| #ifndef __LINUX_UHCI_HCD_H | 
 | #define __LINUX_UHCI_HCD_H | 
 |  | 
 | #include <linux/list.h> | 
 | #include <linux/usb.h> | 
 |  | 
 | #define usb_packetid(pipe)	(usb_pipein(pipe) ? USB_PID_IN : USB_PID_OUT) | 
 | #define PIPE_DEVEP_MASK		0x0007ff00 | 
 |  | 
 |  | 
 | /* | 
 |  * Universal Host Controller Interface data structures and defines | 
 |  */ | 
 |  | 
 | /* Command register */ | 
 | #define USBCMD		0 | 
 | #define   USBCMD_RS		0x0001	/* Run/Stop */ | 
 | #define   USBCMD_HCRESET	0x0002	/* Host reset */ | 
 | #define   USBCMD_GRESET		0x0004	/* Global reset */ | 
 | #define   USBCMD_EGSM		0x0008	/* Global Suspend Mode */ | 
 | #define   USBCMD_FGR		0x0010	/* Force Global Resume */ | 
 | #define   USBCMD_SWDBG		0x0020	/* SW Debug mode */ | 
 | #define   USBCMD_CF		0x0040	/* Config Flag (sw only) */ | 
 | #define   USBCMD_MAXP		0x0080	/* Max Packet (0 = 32, 1 = 64) */ | 
 |  | 
 | /* Status register */ | 
 | #define USBSTS		2 | 
 | #define   USBSTS_USBINT		0x0001	/* Interrupt due to IOC */ | 
 | #define   USBSTS_ERROR		0x0002	/* Interrupt due to error */ | 
 | #define   USBSTS_RD		0x0004	/* Resume Detect */ | 
 | #define   USBSTS_HSE		0x0008	/* Host System Error: PCI problems */ | 
 | #define   USBSTS_HCPE		0x0010	/* Host Controller Process Error: | 
 | 					 * the schedule is buggy */ | 
 | #define   USBSTS_HCH		0x0020	/* HC Halted */ | 
 |  | 
 | /* Interrupt enable register */ | 
 | #define USBINTR		4 | 
 | #define   USBINTR_TIMEOUT	0x0001	/* Timeout/CRC error enable */ | 
 | #define   USBINTR_RESUME	0x0002	/* Resume interrupt enable */ | 
 | #define   USBINTR_IOC		0x0004	/* Interrupt On Complete enable */ | 
 | #define   USBINTR_SP		0x0008	/* Short packet interrupt enable */ | 
 |  | 
 | #define USBFRNUM	6 | 
 | #define USBFLBASEADD	8 | 
 | #define USBSOF		12 | 
 | #define   USBSOF_DEFAULT	64	/* Frame length is exactly 1 ms */ | 
 |  | 
 | /* USB port status and control registers */ | 
 | #define USBPORTSC1	16 | 
 | #define USBPORTSC2	18 | 
 | #define   USBPORTSC_CCS		0x0001	/* Current Connect Status | 
 | 					 * ("device present") */ | 
 | #define   USBPORTSC_CSC		0x0002	/* Connect Status Change */ | 
 | #define   USBPORTSC_PE		0x0004	/* Port Enable */ | 
 | #define   USBPORTSC_PEC		0x0008	/* Port Enable Change */ | 
 | #define   USBPORTSC_DPLUS	0x0010	/* D+ high (line status) */ | 
 | #define   USBPORTSC_DMINUS	0x0020	/* D- high (line status) */ | 
 | #define   USBPORTSC_RD		0x0040	/* Resume Detect */ | 
 | #define   USBPORTSC_RES1	0x0080	/* reserved, always 1 */ | 
 | #define   USBPORTSC_LSDA	0x0100	/* Low Speed Device Attached */ | 
 | #define   USBPORTSC_PR		0x0200	/* Port Reset */ | 
 | /* OC and OCC from Intel 430TX and later (not UHCI 1.1d spec) */ | 
 | #define   USBPORTSC_OC		0x0400	/* Over Current condition */ | 
 | #define   USBPORTSC_OCC		0x0800	/* Over Current Change R/WC */ | 
 | #define   USBPORTSC_SUSP	0x1000	/* Suspend */ | 
 | #define   USBPORTSC_RES2	0x2000	/* reserved, write zeroes */ | 
 | #define   USBPORTSC_RES3	0x4000	/* reserved, write zeroes */ | 
 | #define   USBPORTSC_RES4	0x8000	/* reserved, write zeroes */ | 
 |  | 
 | /* PCI legacy support register */ | 
 | #define USBLEGSUP		0xc0 | 
 | #define   USBLEGSUP_DEFAULT	0x2000	/* only PIRQ enable set */ | 
 | #define   USBLEGSUP_RWC		0x8f00	/* the R/WC bits */ | 
 | #define   USBLEGSUP_RO		0x5040	/* R/O and reserved bits */ | 
 |  | 
 | /* PCI Intel-specific resume-enable register */ | 
 | #define USBRES_INTEL		0xc4 | 
 | #define   USBPORT1EN		0x01 | 
 | #define   USBPORT2EN		0x02 | 
 |  | 
 | #define UHCI_PTR_BITS(uhci)	cpu_to_hc32((uhci), 0x000F) | 
 | #define UHCI_PTR_TERM(uhci)	cpu_to_hc32((uhci), 0x0001) | 
 | #define UHCI_PTR_QH(uhci)	cpu_to_hc32((uhci), 0x0002) | 
 | #define UHCI_PTR_DEPTH(uhci)	cpu_to_hc32((uhci), 0x0004) | 
 | #define UHCI_PTR_BREADTH(uhci)	cpu_to_hc32((uhci), 0x0000) | 
 |  | 
 | #define UHCI_NUMFRAMES		1024	/* in the frame list [array] */ | 
 | #define UHCI_MAX_SOF_NUMBER	2047	/* in an SOF packet */ | 
 | #define CAN_SCHEDULE_FRAMES	1000	/* how far in the future frames | 
 | 					 * can be scheduled */ | 
 | #define MAX_PHASE		32	/* Periodic scheduling length */ | 
 |  | 
 | /* When no queues need Full-Speed Bandwidth Reclamation, | 
 |  * delay this long before turning FSBR off */ | 
 | #define FSBR_OFF_DELAY		msecs_to_jiffies(10) | 
 |  | 
 | /* If a queue hasn't advanced after this much time, assume it is stuck */ | 
 | #define QH_WAIT_TIMEOUT		msecs_to_jiffies(200) | 
 |  | 
 |  | 
 | /* | 
 |  * __hc32 and __hc16 are "Host Controller" types, they may be equivalent to | 
 |  * __leXX (normally) or __beXX (given UHCI_BIG_ENDIAN_DESC), depending on | 
 |  * the host controller implementation. | 
 |  * | 
 |  * To facilitate the strongest possible byte-order checking from "sparse" | 
 |  * and so on, we use __leXX unless that's not practical. | 
 |  */ | 
 | #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_DESC | 
 | typedef __u32 __bitwise __hc32; | 
 | typedef __u16 __bitwise __hc16; | 
 | #else | 
 | #define __hc32	__le32 | 
 | #define __hc16	__le16 | 
 | #endif | 
 |  | 
 | /* | 
 |  *	Queue Headers | 
 |  */ | 
 |  | 
 | /* | 
 |  * One role of a QH is to hold a queue of TDs for some endpoint.  One QH goes | 
 |  * with each endpoint, and qh->element (updated by the HC) is either: | 
 |  *   - the next unprocessed TD in the endpoint's queue, or | 
 |  *   - UHCI_PTR_TERM (when there's no more traffic for this endpoint). | 
 |  * | 
 |  * The other role of a QH is to serve as a "skeleton" framelist entry, so we | 
 |  * can easily splice a QH for some endpoint into the schedule at the right | 
 |  * place.  Then qh->element is UHCI_PTR_TERM. | 
 |  * | 
 |  * In the schedule, qh->link maintains a list of QHs seen by the HC: | 
 |  *     skel1 --> ep1-qh --> ep2-qh --> ... --> skel2 --> ... | 
 |  * | 
 |  * qh->node is the software equivalent of qh->link.  The differences | 
 |  * are that the software list is doubly-linked and QHs in the UNLINKING | 
 |  * state are on the software list but not the hardware schedule. | 
 |  * | 
 |  * For bookkeeping purposes we maintain QHs even for Isochronous endpoints, | 
 |  * but they never get added to the hardware schedule. | 
 |  */ | 
 | #define QH_STATE_IDLE		1	/* QH is not being used */ | 
 | #define QH_STATE_UNLINKING	2	/* QH has been removed from the | 
 | 					 * schedule but the hardware may | 
 | 					 * still be using it */ | 
 | #define QH_STATE_ACTIVE		3	/* QH is on the schedule */ | 
 |  | 
 | struct uhci_qh { | 
 | 	/* Hardware fields */ | 
 | 	__hc32 link;			/* Next QH in the schedule */ | 
 | 	__hc32 element;			/* Queue element (TD) pointer */ | 
 |  | 
 | 	/* Software fields */ | 
 | 	dma_addr_t dma_handle; | 
 |  | 
 | 	struct list_head node;		/* Node in the list of QHs */ | 
 | 	struct usb_host_endpoint *hep;	/* Endpoint information */ | 
 | 	struct usb_device *udev; | 
 | 	struct list_head queue;		/* Queue of urbps for this QH */ | 
 | 	struct uhci_td *dummy_td;	/* Dummy TD to end the queue */ | 
 | 	struct uhci_td *post_td;	/* Last TD completed */ | 
 |  | 
 | 	struct usb_iso_packet_descriptor *iso_packet_desc; | 
 | 					/* Next urb->iso_frame_desc entry */ | 
 | 	unsigned long advance_jiffies;	/* Time of last queue advance */ | 
 | 	unsigned int unlink_frame;	/* When the QH was unlinked */ | 
 | 	unsigned int period;		/* For Interrupt and Isochronous QHs */ | 
 | 	short phase;			/* Between 0 and period-1 */ | 
 | 	short load;			/* Periodic time requirement, in us */ | 
 | 	unsigned int iso_frame;		/* Frame # for iso_packet_desc */ | 
 |  | 
 | 	int state;			/* QH_STATE_xxx; see above */ | 
 | 	int type;			/* Queue type (control, bulk, etc) */ | 
 | 	int skel;			/* Skeleton queue number */ | 
 |  | 
 | 	unsigned int initial_toggle:1;	/* Endpoint's current toggle value */ | 
 | 	unsigned int needs_fixup:1;	/* Must fix the TD toggle values */ | 
 | 	unsigned int is_stopped:1;	/* Queue was stopped by error/unlink */ | 
 | 	unsigned int wait_expired:1;	/* QH_WAIT_TIMEOUT has expired */ | 
 | 	unsigned int bandwidth_reserved:1;	/* Periodic bandwidth has | 
 | 						 * been allocated */ | 
 | } __attribute__((aligned(16))); | 
 |  | 
 | /* | 
 |  * We need a special accessor for the element pointer because it is | 
 |  * subject to asynchronous updates by the controller. | 
 |  */ | 
 | #define qh_element(qh)		ACCESS_ONCE((qh)->element) | 
 |  | 
 | #define LINK_TO_QH(uhci, qh)	(UHCI_PTR_QH((uhci)) | \ | 
 | 				cpu_to_hc32((uhci), (qh)->dma_handle)) | 
 |  | 
 |  | 
 | /* | 
 |  *	Transfer Descriptors | 
 |  */ | 
 |  | 
 | /* | 
 |  * for TD <status>: | 
 |  */ | 
 | #define TD_CTRL_SPD		(1 << 29)	/* Short Packet Detect */ | 
 | #define TD_CTRL_C_ERR_MASK	(3 << 27)	/* Error Counter bits */ | 
 | #define TD_CTRL_C_ERR_SHIFT	27 | 
 | #define TD_CTRL_LS		(1 << 26)	/* Low Speed Device */ | 
 | #define TD_CTRL_IOS		(1 << 25)	/* Isochronous Select */ | 
 | #define TD_CTRL_IOC		(1 << 24)	/* Interrupt on Complete */ | 
 | #define TD_CTRL_ACTIVE		(1 << 23)	/* TD Active */ | 
 | #define TD_CTRL_STALLED		(1 << 22)	/* TD Stalled */ | 
 | #define TD_CTRL_DBUFERR		(1 << 21)	/* Data Buffer Error */ | 
 | #define TD_CTRL_BABBLE		(1 << 20)	/* Babble Detected */ | 
 | #define TD_CTRL_NAK		(1 << 19)	/* NAK Received */ | 
 | #define TD_CTRL_CRCTIMEO	(1 << 18)	/* CRC/Time Out Error */ | 
 | #define TD_CTRL_BITSTUFF	(1 << 17)	/* Bit Stuff Error */ | 
 | #define TD_CTRL_ACTLEN_MASK	0x7FF	/* actual length, encoded as n - 1 */ | 
 |  | 
 | #define uhci_maxerr(err)		((err) << TD_CTRL_C_ERR_SHIFT) | 
 | #define uhci_status_bits(ctrl_sts)	((ctrl_sts) & 0xF60000) | 
 | #define uhci_actual_length(ctrl_sts)	(((ctrl_sts) + 1) & \ | 
 | 			TD_CTRL_ACTLEN_MASK)	/* 1-based */ | 
 |  | 
 | /* | 
 |  * for TD <info>: (a.k.a. Token) | 
 |  */ | 
 | #define td_token(uhci, td)	hc32_to_cpu((uhci), (td)->token) | 
 | #define TD_TOKEN_DEVADDR_SHIFT	8 | 
 | #define TD_TOKEN_TOGGLE_SHIFT	19 | 
 | #define TD_TOKEN_TOGGLE		(1 << 19) | 
 | #define TD_TOKEN_EXPLEN_SHIFT	21 | 
 | #define TD_TOKEN_EXPLEN_MASK	0x7FF	/* expected length, encoded as n-1 */ | 
 | #define TD_TOKEN_PID_MASK	0xFF | 
 |  | 
 | #define uhci_explen(len)	((((len) - 1) & TD_TOKEN_EXPLEN_MASK) << \ | 
 | 					TD_TOKEN_EXPLEN_SHIFT) | 
 |  | 
 | #define uhci_expected_length(token) ((((token) >> TD_TOKEN_EXPLEN_SHIFT) + \ | 
 | 					1) & TD_TOKEN_EXPLEN_MASK) | 
 | #define uhci_toggle(token)	(((token) >> TD_TOKEN_TOGGLE_SHIFT) & 1) | 
 | #define uhci_endpoint(token)	(((token) >> 15) & 0xf) | 
 | #define uhci_devaddr(token)	(((token) >> TD_TOKEN_DEVADDR_SHIFT) & 0x7f) | 
 | #define uhci_devep(token)	(((token) >> TD_TOKEN_DEVADDR_SHIFT) & 0x7ff) | 
 | #define uhci_packetid(token)	((token) & TD_TOKEN_PID_MASK) | 
 | #define uhci_packetout(token)	(uhci_packetid(token) != USB_PID_IN) | 
 | #define uhci_packetin(token)	(uhci_packetid(token) == USB_PID_IN) | 
 |  | 
 | /* | 
 |  * The documentation says "4 words for hardware, 4 words for software". | 
 |  * | 
 |  * That's silly, the hardware doesn't care. The hardware only cares that | 
 |  * the hardware words are 16-byte aligned, and we can have any amount of | 
 |  * sw space after the TD entry. | 
 |  * | 
 |  * td->link points to either another TD (not necessarily for the same urb or | 
 |  * even the same endpoint), or nothing (PTR_TERM), or a QH. | 
 |  */ | 
 | struct uhci_td { | 
 | 	/* Hardware fields */ | 
 | 	__hc32 link; | 
 | 	__hc32 status; | 
 | 	__hc32 token; | 
 | 	__hc32 buffer; | 
 |  | 
 | 	/* Software fields */ | 
 | 	dma_addr_t dma_handle; | 
 |  | 
 | 	struct list_head list; | 
 |  | 
 | 	int frame;			/* for iso: what frame? */ | 
 | 	struct list_head fl_list; | 
 | } __attribute__((aligned(16))); | 
 |  | 
 | /* | 
 |  * We need a special accessor for the control/status word because it is | 
 |  * subject to asynchronous updates by the controller. | 
 |  */ | 
 | #define td_status(uhci, td)		hc32_to_cpu((uhci), \ | 
 | 						ACCESS_ONCE((td)->status)) | 
 |  | 
 | #define LINK_TO_TD(uhci, td)		(cpu_to_hc32((uhci), (td)->dma_handle)) | 
 |  | 
 |  | 
 | /* | 
 |  *	Skeleton Queue Headers | 
 |  */ | 
 |  | 
 | /* | 
 |  * The UHCI driver uses QHs with Interrupt, Control and Bulk URBs for | 
 |  * automatic queuing. To make it easy to insert entries into the schedule, | 
 |  * we have a skeleton of QHs for each predefined Interrupt latency. | 
 |  * Asynchronous QHs (low-speed control, full-speed control, and bulk) | 
 |  * go onto the period-1 interrupt list, since they all get accessed on | 
 |  * every frame. | 
 |  * | 
 |  * When we want to add a new QH, we add it to the list starting from the | 
 |  * appropriate skeleton QH.  For instance, the schedule can look like this: | 
 |  * | 
 |  * skel int128 QH | 
 |  * dev 1 interrupt QH | 
 |  * dev 5 interrupt QH | 
 |  * skel int64 QH | 
 |  * skel int32 QH | 
 |  * ... | 
 |  * skel int1 + async QH | 
 |  * dev 5 low-speed control QH | 
 |  * dev 1 bulk QH | 
 |  * dev 2 bulk QH | 
 |  * | 
 |  * There is a special terminating QH used to keep full-speed bandwidth | 
 |  * reclamation active when no full-speed control or bulk QHs are linked | 
 |  * into the schedule.  It has an inactive TD (to work around a PIIX bug, | 
 |  * see the Intel errata) and it points back to itself. | 
 |  * | 
 |  * There's a special skeleton QH for Isochronous QHs which never appears | 
 |  * on the schedule.  Isochronous TDs go on the schedule before the | 
 |  * the skeleton QHs.  The hardware accesses them directly rather than | 
 |  * through their QH, which is used only for bookkeeping purposes. | 
 |  * While the UHCI spec doesn't forbid the use of QHs for Isochronous, | 
 |  * it doesn't use them either.  And the spec says that queues never | 
 |  * advance on an error completion status, which makes them totally | 
 |  * unsuitable for Isochronous transfers. | 
 |  * | 
 |  * There's also a special skeleton QH used for QHs which are in the process | 
 |  * of unlinking and so may still be in use by the hardware.  It too never | 
 |  * appears on the schedule. | 
 |  */ | 
 |  | 
 | #define UHCI_NUM_SKELQH		11 | 
 | #define SKEL_UNLINK		0 | 
 | #define skel_unlink_qh		skelqh[SKEL_UNLINK] | 
 | #define SKEL_ISO		1 | 
 | #define skel_iso_qh		skelqh[SKEL_ISO] | 
 | 	/* int128, int64, ..., int1 = 2, 3, ..., 9 */ | 
 | #define SKEL_INDEX(exponent)	(9 - exponent) | 
 | #define SKEL_ASYNC		9 | 
 | #define skel_async_qh		skelqh[SKEL_ASYNC] | 
 | #define SKEL_TERM		10 | 
 | #define skel_term_qh		skelqh[SKEL_TERM] | 
 |  | 
 | /* The following entries refer to sublists of skel_async_qh */ | 
 | #define SKEL_LS_CONTROL		20 | 
 | #define SKEL_FS_CONTROL		21 | 
 | #define SKEL_FSBR		SKEL_FS_CONTROL | 
 | #define SKEL_BULK		22 | 
 |  | 
 | /* | 
 |  *	The UHCI controller and root hub | 
 |  */ | 
 |  | 
 | /* | 
 |  * States for the root hub: | 
 |  * | 
 |  * To prevent "bouncing" in the presence of electrical noise, | 
 |  * when there are no devices attached we delay for 1 second in the | 
 |  * RUNNING_NODEVS state before switching to the AUTO_STOPPED state. | 
 |  *  | 
 |  * (Note that the AUTO_STOPPED state won't be necessary once the hub | 
 |  * driver learns to autosuspend.) | 
 |  */ | 
 | enum uhci_rh_state { | 
 | 	/* In the following states the HC must be halted. | 
 | 	 * These two must come first. */ | 
 | 	UHCI_RH_RESET, | 
 | 	UHCI_RH_SUSPENDED, | 
 |  | 
 | 	UHCI_RH_AUTO_STOPPED, | 
 | 	UHCI_RH_RESUMING, | 
 |  | 
 | 	/* In this state the HC changes from running to halted, | 
 | 	 * so it can legally appear either way. */ | 
 | 	UHCI_RH_SUSPENDING, | 
 |  | 
 | 	/* In the following states it's an error if the HC is halted. | 
 | 	 * These two must come last. */ | 
 | 	UHCI_RH_RUNNING,		/* The normal state */ | 
 | 	UHCI_RH_RUNNING_NODEVS,		/* Running with no devices attached */ | 
 | }; | 
 |  | 
 | /* | 
 |  * The full UHCI controller information: | 
 |  */ | 
 | struct uhci_hcd { | 
 |  | 
 | 	/* debugfs */ | 
 | 	struct dentry *dentry; | 
 |  | 
 | 	/* Grabbed from PCI */ | 
 | 	unsigned long io_addr; | 
 |  | 
 | 	/* Used when registers are memory mapped */ | 
 | 	void __iomem *regs; | 
 |  | 
 | 	struct dma_pool *qh_pool; | 
 | 	struct dma_pool *td_pool; | 
 |  | 
 | 	struct uhci_td *term_td;	/* Terminating TD, see UHCI bug */ | 
 | 	struct uhci_qh *skelqh[UHCI_NUM_SKELQH];	/* Skeleton QHs */ | 
 | 	struct uhci_qh *next_qh;	/* Next QH to scan */ | 
 |  | 
 | 	spinlock_t lock; | 
 |  | 
 | 	dma_addr_t frame_dma_handle;	/* Hardware frame list */ | 
 | 	__hc32 *frame; | 
 | 	void **frame_cpu;		/* CPU's frame list */ | 
 |  | 
 | 	enum uhci_rh_state rh_state; | 
 | 	unsigned long auto_stop_time;		/* When to AUTO_STOP */ | 
 |  | 
 | 	unsigned int frame_number;		/* As of last check */ | 
 | 	unsigned int is_stopped; | 
 | #define UHCI_IS_STOPPED		9999		/* Larger than a frame # */ | 
 | 	unsigned int last_iso_frame;		/* Frame of last scan */ | 
 | 	unsigned int cur_iso_frame;		/* Frame for current scan */ | 
 |  | 
 | 	unsigned int scan_in_progress:1;	/* Schedule scan is running */ | 
 | 	unsigned int need_rescan:1;		/* Redo the schedule scan */ | 
 | 	unsigned int dead:1;			/* Controller has died */ | 
 | 	unsigned int RD_enable:1;		/* Suspended root hub with | 
 | 						   Resume-Detect interrupts | 
 | 						   enabled */ | 
 | 	unsigned int is_initialized:1;		/* Data structure is usable */ | 
 | 	unsigned int fsbr_is_on:1;		/* FSBR is turned on */ | 
 | 	unsigned int fsbr_is_wanted:1;		/* Does any URB want FSBR? */ | 
 | 	unsigned int fsbr_expiring:1;		/* FSBR is timing out */ | 
 |  | 
 | 	struct timer_list fsbr_timer;		/* For turning off FBSR */ | 
 |  | 
 | 	/* Silicon quirks */ | 
 | 	unsigned int oc_low:1;			/* OverCurrent bit active low */ | 
 | 	unsigned int wait_for_hp:1;		/* Wait for HP port reset */ | 
 | 	unsigned int big_endian_mmio:1;		/* Big endian registers */ | 
 | 	unsigned int big_endian_desc:1;		/* Big endian descriptors */ | 
 |  | 
 | 	/* Support for port suspend/resume/reset */ | 
 | 	unsigned long port_c_suspend;		/* Bit-arrays of ports */ | 
 | 	unsigned long resuming_ports; | 
 | 	unsigned long ports_timeout;		/* Time to stop signalling */ | 
 |  | 
 | 	struct list_head idle_qh_list;		/* Where the idle QHs live */ | 
 |  | 
 | 	int rh_numports;			/* Number of root-hub ports */ | 
 |  | 
 | 	wait_queue_head_t waitqh;		/* endpoint_disable waiters */ | 
 | 	int num_waiting;			/* Number of waiters */ | 
 |  | 
 | 	int total_load;				/* Sum of array values */ | 
 | 	short load[MAX_PHASE];			/* Periodic allocations */ | 
 |  | 
 | 	/* Reset host controller */ | 
 | 	void	(*reset_hc) (struct uhci_hcd *uhci); | 
 | 	int	(*check_and_reset_hc) (struct uhci_hcd *uhci); | 
 | 	/* configure_hc should perform arch specific settings, if needed */ | 
 | 	void	(*configure_hc) (struct uhci_hcd *uhci); | 
 | 	/* Check for broken resume detect interrupts */ | 
 | 	int	(*resume_detect_interrupts_are_broken) (struct uhci_hcd *uhci); | 
 | 	/* Check for broken global suspend */ | 
 | 	int	(*global_suspend_mode_is_broken) (struct uhci_hcd *uhci); | 
 | }; | 
 |  | 
 | /* Convert between a usb_hcd pointer and the corresponding uhci_hcd */ | 
 | static inline struct uhci_hcd *hcd_to_uhci(struct usb_hcd *hcd) | 
 | { | 
 | 	return (struct uhci_hcd *) (hcd->hcd_priv); | 
 | } | 
 | static inline struct usb_hcd *uhci_to_hcd(struct uhci_hcd *uhci) | 
 | { | 
 | 	return container_of((void *) uhci, struct usb_hcd, hcd_priv); | 
 | } | 
 |  | 
 | #define uhci_dev(u)	(uhci_to_hcd(u)->self.controller) | 
 |  | 
 | /* Utility macro for comparing frame numbers */ | 
 | #define uhci_frame_before_eq(f1, f2)	(0 <= (int) ((f2) - (f1))) | 
 |  | 
 |  | 
 | /* | 
 |  *	Private per-URB data | 
 |  */ | 
 | struct urb_priv { | 
 | 	struct list_head node;		/* Node in the QH's urbp list */ | 
 |  | 
 | 	struct urb *urb; | 
 |  | 
 | 	struct uhci_qh *qh;		/* QH for this URB */ | 
 | 	struct list_head td_list; | 
 |  | 
 | 	unsigned fsbr:1;		/* URB wants FSBR */ | 
 | }; | 
 |  | 
 |  | 
 | /* Some special IDs */ | 
 |  | 
 | #define PCI_VENDOR_ID_GENESYS		0x17a0 | 
 | #define PCI_DEVICE_ID_GL880S_UHCI	0x8083 | 
 |  | 
 | /* | 
 |  * Functions used to access controller registers. The UCHI spec says that host | 
 |  * controller I/O registers are mapped into PCI I/O space. For non-PCI hosts | 
 |  * we use memory mapped registers. | 
 |  */ | 
 |  | 
 | #ifndef CONFIG_USB_UHCI_SUPPORT_NON_PCI_HC | 
 | /* Support PCI only */ | 
 | static inline u32 uhci_readl(const struct uhci_hcd *uhci, int reg) | 
 | { | 
 | 	return inl(uhci->io_addr + reg); | 
 | } | 
 |  | 
 | static inline void uhci_writel(const struct uhci_hcd *uhci, u32 val, int reg) | 
 | { | 
 | 	outl(val, uhci->io_addr + reg); | 
 | } | 
 |  | 
 | static inline u16 uhci_readw(const struct uhci_hcd *uhci, int reg) | 
 | { | 
 | 	return inw(uhci->io_addr + reg); | 
 | } | 
 |  | 
 | static inline void uhci_writew(const struct uhci_hcd *uhci, u16 val, int reg) | 
 | { | 
 | 	outw(val, uhci->io_addr + reg); | 
 | } | 
 |  | 
 | static inline u8 uhci_readb(const struct uhci_hcd *uhci, int reg) | 
 | { | 
 | 	return inb(uhci->io_addr + reg); | 
 | } | 
 |  | 
 | static inline void uhci_writeb(const struct uhci_hcd *uhci, u8 val, int reg) | 
 | { | 
 | 	outb(val, uhci->io_addr + reg); | 
 | } | 
 |  | 
 | #else | 
 | /* Support non-PCI host controllers */ | 
 | #ifdef CONFIG_PCI | 
 | /* Support PCI and non-PCI host controllers */ | 
 | #define uhci_has_pci_registers(u)	((u)->io_addr != 0) | 
 | #else | 
 | /* Support non-PCI host controllers only */ | 
 | #define uhci_has_pci_registers(u)	0 | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO | 
 | /* Support (non-PCI) big endian host controllers */ | 
 | #define uhci_big_endian_mmio(u)		((u)->big_endian_mmio) | 
 | #else | 
 | #define uhci_big_endian_mmio(u)		0 | 
 | #endif | 
 |  | 
 | static inline u32 uhci_readl(const struct uhci_hcd *uhci, int reg) | 
 | { | 
 | 	if (uhci_has_pci_registers(uhci)) | 
 | 		return inl(uhci->io_addr + reg); | 
 | #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO | 
 | 	else if (uhci_big_endian_mmio(uhci)) | 
 | 		return readl_be(uhci->regs + reg); | 
 | #endif | 
 | 	else | 
 | 		return readl(uhci->regs + reg); | 
 | } | 
 |  | 
 | static inline void uhci_writel(const struct uhci_hcd *uhci, u32 val, int reg) | 
 | { | 
 | 	if (uhci_has_pci_registers(uhci)) | 
 | 		outl(val, uhci->io_addr + reg); | 
 | #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO | 
 | 	else if (uhci_big_endian_mmio(uhci)) | 
 | 		writel_be(val, uhci->regs + reg); | 
 | #endif | 
 | 	else | 
 | 		writel(val, uhci->regs + reg); | 
 | } | 
 |  | 
 | static inline u16 uhci_readw(const struct uhci_hcd *uhci, int reg) | 
 | { | 
 | 	if (uhci_has_pci_registers(uhci)) | 
 | 		return inw(uhci->io_addr + reg); | 
 | #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO | 
 | 	else if (uhci_big_endian_mmio(uhci)) | 
 | 		return readw_be(uhci->regs + reg); | 
 | #endif | 
 | 	else | 
 | 		return readw(uhci->regs + reg); | 
 | } | 
 |  | 
 | static inline void uhci_writew(const struct uhci_hcd *uhci, u16 val, int reg) | 
 | { | 
 | 	if (uhci_has_pci_registers(uhci)) | 
 | 		outw(val, uhci->io_addr + reg); | 
 | #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO | 
 | 	else if (uhci_big_endian_mmio(uhci)) | 
 | 		writew_be(val, uhci->regs + reg); | 
 | #endif | 
 | 	else | 
 | 		writew(val, uhci->regs + reg); | 
 | } | 
 |  | 
 | static inline u8 uhci_readb(const struct uhci_hcd *uhci, int reg) | 
 | { | 
 | 	if (uhci_has_pci_registers(uhci)) | 
 | 		return inb(uhci->io_addr + reg); | 
 | #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO | 
 | 	else if (uhci_big_endian_mmio(uhci)) | 
 | 		return readb_be(uhci->regs + reg); | 
 | #endif | 
 | 	else | 
 | 		return readb(uhci->regs + reg); | 
 | } | 
 |  | 
 | static inline void uhci_writeb(const struct uhci_hcd *uhci, u8 val, int reg) | 
 | { | 
 | 	if (uhci_has_pci_registers(uhci)) | 
 | 		outb(val, uhci->io_addr + reg); | 
 | #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO | 
 | 	else if (uhci_big_endian_mmio(uhci)) | 
 | 		writeb_be(val, uhci->regs + reg); | 
 | #endif | 
 | 	else | 
 | 		writeb(val, uhci->regs + reg); | 
 | } | 
 | #endif /* CONFIG_USB_UHCI_SUPPORT_NON_PCI_HC */ | 
 |  | 
 | /* | 
 |  * The GRLIB GRUSBHC controller can use big endian format for its descriptors. | 
 |  * | 
 |  * UHCI controllers accessed through PCI work normally (little-endian | 
 |  * everywhere), so we don't bother supporting a BE-only mode. | 
 |  */ | 
 | #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_DESC | 
 | #define uhci_big_endian_desc(u)		((u)->big_endian_desc) | 
 |  | 
 | /* cpu to uhci */ | 
 | static inline __hc32 cpu_to_hc32(const struct uhci_hcd *uhci, const u32 x) | 
 | { | 
 | 	return uhci_big_endian_desc(uhci) | 
 | 		? (__force __hc32)cpu_to_be32(x) | 
 | 		: (__force __hc32)cpu_to_le32(x); | 
 | } | 
 |  | 
 | /* uhci to cpu */ | 
 | static inline u32 hc32_to_cpu(const struct uhci_hcd *uhci, const __hc32 x) | 
 | { | 
 | 	return uhci_big_endian_desc(uhci) | 
 | 		? be32_to_cpu((__force __be32)x) | 
 | 		: le32_to_cpu((__force __le32)x); | 
 | } | 
 |  | 
 | #else | 
 | /* cpu to uhci */ | 
 | static inline __hc32 cpu_to_hc32(const struct uhci_hcd *uhci, const u32 x) | 
 | { | 
 | 	return cpu_to_le32(x); | 
 | } | 
 |  | 
 | /* uhci to cpu */ | 
 | static inline u32 hc32_to_cpu(const struct uhci_hcd *uhci, const __hc32 x) | 
 | { | 
 | 	return le32_to_cpu(x); | 
 | } | 
 | #endif | 
 |  | 
 | #endif |