|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* Copyright(c) 1999 - 2018 Intel Corporation. */ | 
|  |  | 
|  | /* 82571EB Gigabit Ethernet Controller | 
|  | * 82571EB Gigabit Ethernet Controller (Copper) | 
|  | * 82571EB Gigabit Ethernet Controller (Fiber) | 
|  | * 82571EB Dual Port Gigabit Mezzanine Adapter | 
|  | * 82571EB Quad Port Gigabit Mezzanine Adapter | 
|  | * 82571PT Gigabit PT Quad Port Server ExpressModule | 
|  | * 82572EI Gigabit Ethernet Controller (Copper) | 
|  | * 82572EI Gigabit Ethernet Controller (Fiber) | 
|  | * 82572EI Gigabit Ethernet Controller | 
|  | * 82573V Gigabit Ethernet Controller (Copper) | 
|  | * 82573E Gigabit Ethernet Controller (Copper) | 
|  | * 82573L Gigabit Ethernet Controller | 
|  | * 82574L Gigabit Network Connection | 
|  | * 82583V Gigabit Network Connection | 
|  | */ | 
|  |  | 
|  | #include "e1000.h" | 
|  |  | 
|  | static s32 e1000_get_phy_id_82571(struct e1000_hw *hw); | 
|  | static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw); | 
|  | static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw); | 
|  | static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw); | 
|  | static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, | 
|  | u16 words, u16 *data); | 
|  | static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw); | 
|  | static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw); | 
|  | static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw); | 
|  | static bool e1000_check_mng_mode_82574(struct e1000_hw *hw); | 
|  | static s32 e1000_led_on_82574(struct e1000_hw *hw); | 
|  | static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw); | 
|  | static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw); | 
|  | static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw); | 
|  | static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw); | 
|  | static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw); | 
|  | static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active); | 
|  | static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active); | 
|  |  | 
|  | /** | 
|  | *  e1000_init_phy_params_82571 - Init PHY func ptrs. | 
|  | *  @hw: pointer to the HW structure | 
|  | **/ | 
|  | static s32 e1000_init_phy_params_82571(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val; | 
|  |  | 
|  | if (hw->phy.media_type != e1000_media_type_copper) { | 
|  | phy->type = e1000_phy_none; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | phy->addr = 1; | 
|  | phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; | 
|  | phy->reset_delay_us = 100; | 
|  |  | 
|  | phy->ops.power_up = e1000_power_up_phy_copper; | 
|  | phy->ops.power_down = e1000_power_down_phy_copper_82571; | 
|  |  | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | phy->type = e1000_phy_igp_2; | 
|  | break; | 
|  | case e1000_82573: | 
|  | phy->type = e1000_phy_m88; | 
|  | break; | 
|  | case e1000_82574: | 
|  | case e1000_82583: | 
|  | phy->type = e1000_phy_bm; | 
|  | phy->ops.acquire = e1000_get_hw_semaphore_82574; | 
|  | phy->ops.release = e1000_put_hw_semaphore_82574; | 
|  | phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574; | 
|  | phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574; | 
|  | break; | 
|  | default: | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  |  | 
|  | /* This can only be done after all function pointers are setup. */ | 
|  | ret_val = e1000_get_phy_id_82571(hw); | 
|  | if (ret_val) { | 
|  | e_dbg("Error getting PHY ID\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* Verify phy id */ | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | if (phy->id != IGP01E1000_I_PHY_ID) | 
|  | ret_val = -E1000_ERR_PHY; | 
|  | break; | 
|  | case e1000_82573: | 
|  | if (phy->id != M88E1111_I_PHY_ID) | 
|  | ret_val = -E1000_ERR_PHY; | 
|  | break; | 
|  | case e1000_82574: | 
|  | case e1000_82583: | 
|  | if (phy->id != BME1000_E_PHY_ID_R2) | 
|  | ret_val = -E1000_ERR_PHY; | 
|  | break; | 
|  | default: | 
|  | ret_val = -E1000_ERR_PHY; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ret_val) | 
|  | e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_init_nvm_params_82571 - Init NVM func ptrs. | 
|  | *  @hw: pointer to the HW structure | 
|  | **/ | 
|  | static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | u32 eecd = er32(EECD); | 
|  | u16 size; | 
|  |  | 
|  | nvm->opcode_bits = 8; | 
|  | nvm->delay_usec = 1; | 
|  | switch (nvm->override) { | 
|  | case e1000_nvm_override_spi_large: | 
|  | nvm->page_size = 32; | 
|  | nvm->address_bits = 16; | 
|  | break; | 
|  | case e1000_nvm_override_spi_small: | 
|  | nvm->page_size = 8; | 
|  | nvm->address_bits = 8; | 
|  | break; | 
|  | default: | 
|  | nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; | 
|  | nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82573: | 
|  | case e1000_82574: | 
|  | case e1000_82583: | 
|  | if (((eecd >> 15) & 0x3) == 0x3) { | 
|  | nvm->type = e1000_nvm_flash_hw; | 
|  | nvm->word_size = 2048; | 
|  | /* Autonomous Flash update bit must be cleared due | 
|  | * to Flash update issue. | 
|  | */ | 
|  | eecd &= ~E1000_EECD_AUPDEN; | 
|  | ew32(EECD, eecd); | 
|  | break; | 
|  | } | 
|  | /* Fall Through */ | 
|  | default: | 
|  | nvm->type = e1000_nvm_eeprom_spi; | 
|  | size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> | 
|  | E1000_EECD_SIZE_EX_SHIFT); | 
|  | /* Added to a constant, "size" becomes the left-shift value | 
|  | * for setting word_size. | 
|  | */ | 
|  | size += NVM_WORD_SIZE_BASE_SHIFT; | 
|  |  | 
|  | /* EEPROM access above 16k is unsupported */ | 
|  | if (size > 14) | 
|  | size = 14; | 
|  | nvm->word_size = BIT(size); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Function Pointers */ | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82574: | 
|  | case e1000_82583: | 
|  | nvm->ops.acquire = e1000_get_hw_semaphore_82574; | 
|  | nvm->ops.release = e1000_put_hw_semaphore_82574; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_init_mac_params_82571 - Init MAC func ptrs. | 
|  | *  @hw: pointer to the HW structure | 
|  | **/ | 
|  | static s32 e1000_init_mac_params_82571(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  | u32 swsm = 0; | 
|  | u32 swsm2 = 0; | 
|  | bool force_clear_smbi = false; | 
|  |  | 
|  | /* Set media type and media-dependent function pointers */ | 
|  | switch (hw->adapter->pdev->device) { | 
|  | case E1000_DEV_ID_82571EB_FIBER: | 
|  | case E1000_DEV_ID_82572EI_FIBER: | 
|  | case E1000_DEV_ID_82571EB_QUAD_FIBER: | 
|  | hw->phy.media_type = e1000_media_type_fiber; | 
|  | mac->ops.setup_physical_interface = | 
|  | e1000_setup_fiber_serdes_link_82571; | 
|  | mac->ops.check_for_link = e1000e_check_for_fiber_link; | 
|  | mac->ops.get_link_up_info = | 
|  | e1000e_get_speed_and_duplex_fiber_serdes; | 
|  | break; | 
|  | case E1000_DEV_ID_82571EB_SERDES: | 
|  | case E1000_DEV_ID_82571EB_SERDES_DUAL: | 
|  | case E1000_DEV_ID_82571EB_SERDES_QUAD: | 
|  | case E1000_DEV_ID_82572EI_SERDES: | 
|  | hw->phy.media_type = e1000_media_type_internal_serdes; | 
|  | mac->ops.setup_physical_interface = | 
|  | e1000_setup_fiber_serdes_link_82571; | 
|  | mac->ops.check_for_link = e1000_check_for_serdes_link_82571; | 
|  | mac->ops.get_link_up_info = | 
|  | e1000e_get_speed_and_duplex_fiber_serdes; | 
|  | break; | 
|  | default: | 
|  | hw->phy.media_type = e1000_media_type_copper; | 
|  | mac->ops.setup_physical_interface = | 
|  | e1000_setup_copper_link_82571; | 
|  | mac->ops.check_for_link = e1000e_check_for_copper_link; | 
|  | mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Set mta register count */ | 
|  | mac->mta_reg_count = 128; | 
|  | /* Set rar entry count */ | 
|  | mac->rar_entry_count = E1000_RAR_ENTRIES; | 
|  | /* Adaptive IFS supported */ | 
|  | mac->adaptive_ifs = true; | 
|  |  | 
|  | /* MAC-specific function pointers */ | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82573: | 
|  | mac->ops.set_lan_id = e1000_set_lan_id_single_port; | 
|  | mac->ops.check_mng_mode = e1000e_check_mng_mode_generic; | 
|  | mac->ops.led_on = e1000e_led_on_generic; | 
|  | mac->ops.blink_led = e1000e_blink_led_generic; | 
|  |  | 
|  | /* FWSM register */ | 
|  | mac->has_fwsm = true; | 
|  | /* ARC supported; valid only if manageability features are | 
|  | * enabled. | 
|  | */ | 
|  | mac->arc_subsystem_valid = !!(er32(FWSM) & | 
|  | E1000_FWSM_MODE_MASK); | 
|  | break; | 
|  | case e1000_82574: | 
|  | case e1000_82583: | 
|  | mac->ops.set_lan_id = e1000_set_lan_id_single_port; | 
|  | mac->ops.check_mng_mode = e1000_check_mng_mode_82574; | 
|  | mac->ops.led_on = e1000_led_on_82574; | 
|  | break; | 
|  | default: | 
|  | mac->ops.check_mng_mode = e1000e_check_mng_mode_generic; | 
|  | mac->ops.led_on = e1000e_led_on_generic; | 
|  | mac->ops.blink_led = e1000e_blink_led_generic; | 
|  |  | 
|  | /* FWSM register */ | 
|  | mac->has_fwsm = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Ensure that the inter-port SWSM.SMBI lock bit is clear before | 
|  | * first NVM or PHY access. This should be done for single-port | 
|  | * devices, and for one port only on dual-port devices so that | 
|  | * for those devices we can still use the SMBI lock to synchronize | 
|  | * inter-port accesses to the PHY & NVM. | 
|  | */ | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | swsm2 = er32(SWSM2); | 
|  |  | 
|  | if (!(swsm2 & E1000_SWSM2_LOCK)) { | 
|  | /* Only do this for the first interface on this card */ | 
|  | ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK); | 
|  | force_clear_smbi = true; | 
|  | } else { | 
|  | force_clear_smbi = false; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | force_clear_smbi = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (force_clear_smbi) { | 
|  | /* Make sure SWSM.SMBI is clear */ | 
|  | swsm = er32(SWSM); | 
|  | if (swsm & E1000_SWSM_SMBI) { | 
|  | /* This bit should not be set on a first interface, and | 
|  | * indicates that the bootagent or EFI code has | 
|  | * improperly left this bit enabled | 
|  | */ | 
|  | e_dbg("Please update your 82571 Bootagent\n"); | 
|  | } | 
|  | ew32(SWSM, swsm & ~E1000_SWSM_SMBI); | 
|  | } | 
|  |  | 
|  | /* Initialize device specific counter of SMBI acquisition timeouts. */ | 
|  | hw->dev_spec.e82571.smb_counter = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static s32 e1000_get_variants_82571(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | static int global_quad_port_a;	/* global port a indication */ | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1; | 
|  | s32 rc; | 
|  |  | 
|  | rc = e1000_init_mac_params_82571(hw); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | rc = e1000_init_nvm_params_82571(hw); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | rc = e1000_init_phy_params_82571(hw); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* tag quad port adapters first, it's used below */ | 
|  | switch (pdev->device) { | 
|  | case E1000_DEV_ID_82571EB_QUAD_COPPER: | 
|  | case E1000_DEV_ID_82571EB_QUAD_FIBER: | 
|  | case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: | 
|  | case E1000_DEV_ID_82571PT_QUAD_COPPER: | 
|  | adapter->flags |= FLAG_IS_QUAD_PORT; | 
|  | /* mark the first port */ | 
|  | if (global_quad_port_a == 0) | 
|  | adapter->flags |= FLAG_IS_QUAD_PORT_A; | 
|  | /* Reset for multiple quad port adapters */ | 
|  | global_quad_port_a++; | 
|  | if (global_quad_port_a == 4) | 
|  | global_quad_port_a = 0; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (adapter->hw.mac.type) { | 
|  | case e1000_82571: | 
|  | /* these dual ports don't have WoL on port B at all */ | 
|  | if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) || | 
|  | (pdev->device == E1000_DEV_ID_82571EB_SERDES) || | 
|  | (pdev->device == E1000_DEV_ID_82571EB_COPPER)) && | 
|  | (is_port_b)) | 
|  | adapter->flags &= ~FLAG_HAS_WOL; | 
|  | /* quad ports only support WoL on port A */ | 
|  | if (adapter->flags & FLAG_IS_QUAD_PORT && | 
|  | (!(adapter->flags & FLAG_IS_QUAD_PORT_A))) | 
|  | adapter->flags &= ~FLAG_HAS_WOL; | 
|  | /* Does not support WoL on any port */ | 
|  | if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD) | 
|  | adapter->flags &= ~FLAG_HAS_WOL; | 
|  | break; | 
|  | case e1000_82573: | 
|  | if (pdev->device == E1000_DEV_ID_82573L) { | 
|  | adapter->flags |= FLAG_HAS_JUMBO_FRAMES; | 
|  | adapter->max_hw_frame_size = DEFAULT_JUMBO; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Reads the PHY registers and stores the PHY ID and possibly the PHY | 
|  | *  revision in the hardware structure. | 
|  | **/ | 
|  | static s32 e1000_get_phy_id_82571(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val; | 
|  | u16 phy_id = 0; | 
|  |  | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | /* The 82571 firmware may still be configuring the PHY. | 
|  | * In this case, we cannot access the PHY until the | 
|  | * configuration is done.  So we explicitly set the | 
|  | * PHY ID. | 
|  | */ | 
|  | phy->id = IGP01E1000_I_PHY_ID; | 
|  | break; | 
|  | case e1000_82573: | 
|  | return e1000e_get_phy_id(hw); | 
|  | case e1000_82574: | 
|  | case e1000_82583: | 
|  | ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy->id = (u32)(phy_id << 16); | 
|  | usleep_range(20, 40); | 
|  | ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy->id |= (u32)(phy_id); | 
|  | phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); | 
|  | break; | 
|  | default: | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Acquire the HW semaphore to access the PHY or NVM | 
|  | **/ | 
|  | static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw) | 
|  | { | 
|  | u32 swsm; | 
|  | s32 sw_timeout = hw->nvm.word_size + 1; | 
|  | s32 fw_timeout = hw->nvm.word_size + 1; | 
|  | s32 i = 0; | 
|  |  | 
|  | /* If we have timedout 3 times on trying to acquire | 
|  | * the inter-port SMBI semaphore, there is old code | 
|  | * operating on the other port, and it is not | 
|  | * releasing SMBI. Modify the number of times that | 
|  | * we try for the semaphore to interwork with this | 
|  | * older code. | 
|  | */ | 
|  | if (hw->dev_spec.e82571.smb_counter > 2) | 
|  | sw_timeout = 1; | 
|  |  | 
|  | /* Get the SW semaphore */ | 
|  | while (i < sw_timeout) { | 
|  | swsm = er32(SWSM); | 
|  | if (!(swsm & E1000_SWSM_SMBI)) | 
|  | break; | 
|  |  | 
|  | usleep_range(50, 100); | 
|  | i++; | 
|  | } | 
|  |  | 
|  | if (i == sw_timeout) { | 
|  | e_dbg("Driver can't access device - SMBI bit is set.\n"); | 
|  | hw->dev_spec.e82571.smb_counter++; | 
|  | } | 
|  | /* Get the FW semaphore. */ | 
|  | for (i = 0; i < fw_timeout; i++) { | 
|  | swsm = er32(SWSM); | 
|  | ew32(SWSM, swsm | E1000_SWSM_SWESMBI); | 
|  |  | 
|  | /* Semaphore acquired if bit latched */ | 
|  | if (er32(SWSM) & E1000_SWSM_SWESMBI) | 
|  | break; | 
|  |  | 
|  | usleep_range(50, 100); | 
|  | } | 
|  |  | 
|  | if (i == fw_timeout) { | 
|  | /* Release semaphores */ | 
|  | e1000_put_hw_semaphore_82571(hw); | 
|  | e_dbg("Driver can't access the NVM\n"); | 
|  | return -E1000_ERR_NVM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_put_hw_semaphore_82571 - Release hardware semaphore | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Release hardware semaphore used to access the PHY or NVM | 
|  | **/ | 
|  | static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw) | 
|  | { | 
|  | u32 swsm; | 
|  |  | 
|  | swsm = er32(SWSM); | 
|  | swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); | 
|  | ew32(SWSM, swsm); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Acquire the HW semaphore during reset. | 
|  | * | 
|  | **/ | 
|  | static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw) | 
|  | { | 
|  | u32 extcnf_ctrl; | 
|  | s32 i = 0; | 
|  |  | 
|  | extcnf_ctrl = er32(EXTCNF_CTRL); | 
|  | do { | 
|  | extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; | 
|  | ew32(EXTCNF_CTRL, extcnf_ctrl); | 
|  | extcnf_ctrl = er32(EXTCNF_CTRL); | 
|  |  | 
|  | if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) | 
|  | break; | 
|  |  | 
|  | usleep_range(2000, 4000); | 
|  | i++; | 
|  | } while (i < MDIO_OWNERSHIP_TIMEOUT); | 
|  |  | 
|  | if (i == MDIO_OWNERSHIP_TIMEOUT) { | 
|  | /* Release semaphores */ | 
|  | e1000_put_hw_semaphore_82573(hw); | 
|  | e_dbg("Driver can't access the PHY\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_put_hw_semaphore_82573 - Release hardware semaphore | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Release hardware semaphore used during reset. | 
|  | * | 
|  | **/ | 
|  | static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw) | 
|  | { | 
|  | u32 extcnf_ctrl; | 
|  |  | 
|  | extcnf_ctrl = er32(EXTCNF_CTRL); | 
|  | extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; | 
|  | ew32(EXTCNF_CTRL, extcnf_ctrl); | 
|  | } | 
|  |  | 
|  | static DEFINE_MUTEX(swflag_mutex); | 
|  |  | 
|  | /** | 
|  | *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Acquire the HW semaphore to access the PHY or NVM. | 
|  | * | 
|  | **/ | 
|  | static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  |  | 
|  | mutex_lock(&swflag_mutex); | 
|  | ret_val = e1000_get_hw_semaphore_82573(hw); | 
|  | if (ret_val) | 
|  | mutex_unlock(&swflag_mutex); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_put_hw_semaphore_82574 - Release hardware semaphore | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Release hardware semaphore used to access the PHY or NVM | 
|  | * | 
|  | **/ | 
|  | static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw) | 
|  | { | 
|  | e1000_put_hw_semaphore_82573(hw); | 
|  | mutex_unlock(&swflag_mutex); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @active: true to enable LPLU, false to disable | 
|  | * | 
|  | *  Sets the LPLU D0 state according to the active flag. | 
|  | *  LPLU will not be activated unless the | 
|  | *  device autonegotiation advertisement meets standards of | 
|  | *  either 10 or 10/100 or 10/100/1000 at all duplexes. | 
|  | *  This is a function pointer entry point only called by | 
|  | *  PHY setup routines. | 
|  | **/ | 
|  | static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active) | 
|  | { | 
|  | u32 data = er32(POEMB); | 
|  |  | 
|  | if (active) | 
|  | data |= E1000_PHY_CTRL_D0A_LPLU; | 
|  | else | 
|  | data &= ~E1000_PHY_CTRL_D0A_LPLU; | 
|  |  | 
|  | ew32(POEMB, data); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3 | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @active: boolean used to enable/disable lplu | 
|  | * | 
|  | *  The low power link up (lplu) state is set to the power management level D3 | 
|  | *  when active is true, else clear lplu for D3. LPLU | 
|  | *  is used during Dx states where the power conservation is most important. | 
|  | *  During driver activity, SmartSpeed should be enabled so performance is | 
|  | *  maintained. | 
|  | **/ | 
|  | static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active) | 
|  | { | 
|  | u32 data = er32(POEMB); | 
|  |  | 
|  | if (!active) { | 
|  | data &= ~E1000_PHY_CTRL_NOND0A_LPLU; | 
|  | } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || | 
|  | (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) || | 
|  | (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) { | 
|  | data |= E1000_PHY_CTRL_NOND0A_LPLU; | 
|  | } | 
|  |  | 
|  | ew32(POEMB, data); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_acquire_nvm_82571 - Request for access to the EEPROM | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  To gain access to the EEPROM, first we must obtain a hardware semaphore. | 
|  | *  Then for non-82573 hardware, set the EEPROM access request bit and wait | 
|  | *  for EEPROM access grant bit.  If the access grant bit is not set, release | 
|  | *  hardware semaphore. | 
|  | **/ | 
|  | static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  |  | 
|  | ret_val = e1000_get_hw_semaphore_82571(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82573: | 
|  | break; | 
|  | default: | 
|  | ret_val = e1000e_acquire_nvm(hw); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ret_val) | 
|  | e1000_put_hw_semaphore_82571(hw); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_release_nvm_82571 - Release exclusive access to EEPROM | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Stop any current commands to the EEPROM and clear the EEPROM request bit. | 
|  | **/ | 
|  | static void e1000_release_nvm_82571(struct e1000_hw *hw) | 
|  | { | 
|  | e1000e_release_nvm(hw); | 
|  | e1000_put_hw_semaphore_82571(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: offset within the EEPROM to be written to | 
|  | *  @words: number of words to write | 
|  | *  @data: 16 bit word(s) to be written to the EEPROM | 
|  | * | 
|  | *  For non-82573 silicon, write data to EEPROM at offset using SPI interface. | 
|  | * | 
|  | *  If e1000e_update_nvm_checksum is not called after this function, the | 
|  | *  EEPROM will most likely contain an invalid checksum. | 
|  | **/ | 
|  | static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words, | 
|  | u16 *data) | 
|  | { | 
|  | s32 ret_val; | 
|  |  | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82573: | 
|  | case e1000_82574: | 
|  | case e1000_82583: | 
|  | ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data); | 
|  | break; | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | ret_val = e1000e_write_nvm_spi(hw, offset, words, data); | 
|  | break; | 
|  | default: | 
|  | ret_val = -E1000_ERR_NVM; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Updates the EEPROM checksum by reading/adding each word of the EEPROM | 
|  | *  up to the checksum.  Then calculates the EEPROM checksum and writes the | 
|  | *  value to the EEPROM. | 
|  | **/ | 
|  | static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw) | 
|  | { | 
|  | u32 eecd; | 
|  | s32 ret_val; | 
|  | u16 i; | 
|  |  | 
|  | ret_val = e1000e_update_nvm_checksum_generic(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* If our nvm is an EEPROM, then we're done | 
|  | * otherwise, commit the checksum to the flash NVM. | 
|  | */ | 
|  | if (hw->nvm.type != e1000_nvm_flash_hw) | 
|  | return 0; | 
|  |  | 
|  | /* Check for pending operations. */ | 
|  | for (i = 0; i < E1000_FLASH_UPDATES; i++) { | 
|  | usleep_range(1000, 2000); | 
|  | if (!(er32(EECD) & E1000_EECD_FLUPD)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (i == E1000_FLASH_UPDATES) | 
|  | return -E1000_ERR_NVM; | 
|  |  | 
|  | /* Reset the firmware if using STM opcode. */ | 
|  | if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) { | 
|  | /* The enabling of and the actual reset must be done | 
|  | * in two write cycles. | 
|  | */ | 
|  | ew32(HICR, E1000_HICR_FW_RESET_ENABLE); | 
|  | e1e_flush(); | 
|  | ew32(HICR, E1000_HICR_FW_RESET); | 
|  | } | 
|  |  | 
|  | /* Commit the write to flash */ | 
|  | eecd = er32(EECD) | E1000_EECD_FLUPD; | 
|  | ew32(EECD, eecd); | 
|  |  | 
|  | for (i = 0; i < E1000_FLASH_UPDATES; i++) { | 
|  | usleep_range(1000, 2000); | 
|  | if (!(er32(EECD) & E1000_EECD_FLUPD)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (i == E1000_FLASH_UPDATES) | 
|  | return -E1000_ERR_NVM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM | 
|  | *  and then verifies that the sum of the EEPROM is equal to 0xBABA. | 
|  | **/ | 
|  | static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw) | 
|  | { | 
|  | if (hw->nvm.type == e1000_nvm_flash_hw) | 
|  | e1000_fix_nvm_checksum_82571(hw); | 
|  |  | 
|  | return e1000e_validate_nvm_checksum_generic(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: offset within the EEPROM to be written to | 
|  | *  @words: number of words to write | 
|  | *  @data: 16 bit word(s) to be written to the EEPROM | 
|  | * | 
|  | *  After checking for invalid values, poll the EEPROM to ensure the previous | 
|  | *  command has completed before trying to write the next word.  After write | 
|  | *  poll for completion. | 
|  | * | 
|  | *  If e1000e_update_nvm_checksum is not called after this function, the | 
|  | *  EEPROM will most likely contain an invalid checksum. | 
|  | **/ | 
|  | static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, | 
|  | u16 words, u16 *data) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | u32 i, eewr = 0; | 
|  | s32 ret_val = 0; | 
|  |  | 
|  | /* A check for invalid values:  offset too large, too many words, | 
|  | * and not enough words. | 
|  | */ | 
|  | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || | 
|  | (words == 0)) { | 
|  | e_dbg("nvm parameter(s) out of bounds\n"); | 
|  | return -E1000_ERR_NVM; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < words; i++) { | 
|  | eewr = ((data[i] << E1000_NVM_RW_REG_DATA) | | 
|  | ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) | | 
|  | E1000_NVM_RW_REG_START); | 
|  |  | 
|  | ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); | 
|  | if (ret_val) | 
|  | break; | 
|  |  | 
|  | ew32(EEWR, eewr); | 
|  |  | 
|  | ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); | 
|  | if (ret_val) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_get_cfg_done_82571 - Poll for configuration done | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Reads the management control register for the config done bit to be set. | 
|  | **/ | 
|  | static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw) | 
|  | { | 
|  | s32 timeout = PHY_CFG_TIMEOUT; | 
|  |  | 
|  | while (timeout) { | 
|  | if (er32(EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0) | 
|  | break; | 
|  | usleep_range(1000, 2000); | 
|  | timeout--; | 
|  | } | 
|  | if (!timeout) { | 
|  | e_dbg("MNG configuration cycle has not completed.\n"); | 
|  | return -E1000_ERR_RESET; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @active: true to enable LPLU, false to disable | 
|  | * | 
|  | *  Sets the LPLU D0 state according to the active flag.  When activating LPLU | 
|  | *  this function also disables smart speed and vice versa.  LPLU will not be | 
|  | *  activated unless the device autonegotiation advertisement meets standards | 
|  | *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function | 
|  | *  pointer entry point only called by PHY setup routines. | 
|  | **/ | 
|  | static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val; | 
|  | u16 data; | 
|  |  | 
|  | ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (active) { | 
|  | data |= IGP02E1000_PM_D0_LPLU; | 
|  | ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* When LPLU is enabled, we should disable SmartSpeed */ | 
|  | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } else { | 
|  | data &= ~IGP02E1000_PM_D0_LPLU; | 
|  | ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); | 
|  | /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used | 
|  | * during Dx states where the power conservation is most | 
|  | * important.  During driver activity we should enable | 
|  | * SmartSpeed, so performance is maintained. | 
|  | */ | 
|  | if (phy->smart_speed == e1000_smart_speed_on) { | 
|  | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | data |= IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } else if (phy->smart_speed == e1000_smart_speed_off) { | 
|  | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_reset_hw_82571 - Reset hardware | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  This resets the hardware into a known state. | 
|  | **/ | 
|  | static s32 e1000_reset_hw_82571(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl, ctrl_ext, eecd, tctl; | 
|  | s32 ret_val; | 
|  |  | 
|  | /* Prevent the PCI-E bus from sticking if there is no TLP connection | 
|  | * on the last TLP read/write transaction when MAC is reset. | 
|  | */ | 
|  | ret_val = e1000e_disable_pcie_master(hw); | 
|  | if (ret_val) | 
|  | e_dbg("PCI-E Master disable polling has failed.\n"); | 
|  |  | 
|  | e_dbg("Masking off all interrupts\n"); | 
|  | ew32(IMC, 0xffffffff); | 
|  |  | 
|  | ew32(RCTL, 0); | 
|  | tctl = er32(TCTL); | 
|  | tctl &= ~E1000_TCTL_EN; | 
|  | ew32(TCTL, tctl); | 
|  | e1e_flush(); | 
|  |  | 
|  | usleep_range(10000, 20000); | 
|  |  | 
|  | /* Must acquire the MDIO ownership before MAC reset. | 
|  | * Ownership defaults to firmware after a reset. | 
|  | */ | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82573: | 
|  | ret_val = e1000_get_hw_semaphore_82573(hw); | 
|  | break; | 
|  | case e1000_82574: | 
|  | case e1000_82583: | 
|  | ret_val = e1000_get_hw_semaphore_82574(hw); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | ctrl = er32(CTRL); | 
|  |  | 
|  | e_dbg("Issuing a global reset to MAC\n"); | 
|  | ew32(CTRL, ctrl | E1000_CTRL_RST); | 
|  |  | 
|  | /* Must release MDIO ownership and mutex after MAC reset. */ | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82573: | 
|  | /* Release mutex only if the hw semaphore is acquired */ | 
|  | if (!ret_val) | 
|  | e1000_put_hw_semaphore_82573(hw); | 
|  | break; | 
|  | case e1000_82574: | 
|  | case e1000_82583: | 
|  | /* Release mutex only if the hw semaphore is acquired */ | 
|  | if (!ret_val) | 
|  | e1000_put_hw_semaphore_82574(hw); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (hw->nvm.type == e1000_nvm_flash_hw) { | 
|  | usleep_range(10, 20); | 
|  | ctrl_ext = er32(CTRL_EXT); | 
|  | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | 
|  | ew32(CTRL_EXT, ctrl_ext); | 
|  | e1e_flush(); | 
|  | } | 
|  |  | 
|  | ret_val = e1000e_get_auto_rd_done(hw); | 
|  | if (ret_val) | 
|  | /* We don't want to continue accessing MAC registers. */ | 
|  | return ret_val; | 
|  |  | 
|  | /* Phy configuration from NVM just starts after EECD_AUTO_RD is set. | 
|  | * Need to wait for Phy configuration completion before accessing | 
|  | * NVM and Phy. | 
|  | */ | 
|  |  | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | /* REQ and GNT bits need to be cleared when using AUTO_RD | 
|  | * to access the EEPROM. | 
|  | */ | 
|  | eecd = er32(EECD); | 
|  | eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT); | 
|  | ew32(EECD, eecd); | 
|  | break; | 
|  | case e1000_82573: | 
|  | case e1000_82574: | 
|  | case e1000_82583: | 
|  | msleep(25); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Clear any pending interrupt events. */ | 
|  | ew32(IMC, 0xffffffff); | 
|  | er32(ICR); | 
|  |  | 
|  | if (hw->mac.type == e1000_82571) { | 
|  | /* Install any alternate MAC address into RAR0 */ | 
|  | ret_val = e1000_check_alt_mac_addr_generic(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | e1000e_set_laa_state_82571(hw, true); | 
|  | } | 
|  |  | 
|  | /* Reinitialize the 82571 serdes link state machine */ | 
|  | if (hw->phy.media_type == e1000_media_type_internal_serdes) | 
|  | hw->mac.serdes_link_state = e1000_serdes_link_down; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_init_hw_82571 - Initialize hardware | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  This inits the hardware readying it for operation. | 
|  | **/ | 
|  | static s32 e1000_init_hw_82571(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  | u32 reg_data; | 
|  | s32 ret_val; | 
|  | u16 i, rar_count = mac->rar_entry_count; | 
|  |  | 
|  | e1000_initialize_hw_bits_82571(hw); | 
|  |  | 
|  | /* Initialize identification LED */ | 
|  | ret_val = mac->ops.id_led_init(hw); | 
|  | /* An error is not fatal and we should not stop init due to this */ | 
|  | if (ret_val) | 
|  | e_dbg("Error initializing identification LED\n"); | 
|  |  | 
|  | /* Disabling VLAN filtering */ | 
|  | e_dbg("Initializing the IEEE VLAN\n"); | 
|  | mac->ops.clear_vfta(hw); | 
|  |  | 
|  | /* Setup the receive address. | 
|  | * If, however, a locally administered address was assigned to the | 
|  | * 82571, we must reserve a RAR for it to work around an issue where | 
|  | * resetting one port will reload the MAC on the other port. | 
|  | */ | 
|  | if (e1000e_get_laa_state_82571(hw)) | 
|  | rar_count--; | 
|  | e1000e_init_rx_addrs(hw, rar_count); | 
|  |  | 
|  | /* Zero out the Multicast HASH table */ | 
|  | e_dbg("Zeroing the MTA\n"); | 
|  | for (i = 0; i < mac->mta_reg_count; i++) | 
|  | E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); | 
|  |  | 
|  | /* Setup link and flow control */ | 
|  | ret_val = mac->ops.setup_link(hw); | 
|  |  | 
|  | /* Set the transmit descriptor write-back policy */ | 
|  | reg_data = er32(TXDCTL(0)); | 
|  | reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) | | 
|  | E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC); | 
|  | ew32(TXDCTL(0), reg_data); | 
|  |  | 
|  | /* ...for both queues. */ | 
|  | switch (mac->type) { | 
|  | case e1000_82573: | 
|  | e1000e_enable_tx_pkt_filtering(hw); | 
|  | /* fall through */ | 
|  | case e1000_82574: | 
|  | case e1000_82583: | 
|  | reg_data = er32(GCR); | 
|  | reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; | 
|  | ew32(GCR, reg_data); | 
|  | break; | 
|  | default: | 
|  | reg_data = er32(TXDCTL(1)); | 
|  | reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) | | 
|  | E1000_TXDCTL_FULL_TX_DESC_WB | | 
|  | E1000_TXDCTL_COUNT_DESC); | 
|  | ew32(TXDCTL(1), reg_data); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Clear all of the statistics registers (clear on read).  It is | 
|  | * important that we do this after we have tried to establish link | 
|  | * because the symbol error count will increment wildly if there | 
|  | * is no link. | 
|  | */ | 
|  | e1000_clear_hw_cntrs_82571(hw); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Initializes required hardware-dependent bits needed for normal operation. | 
|  | **/ | 
|  | static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | /* Transmit Descriptor Control 0 */ | 
|  | reg = er32(TXDCTL(0)); | 
|  | reg |= BIT(22); | 
|  | ew32(TXDCTL(0), reg); | 
|  |  | 
|  | /* Transmit Descriptor Control 1 */ | 
|  | reg = er32(TXDCTL(1)); | 
|  | reg |= BIT(22); | 
|  | ew32(TXDCTL(1), reg); | 
|  |  | 
|  | /* Transmit Arbitration Control 0 */ | 
|  | reg = er32(TARC(0)); | 
|  | reg &= ~(0xF << 27);	/* 30:27 */ | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | reg |= BIT(23) | BIT(24) | BIT(25) | BIT(26); | 
|  | break; | 
|  | case e1000_82574: | 
|  | case e1000_82583: | 
|  | reg |= BIT(26); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | ew32(TARC(0), reg); | 
|  |  | 
|  | /* Transmit Arbitration Control 1 */ | 
|  | reg = er32(TARC(1)); | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | reg &= ~(BIT(29) | BIT(30)); | 
|  | reg |= BIT(22) | BIT(24) | BIT(25) | BIT(26); | 
|  | if (er32(TCTL) & E1000_TCTL_MULR) | 
|  | reg &= ~BIT(28); | 
|  | else | 
|  | reg |= BIT(28); | 
|  | ew32(TARC(1), reg); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Device Control */ | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82573: | 
|  | case e1000_82574: | 
|  | case e1000_82583: | 
|  | reg = er32(CTRL); | 
|  | reg &= ~BIT(29); | 
|  | ew32(CTRL, reg); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Extended Device Control */ | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82573: | 
|  | case e1000_82574: | 
|  | case e1000_82583: | 
|  | reg = er32(CTRL_EXT); | 
|  | reg &= ~BIT(23); | 
|  | reg |= BIT(22); | 
|  | ew32(CTRL_EXT, reg); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (hw->mac.type == e1000_82571) { | 
|  | reg = er32(PBA_ECC); | 
|  | reg |= E1000_PBA_ECC_CORR_EN; | 
|  | ew32(PBA_ECC, reg); | 
|  | } | 
|  |  | 
|  | /* Workaround for hardware errata. | 
|  | * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572 | 
|  | */ | 
|  | if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) { | 
|  | reg = er32(CTRL_EXT); | 
|  | reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN; | 
|  | ew32(CTRL_EXT, reg); | 
|  | } | 
|  |  | 
|  | /* Disable IPv6 extension header parsing because some malformed | 
|  | * IPv6 headers can hang the Rx. | 
|  | */ | 
|  | if (hw->mac.type <= e1000_82573) { | 
|  | reg = er32(RFCTL); | 
|  | reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); | 
|  | ew32(RFCTL, reg); | 
|  | } | 
|  |  | 
|  | /* PCI-Ex Control Registers */ | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82574: | 
|  | case e1000_82583: | 
|  | reg = er32(GCR); | 
|  | reg |= BIT(22); | 
|  | ew32(GCR, reg); | 
|  |  | 
|  | /* Workaround for hardware errata. | 
|  | * apply workaround for hardware errata documented in errata | 
|  | * docs Fixes issue where some error prone or unreliable PCIe | 
|  | * completions are occurring, particularly with ASPM enabled. | 
|  | * Without fix, issue can cause Tx timeouts. | 
|  | */ | 
|  | reg = er32(GCR2); | 
|  | reg |= 1; | 
|  | ew32(GCR2, reg); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_clear_vfta_82571 - Clear VLAN filter table | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Clears the register array which contains the VLAN filter table by | 
|  | *  setting all the values to 0. | 
|  | **/ | 
|  | static void e1000_clear_vfta_82571(struct e1000_hw *hw) | 
|  | { | 
|  | u32 offset; | 
|  | u32 vfta_value = 0; | 
|  | u32 vfta_offset = 0; | 
|  | u32 vfta_bit_in_reg = 0; | 
|  |  | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82573: | 
|  | case e1000_82574: | 
|  | case e1000_82583: | 
|  | if (hw->mng_cookie.vlan_id != 0) { | 
|  | /* The VFTA is a 4096b bit-field, each identifying | 
|  | * a single VLAN ID.  The following operations | 
|  | * determine which 32b entry (i.e. offset) into the | 
|  | * array we want to set the VLAN ID (i.e. bit) of | 
|  | * the manageability unit. | 
|  | */ | 
|  | vfta_offset = (hw->mng_cookie.vlan_id >> | 
|  | E1000_VFTA_ENTRY_SHIFT) & | 
|  | E1000_VFTA_ENTRY_MASK; | 
|  | vfta_bit_in_reg = | 
|  | BIT(hw->mng_cookie.vlan_id & | 
|  | E1000_VFTA_ENTRY_BIT_SHIFT_MASK); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { | 
|  | /* If the offset we want to clear is the same offset of the | 
|  | * manageability VLAN ID, then clear all bits except that of | 
|  | * the manageability unit. | 
|  | */ | 
|  | vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; | 
|  | E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value); | 
|  | e1e_flush(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_check_mng_mode_82574 - Check manageability is enabled | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Reads the NVM Initialization Control Word 2 and returns true | 
|  | *  (>0) if any manageability is enabled, else false (0). | 
|  | **/ | 
|  | static bool e1000_check_mng_mode_82574(struct e1000_hw *hw) | 
|  | { | 
|  | u16 data; | 
|  |  | 
|  | e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data); | 
|  | return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_led_on_82574 - Turn LED on | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Turn LED on. | 
|  | **/ | 
|  | static s32 e1000_led_on_82574(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  | u32 i; | 
|  |  | 
|  | ctrl = hw->mac.ledctl_mode2; | 
|  | if (!(E1000_STATUS_LU & er32(STATUS))) { | 
|  | /* If no link, then turn LED on by setting the invert bit | 
|  | * for each LED that's "on" (0x0E) in ledctl_mode2. | 
|  | */ | 
|  | for (i = 0; i < 4; i++) | 
|  | if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == | 
|  | E1000_LEDCTL_MODE_LED_ON) | 
|  | ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8)); | 
|  | } | 
|  | ew32(LEDCTL, ctrl); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_check_phy_82574 - check 82574 phy hung state | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Returns whether phy is hung or not | 
|  | **/ | 
|  | bool e1000_check_phy_82574(struct e1000_hw *hw) | 
|  | { | 
|  | u16 status_1kbt = 0; | 
|  | u16 receive_errors = 0; | 
|  | s32 ret_val; | 
|  |  | 
|  | /* Read PHY Receive Error counter first, if its is max - all F's then | 
|  | * read the Base1000T status register If both are max then PHY is hung. | 
|  | */ | 
|  | ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors); | 
|  | if (ret_val) | 
|  | return false; | 
|  | if (receive_errors == E1000_RECEIVE_ERROR_MAX) { | 
|  | ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt); | 
|  | if (ret_val) | 
|  | return false; | 
|  | if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) == | 
|  | E1000_IDLE_ERROR_COUNT_MASK) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_setup_link_82571 - Setup flow control and link settings | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Determines which flow control settings to use, then configures flow | 
|  | *  control.  Calls the appropriate media-specific link configuration | 
|  | *  function.  Assuming the adapter has a valid link partner, a valid link | 
|  | *  should be established.  Assumes the hardware has previously been reset | 
|  | *  and the transmitter and receiver are not enabled. | 
|  | **/ | 
|  | static s32 e1000_setup_link_82571(struct e1000_hw *hw) | 
|  | { | 
|  | /* 82573 does not have a word in the NVM to determine | 
|  | * the default flow control setting, so we explicitly | 
|  | * set it to full. | 
|  | */ | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82573: | 
|  | case e1000_82574: | 
|  | case e1000_82583: | 
|  | if (hw->fc.requested_mode == e1000_fc_default) | 
|  | hw->fc.requested_mode = e1000_fc_full; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return e1000e_setup_link_generic(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_setup_copper_link_82571 - Configure copper link settings | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Configures the link for auto-neg or forced speed and duplex.  Then we check | 
|  | *  for link, once link is established calls to configure collision distance | 
|  | *  and flow control are called. | 
|  | **/ | 
|  | static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  | s32 ret_val; | 
|  |  | 
|  | ctrl = er32(CTRL); | 
|  | ctrl |= E1000_CTRL_SLU; | 
|  | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 
|  | ew32(CTRL, ctrl); | 
|  |  | 
|  | switch (hw->phy.type) { | 
|  | case e1000_phy_m88: | 
|  | case e1000_phy_bm: | 
|  | ret_val = e1000e_copper_link_setup_m88(hw); | 
|  | break; | 
|  | case e1000_phy_igp_2: | 
|  | ret_val = e1000e_copper_link_setup_igp(hw); | 
|  | break; | 
|  | default: | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  |  | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | return e1000e_setup_copper_link(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Configures collision distance and flow control for fiber and serdes links. | 
|  | *  Upon successful setup, poll for link. | 
|  | **/ | 
|  | static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw) | 
|  | { | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | /* If SerDes loopback mode is entered, there is no form | 
|  | * of reset to take the adapter out of that mode.  So we | 
|  | * have to explicitly take the adapter out of loopback | 
|  | * mode.  This prevents drivers from twiddling their thumbs | 
|  | * if another tool failed to take it out of loopback mode. | 
|  | */ | 
|  | ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return e1000e_setup_fiber_serdes_link(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_check_for_serdes_link_82571 - Check for link (Serdes) | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Reports the link state as up or down. | 
|  | * | 
|  | *  If autonegotiation is supported by the link partner, the link state is | 
|  | *  determined by the result of autonegotiation. This is the most likely case. | 
|  | *  If autonegotiation is not supported by the link partner, and the link | 
|  | *  has a valid signal, force the link up. | 
|  | * | 
|  | *  The link state is represented internally here by 4 states: | 
|  | * | 
|  | *  1) down | 
|  | *  2) autoneg_progress | 
|  | *  3) autoneg_complete (the link successfully autonegotiated) | 
|  | *  4) forced_up (the link has been forced up, it did not autonegotiate) | 
|  | * | 
|  | **/ | 
|  | static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  | u32 rxcw; | 
|  | u32 ctrl; | 
|  | u32 status; | 
|  | u32 txcw; | 
|  | u32 i; | 
|  | s32 ret_val = 0; | 
|  |  | 
|  | ctrl = er32(CTRL); | 
|  | status = er32(STATUS); | 
|  | er32(RXCW); | 
|  | /* SYNCH bit and IV bit are sticky */ | 
|  | usleep_range(10, 20); | 
|  | rxcw = er32(RXCW); | 
|  |  | 
|  | if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) { | 
|  | /* Receiver is synchronized with no invalid bits.  */ | 
|  | switch (mac->serdes_link_state) { | 
|  | case e1000_serdes_link_autoneg_complete: | 
|  | if (!(status & E1000_STATUS_LU)) { | 
|  | /* We have lost link, retry autoneg before | 
|  | * reporting link failure | 
|  | */ | 
|  | mac->serdes_link_state = | 
|  | e1000_serdes_link_autoneg_progress; | 
|  | mac->serdes_has_link = false; | 
|  | e_dbg("AN_UP     -> AN_PROG\n"); | 
|  | } else { | 
|  | mac->serdes_has_link = true; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case e1000_serdes_link_forced_up: | 
|  | /* If we are receiving /C/ ordered sets, re-enable | 
|  | * auto-negotiation in the TXCW register and disable | 
|  | * forced link in the Device Control register in an | 
|  | * attempt to auto-negotiate with our link partner. | 
|  | */ | 
|  | if (rxcw & E1000_RXCW_C) { | 
|  | /* Enable autoneg, and unforce link up */ | 
|  | ew32(TXCW, mac->txcw); | 
|  | ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); | 
|  | mac->serdes_link_state = | 
|  | e1000_serdes_link_autoneg_progress; | 
|  | mac->serdes_has_link = false; | 
|  | e_dbg("FORCED_UP -> AN_PROG\n"); | 
|  | } else { | 
|  | mac->serdes_has_link = true; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case e1000_serdes_link_autoneg_progress: | 
|  | if (rxcw & E1000_RXCW_C) { | 
|  | /* We received /C/ ordered sets, meaning the | 
|  | * link partner has autonegotiated, and we can | 
|  | * trust the Link Up (LU) status bit. | 
|  | */ | 
|  | if (status & E1000_STATUS_LU) { | 
|  | mac->serdes_link_state = | 
|  | e1000_serdes_link_autoneg_complete; | 
|  | e_dbg("AN_PROG   -> AN_UP\n"); | 
|  | mac->serdes_has_link = true; | 
|  | } else { | 
|  | /* Autoneg completed, but failed. */ | 
|  | mac->serdes_link_state = | 
|  | e1000_serdes_link_down; | 
|  | e_dbg("AN_PROG   -> DOWN\n"); | 
|  | } | 
|  | } else { | 
|  | /* The link partner did not autoneg. | 
|  | * Force link up and full duplex, and change | 
|  | * state to forced. | 
|  | */ | 
|  | ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); | 
|  | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); | 
|  | ew32(CTRL, ctrl); | 
|  |  | 
|  | /* Configure Flow Control after link up. */ | 
|  | ret_val = e1000e_config_fc_after_link_up(hw); | 
|  | if (ret_val) { | 
|  | e_dbg("Error config flow control\n"); | 
|  | break; | 
|  | } | 
|  | mac->serdes_link_state = | 
|  | e1000_serdes_link_forced_up; | 
|  | mac->serdes_has_link = true; | 
|  | e_dbg("AN_PROG   -> FORCED_UP\n"); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case e1000_serdes_link_down: | 
|  | default: | 
|  | /* The link was down but the receiver has now gained | 
|  | * valid sync, so lets see if we can bring the link | 
|  | * up. | 
|  | */ | 
|  | ew32(TXCW, mac->txcw); | 
|  | ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); | 
|  | mac->serdes_link_state = | 
|  | e1000_serdes_link_autoneg_progress; | 
|  | mac->serdes_has_link = false; | 
|  | e_dbg("DOWN      -> AN_PROG\n"); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | if (!(rxcw & E1000_RXCW_SYNCH)) { | 
|  | mac->serdes_has_link = false; | 
|  | mac->serdes_link_state = e1000_serdes_link_down; | 
|  | e_dbg("ANYSTATE  -> DOWN\n"); | 
|  | } else { | 
|  | /* Check several times, if SYNCH bit and CONFIG | 
|  | * bit both are consistently 1 then simply ignore | 
|  | * the IV bit and restart Autoneg | 
|  | */ | 
|  | for (i = 0; i < AN_RETRY_COUNT; i++) { | 
|  | usleep_range(10, 20); | 
|  | rxcw = er32(RXCW); | 
|  | if ((rxcw & E1000_RXCW_SYNCH) && | 
|  | (rxcw & E1000_RXCW_C)) | 
|  | continue; | 
|  |  | 
|  | if (rxcw & E1000_RXCW_IV) { | 
|  | mac->serdes_has_link = false; | 
|  | mac->serdes_link_state = | 
|  | e1000_serdes_link_down; | 
|  | e_dbg("ANYSTATE  -> DOWN\n"); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (i == AN_RETRY_COUNT) { | 
|  | txcw = er32(TXCW); | 
|  | txcw |= E1000_TXCW_ANE; | 
|  | ew32(TXCW, txcw); | 
|  | mac->serdes_link_state = | 
|  | e1000_serdes_link_autoneg_progress; | 
|  | mac->serdes_has_link = false; | 
|  | e_dbg("ANYSTATE  -> AN_PROG\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_valid_led_default_82571 - Verify a valid default LED config | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @data: pointer to the NVM (EEPROM) | 
|  | * | 
|  | *  Read the EEPROM for the current default LED configuration.  If the | 
|  | *  LED configuration is not valid, set to a valid LED configuration. | 
|  | **/ | 
|  | static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data) | 
|  | { | 
|  | s32 ret_val; | 
|  |  | 
|  | ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); | 
|  | if (ret_val) { | 
|  | e_dbg("NVM Read Error\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82573: | 
|  | case e1000_82574: | 
|  | case e1000_82583: | 
|  | if (*data == ID_LED_RESERVED_F746) | 
|  | *data = ID_LED_DEFAULT_82573; | 
|  | break; | 
|  | default: | 
|  | if (*data == ID_LED_RESERVED_0000 || | 
|  | *data == ID_LED_RESERVED_FFFF) | 
|  | *data = ID_LED_DEFAULT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_get_laa_state_82571 - Get locally administered address state | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Retrieve and return the current locally administered address state. | 
|  | **/ | 
|  | bool e1000e_get_laa_state_82571(struct e1000_hw *hw) | 
|  | { | 
|  | if (hw->mac.type != e1000_82571) | 
|  | return false; | 
|  |  | 
|  | return hw->dev_spec.e82571.laa_is_present; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_set_laa_state_82571 - Set locally administered address state | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @state: enable/disable locally administered address | 
|  | * | 
|  | *  Enable/Disable the current locally administered address state. | 
|  | **/ | 
|  | void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state) | 
|  | { | 
|  | if (hw->mac.type != e1000_82571) | 
|  | return; | 
|  |  | 
|  | hw->dev_spec.e82571.laa_is_present = state; | 
|  |  | 
|  | /* If workaround is activated... */ | 
|  | if (state) | 
|  | /* Hold a copy of the LAA in RAR[14] This is done so that | 
|  | * between the time RAR[0] gets clobbered and the time it | 
|  | * gets fixed, the actual LAA is in one of the RARs and no | 
|  | * incoming packets directed to this port are dropped. | 
|  | * Eventually the LAA will be in RAR[0] and RAR[14]. | 
|  | */ | 
|  | hw->mac.ops.rar_set(hw, hw->mac.addr, | 
|  | hw->mac.rar_entry_count - 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Verifies that the EEPROM has completed the update.  After updating the | 
|  | *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If | 
|  | *  the checksum fix is not implemented, we need to set the bit and update | 
|  | *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect, | 
|  | *  we need to return bad checksum. | 
|  | **/ | 
|  | static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | s32 ret_val; | 
|  | u16 data; | 
|  |  | 
|  | if (nvm->type != e1000_nvm_flash_hw) | 
|  | return 0; | 
|  |  | 
|  | /* Check bit 4 of word 10h.  If it is 0, firmware is done updating | 
|  | * 10h-12h.  Checksum may need to be fixed. | 
|  | */ | 
|  | ret_val = e1000_read_nvm(hw, 0x10, 1, &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (!(data & 0x10)) { | 
|  | /* Read 0x23 and check bit 15.  This bit is a 1 | 
|  | * when the checksum has already been fixed.  If | 
|  | * the checksum is still wrong and this bit is a | 
|  | * 1, we need to return bad checksum.  Otherwise, | 
|  | * we need to set this bit to a 1 and update the | 
|  | * checksum. | 
|  | */ | 
|  | ret_val = e1000_read_nvm(hw, 0x23, 1, &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (!(data & 0x8000)) { | 
|  | data |= 0x8000; | 
|  | ret_val = e1000_write_nvm(hw, 0x23, 1, &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ret_val = e1000e_update_nvm_checksum(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_read_mac_addr_82571 - Read device MAC address | 
|  | *  @hw: pointer to the HW structure | 
|  | **/ | 
|  | static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw) | 
|  | { | 
|  | if (hw->mac.type == e1000_82571) { | 
|  | s32 ret_val; | 
|  |  | 
|  | /* If there's an alternate MAC address place it in RAR0 | 
|  | * so that it will override the Si installed default perm | 
|  | * address. | 
|  | */ | 
|  | ret_val = e1000_check_alt_mac_addr_generic(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | return e1000_read_mac_addr_generic(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_power_down_phy_copper_82571 - Remove link during PHY power down | 
|  | * @hw: pointer to the HW structure | 
|  | * | 
|  | * In the case of a PHY power down to save power, or to turn off link during a | 
|  | * driver unload, or wake on lan is not enabled, remove the link. | 
|  | **/ | 
|  | static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  |  | 
|  | if (!phy->ops.check_reset_block) | 
|  | return; | 
|  |  | 
|  | /* If the management interface is not enabled, then power down */ | 
|  | if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw))) | 
|  | e1000_power_down_phy_copper(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Clears the hardware counters by reading the counter registers. | 
|  | **/ | 
|  | static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw) | 
|  | { | 
|  | e1000e_clear_hw_cntrs_base(hw); | 
|  |  | 
|  | er32(PRC64); | 
|  | er32(PRC127); | 
|  | er32(PRC255); | 
|  | er32(PRC511); | 
|  | er32(PRC1023); | 
|  | er32(PRC1522); | 
|  | er32(PTC64); | 
|  | er32(PTC127); | 
|  | er32(PTC255); | 
|  | er32(PTC511); | 
|  | er32(PTC1023); | 
|  | er32(PTC1522); | 
|  |  | 
|  | er32(ALGNERRC); | 
|  | er32(RXERRC); | 
|  | er32(TNCRS); | 
|  | er32(CEXTERR); | 
|  | er32(TSCTC); | 
|  | er32(TSCTFC); | 
|  |  | 
|  | er32(MGTPRC); | 
|  | er32(MGTPDC); | 
|  | er32(MGTPTC); | 
|  |  | 
|  | er32(IAC); | 
|  | er32(ICRXOC); | 
|  |  | 
|  | er32(ICRXPTC); | 
|  | er32(ICRXATC); | 
|  | er32(ICTXPTC); | 
|  | er32(ICTXATC); | 
|  | er32(ICTXQEC); | 
|  | er32(ICTXQMTC); | 
|  | er32(ICRXDMTC); | 
|  | } | 
|  |  | 
|  | static const struct e1000_mac_operations e82571_mac_ops = { | 
|  | /* .check_mng_mode: mac type dependent */ | 
|  | /* .check_for_link: media type dependent */ | 
|  | .id_led_init		= e1000e_id_led_init_generic, | 
|  | .cleanup_led		= e1000e_cleanup_led_generic, | 
|  | .clear_hw_cntrs		= e1000_clear_hw_cntrs_82571, | 
|  | .get_bus_info		= e1000e_get_bus_info_pcie, | 
|  | .set_lan_id		= e1000_set_lan_id_multi_port_pcie, | 
|  | /* .get_link_up_info: media type dependent */ | 
|  | /* .led_on: mac type dependent */ | 
|  | .led_off		= e1000e_led_off_generic, | 
|  | .update_mc_addr_list	= e1000e_update_mc_addr_list_generic, | 
|  | .write_vfta		= e1000_write_vfta_generic, | 
|  | .clear_vfta		= e1000_clear_vfta_82571, | 
|  | .reset_hw		= e1000_reset_hw_82571, | 
|  | .init_hw		= e1000_init_hw_82571, | 
|  | .setup_link		= e1000_setup_link_82571, | 
|  | /* .setup_physical_interface: media type dependent */ | 
|  | .setup_led		= e1000e_setup_led_generic, | 
|  | .config_collision_dist	= e1000e_config_collision_dist_generic, | 
|  | .read_mac_addr		= e1000_read_mac_addr_82571, | 
|  | .rar_set		= e1000e_rar_set_generic, | 
|  | .rar_get_count		= e1000e_rar_get_count_generic, | 
|  | }; | 
|  |  | 
|  | static const struct e1000_phy_operations e82_phy_ops_igp = { | 
|  | .acquire		= e1000_get_hw_semaphore_82571, | 
|  | .check_polarity		= e1000_check_polarity_igp, | 
|  | .check_reset_block	= e1000e_check_reset_block_generic, | 
|  | .commit			= NULL, | 
|  | .force_speed_duplex	= e1000e_phy_force_speed_duplex_igp, | 
|  | .get_cfg_done		= e1000_get_cfg_done_82571, | 
|  | .get_cable_length	= e1000e_get_cable_length_igp_2, | 
|  | .get_info		= e1000e_get_phy_info_igp, | 
|  | .read_reg		= e1000e_read_phy_reg_igp, | 
|  | .release		= e1000_put_hw_semaphore_82571, | 
|  | .reset			= e1000e_phy_hw_reset_generic, | 
|  | .set_d0_lplu_state	= e1000_set_d0_lplu_state_82571, | 
|  | .set_d3_lplu_state	= e1000e_set_d3_lplu_state, | 
|  | .write_reg		= e1000e_write_phy_reg_igp, | 
|  | .cfg_on_link_up		= NULL, | 
|  | }; | 
|  |  | 
|  | static const struct e1000_phy_operations e82_phy_ops_m88 = { | 
|  | .acquire		= e1000_get_hw_semaphore_82571, | 
|  | .check_polarity		= e1000_check_polarity_m88, | 
|  | .check_reset_block	= e1000e_check_reset_block_generic, | 
|  | .commit			= e1000e_phy_sw_reset, | 
|  | .force_speed_duplex	= e1000e_phy_force_speed_duplex_m88, | 
|  | .get_cfg_done		= e1000e_get_cfg_done_generic, | 
|  | .get_cable_length	= e1000e_get_cable_length_m88, | 
|  | .get_info		= e1000e_get_phy_info_m88, | 
|  | .read_reg		= e1000e_read_phy_reg_m88, | 
|  | .release		= e1000_put_hw_semaphore_82571, | 
|  | .reset			= e1000e_phy_hw_reset_generic, | 
|  | .set_d0_lplu_state	= e1000_set_d0_lplu_state_82571, | 
|  | .set_d3_lplu_state	= e1000e_set_d3_lplu_state, | 
|  | .write_reg		= e1000e_write_phy_reg_m88, | 
|  | .cfg_on_link_up		= NULL, | 
|  | }; | 
|  |  | 
|  | static const struct e1000_phy_operations e82_phy_ops_bm = { | 
|  | .acquire		= e1000_get_hw_semaphore_82571, | 
|  | .check_polarity		= e1000_check_polarity_m88, | 
|  | .check_reset_block	= e1000e_check_reset_block_generic, | 
|  | .commit			= e1000e_phy_sw_reset, | 
|  | .force_speed_duplex	= e1000e_phy_force_speed_duplex_m88, | 
|  | .get_cfg_done		= e1000e_get_cfg_done_generic, | 
|  | .get_cable_length	= e1000e_get_cable_length_m88, | 
|  | .get_info		= e1000e_get_phy_info_m88, | 
|  | .read_reg		= e1000e_read_phy_reg_bm2, | 
|  | .release		= e1000_put_hw_semaphore_82571, | 
|  | .reset			= e1000e_phy_hw_reset_generic, | 
|  | .set_d0_lplu_state	= e1000_set_d0_lplu_state_82571, | 
|  | .set_d3_lplu_state	= e1000e_set_d3_lplu_state, | 
|  | .write_reg		= e1000e_write_phy_reg_bm2, | 
|  | .cfg_on_link_up		= NULL, | 
|  | }; | 
|  |  | 
|  | static const struct e1000_nvm_operations e82571_nvm_ops = { | 
|  | .acquire		= e1000_acquire_nvm_82571, | 
|  | .read			= e1000e_read_nvm_eerd, | 
|  | .release		= e1000_release_nvm_82571, | 
|  | .reload			= e1000e_reload_nvm_generic, | 
|  | .update			= e1000_update_nvm_checksum_82571, | 
|  | .valid_led_default	= e1000_valid_led_default_82571, | 
|  | .validate		= e1000_validate_nvm_checksum_82571, | 
|  | .write			= e1000_write_nvm_82571, | 
|  | }; | 
|  |  | 
|  | const struct e1000_info e1000_82571_info = { | 
|  | .mac			= e1000_82571, | 
|  | .flags			= FLAG_HAS_HW_VLAN_FILTER | 
|  | | FLAG_HAS_JUMBO_FRAMES | 
|  | | FLAG_HAS_WOL | 
|  | | FLAG_APME_IN_CTRL3 | 
|  | | FLAG_HAS_CTRLEXT_ON_LOAD | 
|  | | FLAG_HAS_SMART_POWER_DOWN | 
|  | | FLAG_RESET_OVERWRITES_LAA /* errata */ | 
|  | | FLAG_TARC_SPEED_MODE_BIT /* errata */ | 
|  | | FLAG_APME_CHECK_PORT_B, | 
|  | .flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */ | 
|  | | FLAG2_DMA_BURST, | 
|  | .pba			= 38, | 
|  | .max_hw_frame_size	= DEFAULT_JUMBO, | 
|  | .get_variants		= e1000_get_variants_82571, | 
|  | .mac_ops		= &e82571_mac_ops, | 
|  | .phy_ops		= &e82_phy_ops_igp, | 
|  | .nvm_ops		= &e82571_nvm_ops, | 
|  | }; | 
|  |  | 
|  | const struct e1000_info e1000_82572_info = { | 
|  | .mac			= e1000_82572, | 
|  | .flags			= FLAG_HAS_HW_VLAN_FILTER | 
|  | | FLAG_HAS_JUMBO_FRAMES | 
|  | | FLAG_HAS_WOL | 
|  | | FLAG_APME_IN_CTRL3 | 
|  | | FLAG_HAS_CTRLEXT_ON_LOAD | 
|  | | FLAG_TARC_SPEED_MODE_BIT, /* errata */ | 
|  | .flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */ | 
|  | | FLAG2_DMA_BURST, | 
|  | .pba			= 38, | 
|  | .max_hw_frame_size	= DEFAULT_JUMBO, | 
|  | .get_variants		= e1000_get_variants_82571, | 
|  | .mac_ops		= &e82571_mac_ops, | 
|  | .phy_ops		= &e82_phy_ops_igp, | 
|  | .nvm_ops		= &e82571_nvm_ops, | 
|  | }; | 
|  |  | 
|  | const struct e1000_info e1000_82573_info = { | 
|  | .mac			= e1000_82573, | 
|  | .flags			= FLAG_HAS_HW_VLAN_FILTER | 
|  | | FLAG_HAS_WOL | 
|  | | FLAG_APME_IN_CTRL3 | 
|  | | FLAG_HAS_SMART_POWER_DOWN | 
|  | | FLAG_HAS_AMT | 
|  | | FLAG_HAS_SWSM_ON_LOAD, | 
|  | .flags2			= FLAG2_DISABLE_ASPM_L1 | 
|  | | FLAG2_DISABLE_ASPM_L0S, | 
|  | .pba			= 20, | 
|  | .max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN, | 
|  | .get_variants		= e1000_get_variants_82571, | 
|  | .mac_ops		= &e82571_mac_ops, | 
|  | .phy_ops		= &e82_phy_ops_m88, | 
|  | .nvm_ops		= &e82571_nvm_ops, | 
|  | }; | 
|  |  | 
|  | const struct e1000_info e1000_82574_info = { | 
|  | .mac			= e1000_82574, | 
|  | .flags			= FLAG_HAS_HW_VLAN_FILTER | 
|  | | FLAG_HAS_MSIX | 
|  | | FLAG_HAS_JUMBO_FRAMES | 
|  | | FLAG_HAS_WOL | 
|  | | FLAG_HAS_HW_TIMESTAMP | 
|  | | FLAG_APME_IN_CTRL3 | 
|  | | FLAG_HAS_SMART_POWER_DOWN | 
|  | | FLAG_HAS_AMT | 
|  | | FLAG_HAS_CTRLEXT_ON_LOAD, | 
|  | .flags2			 = FLAG2_CHECK_PHY_HANG | 
|  | | FLAG2_DISABLE_ASPM_L0S | 
|  | | FLAG2_DISABLE_ASPM_L1 | 
|  | | FLAG2_NO_DISABLE_RX | 
|  | | FLAG2_DMA_BURST | 
|  | | FLAG2_CHECK_SYSTIM_OVERFLOW, | 
|  | .pba			= 32, | 
|  | .max_hw_frame_size	= DEFAULT_JUMBO, | 
|  | .get_variants		= e1000_get_variants_82571, | 
|  | .mac_ops		= &e82571_mac_ops, | 
|  | .phy_ops		= &e82_phy_ops_bm, | 
|  | .nvm_ops		= &e82571_nvm_ops, | 
|  | }; | 
|  |  | 
|  | const struct e1000_info e1000_82583_info = { | 
|  | .mac			= e1000_82583, | 
|  | .flags			= FLAG_HAS_HW_VLAN_FILTER | 
|  | | FLAG_HAS_WOL | 
|  | | FLAG_HAS_HW_TIMESTAMP | 
|  | | FLAG_APME_IN_CTRL3 | 
|  | | FLAG_HAS_SMART_POWER_DOWN | 
|  | | FLAG_HAS_AMT | 
|  | | FLAG_HAS_JUMBO_FRAMES | 
|  | | FLAG_HAS_CTRLEXT_ON_LOAD, | 
|  | .flags2			= FLAG2_DISABLE_ASPM_L0S | 
|  | | FLAG2_DISABLE_ASPM_L1 | 
|  | | FLAG2_NO_DISABLE_RX | 
|  | | FLAG2_CHECK_SYSTIM_OVERFLOW, | 
|  | .pba			= 32, | 
|  | .max_hw_frame_size	= DEFAULT_JUMBO, | 
|  | .get_variants		= e1000_get_variants_82571, | 
|  | .mac_ops		= &e82571_mac_ops, | 
|  | .phy_ops		= &e82_phy_ops_bm, | 
|  | .nvm_ops		= &e82571_nvm_ops, | 
|  | }; |