|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2011, 2012 STRATO.  All rights reserved. | 
|  | */ | 
|  |  | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/ratelimit.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include "ctree.h" | 
|  | #include "volumes.h" | 
|  | #include "disk-io.h" | 
|  | #include "ordered-data.h" | 
|  | #include "transaction.h" | 
|  | #include "backref.h" | 
|  | #include "extent_io.h" | 
|  | #include "dev-replace.h" | 
|  | #include "check-integrity.h" | 
|  | #include "rcu-string.h" | 
|  | #include "raid56.h" | 
|  |  | 
|  | /* | 
|  | * This is only the first step towards a full-features scrub. It reads all | 
|  | * extent and super block and verifies the checksums. In case a bad checksum | 
|  | * is found or the extent cannot be read, good data will be written back if | 
|  | * any can be found. | 
|  | * | 
|  | * Future enhancements: | 
|  | *  - In case an unrepairable extent is encountered, track which files are | 
|  | *    affected and report them | 
|  | *  - track and record media errors, throw out bad devices | 
|  | *  - add a mode to also read unallocated space | 
|  | */ | 
|  |  | 
|  | struct scrub_block; | 
|  | struct scrub_ctx; | 
|  |  | 
|  | /* | 
|  | * the following three values only influence the performance. | 
|  | * The last one configures the number of parallel and outstanding I/O | 
|  | * operations. The first two values configure an upper limit for the number | 
|  | * of (dynamically allocated) pages that are added to a bio. | 
|  | */ | 
|  | #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */ | 
|  | #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */ | 
|  | #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */ | 
|  |  | 
|  | /* | 
|  | * the following value times PAGE_SIZE needs to be large enough to match the | 
|  | * largest node/leaf/sector size that shall be supported. | 
|  | * Values larger than BTRFS_STRIPE_LEN are not supported. | 
|  | */ | 
|  | #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */ | 
|  |  | 
|  | struct scrub_recover { | 
|  | refcount_t		refs; | 
|  | struct btrfs_bio	*bbio; | 
|  | u64			map_length; | 
|  | }; | 
|  |  | 
|  | struct scrub_page { | 
|  | struct scrub_block	*sblock; | 
|  | struct page		*page; | 
|  | struct btrfs_device	*dev; | 
|  | struct list_head	list; | 
|  | u64			flags;  /* extent flags */ | 
|  | u64			generation; | 
|  | u64			logical; | 
|  | u64			physical; | 
|  | u64			physical_for_dev_replace; | 
|  | atomic_t		refs; | 
|  | struct { | 
|  | unsigned int	mirror_num:8; | 
|  | unsigned int	have_csum:1; | 
|  | unsigned int	io_error:1; | 
|  | }; | 
|  | u8			csum[BTRFS_CSUM_SIZE]; | 
|  |  | 
|  | struct scrub_recover	*recover; | 
|  | }; | 
|  |  | 
|  | struct scrub_bio { | 
|  | int			index; | 
|  | struct scrub_ctx	*sctx; | 
|  | struct btrfs_device	*dev; | 
|  | struct bio		*bio; | 
|  | blk_status_t		status; | 
|  | u64			logical; | 
|  | u64			physical; | 
|  | #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO | 
|  | struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO]; | 
|  | #else | 
|  | struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO]; | 
|  | #endif | 
|  | int			page_count; | 
|  | int			next_free; | 
|  | struct btrfs_work	work; | 
|  | }; | 
|  |  | 
|  | struct scrub_block { | 
|  | struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK]; | 
|  | int			page_count; | 
|  | atomic_t		outstanding_pages; | 
|  | refcount_t		refs; /* free mem on transition to zero */ | 
|  | struct scrub_ctx	*sctx; | 
|  | struct scrub_parity	*sparity; | 
|  | struct { | 
|  | unsigned int	header_error:1; | 
|  | unsigned int	checksum_error:1; | 
|  | unsigned int	no_io_error_seen:1; | 
|  | unsigned int	generation_error:1; /* also sets header_error */ | 
|  |  | 
|  | /* The following is for the data used to check parity */ | 
|  | /* It is for the data with checksum */ | 
|  | unsigned int	data_corrected:1; | 
|  | }; | 
|  | struct btrfs_work	work; | 
|  | }; | 
|  |  | 
|  | /* Used for the chunks with parity stripe such RAID5/6 */ | 
|  | struct scrub_parity { | 
|  | struct scrub_ctx	*sctx; | 
|  |  | 
|  | struct btrfs_device	*scrub_dev; | 
|  |  | 
|  | u64			logic_start; | 
|  |  | 
|  | u64			logic_end; | 
|  |  | 
|  | int			nsectors; | 
|  |  | 
|  | u64			stripe_len; | 
|  |  | 
|  | refcount_t		refs; | 
|  |  | 
|  | struct list_head	spages; | 
|  |  | 
|  | /* Work of parity check and repair */ | 
|  | struct btrfs_work	work; | 
|  |  | 
|  | /* Mark the parity blocks which have data */ | 
|  | unsigned long		*dbitmap; | 
|  |  | 
|  | /* | 
|  | * Mark the parity blocks which have data, but errors happen when | 
|  | * read data or check data | 
|  | */ | 
|  | unsigned long		*ebitmap; | 
|  |  | 
|  | unsigned long		bitmap[0]; | 
|  | }; | 
|  |  | 
|  | struct scrub_ctx { | 
|  | struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX]; | 
|  | struct btrfs_fs_info	*fs_info; | 
|  | int			first_free; | 
|  | int			curr; | 
|  | atomic_t		bios_in_flight; | 
|  | atomic_t		workers_pending; | 
|  | spinlock_t		list_lock; | 
|  | wait_queue_head_t	list_wait; | 
|  | u16			csum_size; | 
|  | struct list_head	csum_list; | 
|  | atomic_t		cancel_req; | 
|  | int			readonly; | 
|  | int			pages_per_rd_bio; | 
|  |  | 
|  | int			is_dev_replace; | 
|  |  | 
|  | struct scrub_bio        *wr_curr_bio; | 
|  | struct mutex            wr_lock; | 
|  | int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */ | 
|  | struct btrfs_device     *wr_tgtdev; | 
|  | bool                    flush_all_writes; | 
|  |  | 
|  | /* | 
|  | * statistics | 
|  | */ | 
|  | struct btrfs_scrub_progress stat; | 
|  | spinlock_t		stat_lock; | 
|  |  | 
|  | /* | 
|  | * Use a ref counter to avoid use-after-free issues. Scrub workers | 
|  | * decrement bios_in_flight and workers_pending and then do a wakeup | 
|  | * on the list_wait wait queue. We must ensure the main scrub task | 
|  | * doesn't free the scrub context before or while the workers are | 
|  | * doing the wakeup() call. | 
|  | */ | 
|  | refcount_t              refs; | 
|  | }; | 
|  |  | 
|  | struct scrub_fixup_nodatasum { | 
|  | struct scrub_ctx	*sctx; | 
|  | struct btrfs_device	*dev; | 
|  | u64			logical; | 
|  | struct btrfs_root	*root; | 
|  | struct btrfs_work	work; | 
|  | int			mirror_num; | 
|  | }; | 
|  |  | 
|  | struct scrub_nocow_inode { | 
|  | u64			inum; | 
|  | u64			offset; | 
|  | u64			root; | 
|  | struct list_head	list; | 
|  | }; | 
|  |  | 
|  | struct scrub_copy_nocow_ctx { | 
|  | struct scrub_ctx	*sctx; | 
|  | u64			logical; | 
|  | u64			len; | 
|  | int			mirror_num; | 
|  | u64			physical_for_dev_replace; | 
|  | struct list_head	inodes; | 
|  | struct btrfs_work	work; | 
|  | }; | 
|  |  | 
|  | struct scrub_warning { | 
|  | struct btrfs_path	*path; | 
|  | u64			extent_item_size; | 
|  | const char		*errstr; | 
|  | u64			physical; | 
|  | u64			logical; | 
|  | struct btrfs_device	*dev; | 
|  | }; | 
|  |  | 
|  | struct full_stripe_lock { | 
|  | struct rb_node node; | 
|  | u64 logical; | 
|  | u64 refs; | 
|  | struct mutex mutex; | 
|  | }; | 
|  |  | 
|  | static void scrub_pending_bio_inc(struct scrub_ctx *sctx); | 
|  | static void scrub_pending_bio_dec(struct scrub_ctx *sctx); | 
|  | static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx); | 
|  | static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx); | 
|  | static int scrub_handle_errored_block(struct scrub_block *sblock_to_check); | 
|  | static int scrub_setup_recheck_block(struct scrub_block *original_sblock, | 
|  | struct scrub_block *sblocks_for_recheck); | 
|  | static void scrub_recheck_block(struct btrfs_fs_info *fs_info, | 
|  | struct scrub_block *sblock, | 
|  | int retry_failed_mirror); | 
|  | static void scrub_recheck_block_checksum(struct scrub_block *sblock); | 
|  | static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, | 
|  | struct scrub_block *sblock_good); | 
|  | static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, | 
|  | struct scrub_block *sblock_good, | 
|  | int page_num, int force_write); | 
|  | static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); | 
|  | static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, | 
|  | int page_num); | 
|  | static int scrub_checksum_data(struct scrub_block *sblock); | 
|  | static int scrub_checksum_tree_block(struct scrub_block *sblock); | 
|  | static int scrub_checksum_super(struct scrub_block *sblock); | 
|  | static void scrub_block_get(struct scrub_block *sblock); | 
|  | static void scrub_block_put(struct scrub_block *sblock); | 
|  | static void scrub_page_get(struct scrub_page *spage); | 
|  | static void scrub_page_put(struct scrub_page *spage); | 
|  | static void scrub_parity_get(struct scrub_parity *sparity); | 
|  | static void scrub_parity_put(struct scrub_parity *sparity); | 
|  | static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, | 
|  | struct scrub_page *spage); | 
|  | static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, | 
|  | u64 physical, struct btrfs_device *dev, u64 flags, | 
|  | u64 gen, int mirror_num, u8 *csum, int force, | 
|  | u64 physical_for_dev_replace); | 
|  | static void scrub_bio_end_io(struct bio *bio); | 
|  | static void scrub_bio_end_io_worker(struct btrfs_work *work); | 
|  | static void scrub_block_complete(struct scrub_block *sblock); | 
|  | static void scrub_remap_extent(struct btrfs_fs_info *fs_info, | 
|  | u64 extent_logical, u64 extent_len, | 
|  | u64 *extent_physical, | 
|  | struct btrfs_device **extent_dev, | 
|  | int *extent_mirror_num); | 
|  | static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, | 
|  | struct scrub_page *spage); | 
|  | static void scrub_wr_submit(struct scrub_ctx *sctx); | 
|  | static void scrub_wr_bio_end_io(struct bio *bio); | 
|  | static void scrub_wr_bio_end_io_worker(struct btrfs_work *work); | 
|  | static int write_page_nocow(struct scrub_ctx *sctx, | 
|  | u64 physical_for_dev_replace, struct page *page); | 
|  | static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, | 
|  | struct scrub_copy_nocow_ctx *ctx); | 
|  | static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, | 
|  | int mirror_num, u64 physical_for_dev_replace); | 
|  | static void copy_nocow_pages_worker(struct btrfs_work *work); | 
|  | static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); | 
|  | static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info); | 
|  | static void scrub_put_ctx(struct scrub_ctx *sctx); | 
|  |  | 
|  | static inline int scrub_is_page_on_raid56(struct scrub_page *page) | 
|  | { | 
|  | return page->recover && | 
|  | (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK); | 
|  | } | 
|  |  | 
|  | static void scrub_pending_bio_inc(struct scrub_ctx *sctx) | 
|  | { | 
|  | refcount_inc(&sctx->refs); | 
|  | atomic_inc(&sctx->bios_in_flight); | 
|  | } | 
|  |  | 
|  | static void scrub_pending_bio_dec(struct scrub_ctx *sctx) | 
|  | { | 
|  | atomic_dec(&sctx->bios_in_flight); | 
|  | wake_up(&sctx->list_wait); | 
|  | scrub_put_ctx(sctx); | 
|  | } | 
|  |  | 
|  | static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | while (atomic_read(&fs_info->scrub_pause_req)) { | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  | wait_event(fs_info->scrub_pause_wait, | 
|  | atomic_read(&fs_info->scrub_pause_req) == 0); | 
|  | mutex_lock(&fs_info->scrub_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void scrub_pause_on(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | atomic_inc(&fs_info->scrubs_paused); | 
|  | wake_up(&fs_info->scrub_pause_wait); | 
|  | } | 
|  |  | 
|  | static void scrub_pause_off(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | mutex_lock(&fs_info->scrub_lock); | 
|  | __scrub_blocked_if_needed(fs_info); | 
|  | atomic_dec(&fs_info->scrubs_paused); | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  |  | 
|  | wake_up(&fs_info->scrub_pause_wait); | 
|  | } | 
|  |  | 
|  | static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | scrub_pause_on(fs_info); | 
|  | scrub_pause_off(fs_info); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Insert new full stripe lock into full stripe locks tree | 
|  | * | 
|  | * Return pointer to existing or newly inserted full_stripe_lock structure if | 
|  | * everything works well. | 
|  | * Return ERR_PTR(-ENOMEM) if we failed to allocate memory | 
|  | * | 
|  | * NOTE: caller must hold full_stripe_locks_root->lock before calling this | 
|  | * function | 
|  | */ | 
|  | static struct full_stripe_lock *insert_full_stripe_lock( | 
|  | struct btrfs_full_stripe_locks_tree *locks_root, | 
|  | u64 fstripe_logical) | 
|  | { | 
|  | struct rb_node **p; | 
|  | struct rb_node *parent = NULL; | 
|  | struct full_stripe_lock *entry; | 
|  | struct full_stripe_lock *ret; | 
|  |  | 
|  | lockdep_assert_held(&locks_root->lock); | 
|  |  | 
|  | p = &locks_root->root.rb_node; | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | entry = rb_entry(parent, struct full_stripe_lock, node); | 
|  | if (fstripe_logical < entry->logical) { | 
|  | p = &(*p)->rb_left; | 
|  | } else if (fstripe_logical > entry->logical) { | 
|  | p = &(*p)->rb_right; | 
|  | } else { | 
|  | entry->refs++; | 
|  | return entry; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Insert new lock */ | 
|  | ret = kmalloc(sizeof(*ret), GFP_KERNEL); | 
|  | if (!ret) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | ret->logical = fstripe_logical; | 
|  | ret->refs = 1; | 
|  | mutex_init(&ret->mutex); | 
|  |  | 
|  | rb_link_node(&ret->node, parent, p); | 
|  | rb_insert_color(&ret->node, &locks_root->root); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Search for a full stripe lock of a block group | 
|  | * | 
|  | * Return pointer to existing full stripe lock if found | 
|  | * Return NULL if not found | 
|  | */ | 
|  | static struct full_stripe_lock *search_full_stripe_lock( | 
|  | struct btrfs_full_stripe_locks_tree *locks_root, | 
|  | u64 fstripe_logical) | 
|  | { | 
|  | struct rb_node *node; | 
|  | struct full_stripe_lock *entry; | 
|  |  | 
|  | lockdep_assert_held(&locks_root->lock); | 
|  |  | 
|  | node = locks_root->root.rb_node; | 
|  | while (node) { | 
|  | entry = rb_entry(node, struct full_stripe_lock, node); | 
|  | if (fstripe_logical < entry->logical) | 
|  | node = node->rb_left; | 
|  | else if (fstripe_logical > entry->logical) | 
|  | node = node->rb_right; | 
|  | else | 
|  | return entry; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper to get full stripe logical from a normal bytenr. | 
|  | * | 
|  | * Caller must ensure @cache is a RAID56 block group. | 
|  | */ | 
|  | static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache, | 
|  | u64 bytenr) | 
|  | { | 
|  | u64 ret; | 
|  |  | 
|  | /* | 
|  | * Due to chunk item size limit, full stripe length should not be | 
|  | * larger than U32_MAX. Just a sanity check here. | 
|  | */ | 
|  | WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX); | 
|  |  | 
|  | /* | 
|  | * round_down() can only handle power of 2, while RAID56 full | 
|  | * stripe length can be 64KiB * n, so we need to manually round down. | 
|  | */ | 
|  | ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) * | 
|  | cache->full_stripe_len + cache->key.objectid; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lock a full stripe to avoid concurrency of recovery and read | 
|  | * | 
|  | * It's only used for profiles with parities (RAID5/6), for other profiles it | 
|  | * does nothing. | 
|  | * | 
|  | * Return 0 if we locked full stripe covering @bytenr, with a mutex held. | 
|  | * So caller must call unlock_full_stripe() at the same context. | 
|  | * | 
|  | * Return <0 if encounters error. | 
|  | */ | 
|  | static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, | 
|  | bool *locked_ret) | 
|  | { | 
|  | struct btrfs_block_group_cache *bg_cache; | 
|  | struct btrfs_full_stripe_locks_tree *locks_root; | 
|  | struct full_stripe_lock *existing; | 
|  | u64 fstripe_start; | 
|  | int ret = 0; | 
|  |  | 
|  | *locked_ret = false; | 
|  | bg_cache = btrfs_lookup_block_group(fs_info, bytenr); | 
|  | if (!bg_cache) { | 
|  | ASSERT(0); | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | /* Profiles not based on parity don't need full stripe lock */ | 
|  | if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) | 
|  | goto out; | 
|  | locks_root = &bg_cache->full_stripe_locks_root; | 
|  |  | 
|  | fstripe_start = get_full_stripe_logical(bg_cache, bytenr); | 
|  |  | 
|  | /* Now insert the full stripe lock */ | 
|  | mutex_lock(&locks_root->lock); | 
|  | existing = insert_full_stripe_lock(locks_root, fstripe_start); | 
|  | mutex_unlock(&locks_root->lock); | 
|  | if (IS_ERR(existing)) { | 
|  | ret = PTR_ERR(existing); | 
|  | goto out; | 
|  | } | 
|  | mutex_lock(&existing->mutex); | 
|  | *locked_ret = true; | 
|  | out: | 
|  | btrfs_put_block_group(bg_cache); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unlock a full stripe. | 
|  | * | 
|  | * NOTE: Caller must ensure it's the same context calling corresponding | 
|  | * lock_full_stripe(). | 
|  | * | 
|  | * Return 0 if we unlock full stripe without problem. | 
|  | * Return <0 for error | 
|  | */ | 
|  | static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, | 
|  | bool locked) | 
|  | { | 
|  | struct btrfs_block_group_cache *bg_cache; | 
|  | struct btrfs_full_stripe_locks_tree *locks_root; | 
|  | struct full_stripe_lock *fstripe_lock; | 
|  | u64 fstripe_start; | 
|  | bool freeit = false; | 
|  | int ret = 0; | 
|  |  | 
|  | /* If we didn't acquire full stripe lock, no need to continue */ | 
|  | if (!locked) | 
|  | return 0; | 
|  |  | 
|  | bg_cache = btrfs_lookup_block_group(fs_info, bytenr); | 
|  | if (!bg_cache) { | 
|  | ASSERT(0); | 
|  | return -ENOENT; | 
|  | } | 
|  | if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) | 
|  | goto out; | 
|  |  | 
|  | locks_root = &bg_cache->full_stripe_locks_root; | 
|  | fstripe_start = get_full_stripe_logical(bg_cache, bytenr); | 
|  |  | 
|  | mutex_lock(&locks_root->lock); | 
|  | fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start); | 
|  | /* Unpaired unlock_full_stripe() detected */ | 
|  | if (!fstripe_lock) { | 
|  | WARN_ON(1); | 
|  | ret = -ENOENT; | 
|  | mutex_unlock(&locks_root->lock); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (fstripe_lock->refs == 0) { | 
|  | WARN_ON(1); | 
|  | btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow", | 
|  | fstripe_lock->logical); | 
|  | } else { | 
|  | fstripe_lock->refs--; | 
|  | } | 
|  |  | 
|  | if (fstripe_lock->refs == 0) { | 
|  | rb_erase(&fstripe_lock->node, &locks_root->root); | 
|  | freeit = true; | 
|  | } | 
|  | mutex_unlock(&locks_root->lock); | 
|  |  | 
|  | mutex_unlock(&fstripe_lock->mutex); | 
|  | if (freeit) | 
|  | kfree(fstripe_lock); | 
|  | out: | 
|  | btrfs_put_block_group(bg_cache); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * used for workers that require transaction commits (i.e., for the | 
|  | * NOCOW case) | 
|  | */ | 
|  | static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = sctx->fs_info; | 
|  |  | 
|  | refcount_inc(&sctx->refs); | 
|  | /* | 
|  | * increment scrubs_running to prevent cancel requests from | 
|  | * completing as long as a worker is running. we must also | 
|  | * increment scrubs_paused to prevent deadlocking on pause | 
|  | * requests used for transactions commits (as the worker uses a | 
|  | * transaction context). it is safe to regard the worker | 
|  | * as paused for all matters practical. effectively, we only | 
|  | * avoid cancellation requests from completing. | 
|  | */ | 
|  | mutex_lock(&fs_info->scrub_lock); | 
|  | atomic_inc(&fs_info->scrubs_running); | 
|  | atomic_inc(&fs_info->scrubs_paused); | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  |  | 
|  | /* | 
|  | * check if @scrubs_running=@scrubs_paused condition | 
|  | * inside wait_event() is not an atomic operation. | 
|  | * which means we may inc/dec @scrub_running/paused | 
|  | * at any time. Let's wake up @scrub_pause_wait as | 
|  | * much as we can to let commit transaction blocked less. | 
|  | */ | 
|  | wake_up(&fs_info->scrub_pause_wait); | 
|  |  | 
|  | atomic_inc(&sctx->workers_pending); | 
|  | } | 
|  |  | 
|  | /* used for workers that require transaction commits */ | 
|  | static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = sctx->fs_info; | 
|  |  | 
|  | /* | 
|  | * see scrub_pending_trans_workers_inc() why we're pretending | 
|  | * to be paused in the scrub counters | 
|  | */ | 
|  | mutex_lock(&fs_info->scrub_lock); | 
|  | atomic_dec(&fs_info->scrubs_running); | 
|  | atomic_dec(&fs_info->scrubs_paused); | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  | atomic_dec(&sctx->workers_pending); | 
|  | wake_up(&fs_info->scrub_pause_wait); | 
|  | wake_up(&sctx->list_wait); | 
|  | scrub_put_ctx(sctx); | 
|  | } | 
|  |  | 
|  | static void scrub_free_csums(struct scrub_ctx *sctx) | 
|  | { | 
|  | while (!list_empty(&sctx->csum_list)) { | 
|  | struct btrfs_ordered_sum *sum; | 
|  | sum = list_first_entry(&sctx->csum_list, | 
|  | struct btrfs_ordered_sum, list); | 
|  | list_del(&sum->list); | 
|  | kfree(sum); | 
|  | } | 
|  | } | 
|  |  | 
|  | static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!sctx) | 
|  | return; | 
|  |  | 
|  | /* this can happen when scrub is cancelled */ | 
|  | if (sctx->curr != -1) { | 
|  | struct scrub_bio *sbio = sctx->bios[sctx->curr]; | 
|  |  | 
|  | for (i = 0; i < sbio->page_count; i++) { | 
|  | WARN_ON(!sbio->pagev[i]->page); | 
|  | scrub_block_put(sbio->pagev[i]->sblock); | 
|  | } | 
|  | bio_put(sbio->bio); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { | 
|  | struct scrub_bio *sbio = sctx->bios[i]; | 
|  |  | 
|  | if (!sbio) | 
|  | break; | 
|  | kfree(sbio); | 
|  | } | 
|  |  | 
|  | kfree(sctx->wr_curr_bio); | 
|  | scrub_free_csums(sctx); | 
|  | kfree(sctx); | 
|  | } | 
|  |  | 
|  | static void scrub_put_ctx(struct scrub_ctx *sctx) | 
|  | { | 
|  | if (refcount_dec_and_test(&sctx->refs)) | 
|  | scrub_free_ctx(sctx); | 
|  | } | 
|  |  | 
|  | static noinline_for_stack | 
|  | struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace) | 
|  | { | 
|  | struct scrub_ctx *sctx; | 
|  | int		i; | 
|  | struct btrfs_fs_info *fs_info = dev->fs_info; | 
|  |  | 
|  | sctx = kzalloc(sizeof(*sctx), GFP_KERNEL); | 
|  | if (!sctx) | 
|  | goto nomem; | 
|  | refcount_set(&sctx->refs, 1); | 
|  | sctx->is_dev_replace = is_dev_replace; | 
|  | sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO; | 
|  | sctx->curr = -1; | 
|  | sctx->fs_info = dev->fs_info; | 
|  | for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { | 
|  | struct scrub_bio *sbio; | 
|  |  | 
|  | sbio = kzalloc(sizeof(*sbio), GFP_KERNEL); | 
|  | if (!sbio) | 
|  | goto nomem; | 
|  | sctx->bios[i] = sbio; | 
|  |  | 
|  | sbio->index = i; | 
|  | sbio->sctx = sctx; | 
|  | sbio->page_count = 0; | 
|  | btrfs_init_work(&sbio->work, btrfs_scrub_helper, | 
|  | scrub_bio_end_io_worker, NULL, NULL); | 
|  |  | 
|  | if (i != SCRUB_BIOS_PER_SCTX - 1) | 
|  | sctx->bios[i]->next_free = i + 1; | 
|  | else | 
|  | sctx->bios[i]->next_free = -1; | 
|  | } | 
|  | sctx->first_free = 0; | 
|  | atomic_set(&sctx->bios_in_flight, 0); | 
|  | atomic_set(&sctx->workers_pending, 0); | 
|  | atomic_set(&sctx->cancel_req, 0); | 
|  | sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy); | 
|  | INIT_LIST_HEAD(&sctx->csum_list); | 
|  |  | 
|  | spin_lock_init(&sctx->list_lock); | 
|  | spin_lock_init(&sctx->stat_lock); | 
|  | init_waitqueue_head(&sctx->list_wait); | 
|  |  | 
|  | WARN_ON(sctx->wr_curr_bio != NULL); | 
|  | mutex_init(&sctx->wr_lock); | 
|  | sctx->wr_curr_bio = NULL; | 
|  | if (is_dev_replace) { | 
|  | WARN_ON(!fs_info->dev_replace.tgtdev); | 
|  | sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO; | 
|  | sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; | 
|  | sctx->flush_all_writes = false; | 
|  | } | 
|  |  | 
|  | return sctx; | 
|  |  | 
|  | nomem: | 
|  | scrub_free_ctx(sctx); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, | 
|  | void *warn_ctx) | 
|  | { | 
|  | u64 isize; | 
|  | u32 nlink; | 
|  | int ret; | 
|  | int i; | 
|  | unsigned nofs_flag; | 
|  | struct extent_buffer *eb; | 
|  | struct btrfs_inode_item *inode_item; | 
|  | struct scrub_warning *swarn = warn_ctx; | 
|  | struct btrfs_fs_info *fs_info = swarn->dev->fs_info; | 
|  | struct inode_fs_paths *ipath = NULL; | 
|  | struct btrfs_root *local_root; | 
|  | struct btrfs_key root_key; | 
|  | struct btrfs_key key; | 
|  |  | 
|  | root_key.objectid = root; | 
|  | root_key.type = BTRFS_ROOT_ITEM_KEY; | 
|  | root_key.offset = (u64)-1; | 
|  | local_root = btrfs_read_fs_root_no_name(fs_info, &root_key); | 
|  | if (IS_ERR(local_root)) { | 
|  | ret = PTR_ERR(local_root); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this makes the path point to (inum INODE_ITEM ioff) | 
|  | */ | 
|  | key.objectid = inum; | 
|  | key.type = BTRFS_INODE_ITEM_KEY; | 
|  | key.offset = 0; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); | 
|  | if (ret) { | 
|  | btrfs_release_path(swarn->path); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | eb = swarn->path->nodes[0]; | 
|  | inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], | 
|  | struct btrfs_inode_item); | 
|  | isize = btrfs_inode_size(eb, inode_item); | 
|  | nlink = btrfs_inode_nlink(eb, inode_item); | 
|  | btrfs_release_path(swarn->path); | 
|  |  | 
|  | /* | 
|  | * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub | 
|  | * uses GFP_NOFS in this context, so we keep it consistent but it does | 
|  | * not seem to be strictly necessary. | 
|  | */ | 
|  | nofs_flag = memalloc_nofs_save(); | 
|  | ipath = init_ipath(4096, local_root, swarn->path); | 
|  | memalloc_nofs_restore(nofs_flag); | 
|  | if (IS_ERR(ipath)) { | 
|  | ret = PTR_ERR(ipath); | 
|  | ipath = NULL; | 
|  | goto err; | 
|  | } | 
|  | ret = paths_from_inode(inum, ipath); | 
|  |  | 
|  | if (ret < 0) | 
|  | goto err; | 
|  |  | 
|  | /* | 
|  | * we deliberately ignore the bit ipath might have been too small to | 
|  | * hold all of the paths here | 
|  | */ | 
|  | for (i = 0; i < ipath->fspath->elem_cnt; ++i) | 
|  | btrfs_warn_in_rcu(fs_info, | 
|  | "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)", | 
|  | swarn->errstr, swarn->logical, | 
|  | rcu_str_deref(swarn->dev->name), | 
|  | swarn->physical, | 
|  | root, inum, offset, | 
|  | min(isize - offset, (u64)PAGE_SIZE), nlink, | 
|  | (char *)(unsigned long)ipath->fspath->val[i]); | 
|  |  | 
|  | free_ipath(ipath); | 
|  | return 0; | 
|  |  | 
|  | err: | 
|  | btrfs_warn_in_rcu(fs_info, | 
|  | "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", | 
|  | swarn->errstr, swarn->logical, | 
|  | rcu_str_deref(swarn->dev->name), | 
|  | swarn->physical, | 
|  | root, inum, offset, ret); | 
|  |  | 
|  | free_ipath(ipath); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) | 
|  | { | 
|  | struct btrfs_device *dev; | 
|  | struct btrfs_fs_info *fs_info; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_key found_key; | 
|  | struct extent_buffer *eb; | 
|  | struct btrfs_extent_item *ei; | 
|  | struct scrub_warning swarn; | 
|  | unsigned long ptr = 0; | 
|  | u64 extent_item_pos; | 
|  | u64 flags = 0; | 
|  | u64 ref_root; | 
|  | u32 item_size; | 
|  | u8 ref_level = 0; | 
|  | int ret; | 
|  |  | 
|  | WARN_ON(sblock->page_count < 1); | 
|  | dev = sblock->pagev[0]->dev; | 
|  | fs_info = sblock->sctx->fs_info; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return; | 
|  |  | 
|  | swarn.physical = sblock->pagev[0]->physical; | 
|  | swarn.logical = sblock->pagev[0]->logical; | 
|  | swarn.errstr = errstr; | 
|  | swarn.dev = NULL; | 
|  |  | 
|  | ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, | 
|  | &flags); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | extent_item_pos = swarn.logical - found_key.objectid; | 
|  | swarn.extent_item_size = found_key.offset; | 
|  |  | 
|  | eb = path->nodes[0]; | 
|  | ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); | 
|  | item_size = btrfs_item_size_nr(eb, path->slots[0]); | 
|  |  | 
|  | if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { | 
|  | do { | 
|  | ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, | 
|  | item_size, &ref_root, | 
|  | &ref_level); | 
|  | btrfs_warn_in_rcu(fs_info, | 
|  | "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", | 
|  | errstr, swarn.logical, | 
|  | rcu_str_deref(dev->name), | 
|  | swarn.physical, | 
|  | ref_level ? "node" : "leaf", | 
|  | ret < 0 ? -1 : ref_level, | 
|  | ret < 0 ? -1 : ref_root); | 
|  | } while (ret != 1); | 
|  | btrfs_release_path(path); | 
|  | } else { | 
|  | btrfs_release_path(path); | 
|  | swarn.path = path; | 
|  | swarn.dev = dev; | 
|  | iterate_extent_inodes(fs_info, found_key.objectid, | 
|  | extent_item_pos, 1, | 
|  | scrub_print_warning_inode, &swarn, false); | 
|  | } | 
|  |  | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | } | 
|  |  | 
|  | static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx) | 
|  | { | 
|  | struct page *page = NULL; | 
|  | unsigned long index; | 
|  | struct scrub_fixup_nodatasum *fixup = fixup_ctx; | 
|  | int ret; | 
|  | int corrected = 0; | 
|  | struct btrfs_key key; | 
|  | struct inode *inode = NULL; | 
|  | struct btrfs_fs_info *fs_info; | 
|  | u64 end = offset + PAGE_SIZE - 1; | 
|  | struct btrfs_root *local_root; | 
|  | int srcu_index; | 
|  |  | 
|  | key.objectid = root; | 
|  | key.type = BTRFS_ROOT_ITEM_KEY; | 
|  | key.offset = (u64)-1; | 
|  |  | 
|  | fs_info = fixup->root->fs_info; | 
|  | srcu_index = srcu_read_lock(&fs_info->subvol_srcu); | 
|  |  | 
|  | local_root = btrfs_read_fs_root_no_name(fs_info, &key); | 
|  | if (IS_ERR(local_root)) { | 
|  | srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); | 
|  | return PTR_ERR(local_root); | 
|  | } | 
|  |  | 
|  | key.type = BTRFS_INODE_ITEM_KEY; | 
|  | key.objectid = inum; | 
|  | key.offset = 0; | 
|  | inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); | 
|  | srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); | 
|  | if (IS_ERR(inode)) | 
|  | return PTR_ERR(inode); | 
|  |  | 
|  | index = offset >> PAGE_SHIFT; | 
|  |  | 
|  | page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); | 
|  | if (!page) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (PageUptodate(page)) { | 
|  | if (PageDirty(page)) { | 
|  | /* | 
|  | * we need to write the data to the defect sector. the | 
|  | * data that was in that sector is not in memory, | 
|  | * because the page was modified. we must not write the | 
|  | * modified page to that sector. | 
|  | * | 
|  | * TODO: what could be done here: wait for the delalloc | 
|  | *       runner to write out that page (might involve | 
|  | *       COW) and see whether the sector is still | 
|  | *       referenced afterwards. | 
|  | * | 
|  | * For the meantime, we'll treat this error | 
|  | * incorrectable, although there is a chance that a | 
|  | * later scrub will find the bad sector again and that | 
|  | * there's no dirty page in memory, then. | 
|  | */ | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  | ret = repair_io_failure(fs_info, inum, offset, PAGE_SIZE, | 
|  | fixup->logical, page, | 
|  | offset - page_offset(page), | 
|  | fixup->mirror_num); | 
|  | unlock_page(page); | 
|  | corrected = !ret; | 
|  | } else { | 
|  | /* | 
|  | * we need to get good data first. the general readpage path | 
|  | * will call repair_io_failure for us, we just have to make | 
|  | * sure we read the bad mirror. | 
|  | */ | 
|  | ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, | 
|  | EXTENT_DAMAGED); | 
|  | if (ret) { | 
|  | /* set_extent_bits should give proper error */ | 
|  | WARN_ON(ret > 0); | 
|  | if (ret > 0) | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page, | 
|  | btrfs_get_extent, | 
|  | fixup->mirror_num); | 
|  | wait_on_page_locked(page); | 
|  |  | 
|  | corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset, | 
|  | end, EXTENT_DAMAGED, 0, NULL); | 
|  | if (!corrected) | 
|  | clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, | 
|  | EXTENT_DAMAGED); | 
|  | } | 
|  |  | 
|  | out: | 
|  | if (page) | 
|  | put_page(page); | 
|  |  | 
|  | iput(inode); | 
|  |  | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (ret == 0 && corrected) { | 
|  | /* | 
|  | * we only need to call readpage for one of the inodes belonging | 
|  | * to this extent. so make iterate_extent_inodes stop | 
|  | */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | static void scrub_fixup_nodatasum(struct btrfs_work *work) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info; | 
|  | int ret; | 
|  | struct scrub_fixup_nodatasum *fixup; | 
|  | struct scrub_ctx *sctx; | 
|  | struct btrfs_trans_handle *trans = NULL; | 
|  | struct btrfs_path *path; | 
|  | int uncorrectable = 0; | 
|  |  | 
|  | fixup = container_of(work, struct scrub_fixup_nodatasum, work); | 
|  | sctx = fixup->sctx; | 
|  | fs_info = fixup->root->fs_info; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | spin_lock(&sctx->stat_lock); | 
|  | ++sctx->stat.malloc_errors; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  | uncorrectable = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | trans = btrfs_join_transaction(fixup->root); | 
|  | if (IS_ERR(trans)) { | 
|  | uncorrectable = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the idea is to trigger a regular read through the standard path. we | 
|  | * read a page from the (failed) logical address by specifying the | 
|  | * corresponding copynum of the failed sector. thus, that readpage is | 
|  | * expected to fail. | 
|  | * that is the point where on-the-fly error correction will kick in | 
|  | * (once it's finished) and rewrite the failed sector if a good copy | 
|  | * can be found. | 
|  | */ | 
|  | ret = iterate_inodes_from_logical(fixup->logical, fs_info, path, | 
|  | scrub_fixup_readpage, fixup, false); | 
|  | if (ret < 0) { | 
|  | uncorrectable = 1; | 
|  | goto out; | 
|  | } | 
|  | WARN_ON(ret != 1); | 
|  |  | 
|  | spin_lock(&sctx->stat_lock); | 
|  | ++sctx->stat.corrected_errors; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  |  | 
|  | out: | 
|  | if (trans && !IS_ERR(trans)) | 
|  | btrfs_end_transaction(trans); | 
|  | if (uncorrectable) { | 
|  | spin_lock(&sctx->stat_lock); | 
|  | ++sctx->stat.uncorrectable_errors; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  | btrfs_dev_replace_stats_inc( | 
|  | &fs_info->dev_replace.num_uncorrectable_read_errors); | 
|  | btrfs_err_rl_in_rcu(fs_info, | 
|  | "unable to fixup (nodatasum) error at logical %llu on dev %s", | 
|  | fixup->logical, rcu_str_deref(fixup->dev->name)); | 
|  | } | 
|  |  | 
|  | btrfs_free_path(path); | 
|  | kfree(fixup); | 
|  |  | 
|  | scrub_pending_trans_workers_dec(sctx); | 
|  | } | 
|  |  | 
|  | static inline void scrub_get_recover(struct scrub_recover *recover) | 
|  | { | 
|  | refcount_inc(&recover->refs); | 
|  | } | 
|  |  | 
|  | static inline void scrub_put_recover(struct btrfs_fs_info *fs_info, | 
|  | struct scrub_recover *recover) | 
|  | { | 
|  | if (refcount_dec_and_test(&recover->refs)) { | 
|  | btrfs_bio_counter_dec(fs_info); | 
|  | btrfs_put_bbio(recover->bbio); | 
|  | kfree(recover); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * scrub_handle_errored_block gets called when either verification of the | 
|  | * pages failed or the bio failed to read, e.g. with EIO. In the latter | 
|  | * case, this function handles all pages in the bio, even though only one | 
|  | * may be bad. | 
|  | * The goal of this function is to repair the errored block by using the | 
|  | * contents of one of the mirrors. | 
|  | */ | 
|  | static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) | 
|  | { | 
|  | struct scrub_ctx *sctx = sblock_to_check->sctx; | 
|  | struct btrfs_device *dev; | 
|  | struct btrfs_fs_info *fs_info; | 
|  | u64 logical; | 
|  | unsigned int failed_mirror_index; | 
|  | unsigned int is_metadata; | 
|  | unsigned int have_csum; | 
|  | struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ | 
|  | struct scrub_block *sblock_bad; | 
|  | int ret; | 
|  | int mirror_index; | 
|  | int page_num; | 
|  | int success; | 
|  | bool full_stripe_locked; | 
|  | static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, | 
|  | DEFAULT_RATELIMIT_BURST); | 
|  |  | 
|  | BUG_ON(sblock_to_check->page_count < 1); | 
|  | fs_info = sctx->fs_info; | 
|  | if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { | 
|  | /* | 
|  | * if we find an error in a super block, we just report it. | 
|  | * They will get written with the next transaction commit | 
|  | * anyway | 
|  | */ | 
|  | spin_lock(&sctx->stat_lock); | 
|  | ++sctx->stat.super_errors; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  | return 0; | 
|  | } | 
|  | logical = sblock_to_check->pagev[0]->logical; | 
|  | BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1); | 
|  | failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1; | 
|  | is_metadata = !(sblock_to_check->pagev[0]->flags & | 
|  | BTRFS_EXTENT_FLAG_DATA); | 
|  | have_csum = sblock_to_check->pagev[0]->have_csum; | 
|  | dev = sblock_to_check->pagev[0]->dev; | 
|  |  | 
|  | /* | 
|  | * For RAID5/6, race can happen for a different device scrub thread. | 
|  | * For data corruption, Parity and Data threads will both try | 
|  | * to recovery the data. | 
|  | * Race can lead to doubly added csum error, or even unrecoverable | 
|  | * error. | 
|  | */ | 
|  | ret = lock_full_stripe(fs_info, logical, &full_stripe_locked); | 
|  | if (ret < 0) { | 
|  | spin_lock(&sctx->stat_lock); | 
|  | if (ret == -ENOMEM) | 
|  | sctx->stat.malloc_errors++; | 
|  | sctx->stat.read_errors++; | 
|  | sctx->stat.uncorrectable_errors++; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (sctx->is_dev_replace && !is_metadata && !have_csum) { | 
|  | sblocks_for_recheck = NULL; | 
|  | goto nodatasum_case; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * read all mirrors one after the other. This includes to | 
|  | * re-read the extent or metadata block that failed (that was | 
|  | * the cause that this fixup code is called) another time, | 
|  | * page by page this time in order to know which pages | 
|  | * caused I/O errors and which ones are good (for all mirrors). | 
|  | * It is the goal to handle the situation when more than one | 
|  | * mirror contains I/O errors, but the errors do not | 
|  | * overlap, i.e. the data can be repaired by selecting the | 
|  | * pages from those mirrors without I/O error on the | 
|  | * particular pages. One example (with blocks >= 2 * PAGE_SIZE) | 
|  | * would be that mirror #1 has an I/O error on the first page, | 
|  | * the second page is good, and mirror #2 has an I/O error on | 
|  | * the second page, but the first page is good. | 
|  | * Then the first page of the first mirror can be repaired by | 
|  | * taking the first page of the second mirror, and the | 
|  | * second page of the second mirror can be repaired by | 
|  | * copying the contents of the 2nd page of the 1st mirror. | 
|  | * One more note: if the pages of one mirror contain I/O | 
|  | * errors, the checksum cannot be verified. In order to get | 
|  | * the best data for repairing, the first attempt is to find | 
|  | * a mirror without I/O errors and with a validated checksum. | 
|  | * Only if this is not possible, the pages are picked from | 
|  | * mirrors with I/O errors without considering the checksum. | 
|  | * If the latter is the case, at the end, the checksum of the | 
|  | * repaired area is verified in order to correctly maintain | 
|  | * the statistics. | 
|  | */ | 
|  |  | 
|  | sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS, | 
|  | sizeof(*sblocks_for_recheck), GFP_NOFS); | 
|  | if (!sblocks_for_recheck) { | 
|  | spin_lock(&sctx->stat_lock); | 
|  | sctx->stat.malloc_errors++; | 
|  | sctx->stat.read_errors++; | 
|  | sctx->stat.uncorrectable_errors++; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  | btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* setup the context, map the logical blocks and alloc the pages */ | 
|  | ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck); | 
|  | if (ret) { | 
|  | spin_lock(&sctx->stat_lock); | 
|  | sctx->stat.read_errors++; | 
|  | sctx->stat.uncorrectable_errors++; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  | btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); | 
|  | goto out; | 
|  | } | 
|  | BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); | 
|  | sblock_bad = sblocks_for_recheck + failed_mirror_index; | 
|  |  | 
|  | /* build and submit the bios for the failed mirror, check checksums */ | 
|  | scrub_recheck_block(fs_info, sblock_bad, 1); | 
|  |  | 
|  | if (!sblock_bad->header_error && !sblock_bad->checksum_error && | 
|  | sblock_bad->no_io_error_seen) { | 
|  | /* | 
|  | * the error disappeared after reading page by page, or | 
|  | * the area was part of a huge bio and other parts of the | 
|  | * bio caused I/O errors, or the block layer merged several | 
|  | * read requests into one and the error is caused by a | 
|  | * different bio (usually one of the two latter cases is | 
|  | * the cause) | 
|  | */ | 
|  | spin_lock(&sctx->stat_lock); | 
|  | sctx->stat.unverified_errors++; | 
|  | sblock_to_check->data_corrected = 1; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  |  | 
|  | if (sctx->is_dev_replace) | 
|  | scrub_write_block_to_dev_replace(sblock_bad); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!sblock_bad->no_io_error_seen) { | 
|  | spin_lock(&sctx->stat_lock); | 
|  | sctx->stat.read_errors++; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  | if (__ratelimit(&_rs)) | 
|  | scrub_print_warning("i/o error", sblock_to_check); | 
|  | btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); | 
|  | } else if (sblock_bad->checksum_error) { | 
|  | spin_lock(&sctx->stat_lock); | 
|  | sctx->stat.csum_errors++; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  | if (__ratelimit(&_rs)) | 
|  | scrub_print_warning("checksum error", sblock_to_check); | 
|  | btrfs_dev_stat_inc_and_print(dev, | 
|  | BTRFS_DEV_STAT_CORRUPTION_ERRS); | 
|  | } else if (sblock_bad->header_error) { | 
|  | spin_lock(&sctx->stat_lock); | 
|  | sctx->stat.verify_errors++; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  | if (__ratelimit(&_rs)) | 
|  | scrub_print_warning("checksum/header error", | 
|  | sblock_to_check); | 
|  | if (sblock_bad->generation_error) | 
|  | btrfs_dev_stat_inc_and_print(dev, | 
|  | BTRFS_DEV_STAT_GENERATION_ERRS); | 
|  | else | 
|  | btrfs_dev_stat_inc_and_print(dev, | 
|  | BTRFS_DEV_STAT_CORRUPTION_ERRS); | 
|  | } | 
|  |  | 
|  | if (sctx->readonly) { | 
|  | ASSERT(!sctx->is_dev_replace); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!is_metadata && !have_csum) { | 
|  | struct scrub_fixup_nodatasum *fixup_nodatasum; | 
|  |  | 
|  | WARN_ON(sctx->is_dev_replace); | 
|  |  | 
|  | nodatasum_case: | 
|  |  | 
|  | /* | 
|  | * !is_metadata and !have_csum, this means that the data | 
|  | * might not be COWed, that it might be modified | 
|  | * concurrently. The general strategy to work on the | 
|  | * commit root does not help in the case when COW is not | 
|  | * used. | 
|  | */ | 
|  | fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS); | 
|  | if (!fixup_nodatasum) | 
|  | goto did_not_correct_error; | 
|  | fixup_nodatasum->sctx = sctx; | 
|  | fixup_nodatasum->dev = dev; | 
|  | fixup_nodatasum->logical = logical; | 
|  | fixup_nodatasum->root = fs_info->extent_root; | 
|  | fixup_nodatasum->mirror_num = failed_mirror_index + 1; | 
|  | scrub_pending_trans_workers_inc(sctx); | 
|  | btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper, | 
|  | scrub_fixup_nodatasum, NULL, NULL); | 
|  | btrfs_queue_work(fs_info->scrub_workers, | 
|  | &fixup_nodatasum->work); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * now build and submit the bios for the other mirrors, check | 
|  | * checksums. | 
|  | * First try to pick the mirror which is completely without I/O | 
|  | * errors and also does not have a checksum error. | 
|  | * If one is found, and if a checksum is present, the full block | 
|  | * that is known to contain an error is rewritten. Afterwards | 
|  | * the block is known to be corrected. | 
|  | * If a mirror is found which is completely correct, and no | 
|  | * checksum is present, only those pages are rewritten that had | 
|  | * an I/O error in the block to be repaired, since it cannot be | 
|  | * determined, which copy of the other pages is better (and it | 
|  | * could happen otherwise that a correct page would be | 
|  | * overwritten by a bad one). | 
|  | */ | 
|  | for (mirror_index = 0; ;mirror_index++) { | 
|  | struct scrub_block *sblock_other; | 
|  |  | 
|  | if (mirror_index == failed_mirror_index) | 
|  | continue; | 
|  |  | 
|  | /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */ | 
|  | if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) { | 
|  | if (mirror_index >= BTRFS_MAX_MIRRORS) | 
|  | break; | 
|  | if (!sblocks_for_recheck[mirror_index].page_count) | 
|  | break; | 
|  |  | 
|  | sblock_other = sblocks_for_recheck + mirror_index; | 
|  | } else { | 
|  | struct scrub_recover *r = sblock_bad->pagev[0]->recover; | 
|  | int max_allowed = r->bbio->num_stripes - | 
|  | r->bbio->num_tgtdevs; | 
|  |  | 
|  | if (mirror_index >= max_allowed) | 
|  | break; | 
|  | if (!sblocks_for_recheck[1].page_count) | 
|  | break; | 
|  |  | 
|  | ASSERT(failed_mirror_index == 0); | 
|  | sblock_other = sblocks_for_recheck + 1; | 
|  | sblock_other->pagev[0]->mirror_num = 1 + mirror_index; | 
|  | } | 
|  |  | 
|  | /* build and submit the bios, check checksums */ | 
|  | scrub_recheck_block(fs_info, sblock_other, 0); | 
|  |  | 
|  | if (!sblock_other->header_error && | 
|  | !sblock_other->checksum_error && | 
|  | sblock_other->no_io_error_seen) { | 
|  | if (sctx->is_dev_replace) { | 
|  | scrub_write_block_to_dev_replace(sblock_other); | 
|  | goto corrected_error; | 
|  | } else { | 
|  | ret = scrub_repair_block_from_good_copy( | 
|  | sblock_bad, sblock_other); | 
|  | if (!ret) | 
|  | goto corrected_error; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace) | 
|  | goto did_not_correct_error; | 
|  |  | 
|  | /* | 
|  | * In case of I/O errors in the area that is supposed to be | 
|  | * repaired, continue by picking good copies of those pages. | 
|  | * Select the good pages from mirrors to rewrite bad pages from | 
|  | * the area to fix. Afterwards verify the checksum of the block | 
|  | * that is supposed to be repaired. This verification step is | 
|  | * only done for the purpose of statistic counting and for the | 
|  | * final scrub report, whether errors remain. | 
|  | * A perfect algorithm could make use of the checksum and try | 
|  | * all possible combinations of pages from the different mirrors | 
|  | * until the checksum verification succeeds. For example, when | 
|  | * the 2nd page of mirror #1 faces I/O errors, and the 2nd page | 
|  | * of mirror #2 is readable but the final checksum test fails, | 
|  | * then the 2nd page of mirror #3 could be tried, whether now | 
|  | * the final checksum succeeds. But this would be a rare | 
|  | * exception and is therefore not implemented. At least it is | 
|  | * avoided that the good copy is overwritten. | 
|  | * A more useful improvement would be to pick the sectors | 
|  | * without I/O error based on sector sizes (512 bytes on legacy | 
|  | * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one | 
|  | * mirror could be repaired by taking 512 byte of a different | 
|  | * mirror, even if other 512 byte sectors in the same PAGE_SIZE | 
|  | * area are unreadable. | 
|  | */ | 
|  | success = 1; | 
|  | for (page_num = 0; page_num < sblock_bad->page_count; | 
|  | page_num++) { | 
|  | struct scrub_page *page_bad = sblock_bad->pagev[page_num]; | 
|  | struct scrub_block *sblock_other = NULL; | 
|  |  | 
|  | /* skip no-io-error page in scrub */ | 
|  | if (!page_bad->io_error && !sctx->is_dev_replace) | 
|  | continue; | 
|  |  | 
|  | if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) { | 
|  | /* | 
|  | * In case of dev replace, if raid56 rebuild process | 
|  | * didn't work out correct data, then copy the content | 
|  | * in sblock_bad to make sure target device is identical | 
|  | * to source device, instead of writing garbage data in | 
|  | * sblock_for_recheck array to target device. | 
|  | */ | 
|  | sblock_other = NULL; | 
|  | } else if (page_bad->io_error) { | 
|  | /* try to find no-io-error page in mirrors */ | 
|  | for (mirror_index = 0; | 
|  | mirror_index < BTRFS_MAX_MIRRORS && | 
|  | sblocks_for_recheck[mirror_index].page_count > 0; | 
|  | mirror_index++) { | 
|  | if (!sblocks_for_recheck[mirror_index]. | 
|  | pagev[page_num]->io_error) { | 
|  | sblock_other = sblocks_for_recheck + | 
|  | mirror_index; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!sblock_other) | 
|  | success = 0; | 
|  | } | 
|  |  | 
|  | if (sctx->is_dev_replace) { | 
|  | /* | 
|  | * did not find a mirror to fetch the page | 
|  | * from. scrub_write_page_to_dev_replace() | 
|  | * handles this case (page->io_error), by | 
|  | * filling the block with zeros before | 
|  | * submitting the write request | 
|  | */ | 
|  | if (!sblock_other) | 
|  | sblock_other = sblock_bad; | 
|  |  | 
|  | if (scrub_write_page_to_dev_replace(sblock_other, | 
|  | page_num) != 0) { | 
|  | btrfs_dev_replace_stats_inc( | 
|  | &fs_info->dev_replace.num_write_errors); | 
|  | success = 0; | 
|  | } | 
|  | } else if (sblock_other) { | 
|  | ret = scrub_repair_page_from_good_copy(sblock_bad, | 
|  | sblock_other, | 
|  | page_num, 0); | 
|  | if (0 == ret) | 
|  | page_bad->io_error = 0; | 
|  | else | 
|  | success = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (success && !sctx->is_dev_replace) { | 
|  | if (is_metadata || have_csum) { | 
|  | /* | 
|  | * need to verify the checksum now that all | 
|  | * sectors on disk are repaired (the write | 
|  | * request for data to be repaired is on its way). | 
|  | * Just be lazy and use scrub_recheck_block() | 
|  | * which re-reads the data before the checksum | 
|  | * is verified, but most likely the data comes out | 
|  | * of the page cache. | 
|  | */ | 
|  | scrub_recheck_block(fs_info, sblock_bad, 1); | 
|  | if (!sblock_bad->header_error && | 
|  | !sblock_bad->checksum_error && | 
|  | sblock_bad->no_io_error_seen) | 
|  | goto corrected_error; | 
|  | else | 
|  | goto did_not_correct_error; | 
|  | } else { | 
|  | corrected_error: | 
|  | spin_lock(&sctx->stat_lock); | 
|  | sctx->stat.corrected_errors++; | 
|  | sblock_to_check->data_corrected = 1; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  | btrfs_err_rl_in_rcu(fs_info, | 
|  | "fixed up error at logical %llu on dev %s", | 
|  | logical, rcu_str_deref(dev->name)); | 
|  | } | 
|  | } else { | 
|  | did_not_correct_error: | 
|  | spin_lock(&sctx->stat_lock); | 
|  | sctx->stat.uncorrectable_errors++; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  | btrfs_err_rl_in_rcu(fs_info, | 
|  | "unable to fixup (regular) error at logical %llu on dev %s", | 
|  | logical, rcu_str_deref(dev->name)); | 
|  | } | 
|  |  | 
|  | out: | 
|  | if (sblocks_for_recheck) { | 
|  | for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; | 
|  | mirror_index++) { | 
|  | struct scrub_block *sblock = sblocks_for_recheck + | 
|  | mirror_index; | 
|  | struct scrub_recover *recover; | 
|  | int page_index; | 
|  |  | 
|  | for (page_index = 0; page_index < sblock->page_count; | 
|  | page_index++) { | 
|  | sblock->pagev[page_index]->sblock = NULL; | 
|  | recover = sblock->pagev[page_index]->recover; | 
|  | if (recover) { | 
|  | scrub_put_recover(fs_info, recover); | 
|  | sblock->pagev[page_index]->recover = | 
|  | NULL; | 
|  | } | 
|  | scrub_page_put(sblock->pagev[page_index]); | 
|  | } | 
|  | } | 
|  | kfree(sblocks_for_recheck); | 
|  | } | 
|  |  | 
|  | ret = unlock_full_stripe(fs_info, logical, full_stripe_locked); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio) | 
|  | { | 
|  | if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) | 
|  | return 2; | 
|  | else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) | 
|  | return 3; | 
|  | else | 
|  | return (int)bbio->num_stripes; | 
|  | } | 
|  |  | 
|  | static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, | 
|  | u64 *raid_map, | 
|  | u64 mapped_length, | 
|  | int nstripes, int mirror, | 
|  | int *stripe_index, | 
|  | u64 *stripe_offset) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { | 
|  | /* RAID5/6 */ | 
|  | for (i = 0; i < nstripes; i++) { | 
|  | if (raid_map[i] == RAID6_Q_STRIPE || | 
|  | raid_map[i] == RAID5_P_STRIPE) | 
|  | continue; | 
|  |  | 
|  | if (logical >= raid_map[i] && | 
|  | logical < raid_map[i] + mapped_length) | 
|  | break; | 
|  | } | 
|  |  | 
|  | *stripe_index = i; | 
|  | *stripe_offset = logical - raid_map[i]; | 
|  | } else { | 
|  | /* The other RAID type */ | 
|  | *stripe_index = mirror; | 
|  | *stripe_offset = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int scrub_setup_recheck_block(struct scrub_block *original_sblock, | 
|  | struct scrub_block *sblocks_for_recheck) | 
|  | { | 
|  | struct scrub_ctx *sctx = original_sblock->sctx; | 
|  | struct btrfs_fs_info *fs_info = sctx->fs_info; | 
|  | u64 length = original_sblock->page_count * PAGE_SIZE; | 
|  | u64 logical = original_sblock->pagev[0]->logical; | 
|  | u64 generation = original_sblock->pagev[0]->generation; | 
|  | u64 flags = original_sblock->pagev[0]->flags; | 
|  | u64 have_csum = original_sblock->pagev[0]->have_csum; | 
|  | struct scrub_recover *recover; | 
|  | struct btrfs_bio *bbio; | 
|  | u64 sublen; | 
|  | u64 mapped_length; | 
|  | u64 stripe_offset; | 
|  | int stripe_index; | 
|  | int page_index = 0; | 
|  | int mirror_index; | 
|  | int nmirrors; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * note: the two members refs and outstanding_pages | 
|  | * are not used (and not set) in the blocks that are used for | 
|  | * the recheck procedure | 
|  | */ | 
|  |  | 
|  | while (length > 0) { | 
|  | sublen = min_t(u64, length, PAGE_SIZE); | 
|  | mapped_length = sublen; | 
|  | bbio = NULL; | 
|  |  | 
|  | /* | 
|  | * with a length of PAGE_SIZE, each returned stripe | 
|  | * represents one mirror | 
|  | */ | 
|  | btrfs_bio_counter_inc_blocked(fs_info); | 
|  | ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, | 
|  | logical, &mapped_length, &bbio); | 
|  | if (ret || !bbio || mapped_length < sublen) { | 
|  | btrfs_put_bbio(bbio); | 
|  | btrfs_bio_counter_dec(fs_info); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS); | 
|  | if (!recover) { | 
|  | btrfs_put_bbio(bbio); | 
|  | btrfs_bio_counter_dec(fs_info); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | refcount_set(&recover->refs, 1); | 
|  | recover->bbio = bbio; | 
|  | recover->map_length = mapped_length; | 
|  |  | 
|  | BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK); | 
|  |  | 
|  | nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS); | 
|  |  | 
|  | for (mirror_index = 0; mirror_index < nmirrors; | 
|  | mirror_index++) { | 
|  | struct scrub_block *sblock; | 
|  | struct scrub_page *page; | 
|  |  | 
|  | sblock = sblocks_for_recheck + mirror_index; | 
|  | sblock->sctx = sctx; | 
|  |  | 
|  | page = kzalloc(sizeof(*page), GFP_NOFS); | 
|  | if (!page) { | 
|  | leave_nomem: | 
|  | spin_lock(&sctx->stat_lock); | 
|  | sctx->stat.malloc_errors++; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  | scrub_put_recover(fs_info, recover); | 
|  | return -ENOMEM; | 
|  | } | 
|  | scrub_page_get(page); | 
|  | sblock->pagev[page_index] = page; | 
|  | page->sblock = sblock; | 
|  | page->flags = flags; | 
|  | page->generation = generation; | 
|  | page->logical = logical; | 
|  | page->have_csum = have_csum; | 
|  | if (have_csum) | 
|  | memcpy(page->csum, | 
|  | original_sblock->pagev[0]->csum, | 
|  | sctx->csum_size); | 
|  |  | 
|  | scrub_stripe_index_and_offset(logical, | 
|  | bbio->map_type, | 
|  | bbio->raid_map, | 
|  | mapped_length, | 
|  | bbio->num_stripes - | 
|  | bbio->num_tgtdevs, | 
|  | mirror_index, | 
|  | &stripe_index, | 
|  | &stripe_offset); | 
|  | page->physical = bbio->stripes[stripe_index].physical + | 
|  | stripe_offset; | 
|  | page->dev = bbio->stripes[stripe_index].dev; | 
|  |  | 
|  | BUG_ON(page_index >= original_sblock->page_count); | 
|  | page->physical_for_dev_replace = | 
|  | original_sblock->pagev[page_index]-> | 
|  | physical_for_dev_replace; | 
|  | /* for missing devices, dev->bdev is NULL */ | 
|  | page->mirror_num = mirror_index + 1; | 
|  | sblock->page_count++; | 
|  | page->page = alloc_page(GFP_NOFS); | 
|  | if (!page->page) | 
|  | goto leave_nomem; | 
|  |  | 
|  | scrub_get_recover(recover); | 
|  | page->recover = recover; | 
|  | } | 
|  | scrub_put_recover(fs_info, recover); | 
|  | length -= sublen; | 
|  | logical += sublen; | 
|  | page_index++; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void scrub_bio_wait_endio(struct bio *bio) | 
|  | { | 
|  | complete(bio->bi_private); | 
|  | } | 
|  |  | 
|  | static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info, | 
|  | struct bio *bio, | 
|  | struct scrub_page *page) | 
|  | { | 
|  | DECLARE_COMPLETION_ONSTACK(done); | 
|  | int ret; | 
|  | int mirror_num; | 
|  |  | 
|  | bio->bi_iter.bi_sector = page->logical >> 9; | 
|  | bio->bi_private = &done; | 
|  | bio->bi_end_io = scrub_bio_wait_endio; | 
|  |  | 
|  | mirror_num = page->sblock->pagev[0]->mirror_num; | 
|  | ret = raid56_parity_recover(fs_info, bio, page->recover->bbio, | 
|  | page->recover->map_length, | 
|  | mirror_num, 0); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | wait_for_completion_io(&done); | 
|  | return blk_status_to_errno(bio->bi_status); | 
|  | } | 
|  |  | 
|  | static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info, | 
|  | struct scrub_block *sblock) | 
|  | { | 
|  | struct scrub_page *first_page = sblock->pagev[0]; | 
|  | struct bio *bio; | 
|  | int page_num; | 
|  |  | 
|  | /* All pages in sblock belong to the same stripe on the same device. */ | 
|  | ASSERT(first_page->dev); | 
|  | if (!first_page->dev->bdev) | 
|  | goto out; | 
|  |  | 
|  | bio = btrfs_io_bio_alloc(BIO_MAX_PAGES); | 
|  | bio_set_dev(bio, first_page->dev->bdev); | 
|  |  | 
|  | for (page_num = 0; page_num < sblock->page_count; page_num++) { | 
|  | struct scrub_page *page = sblock->pagev[page_num]; | 
|  |  | 
|  | WARN_ON(!page->page); | 
|  | bio_add_page(bio, page->page, PAGE_SIZE, 0); | 
|  | } | 
|  |  | 
|  | if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) { | 
|  | bio_put(bio); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | bio_put(bio); | 
|  |  | 
|  | scrub_recheck_block_checksum(sblock); | 
|  |  | 
|  | return; | 
|  | out: | 
|  | for (page_num = 0; page_num < sblock->page_count; page_num++) | 
|  | sblock->pagev[page_num]->io_error = 1; | 
|  |  | 
|  | sblock->no_io_error_seen = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this function will check the on disk data for checksum errors, header | 
|  | * errors and read I/O errors. If any I/O errors happen, the exact pages | 
|  | * which are errored are marked as being bad. The goal is to enable scrub | 
|  | * to take those pages that are not errored from all the mirrors so that | 
|  | * the pages that are errored in the just handled mirror can be repaired. | 
|  | */ | 
|  | static void scrub_recheck_block(struct btrfs_fs_info *fs_info, | 
|  | struct scrub_block *sblock, | 
|  | int retry_failed_mirror) | 
|  | { | 
|  | int page_num; | 
|  |  | 
|  | sblock->no_io_error_seen = 1; | 
|  |  | 
|  | /* short cut for raid56 */ | 
|  | if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0])) | 
|  | return scrub_recheck_block_on_raid56(fs_info, sblock); | 
|  |  | 
|  | for (page_num = 0; page_num < sblock->page_count; page_num++) { | 
|  | struct bio *bio; | 
|  | struct scrub_page *page = sblock->pagev[page_num]; | 
|  |  | 
|  | if (page->dev->bdev == NULL) { | 
|  | page->io_error = 1; | 
|  | sblock->no_io_error_seen = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | WARN_ON(!page->page); | 
|  | bio = btrfs_io_bio_alloc(1); | 
|  | bio_set_dev(bio, page->dev->bdev); | 
|  |  | 
|  | bio_add_page(bio, page->page, PAGE_SIZE, 0); | 
|  | bio->bi_iter.bi_sector = page->physical >> 9; | 
|  | bio->bi_opf = REQ_OP_READ; | 
|  |  | 
|  | if (btrfsic_submit_bio_wait(bio)) { | 
|  | page->io_error = 1; | 
|  | sblock->no_io_error_seen = 0; | 
|  | } | 
|  |  | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | if (sblock->no_io_error_seen) | 
|  | scrub_recheck_block_checksum(sblock); | 
|  | } | 
|  |  | 
|  | static inline int scrub_check_fsid(u8 fsid[], | 
|  | struct scrub_page *spage) | 
|  | { | 
|  | struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices; | 
|  | int ret; | 
|  |  | 
|  | ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE); | 
|  | return !ret; | 
|  | } | 
|  |  | 
|  | static void scrub_recheck_block_checksum(struct scrub_block *sblock) | 
|  | { | 
|  | sblock->header_error = 0; | 
|  | sblock->checksum_error = 0; | 
|  | sblock->generation_error = 0; | 
|  |  | 
|  | if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA) | 
|  | scrub_checksum_data(sblock); | 
|  | else | 
|  | scrub_checksum_tree_block(sblock); | 
|  | } | 
|  |  | 
|  | static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, | 
|  | struct scrub_block *sblock_good) | 
|  | { | 
|  | int page_num; | 
|  | int ret = 0; | 
|  |  | 
|  | for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { | 
|  | int ret_sub; | 
|  |  | 
|  | ret_sub = scrub_repair_page_from_good_copy(sblock_bad, | 
|  | sblock_good, | 
|  | page_num, 1); | 
|  | if (ret_sub) | 
|  | ret = ret_sub; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, | 
|  | struct scrub_block *sblock_good, | 
|  | int page_num, int force_write) | 
|  | { | 
|  | struct scrub_page *page_bad = sblock_bad->pagev[page_num]; | 
|  | struct scrub_page *page_good = sblock_good->pagev[page_num]; | 
|  | struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info; | 
|  |  | 
|  | BUG_ON(page_bad->page == NULL); | 
|  | BUG_ON(page_good->page == NULL); | 
|  | if (force_write || sblock_bad->header_error || | 
|  | sblock_bad->checksum_error || page_bad->io_error) { | 
|  | struct bio *bio; | 
|  | int ret; | 
|  |  | 
|  | if (!page_bad->dev->bdev) { | 
|  | btrfs_warn_rl(fs_info, | 
|  | "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | bio = btrfs_io_bio_alloc(1); | 
|  | bio_set_dev(bio, page_bad->dev->bdev); | 
|  | bio->bi_iter.bi_sector = page_bad->physical >> 9; | 
|  | bio_set_op_attrs(bio, REQ_OP_WRITE, 0); | 
|  |  | 
|  | ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0); | 
|  | if (PAGE_SIZE != ret) { | 
|  | bio_put(bio); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | if (btrfsic_submit_bio_wait(bio)) { | 
|  | btrfs_dev_stat_inc_and_print(page_bad->dev, | 
|  | BTRFS_DEV_STAT_WRITE_ERRS); | 
|  | btrfs_dev_replace_stats_inc( | 
|  | &fs_info->dev_replace.num_write_errors); | 
|  | bio_put(bio); | 
|  | return -EIO; | 
|  | } | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; | 
|  | int page_num; | 
|  |  | 
|  | /* | 
|  | * This block is used for the check of the parity on the source device, | 
|  | * so the data needn't be written into the destination device. | 
|  | */ | 
|  | if (sblock->sparity) | 
|  | return; | 
|  |  | 
|  | for (page_num = 0; page_num < sblock->page_count; page_num++) { | 
|  | int ret; | 
|  |  | 
|  | ret = scrub_write_page_to_dev_replace(sblock, page_num); | 
|  | if (ret) | 
|  | btrfs_dev_replace_stats_inc( | 
|  | &fs_info->dev_replace.num_write_errors); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, | 
|  | int page_num) | 
|  | { | 
|  | struct scrub_page *spage = sblock->pagev[page_num]; | 
|  |  | 
|  | BUG_ON(spage->page == NULL); | 
|  | if (spage->io_error) { | 
|  | void *mapped_buffer = kmap_atomic(spage->page); | 
|  |  | 
|  | clear_page(mapped_buffer); | 
|  | flush_dcache_page(spage->page); | 
|  | kunmap_atomic(mapped_buffer); | 
|  | } | 
|  | return scrub_add_page_to_wr_bio(sblock->sctx, spage); | 
|  | } | 
|  |  | 
|  | static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, | 
|  | struct scrub_page *spage) | 
|  | { | 
|  | struct scrub_bio *sbio; | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&sctx->wr_lock); | 
|  | again: | 
|  | if (!sctx->wr_curr_bio) { | 
|  | sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio), | 
|  | GFP_KERNEL); | 
|  | if (!sctx->wr_curr_bio) { | 
|  | mutex_unlock(&sctx->wr_lock); | 
|  | return -ENOMEM; | 
|  | } | 
|  | sctx->wr_curr_bio->sctx = sctx; | 
|  | sctx->wr_curr_bio->page_count = 0; | 
|  | } | 
|  | sbio = sctx->wr_curr_bio; | 
|  | if (sbio->page_count == 0) { | 
|  | struct bio *bio; | 
|  |  | 
|  | sbio->physical = spage->physical_for_dev_replace; | 
|  | sbio->logical = spage->logical; | 
|  | sbio->dev = sctx->wr_tgtdev; | 
|  | bio = sbio->bio; | 
|  | if (!bio) { | 
|  | bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio); | 
|  | sbio->bio = bio; | 
|  | } | 
|  |  | 
|  | bio->bi_private = sbio; | 
|  | bio->bi_end_io = scrub_wr_bio_end_io; | 
|  | bio_set_dev(bio, sbio->dev->bdev); | 
|  | bio->bi_iter.bi_sector = sbio->physical >> 9; | 
|  | bio_set_op_attrs(bio, REQ_OP_WRITE, 0); | 
|  | sbio->status = 0; | 
|  | } else if (sbio->physical + sbio->page_count * PAGE_SIZE != | 
|  | spage->physical_for_dev_replace || | 
|  | sbio->logical + sbio->page_count * PAGE_SIZE != | 
|  | spage->logical) { | 
|  | scrub_wr_submit(sctx); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); | 
|  | if (ret != PAGE_SIZE) { | 
|  | if (sbio->page_count < 1) { | 
|  | bio_put(sbio->bio); | 
|  | sbio->bio = NULL; | 
|  | mutex_unlock(&sctx->wr_lock); | 
|  | return -EIO; | 
|  | } | 
|  | scrub_wr_submit(sctx); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | sbio->pagev[sbio->page_count] = spage; | 
|  | scrub_page_get(spage); | 
|  | sbio->page_count++; | 
|  | if (sbio->page_count == sctx->pages_per_wr_bio) | 
|  | scrub_wr_submit(sctx); | 
|  | mutex_unlock(&sctx->wr_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void scrub_wr_submit(struct scrub_ctx *sctx) | 
|  | { | 
|  | struct scrub_bio *sbio; | 
|  |  | 
|  | if (!sctx->wr_curr_bio) | 
|  | return; | 
|  |  | 
|  | sbio = sctx->wr_curr_bio; | 
|  | sctx->wr_curr_bio = NULL; | 
|  | WARN_ON(!sbio->bio->bi_disk); | 
|  | scrub_pending_bio_inc(sctx); | 
|  | /* process all writes in a single worker thread. Then the block layer | 
|  | * orders the requests before sending them to the driver which | 
|  | * doubled the write performance on spinning disks when measured | 
|  | * with Linux 3.5 */ | 
|  | btrfsic_submit_bio(sbio->bio); | 
|  | } | 
|  |  | 
|  | static void scrub_wr_bio_end_io(struct bio *bio) | 
|  | { | 
|  | struct scrub_bio *sbio = bio->bi_private; | 
|  | struct btrfs_fs_info *fs_info = sbio->dev->fs_info; | 
|  |  | 
|  | sbio->status = bio->bi_status; | 
|  | sbio->bio = bio; | 
|  |  | 
|  | btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper, | 
|  | scrub_wr_bio_end_io_worker, NULL, NULL); | 
|  | btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); | 
|  | } | 
|  |  | 
|  | static void scrub_wr_bio_end_io_worker(struct btrfs_work *work) | 
|  | { | 
|  | struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); | 
|  | struct scrub_ctx *sctx = sbio->sctx; | 
|  | int i; | 
|  |  | 
|  | WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO); | 
|  | if (sbio->status) { | 
|  | struct btrfs_dev_replace *dev_replace = | 
|  | &sbio->sctx->fs_info->dev_replace; | 
|  |  | 
|  | for (i = 0; i < sbio->page_count; i++) { | 
|  | struct scrub_page *spage = sbio->pagev[i]; | 
|  |  | 
|  | spage->io_error = 1; | 
|  | btrfs_dev_replace_stats_inc(&dev_replace-> | 
|  | num_write_errors); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < sbio->page_count; i++) | 
|  | scrub_page_put(sbio->pagev[i]); | 
|  |  | 
|  | bio_put(sbio->bio); | 
|  | kfree(sbio); | 
|  | scrub_pending_bio_dec(sctx); | 
|  | } | 
|  |  | 
|  | static int scrub_checksum(struct scrub_block *sblock) | 
|  | { | 
|  | u64 flags; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * No need to initialize these stats currently, | 
|  | * because this function only use return value | 
|  | * instead of these stats value. | 
|  | * | 
|  | * Todo: | 
|  | * always use stats | 
|  | */ | 
|  | sblock->header_error = 0; | 
|  | sblock->generation_error = 0; | 
|  | sblock->checksum_error = 0; | 
|  |  | 
|  | WARN_ON(sblock->page_count < 1); | 
|  | flags = sblock->pagev[0]->flags; | 
|  | ret = 0; | 
|  | if (flags & BTRFS_EXTENT_FLAG_DATA) | 
|  | ret = scrub_checksum_data(sblock); | 
|  | else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) | 
|  | ret = scrub_checksum_tree_block(sblock); | 
|  | else if (flags & BTRFS_EXTENT_FLAG_SUPER) | 
|  | (void)scrub_checksum_super(sblock); | 
|  | else | 
|  | WARN_ON(1); | 
|  | if (ret) | 
|  | scrub_handle_errored_block(sblock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int scrub_checksum_data(struct scrub_block *sblock) | 
|  | { | 
|  | struct scrub_ctx *sctx = sblock->sctx; | 
|  | u8 csum[BTRFS_CSUM_SIZE]; | 
|  | u8 *on_disk_csum; | 
|  | struct page *page; | 
|  | void *buffer; | 
|  | u32 crc = ~(u32)0; | 
|  | u64 len; | 
|  | int index; | 
|  |  | 
|  | BUG_ON(sblock->page_count < 1); | 
|  | if (!sblock->pagev[0]->have_csum) | 
|  | return 0; | 
|  |  | 
|  | on_disk_csum = sblock->pagev[0]->csum; | 
|  | page = sblock->pagev[0]->page; | 
|  | buffer = kmap_atomic(page); | 
|  |  | 
|  | len = sctx->fs_info->sectorsize; | 
|  | index = 0; | 
|  | for (;;) { | 
|  | u64 l = min_t(u64, len, PAGE_SIZE); | 
|  |  | 
|  | crc = btrfs_csum_data(buffer, crc, l); | 
|  | kunmap_atomic(buffer); | 
|  | len -= l; | 
|  | if (len == 0) | 
|  | break; | 
|  | index++; | 
|  | BUG_ON(index >= sblock->page_count); | 
|  | BUG_ON(!sblock->pagev[index]->page); | 
|  | page = sblock->pagev[index]->page; | 
|  | buffer = kmap_atomic(page); | 
|  | } | 
|  |  | 
|  | btrfs_csum_final(crc, csum); | 
|  | if (memcmp(csum, on_disk_csum, sctx->csum_size)) | 
|  | sblock->checksum_error = 1; | 
|  |  | 
|  | return sblock->checksum_error; | 
|  | } | 
|  |  | 
|  | static int scrub_checksum_tree_block(struct scrub_block *sblock) | 
|  | { | 
|  | struct scrub_ctx *sctx = sblock->sctx; | 
|  | struct btrfs_header *h; | 
|  | struct btrfs_fs_info *fs_info = sctx->fs_info; | 
|  | u8 calculated_csum[BTRFS_CSUM_SIZE]; | 
|  | u8 on_disk_csum[BTRFS_CSUM_SIZE]; | 
|  | struct page *page; | 
|  | void *mapped_buffer; | 
|  | u64 mapped_size; | 
|  | void *p; | 
|  | u32 crc = ~(u32)0; | 
|  | u64 len; | 
|  | int index; | 
|  |  | 
|  | BUG_ON(sblock->page_count < 1); | 
|  | page = sblock->pagev[0]->page; | 
|  | mapped_buffer = kmap_atomic(page); | 
|  | h = (struct btrfs_header *)mapped_buffer; | 
|  | memcpy(on_disk_csum, h->csum, sctx->csum_size); | 
|  |  | 
|  | /* | 
|  | * we don't use the getter functions here, as we | 
|  | * a) don't have an extent buffer and | 
|  | * b) the page is already kmapped | 
|  | */ | 
|  | if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h)) | 
|  | sblock->header_error = 1; | 
|  |  | 
|  | if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) { | 
|  | sblock->header_error = 1; | 
|  | sblock->generation_error = 1; | 
|  | } | 
|  |  | 
|  | if (!scrub_check_fsid(h->fsid, sblock->pagev[0])) | 
|  | sblock->header_error = 1; | 
|  |  | 
|  | if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, | 
|  | BTRFS_UUID_SIZE)) | 
|  | sblock->header_error = 1; | 
|  |  | 
|  | len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE; | 
|  | mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; | 
|  | p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; | 
|  | index = 0; | 
|  | for (;;) { | 
|  | u64 l = min_t(u64, len, mapped_size); | 
|  |  | 
|  | crc = btrfs_csum_data(p, crc, l); | 
|  | kunmap_atomic(mapped_buffer); | 
|  | len -= l; | 
|  | if (len == 0) | 
|  | break; | 
|  | index++; | 
|  | BUG_ON(index >= sblock->page_count); | 
|  | BUG_ON(!sblock->pagev[index]->page); | 
|  | page = sblock->pagev[index]->page; | 
|  | mapped_buffer = kmap_atomic(page); | 
|  | mapped_size = PAGE_SIZE; | 
|  | p = mapped_buffer; | 
|  | } | 
|  |  | 
|  | btrfs_csum_final(crc, calculated_csum); | 
|  | if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) | 
|  | sblock->checksum_error = 1; | 
|  |  | 
|  | return sblock->header_error || sblock->checksum_error; | 
|  | } | 
|  |  | 
|  | static int scrub_checksum_super(struct scrub_block *sblock) | 
|  | { | 
|  | struct btrfs_super_block *s; | 
|  | struct scrub_ctx *sctx = sblock->sctx; | 
|  | u8 calculated_csum[BTRFS_CSUM_SIZE]; | 
|  | u8 on_disk_csum[BTRFS_CSUM_SIZE]; | 
|  | struct page *page; | 
|  | void *mapped_buffer; | 
|  | u64 mapped_size; | 
|  | void *p; | 
|  | u32 crc = ~(u32)0; | 
|  | int fail_gen = 0; | 
|  | int fail_cor = 0; | 
|  | u64 len; | 
|  | int index; | 
|  |  | 
|  | BUG_ON(sblock->page_count < 1); | 
|  | page = sblock->pagev[0]->page; | 
|  | mapped_buffer = kmap_atomic(page); | 
|  | s = (struct btrfs_super_block *)mapped_buffer; | 
|  | memcpy(on_disk_csum, s->csum, sctx->csum_size); | 
|  |  | 
|  | if (sblock->pagev[0]->logical != btrfs_super_bytenr(s)) | 
|  | ++fail_cor; | 
|  |  | 
|  | if (sblock->pagev[0]->generation != btrfs_super_generation(s)) | 
|  | ++fail_gen; | 
|  |  | 
|  | if (!scrub_check_fsid(s->fsid, sblock->pagev[0])) | 
|  | ++fail_cor; | 
|  |  | 
|  | len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE; | 
|  | mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; | 
|  | p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; | 
|  | index = 0; | 
|  | for (;;) { | 
|  | u64 l = min_t(u64, len, mapped_size); | 
|  |  | 
|  | crc = btrfs_csum_data(p, crc, l); | 
|  | kunmap_atomic(mapped_buffer); | 
|  | len -= l; | 
|  | if (len == 0) | 
|  | break; | 
|  | index++; | 
|  | BUG_ON(index >= sblock->page_count); | 
|  | BUG_ON(!sblock->pagev[index]->page); | 
|  | page = sblock->pagev[index]->page; | 
|  | mapped_buffer = kmap_atomic(page); | 
|  | mapped_size = PAGE_SIZE; | 
|  | p = mapped_buffer; | 
|  | } | 
|  |  | 
|  | btrfs_csum_final(crc, calculated_csum); | 
|  | if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) | 
|  | ++fail_cor; | 
|  |  | 
|  | if (fail_cor + fail_gen) { | 
|  | /* | 
|  | * if we find an error in a super block, we just report it. | 
|  | * They will get written with the next transaction commit | 
|  | * anyway | 
|  | */ | 
|  | spin_lock(&sctx->stat_lock); | 
|  | ++sctx->stat.super_errors; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  | if (fail_cor) | 
|  | btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, | 
|  | BTRFS_DEV_STAT_CORRUPTION_ERRS); | 
|  | else | 
|  | btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, | 
|  | BTRFS_DEV_STAT_GENERATION_ERRS); | 
|  | } | 
|  |  | 
|  | return fail_cor + fail_gen; | 
|  | } | 
|  |  | 
|  | static void scrub_block_get(struct scrub_block *sblock) | 
|  | { | 
|  | refcount_inc(&sblock->refs); | 
|  | } | 
|  |  | 
|  | static void scrub_block_put(struct scrub_block *sblock) | 
|  | { | 
|  | if (refcount_dec_and_test(&sblock->refs)) { | 
|  | int i; | 
|  |  | 
|  | if (sblock->sparity) | 
|  | scrub_parity_put(sblock->sparity); | 
|  |  | 
|  | for (i = 0; i < sblock->page_count; i++) | 
|  | scrub_page_put(sblock->pagev[i]); | 
|  | kfree(sblock); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void scrub_page_get(struct scrub_page *spage) | 
|  | { | 
|  | atomic_inc(&spage->refs); | 
|  | } | 
|  |  | 
|  | static void scrub_page_put(struct scrub_page *spage) | 
|  | { | 
|  | if (atomic_dec_and_test(&spage->refs)) { | 
|  | if (spage->page) | 
|  | __free_page(spage->page); | 
|  | kfree(spage); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void scrub_submit(struct scrub_ctx *sctx) | 
|  | { | 
|  | struct scrub_bio *sbio; | 
|  |  | 
|  | if (sctx->curr == -1) | 
|  | return; | 
|  |  | 
|  | sbio = sctx->bios[sctx->curr]; | 
|  | sctx->curr = -1; | 
|  | scrub_pending_bio_inc(sctx); | 
|  | btrfsic_submit_bio(sbio->bio); | 
|  | } | 
|  |  | 
|  | static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, | 
|  | struct scrub_page *spage) | 
|  | { | 
|  | struct scrub_block *sblock = spage->sblock; | 
|  | struct scrub_bio *sbio; | 
|  | int ret; | 
|  |  | 
|  | again: | 
|  | /* | 
|  | * grab a fresh bio or wait for one to become available | 
|  | */ | 
|  | while (sctx->curr == -1) { | 
|  | spin_lock(&sctx->list_lock); | 
|  | sctx->curr = sctx->first_free; | 
|  | if (sctx->curr != -1) { | 
|  | sctx->first_free = sctx->bios[sctx->curr]->next_free; | 
|  | sctx->bios[sctx->curr]->next_free = -1; | 
|  | sctx->bios[sctx->curr]->page_count = 0; | 
|  | spin_unlock(&sctx->list_lock); | 
|  | } else { | 
|  | spin_unlock(&sctx->list_lock); | 
|  | wait_event(sctx->list_wait, sctx->first_free != -1); | 
|  | } | 
|  | } | 
|  | sbio = sctx->bios[sctx->curr]; | 
|  | if (sbio->page_count == 0) { | 
|  | struct bio *bio; | 
|  |  | 
|  | sbio->physical = spage->physical; | 
|  | sbio->logical = spage->logical; | 
|  | sbio->dev = spage->dev; | 
|  | bio = sbio->bio; | 
|  | if (!bio) { | 
|  | bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio); | 
|  | sbio->bio = bio; | 
|  | } | 
|  |  | 
|  | bio->bi_private = sbio; | 
|  | bio->bi_end_io = scrub_bio_end_io; | 
|  | bio_set_dev(bio, sbio->dev->bdev); | 
|  | bio->bi_iter.bi_sector = sbio->physical >> 9; | 
|  | bio_set_op_attrs(bio, REQ_OP_READ, 0); | 
|  | sbio->status = 0; | 
|  | } else if (sbio->physical + sbio->page_count * PAGE_SIZE != | 
|  | spage->physical || | 
|  | sbio->logical + sbio->page_count * PAGE_SIZE != | 
|  | spage->logical || | 
|  | sbio->dev != spage->dev) { | 
|  | scrub_submit(sctx); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | sbio->pagev[sbio->page_count] = spage; | 
|  | ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); | 
|  | if (ret != PAGE_SIZE) { | 
|  | if (sbio->page_count < 1) { | 
|  | bio_put(sbio->bio); | 
|  | sbio->bio = NULL; | 
|  | return -EIO; | 
|  | } | 
|  | scrub_submit(sctx); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | scrub_block_get(sblock); /* one for the page added to the bio */ | 
|  | atomic_inc(&sblock->outstanding_pages); | 
|  | sbio->page_count++; | 
|  | if (sbio->page_count == sctx->pages_per_rd_bio) | 
|  | scrub_submit(sctx); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void scrub_missing_raid56_end_io(struct bio *bio) | 
|  | { | 
|  | struct scrub_block *sblock = bio->bi_private; | 
|  | struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; | 
|  |  | 
|  | if (bio->bi_status) | 
|  | sblock->no_io_error_seen = 0; | 
|  |  | 
|  | bio_put(bio); | 
|  |  | 
|  | btrfs_queue_work(fs_info->scrub_workers, &sblock->work); | 
|  | } | 
|  |  | 
|  | static void scrub_missing_raid56_worker(struct btrfs_work *work) | 
|  | { | 
|  | struct scrub_block *sblock = container_of(work, struct scrub_block, work); | 
|  | struct scrub_ctx *sctx = sblock->sctx; | 
|  | struct btrfs_fs_info *fs_info = sctx->fs_info; | 
|  | u64 logical; | 
|  | struct btrfs_device *dev; | 
|  |  | 
|  | logical = sblock->pagev[0]->logical; | 
|  | dev = sblock->pagev[0]->dev; | 
|  |  | 
|  | if (sblock->no_io_error_seen) | 
|  | scrub_recheck_block_checksum(sblock); | 
|  |  | 
|  | if (!sblock->no_io_error_seen) { | 
|  | spin_lock(&sctx->stat_lock); | 
|  | sctx->stat.read_errors++; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  | btrfs_err_rl_in_rcu(fs_info, | 
|  | "IO error rebuilding logical %llu for dev %s", | 
|  | logical, rcu_str_deref(dev->name)); | 
|  | } else if (sblock->header_error || sblock->checksum_error) { | 
|  | spin_lock(&sctx->stat_lock); | 
|  | sctx->stat.uncorrectable_errors++; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  | btrfs_err_rl_in_rcu(fs_info, | 
|  | "failed to rebuild valid logical %llu for dev %s", | 
|  | logical, rcu_str_deref(dev->name)); | 
|  | } else { | 
|  | scrub_write_block_to_dev_replace(sblock); | 
|  | } | 
|  |  | 
|  | scrub_block_put(sblock); | 
|  |  | 
|  | if (sctx->is_dev_replace && sctx->flush_all_writes) { | 
|  | mutex_lock(&sctx->wr_lock); | 
|  | scrub_wr_submit(sctx); | 
|  | mutex_unlock(&sctx->wr_lock); | 
|  | } | 
|  |  | 
|  | scrub_pending_bio_dec(sctx); | 
|  | } | 
|  |  | 
|  | static void scrub_missing_raid56_pages(struct scrub_block *sblock) | 
|  | { | 
|  | struct scrub_ctx *sctx = sblock->sctx; | 
|  | struct btrfs_fs_info *fs_info = sctx->fs_info; | 
|  | u64 length = sblock->page_count * PAGE_SIZE; | 
|  | u64 logical = sblock->pagev[0]->logical; | 
|  | struct btrfs_bio *bbio = NULL; | 
|  | struct bio *bio; | 
|  | struct btrfs_raid_bio *rbio; | 
|  | int ret; | 
|  | int i; | 
|  |  | 
|  | btrfs_bio_counter_inc_blocked(fs_info); | 
|  | ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, | 
|  | &length, &bbio); | 
|  | if (ret || !bbio || !bbio->raid_map) | 
|  | goto bbio_out; | 
|  |  | 
|  | if (WARN_ON(!sctx->is_dev_replace || | 
|  | !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) { | 
|  | /* | 
|  | * We shouldn't be scrubbing a missing device. Even for dev | 
|  | * replace, we should only get here for RAID 5/6. We either | 
|  | * managed to mount something with no mirrors remaining or | 
|  | * there's a bug in scrub_remap_extent()/btrfs_map_block(). | 
|  | */ | 
|  | goto bbio_out; | 
|  | } | 
|  |  | 
|  | bio = btrfs_io_bio_alloc(0); | 
|  | bio->bi_iter.bi_sector = logical >> 9; | 
|  | bio->bi_private = sblock; | 
|  | bio->bi_end_io = scrub_missing_raid56_end_io; | 
|  |  | 
|  | rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length); | 
|  | if (!rbio) | 
|  | goto rbio_out; | 
|  |  | 
|  | for (i = 0; i < sblock->page_count; i++) { | 
|  | struct scrub_page *spage = sblock->pagev[i]; | 
|  |  | 
|  | raid56_add_scrub_pages(rbio, spage->page, spage->logical); | 
|  | } | 
|  |  | 
|  | btrfs_init_work(&sblock->work, btrfs_scrub_helper, | 
|  | scrub_missing_raid56_worker, NULL, NULL); | 
|  | scrub_block_get(sblock); | 
|  | scrub_pending_bio_inc(sctx); | 
|  | raid56_submit_missing_rbio(rbio); | 
|  | return; | 
|  |  | 
|  | rbio_out: | 
|  | bio_put(bio); | 
|  | bbio_out: | 
|  | btrfs_bio_counter_dec(fs_info); | 
|  | btrfs_put_bbio(bbio); | 
|  | spin_lock(&sctx->stat_lock); | 
|  | sctx->stat.malloc_errors++; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  | } | 
|  |  | 
|  | static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, | 
|  | u64 physical, struct btrfs_device *dev, u64 flags, | 
|  | u64 gen, int mirror_num, u8 *csum, int force, | 
|  | u64 physical_for_dev_replace) | 
|  | { | 
|  | struct scrub_block *sblock; | 
|  | int index; | 
|  |  | 
|  | sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); | 
|  | if (!sblock) { | 
|  | spin_lock(&sctx->stat_lock); | 
|  | sctx->stat.malloc_errors++; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* one ref inside this function, plus one for each page added to | 
|  | * a bio later on */ | 
|  | refcount_set(&sblock->refs, 1); | 
|  | sblock->sctx = sctx; | 
|  | sblock->no_io_error_seen = 1; | 
|  |  | 
|  | for (index = 0; len > 0; index++) { | 
|  | struct scrub_page *spage; | 
|  | u64 l = min_t(u64, len, PAGE_SIZE); | 
|  |  | 
|  | spage = kzalloc(sizeof(*spage), GFP_KERNEL); | 
|  | if (!spage) { | 
|  | leave_nomem: | 
|  | spin_lock(&sctx->stat_lock); | 
|  | sctx->stat.malloc_errors++; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  | scrub_block_put(sblock); | 
|  | return -ENOMEM; | 
|  | } | 
|  | BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); | 
|  | scrub_page_get(spage); | 
|  | sblock->pagev[index] = spage; | 
|  | spage->sblock = sblock; | 
|  | spage->dev = dev; | 
|  | spage->flags = flags; | 
|  | spage->generation = gen; | 
|  | spage->logical = logical; | 
|  | spage->physical = physical; | 
|  | spage->physical_for_dev_replace = physical_for_dev_replace; | 
|  | spage->mirror_num = mirror_num; | 
|  | if (csum) { | 
|  | spage->have_csum = 1; | 
|  | memcpy(spage->csum, csum, sctx->csum_size); | 
|  | } else { | 
|  | spage->have_csum = 0; | 
|  | } | 
|  | sblock->page_count++; | 
|  | spage->page = alloc_page(GFP_KERNEL); | 
|  | if (!spage->page) | 
|  | goto leave_nomem; | 
|  | len -= l; | 
|  | logical += l; | 
|  | physical += l; | 
|  | physical_for_dev_replace += l; | 
|  | } | 
|  |  | 
|  | WARN_ON(sblock->page_count == 0); | 
|  | if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { | 
|  | /* | 
|  | * This case should only be hit for RAID 5/6 device replace. See | 
|  | * the comment in scrub_missing_raid56_pages() for details. | 
|  | */ | 
|  | scrub_missing_raid56_pages(sblock); | 
|  | } else { | 
|  | for (index = 0; index < sblock->page_count; index++) { | 
|  | struct scrub_page *spage = sblock->pagev[index]; | 
|  | int ret; | 
|  |  | 
|  | ret = scrub_add_page_to_rd_bio(sctx, spage); | 
|  | if (ret) { | 
|  | scrub_block_put(sblock); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (force) | 
|  | scrub_submit(sctx); | 
|  | } | 
|  |  | 
|  | /* last one frees, either here or in bio completion for last page */ | 
|  | scrub_block_put(sblock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void scrub_bio_end_io(struct bio *bio) | 
|  | { | 
|  | struct scrub_bio *sbio = bio->bi_private; | 
|  | struct btrfs_fs_info *fs_info = sbio->dev->fs_info; | 
|  |  | 
|  | sbio->status = bio->bi_status; | 
|  | sbio->bio = bio; | 
|  |  | 
|  | btrfs_queue_work(fs_info->scrub_workers, &sbio->work); | 
|  | } | 
|  |  | 
|  | static void scrub_bio_end_io_worker(struct btrfs_work *work) | 
|  | { | 
|  | struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); | 
|  | struct scrub_ctx *sctx = sbio->sctx; | 
|  | int i; | 
|  |  | 
|  | BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO); | 
|  | if (sbio->status) { | 
|  | for (i = 0; i < sbio->page_count; i++) { | 
|  | struct scrub_page *spage = sbio->pagev[i]; | 
|  |  | 
|  | spage->io_error = 1; | 
|  | spage->sblock->no_io_error_seen = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* now complete the scrub_block items that have all pages completed */ | 
|  | for (i = 0; i < sbio->page_count; i++) { | 
|  | struct scrub_page *spage = sbio->pagev[i]; | 
|  | struct scrub_block *sblock = spage->sblock; | 
|  |  | 
|  | if (atomic_dec_and_test(&sblock->outstanding_pages)) | 
|  | scrub_block_complete(sblock); | 
|  | scrub_block_put(sblock); | 
|  | } | 
|  |  | 
|  | bio_put(sbio->bio); | 
|  | sbio->bio = NULL; | 
|  | spin_lock(&sctx->list_lock); | 
|  | sbio->next_free = sctx->first_free; | 
|  | sctx->first_free = sbio->index; | 
|  | spin_unlock(&sctx->list_lock); | 
|  |  | 
|  | if (sctx->is_dev_replace && sctx->flush_all_writes) { | 
|  | mutex_lock(&sctx->wr_lock); | 
|  | scrub_wr_submit(sctx); | 
|  | mutex_unlock(&sctx->wr_lock); | 
|  | } | 
|  |  | 
|  | scrub_pending_bio_dec(sctx); | 
|  | } | 
|  |  | 
|  | static inline void __scrub_mark_bitmap(struct scrub_parity *sparity, | 
|  | unsigned long *bitmap, | 
|  | u64 start, u64 len) | 
|  | { | 
|  | u64 offset; | 
|  | u64 nsectors64; | 
|  | u32 nsectors; | 
|  | int sectorsize = sparity->sctx->fs_info->sectorsize; | 
|  |  | 
|  | if (len >= sparity->stripe_len) { | 
|  | bitmap_set(bitmap, 0, sparity->nsectors); | 
|  | return; | 
|  | } | 
|  |  | 
|  | start -= sparity->logic_start; | 
|  | start = div64_u64_rem(start, sparity->stripe_len, &offset); | 
|  | offset = div_u64(offset, sectorsize); | 
|  | nsectors64 = div_u64(len, sectorsize); | 
|  |  | 
|  | ASSERT(nsectors64 < UINT_MAX); | 
|  | nsectors = (u32)nsectors64; | 
|  |  | 
|  | if (offset + nsectors <= sparity->nsectors) { | 
|  | bitmap_set(bitmap, offset, nsectors); | 
|  | return; | 
|  | } | 
|  |  | 
|  | bitmap_set(bitmap, offset, sparity->nsectors - offset); | 
|  | bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset)); | 
|  | } | 
|  |  | 
|  | static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity, | 
|  | u64 start, u64 len) | 
|  | { | 
|  | __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len); | 
|  | } | 
|  |  | 
|  | static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity, | 
|  | u64 start, u64 len) | 
|  | { | 
|  | __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len); | 
|  | } | 
|  |  | 
|  | static void scrub_block_complete(struct scrub_block *sblock) | 
|  | { | 
|  | int corrupted = 0; | 
|  |  | 
|  | if (!sblock->no_io_error_seen) { | 
|  | corrupted = 1; | 
|  | scrub_handle_errored_block(sblock); | 
|  | } else { | 
|  | /* | 
|  | * if has checksum error, write via repair mechanism in | 
|  | * dev replace case, otherwise write here in dev replace | 
|  | * case. | 
|  | */ | 
|  | corrupted = scrub_checksum(sblock); | 
|  | if (!corrupted && sblock->sctx->is_dev_replace) | 
|  | scrub_write_block_to_dev_replace(sblock); | 
|  | } | 
|  |  | 
|  | if (sblock->sparity && corrupted && !sblock->data_corrected) { | 
|  | u64 start = sblock->pagev[0]->logical; | 
|  | u64 end = sblock->pagev[sblock->page_count - 1]->logical + | 
|  | PAGE_SIZE; | 
|  |  | 
|  | scrub_parity_mark_sectors_error(sblock->sparity, | 
|  | start, end - start); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum) | 
|  | { | 
|  | struct btrfs_ordered_sum *sum = NULL; | 
|  | unsigned long index; | 
|  | unsigned long num_sectors; | 
|  |  | 
|  | while (!list_empty(&sctx->csum_list)) { | 
|  | sum = list_first_entry(&sctx->csum_list, | 
|  | struct btrfs_ordered_sum, list); | 
|  | if (sum->bytenr > logical) | 
|  | return 0; | 
|  | if (sum->bytenr + sum->len > logical) | 
|  | break; | 
|  |  | 
|  | ++sctx->stat.csum_discards; | 
|  | list_del(&sum->list); | 
|  | kfree(sum); | 
|  | sum = NULL; | 
|  | } | 
|  | if (!sum) | 
|  | return 0; | 
|  |  | 
|  | index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize); | 
|  | ASSERT(index < UINT_MAX); | 
|  |  | 
|  | num_sectors = sum->len / sctx->fs_info->sectorsize; | 
|  | memcpy(csum, sum->sums + index, sctx->csum_size); | 
|  | if (index == num_sectors - 1) { | 
|  | list_del(&sum->list); | 
|  | kfree(sum); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* scrub extent tries to collect up to 64 kB for each bio */ | 
|  | static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map, | 
|  | u64 logical, u64 len, | 
|  | u64 physical, struct btrfs_device *dev, u64 flags, | 
|  | u64 gen, int mirror_num, u64 physical_for_dev_replace) | 
|  | { | 
|  | int ret; | 
|  | u8 csum[BTRFS_CSUM_SIZE]; | 
|  | u32 blocksize; | 
|  |  | 
|  | if (flags & BTRFS_EXTENT_FLAG_DATA) { | 
|  | if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) | 
|  | blocksize = map->stripe_len; | 
|  | else | 
|  | blocksize = sctx->fs_info->sectorsize; | 
|  | spin_lock(&sctx->stat_lock); | 
|  | sctx->stat.data_extents_scrubbed++; | 
|  | sctx->stat.data_bytes_scrubbed += len; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  | } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { | 
|  | if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) | 
|  | blocksize = map->stripe_len; | 
|  | else | 
|  | blocksize = sctx->fs_info->nodesize; | 
|  | spin_lock(&sctx->stat_lock); | 
|  | sctx->stat.tree_extents_scrubbed++; | 
|  | sctx->stat.tree_bytes_scrubbed += len; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  | } else { | 
|  | blocksize = sctx->fs_info->sectorsize; | 
|  | WARN_ON(1); | 
|  | } | 
|  |  | 
|  | while (len) { | 
|  | u64 l = min_t(u64, len, blocksize); | 
|  | int have_csum = 0; | 
|  |  | 
|  | if (flags & BTRFS_EXTENT_FLAG_DATA) { | 
|  | /* push csums to sbio */ | 
|  | have_csum = scrub_find_csum(sctx, logical, csum); | 
|  | if (have_csum == 0) | 
|  | ++sctx->stat.no_csum; | 
|  | if (0 && sctx->is_dev_replace && !have_csum) { | 
|  | ret = copy_nocow_pages(sctx, logical, l, | 
|  | mirror_num, | 
|  | physical_for_dev_replace); | 
|  | goto behind_scrub_pages; | 
|  | } | 
|  | } | 
|  | ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen, | 
|  | mirror_num, have_csum ? csum : NULL, 0, | 
|  | physical_for_dev_replace); | 
|  | behind_scrub_pages: | 
|  | if (ret) | 
|  | return ret; | 
|  | len -= l; | 
|  | logical += l; | 
|  | physical += l; | 
|  | physical_for_dev_replace += l; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int scrub_pages_for_parity(struct scrub_parity *sparity, | 
|  | u64 logical, u64 len, | 
|  | u64 physical, struct btrfs_device *dev, | 
|  | u64 flags, u64 gen, int mirror_num, u8 *csum) | 
|  | { | 
|  | struct scrub_ctx *sctx = sparity->sctx; | 
|  | struct scrub_block *sblock; | 
|  | int index; | 
|  |  | 
|  | sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); | 
|  | if (!sblock) { | 
|  | spin_lock(&sctx->stat_lock); | 
|  | sctx->stat.malloc_errors++; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* one ref inside this function, plus one for each page added to | 
|  | * a bio later on */ | 
|  | refcount_set(&sblock->refs, 1); | 
|  | sblock->sctx = sctx; | 
|  | sblock->no_io_error_seen = 1; | 
|  | sblock->sparity = sparity; | 
|  | scrub_parity_get(sparity); | 
|  |  | 
|  | for (index = 0; len > 0; index++) { | 
|  | struct scrub_page *spage; | 
|  | u64 l = min_t(u64, len, PAGE_SIZE); | 
|  |  | 
|  | spage = kzalloc(sizeof(*spage), GFP_KERNEL); | 
|  | if (!spage) { | 
|  | leave_nomem: | 
|  | spin_lock(&sctx->stat_lock); | 
|  | sctx->stat.malloc_errors++; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  | scrub_block_put(sblock); | 
|  | return -ENOMEM; | 
|  | } | 
|  | BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); | 
|  | /* For scrub block */ | 
|  | scrub_page_get(spage); | 
|  | sblock->pagev[index] = spage; | 
|  | /* For scrub parity */ | 
|  | scrub_page_get(spage); | 
|  | list_add_tail(&spage->list, &sparity->spages); | 
|  | spage->sblock = sblock; | 
|  | spage->dev = dev; | 
|  | spage->flags = flags; | 
|  | spage->generation = gen; | 
|  | spage->logical = logical; | 
|  | spage->physical = physical; | 
|  | spage->mirror_num = mirror_num; | 
|  | if (csum) { | 
|  | spage->have_csum = 1; | 
|  | memcpy(spage->csum, csum, sctx->csum_size); | 
|  | } else { | 
|  | spage->have_csum = 0; | 
|  | } | 
|  | sblock->page_count++; | 
|  | spage->page = alloc_page(GFP_KERNEL); | 
|  | if (!spage->page) | 
|  | goto leave_nomem; | 
|  | len -= l; | 
|  | logical += l; | 
|  | physical += l; | 
|  | } | 
|  |  | 
|  | WARN_ON(sblock->page_count == 0); | 
|  | for (index = 0; index < sblock->page_count; index++) { | 
|  | struct scrub_page *spage = sblock->pagev[index]; | 
|  | int ret; | 
|  |  | 
|  | ret = scrub_add_page_to_rd_bio(sctx, spage); | 
|  | if (ret) { | 
|  | scrub_block_put(sblock); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* last one frees, either here or in bio completion for last page */ | 
|  | scrub_block_put(sblock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int scrub_extent_for_parity(struct scrub_parity *sparity, | 
|  | u64 logical, u64 len, | 
|  | u64 physical, struct btrfs_device *dev, | 
|  | u64 flags, u64 gen, int mirror_num) | 
|  | { | 
|  | struct scrub_ctx *sctx = sparity->sctx; | 
|  | int ret; | 
|  | u8 csum[BTRFS_CSUM_SIZE]; | 
|  | u32 blocksize; | 
|  |  | 
|  | if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { | 
|  | scrub_parity_mark_sectors_error(sparity, logical, len); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (flags & BTRFS_EXTENT_FLAG_DATA) { | 
|  | blocksize = sparity->stripe_len; | 
|  | } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { | 
|  | blocksize = sparity->stripe_len; | 
|  | } else { | 
|  | blocksize = sctx->fs_info->sectorsize; | 
|  | WARN_ON(1); | 
|  | } | 
|  |  | 
|  | while (len) { | 
|  | u64 l = min_t(u64, len, blocksize); | 
|  | int have_csum = 0; | 
|  |  | 
|  | if (flags & BTRFS_EXTENT_FLAG_DATA) { | 
|  | /* push csums to sbio */ | 
|  | have_csum = scrub_find_csum(sctx, logical, csum); | 
|  | if (have_csum == 0) | 
|  | goto skip; | 
|  | } | 
|  | ret = scrub_pages_for_parity(sparity, logical, l, physical, dev, | 
|  | flags, gen, mirror_num, | 
|  | have_csum ? csum : NULL); | 
|  | if (ret) | 
|  | return ret; | 
|  | skip: | 
|  | len -= l; | 
|  | logical += l; | 
|  | physical += l; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Given a physical address, this will calculate it's | 
|  | * logical offset. if this is a parity stripe, it will return | 
|  | * the most left data stripe's logical offset. | 
|  | * | 
|  | * return 0 if it is a data stripe, 1 means parity stripe. | 
|  | */ | 
|  | static int get_raid56_logic_offset(u64 physical, int num, | 
|  | struct map_lookup *map, u64 *offset, | 
|  | u64 *stripe_start) | 
|  | { | 
|  | int i; | 
|  | int j = 0; | 
|  | u64 stripe_nr; | 
|  | u64 last_offset; | 
|  | u32 stripe_index; | 
|  | u32 rot; | 
|  |  | 
|  | last_offset = (physical - map->stripes[num].physical) * | 
|  | nr_data_stripes(map); | 
|  | if (stripe_start) | 
|  | *stripe_start = last_offset; | 
|  |  | 
|  | *offset = last_offset; | 
|  | for (i = 0; i < nr_data_stripes(map); i++) { | 
|  | *offset = last_offset + i * map->stripe_len; | 
|  |  | 
|  | stripe_nr = div64_u64(*offset, map->stripe_len); | 
|  | stripe_nr = div_u64(stripe_nr, nr_data_stripes(map)); | 
|  |  | 
|  | /* Work out the disk rotation on this stripe-set */ | 
|  | stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot); | 
|  | /* calculate which stripe this data locates */ | 
|  | rot += i; | 
|  | stripe_index = rot % map->num_stripes; | 
|  | if (stripe_index == num) | 
|  | return 0; | 
|  | if (stripe_index < num) | 
|  | j++; | 
|  | } | 
|  | *offset = last_offset + j * map->stripe_len; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void scrub_free_parity(struct scrub_parity *sparity) | 
|  | { | 
|  | struct scrub_ctx *sctx = sparity->sctx; | 
|  | struct scrub_page *curr, *next; | 
|  | int nbits; | 
|  |  | 
|  | nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors); | 
|  | if (nbits) { | 
|  | spin_lock(&sctx->stat_lock); | 
|  | sctx->stat.read_errors += nbits; | 
|  | sctx->stat.uncorrectable_errors += nbits; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  | } | 
|  |  | 
|  | list_for_each_entry_safe(curr, next, &sparity->spages, list) { | 
|  | list_del_init(&curr->list); | 
|  | scrub_page_put(curr); | 
|  | } | 
|  |  | 
|  | kfree(sparity); | 
|  | } | 
|  |  | 
|  | static void scrub_parity_bio_endio_worker(struct btrfs_work *work) | 
|  | { | 
|  | struct scrub_parity *sparity = container_of(work, struct scrub_parity, | 
|  | work); | 
|  | struct scrub_ctx *sctx = sparity->sctx; | 
|  |  | 
|  | scrub_free_parity(sparity); | 
|  | scrub_pending_bio_dec(sctx); | 
|  | } | 
|  |  | 
|  | static void scrub_parity_bio_endio(struct bio *bio) | 
|  | { | 
|  | struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private; | 
|  | struct btrfs_fs_info *fs_info = sparity->sctx->fs_info; | 
|  |  | 
|  | if (bio->bi_status) | 
|  | bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, | 
|  | sparity->nsectors); | 
|  |  | 
|  | bio_put(bio); | 
|  |  | 
|  | btrfs_init_work(&sparity->work, btrfs_scrubparity_helper, | 
|  | scrub_parity_bio_endio_worker, NULL, NULL); | 
|  | btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work); | 
|  | } | 
|  |  | 
|  | static void scrub_parity_check_and_repair(struct scrub_parity *sparity) | 
|  | { | 
|  | struct scrub_ctx *sctx = sparity->sctx; | 
|  | struct btrfs_fs_info *fs_info = sctx->fs_info; | 
|  | struct bio *bio; | 
|  | struct btrfs_raid_bio *rbio; | 
|  | struct btrfs_bio *bbio = NULL; | 
|  | u64 length; | 
|  | int ret; | 
|  |  | 
|  | if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap, | 
|  | sparity->nsectors)) | 
|  | goto out; | 
|  |  | 
|  | length = sparity->logic_end - sparity->logic_start; | 
|  |  | 
|  | btrfs_bio_counter_inc_blocked(fs_info); | 
|  | ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start, | 
|  | &length, &bbio); | 
|  | if (ret || !bbio || !bbio->raid_map) | 
|  | goto bbio_out; | 
|  |  | 
|  | bio = btrfs_io_bio_alloc(0); | 
|  | bio->bi_iter.bi_sector = sparity->logic_start >> 9; | 
|  | bio->bi_private = sparity; | 
|  | bio->bi_end_io = scrub_parity_bio_endio; | 
|  |  | 
|  | rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio, | 
|  | length, sparity->scrub_dev, | 
|  | sparity->dbitmap, | 
|  | sparity->nsectors); | 
|  | if (!rbio) | 
|  | goto rbio_out; | 
|  |  | 
|  | scrub_pending_bio_inc(sctx); | 
|  | raid56_parity_submit_scrub_rbio(rbio); | 
|  | return; | 
|  |  | 
|  | rbio_out: | 
|  | bio_put(bio); | 
|  | bbio_out: | 
|  | btrfs_bio_counter_dec(fs_info); | 
|  | btrfs_put_bbio(bbio); | 
|  | bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap, | 
|  | sparity->nsectors); | 
|  | spin_lock(&sctx->stat_lock); | 
|  | sctx->stat.malloc_errors++; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  | out: | 
|  | scrub_free_parity(sparity); | 
|  | } | 
|  |  | 
|  | static inline int scrub_calc_parity_bitmap_len(int nsectors) | 
|  | { | 
|  | return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long); | 
|  | } | 
|  |  | 
|  | static void scrub_parity_get(struct scrub_parity *sparity) | 
|  | { | 
|  | refcount_inc(&sparity->refs); | 
|  | } | 
|  |  | 
|  | static void scrub_parity_put(struct scrub_parity *sparity) | 
|  | { | 
|  | if (!refcount_dec_and_test(&sparity->refs)) | 
|  | return; | 
|  |  | 
|  | scrub_parity_check_and_repair(sparity); | 
|  | } | 
|  |  | 
|  | static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx, | 
|  | struct map_lookup *map, | 
|  | struct btrfs_device *sdev, | 
|  | struct btrfs_path *path, | 
|  | u64 logic_start, | 
|  | u64 logic_end) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = sctx->fs_info; | 
|  | struct btrfs_root *root = fs_info->extent_root; | 
|  | struct btrfs_root *csum_root = fs_info->csum_root; | 
|  | struct btrfs_extent_item *extent; | 
|  | struct btrfs_bio *bbio = NULL; | 
|  | u64 flags; | 
|  | int ret; | 
|  | int slot; | 
|  | struct extent_buffer *l; | 
|  | struct btrfs_key key; | 
|  | u64 generation; | 
|  | u64 extent_logical; | 
|  | u64 extent_physical; | 
|  | u64 extent_len; | 
|  | u64 mapped_length; | 
|  | struct btrfs_device *extent_dev; | 
|  | struct scrub_parity *sparity; | 
|  | int nsectors; | 
|  | int bitmap_len; | 
|  | int extent_mirror_num; | 
|  | int stop_loop = 0; | 
|  |  | 
|  | nsectors = div_u64(map->stripe_len, fs_info->sectorsize); | 
|  | bitmap_len = scrub_calc_parity_bitmap_len(nsectors); | 
|  | sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len, | 
|  | GFP_NOFS); | 
|  | if (!sparity) { | 
|  | spin_lock(&sctx->stat_lock); | 
|  | sctx->stat.malloc_errors++; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | sparity->stripe_len = map->stripe_len; | 
|  | sparity->nsectors = nsectors; | 
|  | sparity->sctx = sctx; | 
|  | sparity->scrub_dev = sdev; | 
|  | sparity->logic_start = logic_start; | 
|  | sparity->logic_end = logic_end; | 
|  | refcount_set(&sparity->refs, 1); | 
|  | INIT_LIST_HEAD(&sparity->spages); | 
|  | sparity->dbitmap = sparity->bitmap; | 
|  | sparity->ebitmap = (void *)sparity->bitmap + bitmap_len; | 
|  |  | 
|  | ret = 0; | 
|  | while (logic_start < logic_end) { | 
|  | if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) | 
|  | key.type = BTRFS_METADATA_ITEM_KEY; | 
|  | else | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.objectid = logic_start; | 
|  | key.offset = (u64)-1; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | if (ret > 0) { | 
|  | ret = btrfs_previous_extent_item(root, path, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) { | 
|  | btrfs_release_path(path); | 
|  | ret = btrfs_search_slot(NULL, root, &key, | 
|  | path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | stop_loop = 0; | 
|  | while (1) { | 
|  | u64 bytes; | 
|  |  | 
|  | l = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | if (slot >= btrfs_header_nritems(l)) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret == 0) | 
|  | continue; | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | stop_loop = 1; | 
|  | break; | 
|  | } | 
|  | btrfs_item_key_to_cpu(l, &key, slot); | 
|  |  | 
|  | if (key.type != BTRFS_EXTENT_ITEM_KEY && | 
|  | key.type != BTRFS_METADATA_ITEM_KEY) | 
|  | goto next; | 
|  |  | 
|  | if (key.type == BTRFS_METADATA_ITEM_KEY) | 
|  | bytes = fs_info->nodesize; | 
|  | else | 
|  | bytes = key.offset; | 
|  |  | 
|  | if (key.objectid + bytes <= logic_start) | 
|  | goto next; | 
|  |  | 
|  | if (key.objectid >= logic_end) { | 
|  | stop_loop = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | while (key.objectid >= logic_start + map->stripe_len) | 
|  | logic_start += map->stripe_len; | 
|  |  | 
|  | extent = btrfs_item_ptr(l, slot, | 
|  | struct btrfs_extent_item); | 
|  | flags = btrfs_extent_flags(l, extent); | 
|  | generation = btrfs_extent_generation(l, extent); | 
|  |  | 
|  | if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && | 
|  | (key.objectid < logic_start || | 
|  | key.objectid + bytes > | 
|  | logic_start + map->stripe_len)) { | 
|  | btrfs_err(fs_info, | 
|  | "scrub: tree block %llu spanning stripes, ignored. logical=%llu", | 
|  | key.objectid, logic_start); | 
|  | spin_lock(&sctx->stat_lock); | 
|  | sctx->stat.uncorrectable_errors++; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  | goto next; | 
|  | } | 
|  | again: | 
|  | extent_logical = key.objectid; | 
|  | extent_len = bytes; | 
|  |  | 
|  | if (extent_logical < logic_start) { | 
|  | extent_len -= logic_start - extent_logical; | 
|  | extent_logical = logic_start; | 
|  | } | 
|  |  | 
|  | if (extent_logical + extent_len > | 
|  | logic_start + map->stripe_len) | 
|  | extent_len = logic_start + map->stripe_len - | 
|  | extent_logical; | 
|  |  | 
|  | scrub_parity_mark_sectors_data(sparity, extent_logical, | 
|  | extent_len); | 
|  |  | 
|  | mapped_length = extent_len; | 
|  | bbio = NULL; | 
|  | ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, | 
|  | extent_logical, &mapped_length, &bbio, | 
|  | 0); | 
|  | if (!ret) { | 
|  | if (!bbio || mapped_length < extent_len) | 
|  | ret = -EIO; | 
|  | } | 
|  | if (ret) { | 
|  | btrfs_put_bbio(bbio); | 
|  | goto out; | 
|  | } | 
|  | extent_physical = bbio->stripes[0].physical; | 
|  | extent_mirror_num = bbio->mirror_num; | 
|  | extent_dev = bbio->stripes[0].dev; | 
|  | btrfs_put_bbio(bbio); | 
|  |  | 
|  | ret = btrfs_lookup_csums_range(csum_root, | 
|  | extent_logical, | 
|  | extent_logical + extent_len - 1, | 
|  | &sctx->csum_list, 1); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = scrub_extent_for_parity(sparity, extent_logical, | 
|  | extent_len, | 
|  | extent_physical, | 
|  | extent_dev, flags, | 
|  | generation, | 
|  | extent_mirror_num); | 
|  |  | 
|  | scrub_free_csums(sctx); | 
|  |  | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (extent_logical + extent_len < | 
|  | key.objectid + bytes) { | 
|  | logic_start += map->stripe_len; | 
|  |  | 
|  | if (logic_start >= logic_end) { | 
|  | stop_loop = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (logic_start < key.objectid + bytes) { | 
|  | cond_resched(); | 
|  | goto again; | 
|  | } | 
|  | } | 
|  | next: | 
|  | path->slots[0]++; | 
|  | } | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | if (stop_loop) | 
|  | break; | 
|  |  | 
|  | logic_start += map->stripe_len; | 
|  | } | 
|  | out: | 
|  | if (ret < 0) | 
|  | scrub_parity_mark_sectors_error(sparity, logic_start, | 
|  | logic_end - logic_start); | 
|  | scrub_parity_put(sparity); | 
|  | scrub_submit(sctx); | 
|  | mutex_lock(&sctx->wr_lock); | 
|  | scrub_wr_submit(sctx); | 
|  | mutex_unlock(&sctx->wr_lock); | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | return ret < 0 ? ret : 0; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, | 
|  | struct map_lookup *map, | 
|  | struct btrfs_device *scrub_dev, | 
|  | int num, u64 base, u64 length, | 
|  | int is_dev_replace) | 
|  | { | 
|  | struct btrfs_path *path, *ppath; | 
|  | struct btrfs_fs_info *fs_info = sctx->fs_info; | 
|  | struct btrfs_root *root = fs_info->extent_root; | 
|  | struct btrfs_root *csum_root = fs_info->csum_root; | 
|  | struct btrfs_extent_item *extent; | 
|  | struct blk_plug plug; | 
|  | u64 flags; | 
|  | int ret; | 
|  | int slot; | 
|  | u64 nstripes; | 
|  | struct extent_buffer *l; | 
|  | u64 physical; | 
|  | u64 logical; | 
|  | u64 logic_end; | 
|  | u64 physical_end; | 
|  | u64 generation; | 
|  | int mirror_num; | 
|  | struct reada_control *reada1; | 
|  | struct reada_control *reada2; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key key_end; | 
|  | u64 increment = map->stripe_len; | 
|  | u64 offset; | 
|  | u64 extent_logical; | 
|  | u64 extent_physical; | 
|  | u64 extent_len; | 
|  | u64 stripe_logical; | 
|  | u64 stripe_end; | 
|  | struct btrfs_device *extent_dev; | 
|  | int extent_mirror_num; | 
|  | int stop_loop = 0; | 
|  |  | 
|  | physical = map->stripes[num].physical; | 
|  | offset = 0; | 
|  | nstripes = div64_u64(length, map->stripe_len); | 
|  | if (map->type & BTRFS_BLOCK_GROUP_RAID0) { | 
|  | offset = map->stripe_len * num; | 
|  | increment = map->stripe_len * map->num_stripes; | 
|  | mirror_num = 1; | 
|  | } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { | 
|  | int factor = map->num_stripes / map->sub_stripes; | 
|  | offset = map->stripe_len * (num / map->sub_stripes); | 
|  | increment = map->stripe_len * factor; | 
|  | mirror_num = num % map->sub_stripes + 1; | 
|  | } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { | 
|  | increment = map->stripe_len; | 
|  | mirror_num = num % map->num_stripes + 1; | 
|  | } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { | 
|  | increment = map->stripe_len; | 
|  | mirror_num = num % map->num_stripes + 1; | 
|  | } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { | 
|  | get_raid56_logic_offset(physical, num, map, &offset, NULL); | 
|  | increment = map->stripe_len * nr_data_stripes(map); | 
|  | mirror_num = 1; | 
|  | } else { | 
|  | increment = map->stripe_len; | 
|  | mirror_num = 1; | 
|  | } | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ppath = btrfs_alloc_path(); | 
|  | if (!ppath) { | 
|  | btrfs_free_path(path); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * work on commit root. The related disk blocks are static as | 
|  | * long as COW is applied. This means, it is save to rewrite | 
|  | * them to repair disk errors without any race conditions | 
|  | */ | 
|  | path->search_commit_root = 1; | 
|  | path->skip_locking = 1; | 
|  |  | 
|  | ppath->search_commit_root = 1; | 
|  | ppath->skip_locking = 1; | 
|  | /* | 
|  | * trigger the readahead for extent tree csum tree and wait for | 
|  | * completion. During readahead, the scrub is officially paused | 
|  | * to not hold off transaction commits | 
|  | */ | 
|  | logical = base + offset; | 
|  | physical_end = physical + nstripes * map->stripe_len; | 
|  | if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { | 
|  | get_raid56_logic_offset(physical_end, num, | 
|  | map, &logic_end, NULL); | 
|  | logic_end += base; | 
|  | } else { | 
|  | logic_end = logical + increment * nstripes; | 
|  | } | 
|  | wait_event(sctx->list_wait, | 
|  | atomic_read(&sctx->bios_in_flight) == 0); | 
|  | scrub_blocked_if_needed(fs_info); | 
|  |  | 
|  | /* FIXME it might be better to start readahead at commit root */ | 
|  | key.objectid = logical; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.offset = (u64)0; | 
|  | key_end.objectid = logic_end; | 
|  | key_end.type = BTRFS_METADATA_ITEM_KEY; | 
|  | key_end.offset = (u64)-1; | 
|  | reada1 = btrfs_reada_add(root, &key, &key_end); | 
|  |  | 
|  | key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; | 
|  | key.type = BTRFS_EXTENT_CSUM_KEY; | 
|  | key.offset = logical; | 
|  | key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; | 
|  | key_end.type = BTRFS_EXTENT_CSUM_KEY; | 
|  | key_end.offset = logic_end; | 
|  | reada2 = btrfs_reada_add(csum_root, &key, &key_end); | 
|  |  | 
|  | if (!IS_ERR(reada1)) | 
|  | btrfs_reada_wait(reada1); | 
|  | if (!IS_ERR(reada2)) | 
|  | btrfs_reada_wait(reada2); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * collect all data csums for the stripe to avoid seeking during | 
|  | * the scrub. This might currently (crc32) end up to be about 1MB | 
|  | */ | 
|  | blk_start_plug(&plug); | 
|  |  | 
|  | /* | 
|  | * now find all extents for each stripe and scrub them | 
|  | */ | 
|  | ret = 0; | 
|  | while (physical < physical_end) { | 
|  | /* | 
|  | * canceled? | 
|  | */ | 
|  | if (atomic_read(&fs_info->scrub_cancel_req) || | 
|  | atomic_read(&sctx->cancel_req)) { | 
|  | ret = -ECANCELED; | 
|  | goto out; | 
|  | } | 
|  | /* | 
|  | * check to see if we have to pause | 
|  | */ | 
|  | if (atomic_read(&fs_info->scrub_pause_req)) { | 
|  | /* push queued extents */ | 
|  | sctx->flush_all_writes = true; | 
|  | scrub_submit(sctx); | 
|  | mutex_lock(&sctx->wr_lock); | 
|  | scrub_wr_submit(sctx); | 
|  | mutex_unlock(&sctx->wr_lock); | 
|  | wait_event(sctx->list_wait, | 
|  | atomic_read(&sctx->bios_in_flight) == 0); | 
|  | sctx->flush_all_writes = false; | 
|  | scrub_blocked_if_needed(fs_info); | 
|  | } | 
|  |  | 
|  | if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { | 
|  | ret = get_raid56_logic_offset(physical, num, map, | 
|  | &logical, | 
|  | &stripe_logical); | 
|  | logical += base; | 
|  | if (ret) { | 
|  | /* it is parity strip */ | 
|  | stripe_logical += base; | 
|  | stripe_end = stripe_logical + increment; | 
|  | ret = scrub_raid56_parity(sctx, map, scrub_dev, | 
|  | ppath, stripe_logical, | 
|  | stripe_end); | 
|  | if (ret) | 
|  | goto out; | 
|  | goto skip; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) | 
|  | key.type = BTRFS_METADATA_ITEM_KEY; | 
|  | else | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.objectid = logical; | 
|  | key.offset = (u64)-1; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | if (ret > 0) { | 
|  | ret = btrfs_previous_extent_item(root, path, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) { | 
|  | /* there's no smaller item, so stick with the | 
|  | * larger one */ | 
|  | btrfs_release_path(path); | 
|  | ret = btrfs_search_slot(NULL, root, &key, | 
|  | path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | stop_loop = 0; | 
|  | while (1) { | 
|  | u64 bytes; | 
|  |  | 
|  | l = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  | if (slot >= btrfs_header_nritems(l)) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret == 0) | 
|  | continue; | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | stop_loop = 1; | 
|  | break; | 
|  | } | 
|  | btrfs_item_key_to_cpu(l, &key, slot); | 
|  |  | 
|  | if (key.type != BTRFS_EXTENT_ITEM_KEY && | 
|  | key.type != BTRFS_METADATA_ITEM_KEY) | 
|  | goto next; | 
|  |  | 
|  | if (key.type == BTRFS_METADATA_ITEM_KEY) | 
|  | bytes = fs_info->nodesize; | 
|  | else | 
|  | bytes = key.offset; | 
|  |  | 
|  | if (key.objectid + bytes <= logical) | 
|  | goto next; | 
|  |  | 
|  | if (key.objectid >= logical + map->stripe_len) { | 
|  | /* out of this device extent */ | 
|  | if (key.objectid >= logic_end) | 
|  | stop_loop = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | extent = btrfs_item_ptr(l, slot, | 
|  | struct btrfs_extent_item); | 
|  | flags = btrfs_extent_flags(l, extent); | 
|  | generation = btrfs_extent_generation(l, extent); | 
|  |  | 
|  | if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && | 
|  | (key.objectid < logical || | 
|  | key.objectid + bytes > | 
|  | logical + map->stripe_len)) { | 
|  | btrfs_err(fs_info, | 
|  | "scrub: tree block %llu spanning stripes, ignored. logical=%llu", | 
|  | key.objectid, logical); | 
|  | spin_lock(&sctx->stat_lock); | 
|  | sctx->stat.uncorrectable_errors++; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | again: | 
|  | extent_logical = key.objectid; | 
|  | extent_len = bytes; | 
|  |  | 
|  | /* | 
|  | * trim extent to this stripe | 
|  | */ | 
|  | if (extent_logical < logical) { | 
|  | extent_len -= logical - extent_logical; | 
|  | extent_logical = logical; | 
|  | } | 
|  | if (extent_logical + extent_len > | 
|  | logical + map->stripe_len) { | 
|  | extent_len = logical + map->stripe_len - | 
|  | extent_logical; | 
|  | } | 
|  |  | 
|  | extent_physical = extent_logical - logical + physical; | 
|  | extent_dev = scrub_dev; | 
|  | extent_mirror_num = mirror_num; | 
|  | if (is_dev_replace) | 
|  | scrub_remap_extent(fs_info, extent_logical, | 
|  | extent_len, &extent_physical, | 
|  | &extent_dev, | 
|  | &extent_mirror_num); | 
|  |  | 
|  | ret = btrfs_lookup_csums_range(csum_root, | 
|  | extent_logical, | 
|  | extent_logical + | 
|  | extent_len - 1, | 
|  | &sctx->csum_list, 1); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | ret = scrub_extent(sctx, map, extent_logical, extent_len, | 
|  | extent_physical, extent_dev, flags, | 
|  | generation, extent_mirror_num, | 
|  | extent_logical - logical + physical); | 
|  |  | 
|  | scrub_free_csums(sctx); | 
|  |  | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (extent_logical + extent_len < | 
|  | key.objectid + bytes) { | 
|  | if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { | 
|  | /* | 
|  | * loop until we find next data stripe | 
|  | * or we have finished all stripes. | 
|  | */ | 
|  | loop: | 
|  | physical += map->stripe_len; | 
|  | ret = get_raid56_logic_offset(physical, | 
|  | num, map, &logical, | 
|  | &stripe_logical); | 
|  | logical += base; | 
|  |  | 
|  | if (ret && physical < physical_end) { | 
|  | stripe_logical += base; | 
|  | stripe_end = stripe_logical + | 
|  | increment; | 
|  | ret = scrub_raid56_parity(sctx, | 
|  | map, scrub_dev, ppath, | 
|  | stripe_logical, | 
|  | stripe_end); | 
|  | if (ret) | 
|  | goto out; | 
|  | goto loop; | 
|  | } | 
|  | } else { | 
|  | physical += map->stripe_len; | 
|  | logical += increment; | 
|  | } | 
|  | if (logical < key.objectid + bytes) { | 
|  | cond_resched(); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | if (physical >= physical_end) { | 
|  | stop_loop = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | next: | 
|  | path->slots[0]++; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  | skip: | 
|  | logical += increment; | 
|  | physical += map->stripe_len; | 
|  | spin_lock(&sctx->stat_lock); | 
|  | if (stop_loop) | 
|  | sctx->stat.last_physical = map->stripes[num].physical + | 
|  | length; | 
|  | else | 
|  | sctx->stat.last_physical = physical; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  | if (stop_loop) | 
|  | break; | 
|  | } | 
|  | out: | 
|  | /* push queued extents */ | 
|  | scrub_submit(sctx); | 
|  | mutex_lock(&sctx->wr_lock); | 
|  | scrub_wr_submit(sctx); | 
|  | mutex_unlock(&sctx->wr_lock); | 
|  |  | 
|  | blk_finish_plug(&plug); | 
|  | btrfs_free_path(path); | 
|  | btrfs_free_path(ppath); | 
|  | return ret < 0 ? ret : 0; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, | 
|  | struct btrfs_device *scrub_dev, | 
|  | u64 chunk_offset, u64 length, | 
|  | u64 dev_offset, | 
|  | struct btrfs_block_group_cache *cache, | 
|  | int is_dev_replace) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = sctx->fs_info; | 
|  | struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; | 
|  | struct map_lookup *map; | 
|  | struct extent_map *em; | 
|  | int i; | 
|  | int ret = 0; | 
|  |  | 
|  | read_lock(&map_tree->map_tree.lock); | 
|  | em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); | 
|  | read_unlock(&map_tree->map_tree.lock); | 
|  |  | 
|  | if (!em) { | 
|  | /* | 
|  | * Might have been an unused block group deleted by the cleaner | 
|  | * kthread or relocation. | 
|  | */ | 
|  | spin_lock(&cache->lock); | 
|  | if (!cache->removed) | 
|  | ret = -EINVAL; | 
|  | spin_unlock(&cache->lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | map = em->map_lookup; | 
|  | if (em->start != chunk_offset) | 
|  | goto out; | 
|  |  | 
|  | if (em->len < length) | 
|  | goto out; | 
|  |  | 
|  | for (i = 0; i < map->num_stripes; ++i) { | 
|  | if (map->stripes[i].dev->bdev == scrub_dev->bdev && | 
|  | map->stripes[i].physical == dev_offset) { | 
|  | ret = scrub_stripe(sctx, map, scrub_dev, i, | 
|  | chunk_offset, length, | 
|  | is_dev_replace); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | out: | 
|  | free_extent_map(em); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack | 
|  | int scrub_enumerate_chunks(struct scrub_ctx *sctx, | 
|  | struct btrfs_device *scrub_dev, u64 start, u64 end, | 
|  | int is_dev_replace) | 
|  | { | 
|  | struct btrfs_dev_extent *dev_extent = NULL; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_fs_info *fs_info = sctx->fs_info; | 
|  | struct btrfs_root *root = fs_info->dev_root; | 
|  | u64 length; | 
|  | u64 chunk_offset; | 
|  | int ret = 0; | 
|  | int ro_set; | 
|  | int slot; | 
|  | struct extent_buffer *l; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | struct btrfs_block_group_cache *cache; | 
|  | struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | path->reada = READA_FORWARD; | 
|  | path->search_commit_root = 1; | 
|  | path->skip_locking = 1; | 
|  |  | 
|  | key.objectid = scrub_dev->devid; | 
|  | key.offset = 0ull; | 
|  | key.type = BTRFS_DEV_EXTENT_KEY; | 
|  |  | 
|  | while (1) { | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | break; | 
|  | if (ret > 0) { | 
|  | if (path->slots[0] >= | 
|  | btrfs_header_nritems(path->nodes[0])) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) | 
|  | break; | 
|  | if (ret > 0) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | ret = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | l = path->nodes[0]; | 
|  | slot = path->slots[0]; | 
|  |  | 
|  | btrfs_item_key_to_cpu(l, &found_key, slot); | 
|  |  | 
|  | if (found_key.objectid != scrub_dev->devid) | 
|  | break; | 
|  |  | 
|  | if (found_key.type != BTRFS_DEV_EXTENT_KEY) | 
|  | break; | 
|  |  | 
|  | if (found_key.offset >= end) | 
|  | break; | 
|  |  | 
|  | if (found_key.offset < key.offset) | 
|  | break; | 
|  |  | 
|  | dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); | 
|  | length = btrfs_dev_extent_length(l, dev_extent); | 
|  |  | 
|  | if (found_key.offset + length <= start) | 
|  | goto skip; | 
|  |  | 
|  | chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); | 
|  |  | 
|  | /* | 
|  | * get a reference on the corresponding block group to prevent | 
|  | * the chunk from going away while we scrub it | 
|  | */ | 
|  | cache = btrfs_lookup_block_group(fs_info, chunk_offset); | 
|  |  | 
|  | /* some chunks are removed but not committed to disk yet, | 
|  | * continue scrubbing */ | 
|  | if (!cache) | 
|  | goto skip; | 
|  |  | 
|  | /* | 
|  | * we need call btrfs_inc_block_group_ro() with scrubs_paused, | 
|  | * to avoid deadlock caused by: | 
|  | * btrfs_inc_block_group_ro() | 
|  | * -> btrfs_wait_for_commit() | 
|  | * -> btrfs_commit_transaction() | 
|  | * -> btrfs_scrub_pause() | 
|  | */ | 
|  | scrub_pause_on(fs_info); | 
|  | ret = btrfs_inc_block_group_ro(fs_info, cache); | 
|  | if (!ret && is_dev_replace) { | 
|  | /* | 
|  | * If we are doing a device replace wait for any tasks | 
|  | * that started dellaloc right before we set the block | 
|  | * group to RO mode, as they might have just allocated | 
|  | * an extent from it or decided they could do a nocow | 
|  | * write. And if any such tasks did that, wait for their | 
|  | * ordered extents to complete and then commit the | 
|  | * current transaction, so that we can later see the new | 
|  | * extent items in the extent tree - the ordered extents | 
|  | * create delayed data references (for cow writes) when | 
|  | * they complete, which will be run and insert the | 
|  | * corresponding extent items into the extent tree when | 
|  | * we commit the transaction they used when running | 
|  | * inode.c:btrfs_finish_ordered_io(). We later use | 
|  | * the commit root of the extent tree to find extents | 
|  | * to copy from the srcdev into the tgtdev, and we don't | 
|  | * want to miss any new extents. | 
|  | */ | 
|  | btrfs_wait_block_group_reservations(cache); | 
|  | btrfs_wait_nocow_writers(cache); | 
|  | ret = btrfs_wait_ordered_roots(fs_info, U64_MAX, | 
|  | cache->key.objectid, | 
|  | cache->key.offset); | 
|  | if (ret > 0) { | 
|  | struct btrfs_trans_handle *trans; | 
|  |  | 
|  | trans = btrfs_join_transaction(root); | 
|  | if (IS_ERR(trans)) | 
|  | ret = PTR_ERR(trans); | 
|  | else | 
|  | ret = btrfs_commit_transaction(trans); | 
|  | if (ret) { | 
|  | scrub_pause_off(fs_info); | 
|  | btrfs_put_block_group(cache); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | scrub_pause_off(fs_info); | 
|  |  | 
|  | if (ret == 0) { | 
|  | ro_set = 1; | 
|  | } else if (ret == -ENOSPC) { | 
|  | /* | 
|  | * btrfs_inc_block_group_ro return -ENOSPC when it | 
|  | * failed in creating new chunk for metadata. | 
|  | * It is not a problem for scrub/replace, because | 
|  | * metadata are always cowed, and our scrub paused | 
|  | * commit_transactions. | 
|  | */ | 
|  | ro_set = 0; | 
|  | } else { | 
|  | btrfs_warn(fs_info, | 
|  | "failed setting block group ro: %d", ret); | 
|  | btrfs_put_block_group(cache); | 
|  | break; | 
|  | } | 
|  |  | 
|  | btrfs_dev_replace_write_lock(&fs_info->dev_replace); | 
|  | dev_replace->cursor_right = found_key.offset + length; | 
|  | dev_replace->cursor_left = found_key.offset; | 
|  | dev_replace->item_needs_writeback = 1; | 
|  | btrfs_dev_replace_write_unlock(&fs_info->dev_replace); | 
|  | ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length, | 
|  | found_key.offset, cache, is_dev_replace); | 
|  |  | 
|  | /* | 
|  | * flush, submit all pending read and write bios, afterwards | 
|  | * wait for them. | 
|  | * Note that in the dev replace case, a read request causes | 
|  | * write requests that are submitted in the read completion | 
|  | * worker. Therefore in the current situation, it is required | 
|  | * that all write requests are flushed, so that all read and | 
|  | * write requests are really completed when bios_in_flight | 
|  | * changes to 0. | 
|  | */ | 
|  | sctx->flush_all_writes = true; | 
|  | scrub_submit(sctx); | 
|  | mutex_lock(&sctx->wr_lock); | 
|  | scrub_wr_submit(sctx); | 
|  | mutex_unlock(&sctx->wr_lock); | 
|  |  | 
|  | wait_event(sctx->list_wait, | 
|  | atomic_read(&sctx->bios_in_flight) == 0); | 
|  |  | 
|  | scrub_pause_on(fs_info); | 
|  |  | 
|  | /* | 
|  | * must be called before we decrease @scrub_paused. | 
|  | * make sure we don't block transaction commit while | 
|  | * we are waiting pending workers finished. | 
|  | */ | 
|  | wait_event(sctx->list_wait, | 
|  | atomic_read(&sctx->workers_pending) == 0); | 
|  | sctx->flush_all_writes = false; | 
|  |  | 
|  | scrub_pause_off(fs_info); | 
|  |  | 
|  | btrfs_dev_replace_write_lock(&fs_info->dev_replace); | 
|  | dev_replace->cursor_left = dev_replace->cursor_right; | 
|  | dev_replace->item_needs_writeback = 1; | 
|  | btrfs_dev_replace_write_unlock(&fs_info->dev_replace); | 
|  |  | 
|  | if (ro_set) | 
|  | btrfs_dec_block_group_ro(cache); | 
|  |  | 
|  | /* | 
|  | * We might have prevented the cleaner kthread from deleting | 
|  | * this block group if it was already unused because we raced | 
|  | * and set it to RO mode first. So add it back to the unused | 
|  | * list, otherwise it might not ever be deleted unless a manual | 
|  | * balance is triggered or it becomes used and unused again. | 
|  | */ | 
|  | spin_lock(&cache->lock); | 
|  | if (!cache->removed && !cache->ro && cache->reserved == 0 && | 
|  | btrfs_block_group_used(&cache->item) == 0) { | 
|  | spin_unlock(&cache->lock); | 
|  | spin_lock(&fs_info->unused_bgs_lock); | 
|  | if (list_empty(&cache->bg_list)) { | 
|  | btrfs_get_block_group(cache); | 
|  | trace_btrfs_add_unused_block_group(cache); | 
|  | list_add_tail(&cache->bg_list, | 
|  | &fs_info->unused_bgs); | 
|  | } | 
|  | spin_unlock(&fs_info->unused_bgs_lock); | 
|  | } else { | 
|  | spin_unlock(&cache->lock); | 
|  | } | 
|  |  | 
|  | btrfs_put_block_group(cache); | 
|  | if (ret) | 
|  | break; | 
|  | if (is_dev_replace && | 
|  | atomic64_read(&dev_replace->num_write_errors) > 0) { | 
|  | ret = -EIO; | 
|  | break; | 
|  | } | 
|  | if (sctx->stat.malloc_errors > 0) { | 
|  | ret = -ENOMEM; | 
|  | break; | 
|  | } | 
|  | skip: | 
|  | key.offset = found_key.offset + length; | 
|  | btrfs_release_path(path); | 
|  | } | 
|  |  | 
|  | btrfs_free_path(path); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, | 
|  | struct btrfs_device *scrub_dev) | 
|  | { | 
|  | int	i; | 
|  | u64	bytenr; | 
|  | u64	gen; | 
|  | int	ret; | 
|  | struct btrfs_fs_info *fs_info = sctx->fs_info; | 
|  |  | 
|  | if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) | 
|  | return -EIO; | 
|  |  | 
|  | /* Seed devices of a new filesystem has their own generation. */ | 
|  | if (scrub_dev->fs_devices != fs_info->fs_devices) | 
|  | gen = scrub_dev->generation; | 
|  | else | 
|  | gen = fs_info->last_trans_committed; | 
|  |  | 
|  | for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { | 
|  | bytenr = btrfs_sb_offset(i); | 
|  | if (bytenr + BTRFS_SUPER_INFO_SIZE > | 
|  | scrub_dev->commit_total_bytes) | 
|  | break; | 
|  |  | 
|  | ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, | 
|  | scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, | 
|  | NULL, 1, bytenr); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * get a reference count on fs_info->scrub_workers. start worker if necessary | 
|  | */ | 
|  | static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, | 
|  | int is_dev_replace) | 
|  | { | 
|  | unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; | 
|  | int max_active = fs_info->thread_pool_size; | 
|  |  | 
|  | if (fs_info->scrub_workers_refcnt == 0) { | 
|  | fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", | 
|  | flags, is_dev_replace ? 1 : max_active, 4); | 
|  | if (!fs_info->scrub_workers) | 
|  | goto fail_scrub_workers; | 
|  |  | 
|  | fs_info->scrub_wr_completion_workers = | 
|  | btrfs_alloc_workqueue(fs_info, "scrubwrc", flags, | 
|  | max_active, 2); | 
|  | if (!fs_info->scrub_wr_completion_workers) | 
|  | goto fail_scrub_wr_completion_workers; | 
|  |  | 
|  | fs_info->scrub_nocow_workers = | 
|  | btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0); | 
|  | if (!fs_info->scrub_nocow_workers) | 
|  | goto fail_scrub_nocow_workers; | 
|  | fs_info->scrub_parity_workers = | 
|  | btrfs_alloc_workqueue(fs_info, "scrubparity", flags, | 
|  | max_active, 2); | 
|  | if (!fs_info->scrub_parity_workers) | 
|  | goto fail_scrub_parity_workers; | 
|  | } | 
|  | ++fs_info->scrub_workers_refcnt; | 
|  | return 0; | 
|  |  | 
|  | fail_scrub_parity_workers: | 
|  | btrfs_destroy_workqueue(fs_info->scrub_nocow_workers); | 
|  | fail_scrub_nocow_workers: | 
|  | btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers); | 
|  | fail_scrub_wr_completion_workers: | 
|  | btrfs_destroy_workqueue(fs_info->scrub_workers); | 
|  | fail_scrub_workers: | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | if (--fs_info->scrub_workers_refcnt == 0) { | 
|  | btrfs_destroy_workqueue(fs_info->scrub_workers); | 
|  | btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers); | 
|  | btrfs_destroy_workqueue(fs_info->scrub_nocow_workers); | 
|  | btrfs_destroy_workqueue(fs_info->scrub_parity_workers); | 
|  | } | 
|  | WARN_ON(fs_info->scrub_workers_refcnt < 0); | 
|  | } | 
|  |  | 
|  | int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, | 
|  | u64 end, struct btrfs_scrub_progress *progress, | 
|  | int readonly, int is_dev_replace) | 
|  | { | 
|  | struct scrub_ctx *sctx; | 
|  | int ret; | 
|  | struct btrfs_device *dev; | 
|  | struct rcu_string *name; | 
|  |  | 
|  | if (btrfs_fs_closing(fs_info)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (fs_info->nodesize > BTRFS_STRIPE_LEN) { | 
|  | /* | 
|  | * in this case scrub is unable to calculate the checksum | 
|  | * the way scrub is implemented. Do not handle this | 
|  | * situation at all because it won't ever happen. | 
|  | */ | 
|  | btrfs_err(fs_info, | 
|  | "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails", | 
|  | fs_info->nodesize, | 
|  | BTRFS_STRIPE_LEN); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (fs_info->sectorsize != PAGE_SIZE) { | 
|  | /* not supported for data w/o checksums */ | 
|  | btrfs_err_rl(fs_info, | 
|  | "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails", | 
|  | fs_info->sectorsize, PAGE_SIZE); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (fs_info->nodesize > | 
|  | PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK || | 
|  | fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) { | 
|  | /* | 
|  | * would exhaust the array bounds of pagev member in | 
|  | * struct scrub_block | 
|  | */ | 
|  | btrfs_err(fs_info, | 
|  | "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails", | 
|  | fs_info->nodesize, | 
|  | SCRUB_MAX_PAGES_PER_BLOCK, | 
|  | fs_info->sectorsize, | 
|  | SCRUB_MAX_PAGES_PER_BLOCK); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  |  | 
|  | mutex_lock(&fs_info->fs_devices->device_list_mutex); | 
|  | dev = btrfs_find_device(fs_info, devid, NULL, NULL); | 
|  | if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && | 
|  | !is_dev_replace)) { | 
|  | mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | if (!is_dev_replace && !readonly && | 
|  | !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { | 
|  | mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
|  | rcu_read_lock(); | 
|  | name = rcu_dereference(dev->name); | 
|  | btrfs_err(fs_info, "scrub: device %s is not writable", | 
|  | name->str); | 
|  | rcu_read_unlock(); | 
|  | return -EROFS; | 
|  | } | 
|  |  | 
|  | mutex_lock(&fs_info->scrub_lock); | 
|  | if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || | 
|  | test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  | mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | btrfs_dev_replace_read_lock(&fs_info->dev_replace); | 
|  | if (dev->scrub_ctx || | 
|  | (!is_dev_replace && | 
|  | btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { | 
|  | btrfs_dev_replace_read_unlock(&fs_info->dev_replace); | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  | mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
|  | return -EINPROGRESS; | 
|  | } | 
|  | btrfs_dev_replace_read_unlock(&fs_info->dev_replace); | 
|  |  | 
|  | ret = scrub_workers_get(fs_info, is_dev_replace); | 
|  | if (ret) { | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  | mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | sctx = scrub_setup_ctx(dev, is_dev_replace); | 
|  | if (IS_ERR(sctx)) { | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  | mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
|  | scrub_workers_put(fs_info); | 
|  | return PTR_ERR(sctx); | 
|  | } | 
|  | sctx->readonly = readonly; | 
|  | dev->scrub_ctx = sctx; | 
|  | mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
|  |  | 
|  | /* | 
|  | * checking @scrub_pause_req here, we can avoid | 
|  | * race between committing transaction and scrubbing. | 
|  | */ | 
|  | __scrub_blocked_if_needed(fs_info); | 
|  | atomic_inc(&fs_info->scrubs_running); | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  |  | 
|  | if (!is_dev_replace) { | 
|  | /* | 
|  | * by holding device list mutex, we can | 
|  | * kick off writing super in log tree sync. | 
|  | */ | 
|  | mutex_lock(&fs_info->fs_devices->device_list_mutex); | 
|  | ret = scrub_supers(sctx, dev); | 
|  | mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
|  | } | 
|  |  | 
|  | if (!ret) | 
|  | ret = scrub_enumerate_chunks(sctx, dev, start, end, | 
|  | is_dev_replace); | 
|  |  | 
|  | wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); | 
|  | atomic_dec(&fs_info->scrubs_running); | 
|  | wake_up(&fs_info->scrub_pause_wait); | 
|  |  | 
|  | wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); | 
|  |  | 
|  | if (progress) | 
|  | memcpy(progress, &sctx->stat, sizeof(*progress)); | 
|  |  | 
|  | mutex_lock(&fs_info->scrub_lock); | 
|  | dev->scrub_ctx = NULL; | 
|  | scrub_workers_put(fs_info); | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  |  | 
|  | scrub_put_ctx(sctx); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | mutex_lock(&fs_info->scrub_lock); | 
|  | atomic_inc(&fs_info->scrub_pause_req); | 
|  | while (atomic_read(&fs_info->scrubs_paused) != | 
|  | atomic_read(&fs_info->scrubs_running)) { | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  | wait_event(fs_info->scrub_pause_wait, | 
|  | atomic_read(&fs_info->scrubs_paused) == | 
|  | atomic_read(&fs_info->scrubs_running)); | 
|  | mutex_lock(&fs_info->scrub_lock); | 
|  | } | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  | } | 
|  |  | 
|  | void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | atomic_dec(&fs_info->scrub_pause_req); | 
|  | wake_up(&fs_info->scrub_pause_wait); | 
|  | } | 
|  |  | 
|  | int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | mutex_lock(&fs_info->scrub_lock); | 
|  | if (!atomic_read(&fs_info->scrubs_running)) { | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  | return -ENOTCONN; | 
|  | } | 
|  |  | 
|  | atomic_inc(&fs_info->scrub_cancel_req); | 
|  | while (atomic_read(&fs_info->scrubs_running)) { | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  | wait_event(fs_info->scrub_pause_wait, | 
|  | atomic_read(&fs_info->scrubs_running) == 0); | 
|  | mutex_lock(&fs_info->scrub_lock); | 
|  | } | 
|  | atomic_dec(&fs_info->scrub_cancel_req); | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_device *dev) | 
|  | { | 
|  | struct scrub_ctx *sctx; | 
|  |  | 
|  | mutex_lock(&fs_info->scrub_lock); | 
|  | sctx = dev->scrub_ctx; | 
|  | if (!sctx) { | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  | return -ENOTCONN; | 
|  | } | 
|  | atomic_inc(&sctx->cancel_req); | 
|  | while (dev->scrub_ctx) { | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  | wait_event(fs_info->scrub_pause_wait, | 
|  | dev->scrub_ctx == NULL); | 
|  | mutex_lock(&fs_info->scrub_lock); | 
|  | } | 
|  | mutex_unlock(&fs_info->scrub_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, | 
|  | struct btrfs_scrub_progress *progress) | 
|  | { | 
|  | struct btrfs_device *dev; | 
|  | struct scrub_ctx *sctx = NULL; | 
|  |  | 
|  | mutex_lock(&fs_info->fs_devices->device_list_mutex); | 
|  | dev = btrfs_find_device(fs_info, devid, NULL, NULL); | 
|  | if (dev) | 
|  | sctx = dev->scrub_ctx; | 
|  | if (sctx) | 
|  | memcpy(progress, &sctx->stat, sizeof(*progress)); | 
|  | mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
|  |  | 
|  | return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; | 
|  | } | 
|  |  | 
|  | static void scrub_remap_extent(struct btrfs_fs_info *fs_info, | 
|  | u64 extent_logical, u64 extent_len, | 
|  | u64 *extent_physical, | 
|  | struct btrfs_device **extent_dev, | 
|  | int *extent_mirror_num) | 
|  | { | 
|  | u64 mapped_length; | 
|  | struct btrfs_bio *bbio = NULL; | 
|  | int ret; | 
|  |  | 
|  | mapped_length = extent_len; | 
|  | ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical, | 
|  | &mapped_length, &bbio, 0); | 
|  | if (ret || !bbio || mapped_length < extent_len || | 
|  | !bbio->stripes[0].dev->bdev) { | 
|  | btrfs_put_bbio(bbio); | 
|  | return; | 
|  | } | 
|  |  | 
|  | *extent_physical = bbio->stripes[0].physical; | 
|  | *extent_mirror_num = bbio->mirror_num; | 
|  | *extent_dev = bbio->stripes[0].dev; | 
|  | btrfs_put_bbio(bbio); | 
|  | } | 
|  |  | 
|  | static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, | 
|  | int mirror_num, u64 physical_for_dev_replace) | 
|  | { | 
|  | struct scrub_copy_nocow_ctx *nocow_ctx; | 
|  | struct btrfs_fs_info *fs_info = sctx->fs_info; | 
|  |  | 
|  | nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS); | 
|  | if (!nocow_ctx) { | 
|  | spin_lock(&sctx->stat_lock); | 
|  | sctx->stat.malloc_errors++; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | scrub_pending_trans_workers_inc(sctx); | 
|  |  | 
|  | nocow_ctx->sctx = sctx; | 
|  | nocow_ctx->logical = logical; | 
|  | nocow_ctx->len = len; | 
|  | nocow_ctx->mirror_num = mirror_num; | 
|  | nocow_ctx->physical_for_dev_replace = physical_for_dev_replace; | 
|  | btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper, | 
|  | copy_nocow_pages_worker, NULL, NULL); | 
|  | INIT_LIST_HEAD(&nocow_ctx->inodes); | 
|  | btrfs_queue_work(fs_info->scrub_nocow_workers, | 
|  | &nocow_ctx->work); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx) | 
|  | { | 
|  | struct scrub_copy_nocow_ctx *nocow_ctx = ctx; | 
|  | struct scrub_nocow_inode *nocow_inode; | 
|  |  | 
|  | nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS); | 
|  | if (!nocow_inode) | 
|  | return -ENOMEM; | 
|  | nocow_inode->inum = inum; | 
|  | nocow_inode->offset = offset; | 
|  | nocow_inode->root = root; | 
|  | list_add_tail(&nocow_inode->list, &nocow_ctx->inodes); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define COPY_COMPLETE 1 | 
|  |  | 
|  | static void copy_nocow_pages_worker(struct btrfs_work *work) | 
|  | { | 
|  | struct scrub_copy_nocow_ctx *nocow_ctx = | 
|  | container_of(work, struct scrub_copy_nocow_ctx, work); | 
|  | struct scrub_ctx *sctx = nocow_ctx->sctx; | 
|  | struct btrfs_fs_info *fs_info = sctx->fs_info; | 
|  | struct btrfs_root *root = fs_info->extent_root; | 
|  | u64 logical = nocow_ctx->logical; | 
|  | u64 len = nocow_ctx->len; | 
|  | int mirror_num = nocow_ctx->mirror_num; | 
|  | u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; | 
|  | int ret; | 
|  | struct btrfs_trans_handle *trans = NULL; | 
|  | struct btrfs_path *path; | 
|  | int not_written = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | spin_lock(&sctx->stat_lock); | 
|  | sctx->stat.malloc_errors++; | 
|  | spin_unlock(&sctx->stat_lock); | 
|  | not_written = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | trans = btrfs_join_transaction(root); | 
|  | if (IS_ERR(trans)) { | 
|  | not_written = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = iterate_inodes_from_logical(logical, fs_info, path, | 
|  | record_inode_for_nocow, nocow_ctx, false); | 
|  | if (ret != 0 && ret != -ENOENT) { | 
|  | btrfs_warn(fs_info, | 
|  | "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d", | 
|  | logical, physical_for_dev_replace, len, mirror_num, | 
|  | ret); | 
|  | not_written = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | btrfs_end_transaction(trans); | 
|  | trans = NULL; | 
|  | while (!list_empty(&nocow_ctx->inodes)) { | 
|  | struct scrub_nocow_inode *entry; | 
|  | entry = list_first_entry(&nocow_ctx->inodes, | 
|  | struct scrub_nocow_inode, | 
|  | list); | 
|  | list_del_init(&entry->list); | 
|  | ret = copy_nocow_pages_for_inode(entry->inum, entry->offset, | 
|  | entry->root, nocow_ctx); | 
|  | kfree(entry); | 
|  | if (ret == COPY_COMPLETE) { | 
|  | ret = 0; | 
|  | break; | 
|  | } else if (ret) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | out: | 
|  | while (!list_empty(&nocow_ctx->inodes)) { | 
|  | struct scrub_nocow_inode *entry; | 
|  | entry = list_first_entry(&nocow_ctx->inodes, | 
|  | struct scrub_nocow_inode, | 
|  | list); | 
|  | list_del_init(&entry->list); | 
|  | kfree(entry); | 
|  | } | 
|  | if (trans && !IS_ERR(trans)) | 
|  | btrfs_end_transaction(trans); | 
|  | if (not_written) | 
|  | btrfs_dev_replace_stats_inc(&fs_info->dev_replace. | 
|  | num_uncorrectable_read_errors); | 
|  |  | 
|  | btrfs_free_path(path); | 
|  | kfree(nocow_ctx); | 
|  |  | 
|  | scrub_pending_trans_workers_dec(sctx); | 
|  | } | 
|  |  | 
|  | static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len, | 
|  | u64 logical) | 
|  | { | 
|  | struct extent_state *cached_state = NULL; | 
|  | struct btrfs_ordered_extent *ordered; | 
|  | struct extent_io_tree *io_tree; | 
|  | struct extent_map *em; | 
|  | u64 lockstart = start, lockend = start + len - 1; | 
|  | int ret = 0; | 
|  |  | 
|  | io_tree = &inode->io_tree; | 
|  |  | 
|  | lock_extent_bits(io_tree, lockstart, lockend, &cached_state); | 
|  | ordered = btrfs_lookup_ordered_range(inode, lockstart, len); | 
|  | if (ordered) { | 
|  | btrfs_put_ordered_extent(ordered); | 
|  | ret = 1; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | em = btrfs_get_extent(inode, NULL, 0, start, len, 0); | 
|  | if (IS_ERR(em)) { | 
|  | ret = PTR_ERR(em); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This extent does not actually cover the logical extent anymore, | 
|  | * move on to the next inode. | 
|  | */ | 
|  | if (em->block_start > logical || | 
|  | em->block_start + em->block_len < logical + len || | 
|  | test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { | 
|  | free_extent_map(em); | 
|  | ret = 1; | 
|  | goto out_unlock; | 
|  | } | 
|  | free_extent_map(em); | 
|  |  | 
|  | out_unlock: | 
|  | unlock_extent_cached(io_tree, lockstart, lockend, &cached_state); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, | 
|  | struct scrub_copy_nocow_ctx *nocow_ctx) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info; | 
|  | struct btrfs_key key; | 
|  | struct inode *inode; | 
|  | struct page *page; | 
|  | struct btrfs_root *local_root; | 
|  | struct extent_io_tree *io_tree; | 
|  | u64 physical_for_dev_replace; | 
|  | u64 nocow_ctx_logical; | 
|  | u64 len = nocow_ctx->len; | 
|  | unsigned long index; | 
|  | int srcu_index; | 
|  | int ret = 0; | 
|  | int err = 0; | 
|  |  | 
|  | key.objectid = root; | 
|  | key.type = BTRFS_ROOT_ITEM_KEY; | 
|  | key.offset = (u64)-1; | 
|  |  | 
|  | srcu_index = srcu_read_lock(&fs_info->subvol_srcu); | 
|  |  | 
|  | local_root = btrfs_read_fs_root_no_name(fs_info, &key); | 
|  | if (IS_ERR(local_root)) { | 
|  | srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); | 
|  | return PTR_ERR(local_root); | 
|  | } | 
|  |  | 
|  | key.type = BTRFS_INODE_ITEM_KEY; | 
|  | key.objectid = inum; | 
|  | key.offset = 0; | 
|  | inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); | 
|  | srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); | 
|  | if (IS_ERR(inode)) | 
|  | return PTR_ERR(inode); | 
|  |  | 
|  | /* Avoid truncate/dio/punch hole.. */ | 
|  | inode_lock(inode); | 
|  | inode_dio_wait(inode); | 
|  |  | 
|  | physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; | 
|  | io_tree = &BTRFS_I(inode)->io_tree; | 
|  | nocow_ctx_logical = nocow_ctx->logical; | 
|  |  | 
|  | ret = check_extent_to_block(BTRFS_I(inode), offset, len, | 
|  | nocow_ctx_logical); | 
|  | if (ret) { | 
|  | ret = ret > 0 ? 0 : ret; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | while (len >= PAGE_SIZE) { | 
|  | index = offset >> PAGE_SHIFT; | 
|  | again: | 
|  | page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); | 
|  | if (!page) { | 
|  | btrfs_err(fs_info, "find_or_create_page() failed"); | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (PageUptodate(page)) { | 
|  | if (PageDirty(page)) | 
|  | goto next_page; | 
|  | } else { | 
|  | ClearPageError(page); | 
|  | err = extent_read_full_page(io_tree, page, | 
|  | btrfs_get_extent, | 
|  | nocow_ctx->mirror_num); | 
|  | if (err) { | 
|  | ret = err; | 
|  | goto next_page; | 
|  | } | 
|  |  | 
|  | lock_page(page); | 
|  | /* | 
|  | * If the page has been remove from the page cache, | 
|  | * the data on it is meaningless, because it may be | 
|  | * old one, the new data may be written into the new | 
|  | * page in the page cache. | 
|  | */ | 
|  | if (page->mapping != inode->i_mapping) { | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  | goto again; | 
|  | } | 
|  | if (!PageUptodate(page)) { | 
|  | ret = -EIO; | 
|  | goto next_page; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = check_extent_to_block(BTRFS_I(inode), offset, len, | 
|  | nocow_ctx_logical); | 
|  | if (ret) { | 
|  | ret = ret > 0 ? 0 : ret; | 
|  | goto next_page; | 
|  | } | 
|  |  | 
|  | err = write_page_nocow(nocow_ctx->sctx, | 
|  | physical_for_dev_replace, page); | 
|  | if (err) | 
|  | ret = err; | 
|  | next_page: | 
|  | unlock_page(page); | 
|  | put_page(page); | 
|  |  | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | offset += PAGE_SIZE; | 
|  | physical_for_dev_replace += PAGE_SIZE; | 
|  | nocow_ctx_logical += PAGE_SIZE; | 
|  | len -= PAGE_SIZE; | 
|  | } | 
|  | ret = COPY_COMPLETE; | 
|  | out: | 
|  | inode_unlock(inode); | 
|  | iput(inode); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int write_page_nocow(struct scrub_ctx *sctx, | 
|  | u64 physical_for_dev_replace, struct page *page) | 
|  | { | 
|  | struct bio *bio; | 
|  | struct btrfs_device *dev; | 
|  |  | 
|  | dev = sctx->wr_tgtdev; | 
|  | if (!dev) | 
|  | return -EIO; | 
|  | if (!dev->bdev) { | 
|  | btrfs_warn_rl(dev->fs_info, | 
|  | "scrub write_page_nocow(bdev == NULL) is unexpected"); | 
|  | return -EIO; | 
|  | } | 
|  | bio = btrfs_io_bio_alloc(1); | 
|  | bio->bi_iter.bi_size = 0; | 
|  | bio->bi_iter.bi_sector = physical_for_dev_replace >> 9; | 
|  | bio_set_dev(bio, dev->bdev); | 
|  | bio->bi_opf = REQ_OP_WRITE | REQ_SYNC; | 
|  | /* bio_add_page won't fail on a freshly allocated bio */ | 
|  | bio_add_page(bio, page, PAGE_SIZE, 0); | 
|  |  | 
|  | if (btrfsic_submit_bio_wait(bio)) { | 
|  | bio_put(bio); | 
|  | btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | bio_put(bio); | 
|  | return 0; | 
|  | } |