | radix_tree_delete(&fs_info->reada_tree, index); | 
|  | for (i = 0; i < re->nzones; ++i) { | 
|  | struct reada_zone *zone = re->zones[i]; | 
|  |  | 
|  | radix_tree_delete(&zone->device->reada_extents, index); | 
|  | } | 
|  |  | 
|  | spin_unlock(&fs_info->reada_lock); | 
|  |  | 
|  | for (i = 0; i < re->nzones; ++i) { | 
|  | struct reada_zone *zone = re->zones[i]; | 
|  |  | 
|  | kref_get(&zone->refcnt); | 
|  | spin_lock(&zone->lock); | 
|  | --zone->elems; | 
|  | if (zone->elems == 0) { | 
|  | /* no fs_info->reada_lock needed, as this can't be | 
|  | * the last ref */ | 
|  | kref_put(&zone->refcnt, reada_zone_release); | 
|  | } | 
|  | spin_unlock(&zone->lock); | 
|  |  | 
|  | spin_lock(&fs_info->reada_lock); | 
|  | kref_put(&zone->refcnt, reada_zone_release); | 
|  | spin_unlock(&fs_info->reada_lock); | 
|  | } | 
|  | if (re->scheduled_for) | 
|  | atomic_dec(&re->scheduled_for->reada_in_flight); | 
|  |  | 
|  | kfree(re); | 
|  | } | 
|  |  | 
|  | static void reada_zone_release(struct kref *kref) | 
|  | { | 
|  | struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt); | 
|  |  | 
|  | radix_tree_delete(&zone->device->reada_zones, | 
|  | zone->end >> PAGE_CACHE_SHIFT); | 
|  |  | 
|  | kfree(zone); | 
|  | } | 
|  |  | 
|  | static void reada_control_release(struct kref *kref) | 
|  | { | 
|  | struct reada_control *rc = container_of(kref, struct reada_control, | 
|  | refcnt); | 
|  |  | 
|  | kfree(rc); | 
|  | } | 
|  |  | 
|  | static int reada_add_block(struct reada_control *rc, u64 logical, | 
|  | struct btrfs_key *top, int level, u64 generation) | 
|  | { | 
|  | struct btrfs_root *root = rc->root; | 
|  | struct reada_extent *re; | 
|  | struct reada_extctl *rec; | 
|  |  | 
|  | re = reada_find_extent(root, logical, top, level); /* takes one ref */ | 
|  | if (!re) | 
|  | return -1; | 
|  |  | 
|  | rec = kzalloc(sizeof(*rec), GFP_NOFS); | 
|  | if (!rec) { | 
|  | reada_extent_put(root->fs_info, re); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | rec->rc = rc; | 
|  | rec->generation = generation; | 
|  | atomic_inc(&rc->elems); | 
|  |  | 
|  | spin_lock(&re->lock); | 
|  | list_add_tail(&rec->list, &re->extctl); | 
|  | spin_unlock(&re->lock); | 
|  |  | 
|  | /* leave the ref on the extent */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * called with fs_info->reada_lock held | 
|  | */ | 
|  | static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock) | 
|  | { | 
|  | int i; | 
|  | unsigned long index = zone->end >> PAGE_CACHE_SHIFT; | 
|  |  | 
|  | for (i = 0; i < zone->ndevs; ++i) { | 
|  | struct reada_zone *peer; | 
|  | peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index); | 
|  | if (peer && peer->device != zone->device) | 
|  | peer->locked = lock; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * called with fs_info->reada_lock held | 
|  | */ | 
|  | static int reada_pick_zone(struct btrfs_device *dev) | 
|  | { | 
|  | struct reada_zone *top_zone = NULL; | 
|  | struct reada_zone *top_locked_zone = NULL; | 
|  | u64 top_elems = 0; | 
|  | u64 top_locked_elems = 0; | 
|  | unsigned long index = 0; | 
|  | int ret; | 
|  |  | 
|  | if (dev->reada_curr_zone) { | 
|  | reada_peer_zones_set_lock(dev->reada_curr_zone, 0); | 
|  | kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release); | 
|  | dev->reada_curr_zone = NULL; | 
|  | } | 
|  | /* pick the zone with the most elements */ | 
|  | while (1) { | 
|  | struct reada_zone *zone; | 
|  |  | 
|  | ret = radix_tree_gang_lookup(&dev->reada_zones, | 
|  | (void **)&zone, index, 1); | 
|  | if (ret == 0) | 
|  | break; | 
|  | index = (zone->end >> PAGE_CACHE_SHIFT) + 1; | 
|  | if (zone->locked) { | 
|  | if (zone->elems > top_locked_elems) { | 
|  | top_locked_elems = zone->elems; | 
|  | top_locked_zone = zone; | 
|  | } | 
|  | } else { | 
|  | if (zone->elems > top_elems) { | 
|  | top_elems = zone->elems; | 
|  | top_zone = zone; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (top_zone) | 
|  | dev->reada_curr_zone = top_zone; | 
|  | else if (top_locked_zone) | 
|  | dev->reada_curr_zone = top_locked_zone; | 
|  | else | 
|  | return 0; | 
|  |  | 
|  | dev->reada_next = dev->reada_curr_zone->start; | 
|  | kref_get(&dev->reada_curr_zone->refcnt); | 
|  | reada_peer_zones_set_lock(dev->reada_curr_zone, 1); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int reada_start_machine_dev(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_device *dev) | 
|  | { | 
|  | struct reada_extent *re = NULL; | 
|  | int mirror_num = 0; | 
|  | struct extent_buffer *eb = NULL; | 
|  | u64 logical; | 
|  | u32 blocksize; | 
|  | int ret; | 
|  | int i; | 
|  | int need_kick = 0; | 
|  |  | 
|  | spin_lock(&fs_info->reada_lock); | 
|  | if (dev->reada_curr_zone == NULL) { | 
|  | ret = reada_pick_zone(dev); | 
|  | if (!ret) { | 
|  | spin_unlock(&fs_info->reada_lock); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * FIXME currently we issue the reads one extent at a time. If we have | 
|  | * a contiguous block of extents, we could also coagulate them or use | 
|  | * plugging to speed things up | 
|  | */ | 
|  | ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re, | 
|  | dev->reada_next >> PAGE_CACHE_SHIFT, 1); | 
|  | if (ret == 0 || re->logical >= dev->reada_curr_zone->end) { | 
|  | ret = reada_pick_zone(dev); | 
|  | if (!ret) { | 
|  | spin_unlock(&fs_info->reada_lock); | 
|  | return 0; | 
|  | } | 
|  | re = NULL; | 
|  | ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re, | 
|  | dev->reada_next >> PAGE_CACHE_SHIFT, 1); | 
|  | } | 
|  | if (ret == 0) { | 
|  | spin_unlock(&fs_info->reada_lock); | 
|  | return 0; | 
|  | } | 
|  | dev->reada_next = re->logical + re->blocksize; | 
|  | re->refcnt++; | 
|  |  | 
|  | spin_unlock(&fs_info->reada_lock); | 
|  |  | 
|  | /* | 
|  | * find mirror num | 
|  | */ | 
|  | for (i = 0; i < re->nzones; ++i) { | 
|  | if (re->zones[i]->device == dev) { | 
|  | mirror_num = i + 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | logical = re->logical; | 
|  | blocksize = re->blocksize; | 
|  |  | 
|  | spin_lock(&re->lock); | 
|  | if (re->scheduled_for == NULL) { | 
|  | re->scheduled_for = dev; | 
|  | need_kick = 1; | 
|  | } | 
|  | spin_unlock(&re->lock); | 
|  |  | 
|  | reada_extent_put(fs_info, re); | 
|  |  | 
|  | if (!need_kick) | 
|  | return 0; | 
|  |  | 
|  | atomic_inc(&dev->reada_in_flight); | 
|  | ret = reada_tree_block_flagged(fs_info->extent_root, logical, blocksize, | 
|  | mirror_num, &eb); | 
|  | if (ret) | 
|  | __readahead_hook(fs_info->extent_root, NULL, logical, ret); | 
|  | else if (eb) | 
|  | __readahead_hook(fs_info->extent_root, eb, eb->start, ret); | 
|  |  | 
|  | if (eb) | 
|  | free_extent_buffer(eb); | 
|  |  | 
|  | return 1; | 
|  |  | 
|  | } | 
|  |  | 
|  | static void reada_start_machine_worker(struct btrfs_work *work) | 
|  | { | 
|  | struct reada_machine_work *rmw; | 
|  | struct btrfs_fs_info *fs_info; | 
|  | int old_ioprio; | 
|  |  | 
|  | rmw = container_of(work, struct reada_machine_work, work); | 
|  | fs_info = rmw->fs_info; | 
|  |  | 
|  | kfree(rmw); | 
|  |  | 
|  | old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current), | 
|  | task_nice_ioprio(current)); | 
|  | set_task_ioprio(current, BTRFS_IOPRIO_READA); | 
|  | __reada_start_machine(fs_info); | 
|  | set_task_ioprio(current, old_ioprio); | 
|  | } | 
|  |  | 
|  | static void __reada_start_machine(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_device *device; | 
|  | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | 
|  | u64 enqueued; | 
|  | u64 total = 0; | 
|  | int i; | 
|  |  | 
|  | do { | 
|  | enqueued = 0; | 
|  | list_for_each_entry(device, &fs_devices->devices, dev_list) { | 
|  | if (atomic_read(&device->reada_in_flight) < | 
|  | MAX_IN_FLIGHT) | 
|  | enqueued += reada_start_machine_dev(fs_info, | 
|  | device); | 
|  | } | 
|  | total += enqueued; | 
|  | } while (enqueued && total < 10000); | 
|  |  | 
|  | if (enqueued == 0) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If everything is already in the cache, this is effectively single | 
|  | * threaded. To a) not hold the caller for too long and b) to utilize | 
|  | * more cores, we broke the loop above after 10000 iterations and now | 
|  | * enqueue to workers to finish it. This will distribute the load to | 
|  | * the cores. | 
|  | */ | 
|  | for (i = 0; i < 2; ++i) | 
|  | reada_start_machine(fs_info); | 
|  | } | 
|  |  | 
|  | static void reada_start_machine(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct reada_machine_work *rmw; | 
|  |  | 
|  | rmw = kzalloc(sizeof(*rmw), GFP_NOFS); | 
|  | if (!rmw) { | 
|  | /* FIXME we cannot handle this properly right now */ | 
|  | BUG(); | 
|  | } | 
|  | btrfs_init_work(&rmw->work, btrfs_readahead_helper, | 
|  | reada_start_machine_worker, NULL, NULL); | 
|  | rmw->fs_info = fs_info; | 
|  |  | 
|  | btrfs_queue_work(fs_info->readahead_workers, &rmw->work); | 
|  | } | 
|  |  | 
|  | #ifdef DEBUG | 
|  | static void dump_devs(struct btrfs_fs_info *fs_info, int all) | 
|  | { | 
|  | struct btrfs_device *device; | 
|  | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | 
|  | unsigned long index; | 
|  | int ret; | 
|  | int i; | 
|  | int j; | 
|  | int cnt; | 
|  |  | 
|  | spin_lock(&fs_info->reada_lock); | 
|  | list_for_each_entry(device, &fs_devices->devices, dev_list) { | 
|  | printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid, | 
|  | atomic_read(&device->reada_in_flight)); | 
|  | index = 0; | 
|  | while (1) { | 
|  | struct reada_zone *zone; | 
|  | ret = radix_tree_gang_lookup(&device->reada_zones, | 
|  | (void **)&zone, index, 1); | 
|  | if (ret == 0) | 
|  | break; | 
|  | printk(KERN_DEBUG "  zone %llu-%llu elems %llu locked " | 
|  | "%d devs", zone->start, zone->end, zone->elems, | 
|  | zone->locked); | 
|  | for (j = 0; j < zone->ndevs; ++j) { | 
|  | printk(KERN_CONT " %lld", | 
|  | zone->devs[j]->devid); | 
|  | } | 
|  | if (device->reada_curr_zone == zone) | 
|  | printk(KERN_CONT " curr off %llu", | 
|  | device->reada_next - zone->start); | 
|  | printk(KERN_CONT "\n"); | 
|  | index = (zone->end >> PAGE_CACHE_SHIFT) + 1; | 
|  | } | 
|  | cnt = 0; | 
|  | index = 0; | 
|  | while (all) { | 
|  | struct reada_extent *re = NULL; | 
|  |  | 
|  | ret = radix_tree_gang_lookup(&device->reada_extents, | 
|  | (void **)&re, index, 1); | 
|  | if (ret == 0) | 
|  | break; | 
|  | printk(KERN_DEBUG | 
|  | "  re: logical %llu size %u empty %d for %lld", | 
|  | re->logical, re->blocksize, | 
|  | list_empty(&re->extctl), re->scheduled_for ? | 
|  | re->scheduled_for->devid : -1); | 
|  |  | 
|  | for (i = 0; i < re->nzones; ++i) { | 
|  | printk(KERN_CONT " zone %llu-%llu devs", | 
|  | re->zones[i]->start, | 
|  | re->zones[i]->end); | 
|  | for (j = 0; j < re->zones[i]->ndevs; ++j) { | 
|  | printk(KERN_CONT " %lld", | 
|  | re->zones[i]->devs[j]->devid); | 
|  | } | 
|  | } | 
|  | printk(KERN_CONT "\n"); | 
|  | index = (re->logical >> PAGE_CACHE_SHIFT) + 1; | 
|  | if (++cnt > 15) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | index = 0; | 
|  | cnt = 0; | 
|  | while (all) { | 
|  | struct reada_extent *re = NULL; | 
|  |  | 
|  | ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re, | 
|  | index, 1); | 
|  | if (ret == 0) | 
|  | break; | 
|  | if (!re->scheduled_for) { | 
|  | index = (re->logical >> PAGE_CACHE_SHIFT) + 1; | 
|  | continue; | 
|  | } | 
|  | printk(KERN_DEBUG | 
|  | "re: logical %llu size %u list empty %d for %lld", | 
|  | re->logical, re->blocksize, list_empty(&re->extctl), | 
|  | re->scheduled_for ? re->scheduled_for->devid : -1); | 
|  | for (i = 0; i < re->nzones; ++i) { | 
|  | printk(KERN_CONT " zone %llu-%llu devs", | 
|  | re->zones[i]->start, | 
|  | re->zones[i]->end); | 
|  | for (i = 0; i < re->nzones; ++i) { | 
|  | printk(KERN_CONT " zone %llu-%llu devs", | 
|  | re->zones[i]->start, | 
|  | re->zones[i]->end); | 
|  | for (j = 0; j < re->zones[i]->ndevs; ++j) { | 
|  | printk(KERN_CONT " %lld", | 
|  | re->zones[i]->devs[j]->devid); | 
|  | } | 
|  | } | 
|  | } | 
|  | printk(KERN_CONT "\n"); | 
|  | index = (re->logical >> PAGE_CACHE_SHIFT) + 1; | 
|  | } | 
|  | spin_unlock(&fs_info->reada_lock); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * interface | 
|  | */ | 
|  | struct reada_control *btrfs_reada_add(struct btrfs_root *root, | 
|  | struct btrfs_key *key_start, struct btrfs_key *key_end) | 
|  | { | 
|  | struct reada_control *rc; | 
|  | u64 start; | 
|  | u64 generation; | 
|  | int level; | 
|  | struct extent_buffer *node; | 
|  | static struct btrfs_key max_key = { | 
|  | .objectid = (u64)-1, | 
|  | .type = (u8)-1, | 
|  | .offset = (u64)-1 | 
|  | }; | 
|  |  | 
|  | rc = kzalloc(sizeof(*rc), GFP_NOFS); | 
|  | if (!rc) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | rc->root = root; | 
|  | rc->key_start = *key_start; | 
|  | rc->key_end = *key_end; | 
|  | atomic_set(&rc->elems, 0); | 
|  | init_waitqueue_head(&rc->wait); | 
|  | kref_init(&rc->refcnt); | 
|  | kref_get(&rc->refcnt); /* one ref for having elements */ | 
|  |  | 
|  | node = btrfs_root_node(root); | 
|  | start = node->start; | 
|  | level = btrfs_header_level(node); | 
|  | generation = btrfs_header_generation(node); | 
|  | free_extent_buffer(node); | 
|  |  | 
|  | if (reada_add_block(rc, start, &max_key, level, generation)) { | 
|  | kfree(rc); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | reada_start_machine(root->fs_info); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | #ifdef DEBUG | 
|  | int btrfs_reada_wait(void *handle) | 
|  | { | 
|  | struct reada_control *rc = handle; | 
|  |  | 
|  | while (atomic_read(&rc->elems)) { | 
|  | wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0, | 
|  | 5 * HZ); | 
|  | dump_devs(rc->root->fs_info, | 
|  | atomic_read(&rc->elems) < 10 ? 1 : 0); | 
|  | } | 
|  |  | 
|  | dump_devs(rc->root->fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0); | 
|  |  | 
|  | kref_put(&rc->refcnt, reada_control_release); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | int btrfs_reada_wait(void *handle) | 
|  | { | 
|  | struct reada_control *rc = handle; | 
|  |  | 
|  | while (atomic_read(&rc->elems)) { | 
|  | wait_event(rc->wait, atomic_read(&rc->elems) == 0); | 
|  | } | 
|  |  | 
|  | kref_put(&rc->refcnt, reada_control_release); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void btrfs_reada_detach(void *handle) | 
|  | { | 
|  | struct reada_control *rc = handle; | 
|  |  | 
|  | kref_put(&rc->refcnt, reada_control_release); | 
|  | } |