blob: 34237a1b1f2e45c40989c2070bdc0ae071ee0c4b [file] [log] [blame]
/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/module.h>
#include <linux/pci.h>
#include "amdgpu.h"
#include "amdgpu_xcp.h"
#include "amdgpu_ucode.h"
#include "amdgpu_trace.h"
#include "sdma/sdma_4_4_2_offset.h"
#include "sdma/sdma_4_4_2_sh_mask.h"
#include "soc15_common.h"
#include "soc15.h"
#include "vega10_sdma_pkt_open.h"
#include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
#include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
#include "amdgpu_ras.h"
MODULE_FIRMWARE("amdgpu/sdma_4_4_2.bin");
#define mmSMNAID_AID0_MCA_SMU 0x03b30400
#define WREG32_SDMA(instance, offset, value) \
WREG32(sdma_v4_4_2_get_reg_offset(adev, (instance), (offset)), value)
#define RREG32_SDMA(instance, offset) \
RREG32(sdma_v4_4_2_get_reg_offset(adev, (instance), (offset)))
static void sdma_v4_4_2_set_ring_funcs(struct amdgpu_device *adev);
static void sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device *adev);
static void sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device *adev);
static void sdma_v4_4_2_set_irq_funcs(struct amdgpu_device *adev);
static void sdma_v4_4_2_set_ras_funcs(struct amdgpu_device *adev);
static u32 sdma_v4_4_2_get_reg_offset(struct amdgpu_device *adev,
u32 instance, u32 offset)
{
u32 dev_inst = GET_INST(SDMA0, instance);
return (adev->reg_offset[SDMA0_HWIP][dev_inst][0] + offset);
}
static unsigned sdma_v4_4_2_seq_to_irq_id(int seq_num)
{
switch (seq_num) {
case 0:
return SOC15_IH_CLIENTID_SDMA0;
case 1:
return SOC15_IH_CLIENTID_SDMA1;
case 2:
return SOC15_IH_CLIENTID_SDMA2;
case 3:
return SOC15_IH_CLIENTID_SDMA3;
default:
return -EINVAL;
}
}
static int sdma_v4_4_2_irq_id_to_seq(unsigned client_id)
{
switch (client_id) {
case SOC15_IH_CLIENTID_SDMA0:
return 0;
case SOC15_IH_CLIENTID_SDMA1:
return 1;
case SOC15_IH_CLIENTID_SDMA2:
return 2;
case SOC15_IH_CLIENTID_SDMA3:
return 3;
default:
return -EINVAL;
}
}
static void sdma_v4_4_2_inst_init_golden_registers(struct amdgpu_device *adev,
uint32_t inst_mask)
{
u32 val;
int i;
for (i = 0; i < adev->sdma.num_instances; i++) {
val = RREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG);
val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG, NUM_BANKS, 4);
val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG,
PIPE_INTERLEAVE_SIZE, 0);
WREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG, val);
val = RREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG_READ);
val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG_READ, NUM_BANKS,
4);
val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG_READ,
PIPE_INTERLEAVE_SIZE, 0);
WREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG_READ, val);
}
}
/**
* sdma_v4_4_2_init_microcode - load ucode images from disk
*
* @adev: amdgpu_device pointer
*
* Use the firmware interface to load the ucode images into
* the driver (not loaded into hw).
* Returns 0 on success, error on failure.
*/
static int sdma_v4_4_2_init_microcode(struct amdgpu_device *adev)
{
int ret, i;
for (i = 0; i < adev->sdma.num_instances; i++) {
if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) ==
IP_VERSION(4, 4, 2)) {
ret = amdgpu_sdma_init_microcode(adev, 0, true);
break;
} else {
ret = amdgpu_sdma_init_microcode(adev, i, false);
if (ret)
return ret;
}
}
return ret;
}
/**
* sdma_v4_4_2_ring_get_rptr - get the current read pointer
*
* @ring: amdgpu ring pointer
*
* Get the current rptr from the hardware.
*/
static uint64_t sdma_v4_4_2_ring_get_rptr(struct amdgpu_ring *ring)
{
u64 rptr;
/* XXX check if swapping is necessary on BE */
rptr = READ_ONCE(*((u64 *)&ring->adev->wb.wb[ring->rptr_offs]));
DRM_DEBUG("rptr before shift == 0x%016llx\n", rptr);
return rptr >> 2;
}
/**
* sdma_v4_4_2_ring_get_wptr - get the current write pointer
*
* @ring: amdgpu ring pointer
*
* Get the current wptr from the hardware.
*/
static uint64_t sdma_v4_4_2_ring_get_wptr(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
u64 wptr;
if (ring->use_doorbell) {
/* XXX check if swapping is necessary on BE */
wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
} else {
wptr = RREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR_HI);
wptr = wptr << 32;
wptr |= RREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR);
DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
ring->me, wptr);
}
return wptr >> 2;
}
/**
* sdma_v4_4_2_ring_set_wptr - commit the write pointer
*
* @ring: amdgpu ring pointer
*
* Write the wptr back to the hardware.
*/
static void sdma_v4_4_2_ring_set_wptr(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
DRM_DEBUG("Setting write pointer\n");
if (ring->use_doorbell) {
u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
DRM_DEBUG("Using doorbell -- "
"wptr_offs == 0x%08x "
"lower_32_bits(ring->wptr) << 2 == 0x%08x "
"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
ring->wptr_offs,
lower_32_bits(ring->wptr << 2),
upper_32_bits(ring->wptr << 2));
/* XXX check if swapping is necessary on BE */
WRITE_ONCE(*wb, (ring->wptr << 2));
DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
ring->doorbell_index, ring->wptr << 2);
WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
} else {
DRM_DEBUG("Not using doorbell -- "
"regSDMA%i_GFX_RB_WPTR == 0x%08x "
"regSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
ring->me,
lower_32_bits(ring->wptr << 2),
ring->me,
upper_32_bits(ring->wptr << 2));
WREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR,
lower_32_bits(ring->wptr << 2));
WREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR_HI,
upper_32_bits(ring->wptr << 2));
}
}
/**
* sdma_v4_4_2_page_ring_get_wptr - get the current write pointer
*
* @ring: amdgpu ring pointer
*
* Get the current wptr from the hardware.
*/
static uint64_t sdma_v4_4_2_page_ring_get_wptr(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
u64 wptr;
if (ring->use_doorbell) {
/* XXX check if swapping is necessary on BE */
wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
} else {
wptr = RREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR_HI);
wptr = wptr << 32;
wptr |= RREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR);
}
return wptr >> 2;
}
/**
* sdma_v4_4_2_page_ring_set_wptr - commit the write pointer
*
* @ring: amdgpu ring pointer
*
* Write the wptr back to the hardware.
*/
static void sdma_v4_4_2_page_ring_set_wptr(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
if (ring->use_doorbell) {
u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
/* XXX check if swapping is necessary on BE */
WRITE_ONCE(*wb, (ring->wptr << 2));
WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
} else {
uint64_t wptr = ring->wptr << 2;
WREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR,
lower_32_bits(wptr));
WREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR_HI,
upper_32_bits(wptr));
}
}
static void sdma_v4_4_2_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
{
struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
int i;
for (i = 0; i < count; i++)
if (sdma && sdma->burst_nop && (i == 0))
amdgpu_ring_write(ring, ring->funcs->nop |
SDMA_PKT_NOP_HEADER_COUNT(count - 1));
else
amdgpu_ring_write(ring, ring->funcs->nop);
}
/**
* sdma_v4_4_2_ring_emit_ib - Schedule an IB on the DMA engine
*
* @ring: amdgpu ring pointer
* @job: job to retrieve vmid from
* @ib: IB object to schedule
* @flags: unused
*
* Schedule an IB in the DMA ring.
*/
static void sdma_v4_4_2_ring_emit_ib(struct amdgpu_ring *ring,
struct amdgpu_job *job,
struct amdgpu_ib *ib,
uint32_t flags)
{
unsigned vmid = AMDGPU_JOB_GET_VMID(job);
/* IB packet must end on a 8 DW boundary */
sdma_v4_4_2_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
/* base must be 32 byte aligned */
amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
amdgpu_ring_write(ring, ib->length_dw);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, 0);
}
static void sdma_v4_4_2_wait_reg_mem(struct amdgpu_ring *ring,
int mem_space, int hdp,
uint32_t addr0, uint32_t addr1,
uint32_t ref, uint32_t mask,
uint32_t inv)
{
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
if (mem_space) {
/* memory */
amdgpu_ring_write(ring, addr0);
amdgpu_ring_write(ring, addr1);
} else {
/* registers */
amdgpu_ring_write(ring, addr0 << 2);
amdgpu_ring_write(ring, addr1 << 2);
}
amdgpu_ring_write(ring, ref); /* reference */
amdgpu_ring_write(ring, mask); /* mask */
amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
}
/**
* sdma_v4_4_2_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
*
* @ring: amdgpu ring pointer
*
* Emit an hdp flush packet on the requested DMA ring.
*/
static void sdma_v4_4_2_ring_emit_hdp_flush(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
u32 ref_and_mask = 0;
const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
sdma_v4_4_2_wait_reg_mem(ring, 0, 1,
adev->nbio.funcs->get_hdp_flush_done_offset(adev),
adev->nbio.funcs->get_hdp_flush_req_offset(adev),
ref_and_mask, ref_and_mask, 10);
}
/**
* sdma_v4_4_2_ring_emit_fence - emit a fence on the DMA ring
*
* @ring: amdgpu ring pointer
* @addr: address
* @seq: sequence number
* @flags: fence related flags
*
* Add a DMA fence packet to the ring to write
* the fence seq number and DMA trap packet to generate
* an interrupt if needed.
*/
static void sdma_v4_4_2_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
unsigned flags)
{
bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
/* write the fence */
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
/* zero in first two bits */
BUG_ON(addr & 0x3);
amdgpu_ring_write(ring, lower_32_bits(addr));
amdgpu_ring_write(ring, upper_32_bits(addr));
amdgpu_ring_write(ring, lower_32_bits(seq));
/* optionally write high bits as well */
if (write64bit) {
addr += 4;
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
/* zero in first two bits */
BUG_ON(addr & 0x3);
amdgpu_ring_write(ring, lower_32_bits(addr));
amdgpu_ring_write(ring, upper_32_bits(addr));
amdgpu_ring_write(ring, upper_32_bits(seq));
}
/* generate an interrupt */
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
}
/**
* sdma_v4_4_2_inst_gfx_stop - stop the gfx async dma engines
*
* @adev: amdgpu_device pointer
* @inst_mask: mask of dma engine instances to be disabled
*
* Stop the gfx async dma ring buffers.
*/
static void sdma_v4_4_2_inst_gfx_stop(struct amdgpu_device *adev,
uint32_t inst_mask)
{
struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES];
u32 doorbell_offset, doorbell;
u32 rb_cntl, ib_cntl;
int i;
for_each_inst(i, inst_mask) {
sdma[i] = &adev->sdma.instance[i].ring;
rb_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_CNTL);
rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_ENABLE, 0);
WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl);
ib_cntl = RREG32_SDMA(i, regSDMA_GFX_IB_CNTL);
ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_ENABLE, 0);
WREG32_SDMA(i, regSDMA_GFX_IB_CNTL, ib_cntl);
if (sdma[i]->use_doorbell) {
doorbell = RREG32_SDMA(i, regSDMA_GFX_DOORBELL);
doorbell_offset = RREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET);
doorbell = REG_SET_FIELD(doorbell, SDMA_GFX_DOORBELL, ENABLE, 0);
doorbell_offset = REG_SET_FIELD(doorbell_offset,
SDMA_GFX_DOORBELL_OFFSET,
OFFSET, 0);
WREG32_SDMA(i, regSDMA_GFX_DOORBELL, doorbell);
WREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET, doorbell_offset);
}
}
}
/**
* sdma_v4_4_2_inst_rlc_stop - stop the compute async dma engines
*
* @adev: amdgpu_device pointer
* @inst_mask: mask of dma engine instances to be disabled
*
* Stop the compute async dma queues.
*/
static void sdma_v4_4_2_inst_rlc_stop(struct amdgpu_device *adev,
uint32_t inst_mask)
{
/* XXX todo */
}
/**
* sdma_v4_4_2_inst_page_stop - stop the page async dma engines
*
* @adev: amdgpu_device pointer
* @inst_mask: mask of dma engine instances to be disabled
*
* Stop the page async dma ring buffers.
*/
static void sdma_v4_4_2_inst_page_stop(struct amdgpu_device *adev,
uint32_t inst_mask)
{
u32 rb_cntl, ib_cntl;
int i;
for_each_inst(i, inst_mask) {
rb_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_CNTL);
rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL,
RB_ENABLE, 0);
WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl);
ib_cntl = RREG32_SDMA(i, regSDMA_PAGE_IB_CNTL);
ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL,
IB_ENABLE, 0);
WREG32_SDMA(i, regSDMA_PAGE_IB_CNTL, ib_cntl);
}
}
/**
* sdma_v4_4_2_inst_ctx_switch_enable - stop the async dma engines context switch
*
* @adev: amdgpu_device pointer
* @enable: enable/disable the DMA MEs context switch.
* @inst_mask: mask of dma engine instances to be enabled
*
* Halt or unhalt the async dma engines context switch.
*/
static void sdma_v4_4_2_inst_ctx_switch_enable(struct amdgpu_device *adev,
bool enable, uint32_t inst_mask)
{
u32 f32_cntl, phase_quantum = 0;
int i;
if (amdgpu_sdma_phase_quantum) {
unsigned value = amdgpu_sdma_phase_quantum;
unsigned unit = 0;
while (value > (SDMA_PHASE0_QUANTUM__VALUE_MASK >>
SDMA_PHASE0_QUANTUM__VALUE__SHIFT)) {
value = (value + 1) >> 1;
unit++;
}
if (unit > (SDMA_PHASE0_QUANTUM__UNIT_MASK >>
SDMA_PHASE0_QUANTUM__UNIT__SHIFT)) {
value = (SDMA_PHASE0_QUANTUM__VALUE_MASK >>
SDMA_PHASE0_QUANTUM__VALUE__SHIFT);
unit = (SDMA_PHASE0_QUANTUM__UNIT_MASK >>
SDMA_PHASE0_QUANTUM__UNIT__SHIFT);
WARN_ONCE(1,
"clamping sdma_phase_quantum to %uK clock cycles\n",
value << unit);
}
phase_quantum =
value << SDMA_PHASE0_QUANTUM__VALUE__SHIFT |
unit << SDMA_PHASE0_QUANTUM__UNIT__SHIFT;
}
for_each_inst(i, inst_mask) {
f32_cntl = RREG32_SDMA(i, regSDMA_CNTL);
f32_cntl = REG_SET_FIELD(f32_cntl, SDMA_CNTL,
AUTO_CTXSW_ENABLE, enable ? 1 : 0);
if (enable && amdgpu_sdma_phase_quantum) {
WREG32_SDMA(i, regSDMA_PHASE0_QUANTUM, phase_quantum);
WREG32_SDMA(i, regSDMA_PHASE1_QUANTUM, phase_quantum);
WREG32_SDMA(i, regSDMA_PHASE2_QUANTUM, phase_quantum);
}
WREG32_SDMA(i, regSDMA_CNTL, f32_cntl);
/* Extend page fault timeout to avoid interrupt storm */
WREG32_SDMA(i, regSDMA_UTCL1_TIMEOUT, 0x00800080);
}
}
/**
* sdma_v4_4_2_inst_enable - stop the async dma engines
*
* @adev: amdgpu_device pointer
* @enable: enable/disable the DMA MEs.
* @inst_mask: mask of dma engine instances to be enabled
*
* Halt or unhalt the async dma engines.
*/
static void sdma_v4_4_2_inst_enable(struct amdgpu_device *adev, bool enable,
uint32_t inst_mask)
{
u32 f32_cntl;
int i;
if (!enable) {
sdma_v4_4_2_inst_gfx_stop(adev, inst_mask);
sdma_v4_4_2_inst_rlc_stop(adev, inst_mask);
if (adev->sdma.has_page_queue)
sdma_v4_4_2_inst_page_stop(adev, inst_mask);
/* SDMA FW needs to respond to FREEZE requests during reset.
* Keep it running during reset */
if (!amdgpu_sriov_vf(adev) && amdgpu_in_reset(adev))
return;
}
if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP)
return;
for_each_inst(i, inst_mask) {
f32_cntl = RREG32_SDMA(i, regSDMA_F32_CNTL);
f32_cntl = REG_SET_FIELD(f32_cntl, SDMA_F32_CNTL, HALT, enable ? 0 : 1);
WREG32_SDMA(i, regSDMA_F32_CNTL, f32_cntl);
}
}
/*
* sdma_v4_4_2_rb_cntl - get parameters for rb_cntl
*/
static uint32_t sdma_v4_4_2_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
{
/* Set ring buffer size in dwords */
uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
barrier(); /* work around https://llvm.org/pr42576 */
rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
#ifdef __BIG_ENDIAN
rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL,
RPTR_WRITEBACK_SWAP_ENABLE, 1);
#endif
return rb_cntl;
}
/**
* sdma_v4_4_2_gfx_resume - setup and start the async dma engines
*
* @adev: amdgpu_device pointer
* @i: instance to resume
*
* Set up the gfx DMA ring buffers and enable them.
* Returns 0 for success, error for failure.
*/
static void sdma_v4_4_2_gfx_resume(struct amdgpu_device *adev, unsigned int i)
{
struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
u32 rb_cntl, ib_cntl, wptr_poll_cntl;
u32 wb_offset;
u32 doorbell;
u32 doorbell_offset;
u64 wptr_gpu_addr;
wb_offset = (ring->rptr_offs * 4);
rb_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_CNTL);
rb_cntl = sdma_v4_4_2_rb_cntl(ring, rb_cntl);
WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl);
/* set the wb address whether it's enabled or not */
WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_ADDR_HI,
upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_ADDR_LO,
lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL,
RPTR_WRITEBACK_ENABLE, 1);
WREG32_SDMA(i, regSDMA_GFX_RB_BASE, ring->gpu_addr >> 8);
WREG32_SDMA(i, regSDMA_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
ring->wptr = 0;
/* before programing wptr to a less value, need set minor_ptr_update first */
WREG32_SDMA(i, regSDMA_GFX_MINOR_PTR_UPDATE, 1);
/* Initialize the ring buffer's read and write pointers */
WREG32_SDMA(i, regSDMA_GFX_RB_RPTR, 0);
WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_HI, 0);
WREG32_SDMA(i, regSDMA_GFX_RB_WPTR, 0);
WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_HI, 0);
doorbell = RREG32_SDMA(i, regSDMA_GFX_DOORBELL);
doorbell_offset = RREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET);
doorbell = REG_SET_FIELD(doorbell, SDMA_GFX_DOORBELL, ENABLE,
ring->use_doorbell);
doorbell_offset = REG_SET_FIELD(doorbell_offset,
SDMA_GFX_DOORBELL_OFFSET,
OFFSET, ring->doorbell_index);
WREG32_SDMA(i, regSDMA_GFX_DOORBELL, doorbell);
WREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET, doorbell_offset);
sdma_v4_4_2_ring_set_wptr(ring);
/* set minor_ptr_update to 0 after wptr programed */
WREG32_SDMA(i, regSDMA_GFX_MINOR_PTR_UPDATE, 0);
/* setup the wptr shadow polling */
wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_ADDR_LO,
lower_32_bits(wptr_gpu_addr));
WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_ADDR_HI,
upper_32_bits(wptr_gpu_addr));
wptr_poll_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_CNTL);
wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
SDMA_GFX_RB_WPTR_POLL_CNTL,
F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
/* enable DMA RB */
rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_ENABLE, 1);
WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl);
ib_cntl = RREG32_SDMA(i, regSDMA_GFX_IB_CNTL);
ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_ENABLE, 1);
#ifdef __BIG_ENDIAN
ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
#endif
/* enable DMA IBs */
WREG32_SDMA(i, regSDMA_GFX_IB_CNTL, ib_cntl);
}
/**
* sdma_v4_4_2_page_resume - setup and start the async dma engines
*
* @adev: amdgpu_device pointer
* @i: instance to resume
*
* Set up the page DMA ring buffers and enable them.
* Returns 0 for success, error for failure.
*/
static void sdma_v4_4_2_page_resume(struct amdgpu_device *adev, unsigned int i)
{
struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
u32 rb_cntl, ib_cntl, wptr_poll_cntl;
u32 wb_offset;
u32 doorbell;
u32 doorbell_offset;
u64 wptr_gpu_addr;
wb_offset = (ring->rptr_offs * 4);
rb_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_CNTL);
rb_cntl = sdma_v4_4_2_rb_cntl(ring, rb_cntl);
WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl);
/* Initialize the ring buffer's read and write pointers */
WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR, 0);
WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_HI, 0);
WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR, 0);
WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_HI, 0);
/* set the wb address whether it's enabled or not */
WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_ADDR_HI,
upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_ADDR_LO,
lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL,
RPTR_WRITEBACK_ENABLE, 1);
WREG32_SDMA(i, regSDMA_PAGE_RB_BASE, ring->gpu_addr >> 8);
WREG32_SDMA(i, regSDMA_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
ring->wptr = 0;
/* before programing wptr to a less value, need set minor_ptr_update first */
WREG32_SDMA(i, regSDMA_PAGE_MINOR_PTR_UPDATE, 1);
doorbell = RREG32_SDMA(i, regSDMA_PAGE_DOORBELL);
doorbell_offset = RREG32_SDMA(i, regSDMA_PAGE_DOORBELL_OFFSET);
doorbell = REG_SET_FIELD(doorbell, SDMA_PAGE_DOORBELL, ENABLE,
ring->use_doorbell);
doorbell_offset = REG_SET_FIELD(doorbell_offset,
SDMA_PAGE_DOORBELL_OFFSET,
OFFSET, ring->doorbell_index);
WREG32_SDMA(i, regSDMA_PAGE_DOORBELL, doorbell);
WREG32_SDMA(i, regSDMA_PAGE_DOORBELL_OFFSET, doorbell_offset);
/* paging queue doorbell range is setup at sdma_v4_4_2_gfx_resume */
sdma_v4_4_2_page_ring_set_wptr(ring);
/* set minor_ptr_update to 0 after wptr programed */
WREG32_SDMA(i, regSDMA_PAGE_MINOR_PTR_UPDATE, 0);
/* setup the wptr shadow polling */
wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_ADDR_LO,
lower_32_bits(wptr_gpu_addr));
WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_ADDR_HI,
upper_32_bits(wptr_gpu_addr));
wptr_poll_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_CNTL);
wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
SDMA_PAGE_RB_WPTR_POLL_CNTL,
F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
/* enable DMA RB */
rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL, RB_ENABLE, 1);
WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl);
ib_cntl = RREG32_SDMA(i, regSDMA_PAGE_IB_CNTL);
ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_ENABLE, 1);
#ifdef __BIG_ENDIAN
ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
#endif
/* enable DMA IBs */
WREG32_SDMA(i, regSDMA_PAGE_IB_CNTL, ib_cntl);
}
static void sdma_v4_4_2_init_pg(struct amdgpu_device *adev)
{
}
/**
* sdma_v4_4_2_inst_rlc_resume - setup and start the async dma engines
*
* @adev: amdgpu_device pointer
* @inst_mask: mask of dma engine instances to be enabled
*
* Set up the compute DMA queues and enable them.
* Returns 0 for success, error for failure.
*/
static int sdma_v4_4_2_inst_rlc_resume(struct amdgpu_device *adev,
uint32_t inst_mask)
{
sdma_v4_4_2_init_pg(adev);
return 0;
}
/**
* sdma_v4_4_2_inst_load_microcode - load the sDMA ME ucode
*
* @adev: amdgpu_device pointer
* @inst_mask: mask of dma engine instances to be enabled
*
* Loads the sDMA0/1 ucode.
* Returns 0 for success, -EINVAL if the ucode is not available.
*/
static int sdma_v4_4_2_inst_load_microcode(struct amdgpu_device *adev,
uint32_t inst_mask)
{
const struct sdma_firmware_header_v1_0 *hdr;
const __le32 *fw_data;
u32 fw_size;
int i, j;
/* halt the MEs */
sdma_v4_4_2_inst_enable(adev, false, inst_mask);
for_each_inst(i, inst_mask) {
if (!adev->sdma.instance[i].fw)
return -EINVAL;
hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
amdgpu_ucode_print_sdma_hdr(&hdr->header);
fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
fw_data = (const __le32 *)
(adev->sdma.instance[i].fw->data +
le32_to_cpu(hdr->header.ucode_array_offset_bytes));
WREG32_SDMA(i, regSDMA_UCODE_ADDR, 0);
for (j = 0; j < fw_size; j++)
WREG32_SDMA(i, regSDMA_UCODE_DATA,
le32_to_cpup(fw_data++));
WREG32_SDMA(i, regSDMA_UCODE_ADDR,
adev->sdma.instance[i].fw_version);
}
return 0;
}
/**
* sdma_v4_4_2_inst_start - setup and start the async dma engines
*
* @adev: amdgpu_device pointer
* @inst_mask: mask of dma engine instances to be enabled
*
* Set up the DMA engines and enable them.
* Returns 0 for success, error for failure.
*/
static int sdma_v4_4_2_inst_start(struct amdgpu_device *adev,
uint32_t inst_mask)
{
struct amdgpu_ring *ring;
uint32_t tmp_mask;
int i, r = 0;
if (amdgpu_sriov_vf(adev)) {
sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask);
sdma_v4_4_2_inst_enable(adev, false, inst_mask);
} else {
/* bypass sdma microcode loading on Gopher */
if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP &&
adev->sdma.instance[0].fw) {
r = sdma_v4_4_2_inst_load_microcode(adev, inst_mask);
if (r)
return r;
}
/* unhalt the MEs */
sdma_v4_4_2_inst_enable(adev, true, inst_mask);
/* enable sdma ring preemption */
sdma_v4_4_2_inst_ctx_switch_enable(adev, true, inst_mask);
}
/* start the gfx rings and rlc compute queues */
tmp_mask = inst_mask;
for_each_inst(i, tmp_mask) {
uint32_t temp;
WREG32_SDMA(i, regSDMA_SEM_WAIT_FAIL_TIMER_CNTL, 0);
sdma_v4_4_2_gfx_resume(adev, i);
if (adev->sdma.has_page_queue)
sdma_v4_4_2_page_resume(adev, i);
/* set utc l1 enable flag always to 1 */
temp = RREG32_SDMA(i, regSDMA_CNTL);
temp = REG_SET_FIELD(temp, SDMA_CNTL, UTC_L1_ENABLE, 1);
/* enable context empty interrupt during initialization */
temp = REG_SET_FIELD(temp, SDMA_CNTL, CTXEMPTY_INT_ENABLE, 1);
WREG32_SDMA(i, regSDMA_CNTL, temp);
if (!amdgpu_sriov_vf(adev)) {
if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
/* unhalt engine */
temp = RREG32_SDMA(i, regSDMA_F32_CNTL);
temp = REG_SET_FIELD(temp, SDMA_F32_CNTL, HALT, 0);
WREG32_SDMA(i, regSDMA_F32_CNTL, temp);
}
}
}
if (amdgpu_sriov_vf(adev)) {
sdma_v4_4_2_inst_ctx_switch_enable(adev, true, inst_mask);
sdma_v4_4_2_inst_enable(adev, true, inst_mask);
} else {
r = sdma_v4_4_2_inst_rlc_resume(adev, inst_mask);
if (r)
return r;
}
tmp_mask = inst_mask;
for_each_inst(i, tmp_mask) {
ring = &adev->sdma.instance[i].ring;
r = amdgpu_ring_test_helper(ring);
if (r)
return r;
if (adev->sdma.has_page_queue) {
struct amdgpu_ring *page = &adev->sdma.instance[i].page;
r = amdgpu_ring_test_helper(page);
if (r)
return r;
}
}
return r;
}
/**
* sdma_v4_4_2_ring_test_ring - simple async dma engine test
*
* @ring: amdgpu_ring structure holding ring information
*
* Test the DMA engine by writing using it to write an
* value to memory.
* Returns 0 for success, error for failure.
*/
static int sdma_v4_4_2_ring_test_ring(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
unsigned i;
unsigned index;
int r;
u32 tmp;
u64 gpu_addr;
r = amdgpu_device_wb_get(adev, &index);
if (r)
return r;
gpu_addr = adev->wb.gpu_addr + (index * 4);
tmp = 0xCAFEDEAD;
adev->wb.wb[index] = cpu_to_le32(tmp);
r = amdgpu_ring_alloc(ring, 5);
if (r)
goto error_free_wb;
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
amdgpu_ring_write(ring, 0xDEADBEEF);
amdgpu_ring_commit(ring);
for (i = 0; i < adev->usec_timeout; i++) {
tmp = le32_to_cpu(adev->wb.wb[index]);
if (tmp == 0xDEADBEEF)
break;
udelay(1);
}
if (i >= adev->usec_timeout)
r = -ETIMEDOUT;
error_free_wb:
amdgpu_device_wb_free(adev, index);
return r;
}
/**
* sdma_v4_4_2_ring_test_ib - test an IB on the DMA engine
*
* @ring: amdgpu_ring structure holding ring information
* @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
*
* Test a simple IB in the DMA ring.
* Returns 0 on success, error on failure.
*/
static int sdma_v4_4_2_ring_test_ib(struct amdgpu_ring *ring, long timeout)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_ib ib;
struct dma_fence *f = NULL;
unsigned index;
long r;
u32 tmp = 0;
u64 gpu_addr;
r = amdgpu_device_wb_get(adev, &index);
if (r)
return r;
gpu_addr = adev->wb.gpu_addr + (index * 4);
tmp = 0xCAFEDEAD;
adev->wb.wb[index] = cpu_to_le32(tmp);
memset(&ib, 0, sizeof(ib));
r = amdgpu_ib_get(adev, NULL, 256,
AMDGPU_IB_POOL_DIRECT, &ib);
if (r)
goto err0;
ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
ib.ptr[1] = lower_32_bits(gpu_addr);
ib.ptr[2] = upper_32_bits(gpu_addr);
ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
ib.ptr[4] = 0xDEADBEEF;
ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
ib.length_dw = 8;
r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
if (r)
goto err1;
r = dma_fence_wait_timeout(f, false, timeout);
if (r == 0) {
r = -ETIMEDOUT;
goto err1;
} else if (r < 0) {
goto err1;
}
tmp = le32_to_cpu(adev->wb.wb[index]);
if (tmp == 0xDEADBEEF)
r = 0;
else
r = -EINVAL;
err1:
amdgpu_ib_free(adev, &ib, NULL);
dma_fence_put(f);
err0:
amdgpu_device_wb_free(adev, index);
return r;
}
/**
* sdma_v4_4_2_vm_copy_pte - update PTEs by copying them from the GART
*
* @ib: indirect buffer to fill with commands
* @pe: addr of the page entry
* @src: src addr to copy from
* @count: number of page entries to update
*
* Update PTEs by copying them from the GART using sDMA.
*/
static void sdma_v4_4_2_vm_copy_pte(struct amdgpu_ib *ib,
uint64_t pe, uint64_t src,
unsigned count)
{
unsigned bytes = count * 8;
ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
ib->ptr[ib->length_dw++] = bytes - 1;
ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
ib->ptr[ib->length_dw++] = lower_32_bits(src);
ib->ptr[ib->length_dw++] = upper_32_bits(src);
ib->ptr[ib->length_dw++] = lower_32_bits(pe);
ib->ptr[ib->length_dw++] = upper_32_bits(pe);
}
/**
* sdma_v4_4_2_vm_write_pte - update PTEs by writing them manually
*
* @ib: indirect buffer to fill with commands
* @pe: addr of the page entry
* @value: dst addr to write into pe
* @count: number of page entries to update
* @incr: increase next addr by incr bytes
*
* Update PTEs by writing them manually using sDMA.
*/
static void sdma_v4_4_2_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
uint64_t value, unsigned count,
uint32_t incr)
{
unsigned ndw = count * 2;
ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
ib->ptr[ib->length_dw++] = lower_32_bits(pe);
ib->ptr[ib->length_dw++] = upper_32_bits(pe);
ib->ptr[ib->length_dw++] = ndw - 1;
for (; ndw > 0; ndw -= 2) {
ib->ptr[ib->length_dw++] = lower_32_bits(value);
ib->ptr[ib->length_dw++] = upper_32_bits(value);
value += incr;
}
}
/**
* sdma_v4_4_2_vm_set_pte_pde - update the page tables using sDMA
*
* @ib: indirect buffer to fill with commands
* @pe: addr of the page entry
* @addr: dst addr to write into pe
* @count: number of page entries to update
* @incr: increase next addr by incr bytes
* @flags: access flags
*
* Update the page tables using sDMA.
*/
static void sdma_v4_4_2_vm_set_pte_pde(struct amdgpu_ib *ib,
uint64_t pe,
uint64_t addr, unsigned count,
uint32_t incr, uint64_t flags)
{
/* for physically contiguous pages (vram) */
ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
ib->ptr[ib->length_dw++] = upper_32_bits(pe);
ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
ib->ptr[ib->length_dw++] = upper_32_bits(flags);
ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
ib->ptr[ib->length_dw++] = upper_32_bits(addr);
ib->ptr[ib->length_dw++] = incr; /* increment size */
ib->ptr[ib->length_dw++] = 0;
ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
}
/**
* sdma_v4_4_2_ring_pad_ib - pad the IB to the required number of dw
*
* @ring: amdgpu_ring structure holding ring information
* @ib: indirect buffer to fill with padding
*/
static void sdma_v4_4_2_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
{
struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
u32 pad_count;
int i;
pad_count = (-ib->length_dw) & 7;
for (i = 0; i < pad_count; i++)
if (sdma && sdma->burst_nop && (i == 0))
ib->ptr[ib->length_dw++] =
SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
else
ib->ptr[ib->length_dw++] =
SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
}
/**
* sdma_v4_4_2_ring_emit_pipeline_sync - sync the pipeline
*
* @ring: amdgpu_ring pointer
*
* Make sure all previous operations are completed (CIK).
*/
static void sdma_v4_4_2_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
{
uint32_t seq = ring->fence_drv.sync_seq;
uint64_t addr = ring->fence_drv.gpu_addr;
/* wait for idle */
sdma_v4_4_2_wait_reg_mem(ring, 1, 0,
addr & 0xfffffffc,
upper_32_bits(addr) & 0xffffffff,
seq, 0xffffffff, 4);
}
/**
* sdma_v4_4_2_ring_emit_vm_flush - vm flush using sDMA
*
* @ring: amdgpu_ring pointer
* @vmid: vmid number to use
* @pd_addr: address
*
* Update the page table base and flush the VM TLB
* using sDMA.
*/
static void sdma_v4_4_2_ring_emit_vm_flush(struct amdgpu_ring *ring,
unsigned vmid, uint64_t pd_addr)
{
amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
}
static void sdma_v4_4_2_ring_emit_wreg(struct amdgpu_ring *ring,
uint32_t reg, uint32_t val)
{
amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
amdgpu_ring_write(ring, reg);
amdgpu_ring_write(ring, val);
}
static void sdma_v4_4_2_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
uint32_t val, uint32_t mask)
{
sdma_v4_4_2_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
}
static bool sdma_v4_4_2_fw_support_paging_queue(struct amdgpu_device *adev)
{
switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) {
case IP_VERSION(4, 4, 2):
return false;
default:
return false;
}
}
static int sdma_v4_4_2_early_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int r;
r = sdma_v4_4_2_init_microcode(adev);
if (r)
return r;
/* TODO: Page queue breaks driver reload under SRIOV */
if (sdma_v4_4_2_fw_support_paging_queue(adev))
adev->sdma.has_page_queue = true;
sdma_v4_4_2_set_ring_funcs(adev);
sdma_v4_4_2_set_buffer_funcs(adev);
sdma_v4_4_2_set_vm_pte_funcs(adev);
sdma_v4_4_2_set_irq_funcs(adev);
sdma_v4_4_2_set_ras_funcs(adev);
return 0;
}
#if 0
static int sdma_v4_4_2_process_ras_data_cb(struct amdgpu_device *adev,
void *err_data,
struct amdgpu_iv_entry *entry);
#endif
static int sdma_v4_4_2_late_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
#if 0
struct ras_ih_if ih_info = {
.cb = sdma_v4_4_2_process_ras_data_cb,
};
#endif
if (!amdgpu_persistent_edc_harvesting_supported(adev))
amdgpu_ras_reset_error_count(adev, AMDGPU_RAS_BLOCK__SDMA);
return 0;
}
static int sdma_v4_4_2_sw_init(void *handle)
{
struct amdgpu_ring *ring;
int r, i;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
u32 aid_id;
/* SDMA trap event */
for (i = 0; i < adev->sdma.num_inst_per_aid; i++) {
r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
SDMA0_4_0__SRCID__SDMA_TRAP,
&adev->sdma.trap_irq);
if (r)
return r;
}
/* SDMA SRAM ECC event */
for (i = 0; i < adev->sdma.num_inst_per_aid; i++) {
r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
&adev->sdma.ecc_irq);
if (r)
return r;
}
/* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/
for (i = 0; i < adev->sdma.num_inst_per_aid; i++) {
r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
SDMA0_4_0__SRCID__SDMA_VM_HOLE,
&adev->sdma.vm_hole_irq);
if (r)
return r;
r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID,
&adev->sdma.doorbell_invalid_irq);
if (r)
return r;
r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT,
&adev->sdma.pool_timeout_irq);
if (r)
return r;
r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i),
SDMA0_4_0__SRCID__SDMA_SRBMWRITE,
&adev->sdma.srbm_write_irq);
if (r)
return r;
}
for (i = 0; i < adev->sdma.num_instances; i++) {
ring = &adev->sdma.instance[i].ring;
ring->ring_obj = NULL;
ring->use_doorbell = true;
aid_id = adev->sdma.instance[i].aid_id;
DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
ring->use_doorbell?"true":"false");
/* doorbell size is 2 dwords, get DWORD offset */
ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
ring->vm_hub = AMDGPU_MMHUB0(aid_id);
sprintf(ring->name, "sdma%d.%d", aid_id,
i % adev->sdma.num_inst_per_aid);
r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
AMDGPU_SDMA_IRQ_INSTANCE0 + i,
AMDGPU_RING_PRIO_DEFAULT, NULL);
if (r)
return r;
if (adev->sdma.has_page_queue) {
ring = &adev->sdma.instance[i].page;
ring->ring_obj = NULL;
ring->use_doorbell = true;
/* doorbell index of page queue is assigned right after
* gfx queue on the same instance
*/
ring->doorbell_index =
(adev->doorbell_index.sdma_engine[i] + 1) << 1;
ring->vm_hub = AMDGPU_MMHUB0(aid_id);
sprintf(ring->name, "page%d.%d", aid_id,
i % adev->sdma.num_inst_per_aid);
r = amdgpu_ring_init(adev, ring, 1024,
&adev->sdma.trap_irq,
AMDGPU_SDMA_IRQ_INSTANCE0 + i,
AMDGPU_RING_PRIO_DEFAULT, NULL);
if (r)
return r;
}
}
if (amdgpu_sdma_ras_sw_init(adev)) {
dev_err(adev->dev, "fail to initialize sdma ras block\n");
return -EINVAL;
}
return r;
}
static int sdma_v4_4_2_sw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int i;
for (i = 0; i < adev->sdma.num_instances; i++) {
amdgpu_ring_fini(&adev->sdma.instance[i].ring);
if (adev->sdma.has_page_queue)
amdgpu_ring_fini(&adev->sdma.instance[i].page);
}
if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 2))
amdgpu_sdma_destroy_inst_ctx(adev, true);
else
amdgpu_sdma_destroy_inst_ctx(adev, false);
return 0;
}
static int sdma_v4_4_2_hw_init(void *handle)
{
int r;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
uint32_t inst_mask;
inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
if (!amdgpu_sriov_vf(adev))
sdma_v4_4_2_inst_init_golden_registers(adev, inst_mask);
r = sdma_v4_4_2_inst_start(adev, inst_mask);
return r;
}
static int sdma_v4_4_2_hw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
uint32_t inst_mask;
int i;
if (amdgpu_sriov_vf(adev))
return 0;
inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
for (i = 0; i < adev->sdma.num_instances; i++) {
amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
AMDGPU_SDMA_IRQ_INSTANCE0 + i);
}
}
sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask);
sdma_v4_4_2_inst_enable(adev, false, inst_mask);
return 0;
}
static int sdma_v4_4_2_set_clockgating_state(void *handle,
enum amd_clockgating_state state);
static int sdma_v4_4_2_suspend(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (amdgpu_in_reset(adev))
sdma_v4_4_2_set_clockgating_state(adev, AMD_CG_STATE_UNGATE);
return sdma_v4_4_2_hw_fini(adev);
}
static int sdma_v4_4_2_resume(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
return sdma_v4_4_2_hw_init(adev);
}
static bool sdma_v4_4_2_is_idle(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
u32 i;
for (i = 0; i < adev->sdma.num_instances; i++) {
u32 tmp = RREG32_SDMA(i, regSDMA_STATUS_REG);
if (!(tmp & SDMA_STATUS_REG__IDLE_MASK))
return false;
}
return true;
}
static int sdma_v4_4_2_wait_for_idle(void *handle)
{
unsigned i, j;
u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
for (i = 0; i < adev->usec_timeout; i++) {
for (j = 0; j < adev->sdma.num_instances; j++) {
sdma[j] = RREG32_SDMA(j, regSDMA_STATUS_REG);
if (!(sdma[j] & SDMA_STATUS_REG__IDLE_MASK))
break;
}
if (j == adev->sdma.num_instances)
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
static int sdma_v4_4_2_soft_reset(void *handle)
{
/* todo */
return 0;
}
static int sdma_v4_4_2_set_trap_irq_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
unsigned type,
enum amdgpu_interrupt_state state)
{
u32 sdma_cntl;
sdma_cntl = RREG32_SDMA(type, regSDMA_CNTL);
sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL, TRAP_ENABLE,
state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
WREG32_SDMA(type, regSDMA_CNTL, sdma_cntl);
return 0;
}
static int sdma_v4_4_2_process_trap_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
uint32_t instance, i;
DRM_DEBUG("IH: SDMA trap\n");
instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id);
/* Client id gives the SDMA instance in AID. To know the exact SDMA
* instance, interrupt entry gives the node id which corresponds to the AID instance.
* Match node id with the AID id associated with the SDMA instance. */
for (i = instance; i < adev->sdma.num_instances;
i += adev->sdma.num_inst_per_aid) {
if (adev->sdma.instance[i].aid_id ==
node_id_to_phys_map[entry->node_id])
break;
}
if (i >= adev->sdma.num_instances) {
dev_WARN_ONCE(
adev->dev, 1,
"Couldn't find the right sdma instance in trap handler");
return 0;
}
switch (entry->ring_id) {
case 0:
amdgpu_fence_process(&adev->sdma.instance[i].ring);
break;
default:
break;
}
return 0;
}
#if 0
static int sdma_v4_4_2_process_ras_data_cb(struct amdgpu_device *adev,
void *err_data,
struct amdgpu_iv_entry *entry)
{
int instance;
/* When “Full RAS” is enabled, the per-IP interrupt sources should
* be disabled and the driver should only look for the aggregated
* interrupt via sync flood
*/
if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA))
goto out;
instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id);
if (instance < 0)
goto out;
amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
out:
return AMDGPU_RAS_SUCCESS;
}
#endif
static int sdma_v4_4_2_process_illegal_inst_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
int instance;
DRM_ERROR("Illegal instruction in SDMA command stream\n");
instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id);
if (instance < 0)
return 0;
switch (entry->ring_id) {
case 0:
drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
break;
}
return 0;
}
static int sdma_v4_4_2_set_ecc_irq_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
unsigned type,
enum amdgpu_interrupt_state state)
{
u32 sdma_cntl;
sdma_cntl = RREG32_SDMA(type, regSDMA_CNTL);
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL,
DRAM_ECC_INT_ENABLE, 0);
WREG32_SDMA(type, regSDMA_CNTL, sdma_cntl);
break;
/* sdma ecc interrupt is enabled by default
* driver doesn't need to do anything to
* enable the interrupt */
case AMDGPU_IRQ_STATE_ENABLE:
default:
break;
}
return 0;
}
static int sdma_v4_4_2_print_iv_entry(struct amdgpu_device *adev,
struct amdgpu_iv_entry *entry)
{
int instance;
struct amdgpu_task_info *task_info;
u64 addr;
instance = sdma_v4_4_2_irq_id_to_seq(entry->client_id);
if (instance < 0 || instance >= adev->sdma.num_instances) {
dev_err(adev->dev, "sdma instance invalid %d\n", instance);
return -EINVAL;
}
addr = (u64)entry->src_data[0] << 12;
addr |= ((u64)entry->src_data[1] & 0xf) << 44;
dev_dbg_ratelimited(adev->dev,
"[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u pasid:%u\n",
instance, addr, entry->src_id, entry->ring_id, entry->vmid,
entry->pasid);
task_info = amdgpu_vm_get_task_info_pasid(adev, entry->pasid);
if (task_info) {
dev_dbg_ratelimited(adev->dev, " for process %s pid %d thread %s pid %d\n",
task_info->process_name, task_info->tgid,
task_info->task_name, task_info->pid);
amdgpu_vm_put_task_info(task_info);
}
return 0;
}
static int sdma_v4_4_2_process_vm_hole_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n");
sdma_v4_4_2_print_iv_entry(adev, entry);
return 0;
}
static int sdma_v4_4_2_process_doorbell_invalid_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n");
sdma_v4_4_2_print_iv_entry(adev, entry);
return 0;
}
static int sdma_v4_4_2_process_pool_timeout_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
dev_dbg_ratelimited(adev->dev,
"Polling register/memory timeout executing POLL_REG/MEM with finite timer\n");
sdma_v4_4_2_print_iv_entry(adev, entry);
return 0;
}
static int sdma_v4_4_2_process_srbm_write_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
dev_dbg_ratelimited(adev->dev,
"SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n");
sdma_v4_4_2_print_iv_entry(adev, entry);
return 0;
}
static void sdma_v4_4_2_inst_update_medium_grain_light_sleep(
struct amdgpu_device *adev, bool enable, uint32_t inst_mask)
{
uint32_t data, def;
int i;
/* leave as default if it is not driver controlled */
if (!(adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS))
return;
if (enable) {
for_each_inst(i, inst_mask) {
/* 1-not override: enable sdma mem light sleep */
def = data = RREG32_SDMA(i, regSDMA_POWER_CNTL);
data |= SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
if (def != data)
WREG32_SDMA(i, regSDMA_POWER_CNTL, data);
}
} else {
for_each_inst(i, inst_mask) {
/* 0-override:disable sdma mem light sleep */
def = data = RREG32_SDMA(i, regSDMA_POWER_CNTL);
data &= ~SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
if (def != data)
WREG32_SDMA(i, regSDMA_POWER_CNTL, data);
}
}
}
static void sdma_v4_4_2_inst_update_medium_grain_clock_gating(
struct amdgpu_device *adev, bool enable, uint32_t inst_mask)
{
uint32_t data, def;
int i;
/* leave as default if it is not driver controlled */
if (!(adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG))
return;
if (enable) {
for_each_inst(i, inst_mask) {
def = data = RREG32_SDMA(i, regSDMA_CLK_CTRL);
data &= ~(SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK |
SDMA_CLK_CTRL__SOFT_OVERRIDE4_MASK |
SDMA_CLK_CTRL__SOFT_OVERRIDE3_MASK |
SDMA_CLK_CTRL__SOFT_OVERRIDE2_MASK |
SDMA_CLK_CTRL__SOFT_OVERRIDE1_MASK |
SDMA_CLK_CTRL__SOFT_OVERRIDE0_MASK);
if (def != data)
WREG32_SDMA(i, regSDMA_CLK_CTRL, data);
}
} else {
for_each_inst(i, inst_mask) {
def = data = RREG32_SDMA(i, regSDMA_CLK_CTRL);
data |= (SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK |
SDMA_CLK_CTRL__SOFT_OVERRIDE4_MASK |
SDMA_CLK_CTRL__SOFT_OVERRIDE3_MASK |
SDMA_CLK_CTRL__SOFT_OVERRIDE2_MASK |
SDMA_CLK_CTRL__SOFT_OVERRIDE1_MASK |
SDMA_CLK_CTRL__SOFT_OVERRIDE0_MASK);
if (def != data)
WREG32_SDMA(i, regSDMA_CLK_CTRL, data);
}
}
}
static int sdma_v4_4_2_set_clockgating_state(void *handle,
enum amd_clockgating_state state)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
uint32_t inst_mask;
if (amdgpu_sriov_vf(adev))
return 0;
inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
sdma_v4_4_2_inst_update_medium_grain_clock_gating(
adev, state == AMD_CG_STATE_GATE, inst_mask);
sdma_v4_4_2_inst_update_medium_grain_light_sleep(
adev, state == AMD_CG_STATE_GATE, inst_mask);
return 0;
}
static int sdma_v4_4_2_set_powergating_state(void *handle,
enum amd_powergating_state state)
{
return 0;
}
static void sdma_v4_4_2_get_clockgating_state(void *handle, u64 *flags)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int data;
if (amdgpu_sriov_vf(adev))
*flags = 0;
/* AMD_CG_SUPPORT_SDMA_MGCG */
data = RREG32(SOC15_REG_OFFSET(SDMA0, GET_INST(SDMA0, 0), regSDMA_CLK_CTRL));
if (!(data & SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK))
*flags |= AMD_CG_SUPPORT_SDMA_MGCG;
/* AMD_CG_SUPPORT_SDMA_LS */
data = RREG32(SOC15_REG_OFFSET(SDMA0, GET_INST(SDMA0, 0), regSDMA_POWER_CNTL));
if (data & SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
*flags |= AMD_CG_SUPPORT_SDMA_LS;
}
const struct amd_ip_funcs sdma_v4_4_2_ip_funcs = {
.name = "sdma_v4_4_2",
.early_init = sdma_v4_4_2_early_init,
.late_init = sdma_v4_4_2_late_init,
.sw_init = sdma_v4_4_2_sw_init,
.sw_fini = sdma_v4_4_2_sw_fini,
.hw_init = sdma_v4_4_2_hw_init,
.hw_fini = sdma_v4_4_2_hw_fini,
.suspend = sdma_v4_4_2_suspend,
.resume = sdma_v4_4_2_resume,
.is_idle = sdma_v4_4_2_is_idle,
.wait_for_idle = sdma_v4_4_2_wait_for_idle,
.soft_reset = sdma_v4_4_2_soft_reset,
.set_clockgating_state = sdma_v4_4_2_set_clockgating_state,
.set_powergating_state = sdma_v4_4_2_set_powergating_state,
.get_clockgating_state = sdma_v4_4_2_get_clockgating_state,
};
static const struct amdgpu_ring_funcs sdma_v4_4_2_ring_funcs = {
.type = AMDGPU_RING_TYPE_SDMA,
.align_mask = 0xff,
.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
.support_64bit_ptrs = true,
.get_rptr = sdma_v4_4_2_ring_get_rptr,
.get_wptr = sdma_v4_4_2_ring_get_wptr,
.set_wptr = sdma_v4_4_2_ring_set_wptr,
.emit_frame_size =
6 + /* sdma_v4_4_2_ring_emit_hdp_flush */
3 + /* hdp invalidate */
6 + /* sdma_v4_4_2_ring_emit_pipeline_sync */
/* sdma_v4_4_2_ring_emit_vm_flush */
SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
10 + 10 + 10, /* sdma_v4_4_2_ring_emit_fence x3 for user fence, vm fence */
.emit_ib_size = 7 + 6, /* sdma_v4_4_2_ring_emit_ib */
.emit_ib = sdma_v4_4_2_ring_emit_ib,
.emit_fence = sdma_v4_4_2_ring_emit_fence,
.emit_pipeline_sync = sdma_v4_4_2_ring_emit_pipeline_sync,
.emit_vm_flush = sdma_v4_4_2_ring_emit_vm_flush,
.emit_hdp_flush = sdma_v4_4_2_ring_emit_hdp_flush,
.test_ring = sdma_v4_4_2_ring_test_ring,
.test_ib = sdma_v4_4_2_ring_test_ib,
.insert_nop = sdma_v4_4_2_ring_insert_nop,
.pad_ib = sdma_v4_4_2_ring_pad_ib,
.emit_wreg = sdma_v4_4_2_ring_emit_wreg,
.emit_reg_wait = sdma_v4_4_2_ring_emit_reg_wait,
.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
};
static const struct amdgpu_ring_funcs sdma_v4_4_2_page_ring_funcs = {
.type = AMDGPU_RING_TYPE_SDMA,
.align_mask = 0xff,
.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
.support_64bit_ptrs = true,
.get_rptr = sdma_v4_4_2_ring_get_rptr,
.get_wptr = sdma_v4_4_2_page_ring_get_wptr,
.set_wptr = sdma_v4_4_2_page_ring_set_wptr,
.emit_frame_size =
6 + /* sdma_v4_4_2_ring_emit_hdp_flush */
3 + /* hdp invalidate */
6 + /* sdma_v4_4_2_ring_emit_pipeline_sync */
/* sdma_v4_4_2_ring_emit_vm_flush */
SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
10 + 10 + 10, /* sdma_v4_4_2_ring_emit_fence x3 for user fence, vm fence */
.emit_ib_size = 7 + 6, /* sdma_v4_4_2_ring_emit_ib */
.emit_ib = sdma_v4_4_2_ring_emit_ib,
.emit_fence = sdma_v4_4_2_ring_emit_fence,
.emit_pipeline_sync = sdma_v4_4_2_ring_emit_pipeline_sync,
.emit_vm_flush = sdma_v4_4_2_ring_emit_vm_flush,
.emit_hdp_flush = sdma_v4_4_2_ring_emit_hdp_flush,
.test_ring = sdma_v4_4_2_ring_test_ring,
.test_ib = sdma_v4_4_2_ring_test_ib,
.insert_nop = sdma_v4_4_2_ring_insert_nop,
.pad_ib = sdma_v4_4_2_ring_pad_ib,
.emit_wreg = sdma_v4_4_2_ring_emit_wreg,
.emit_reg_wait = sdma_v4_4_2_ring_emit_reg_wait,
.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
};
static void sdma_v4_4_2_set_ring_funcs(struct amdgpu_device *adev)
{
int i, dev_inst;
for (i = 0; i < adev->sdma.num_instances; i++) {
adev->sdma.instance[i].ring.funcs = &sdma_v4_4_2_ring_funcs;
adev->sdma.instance[i].ring.me = i;
if (adev->sdma.has_page_queue) {
adev->sdma.instance[i].page.funcs =
&sdma_v4_4_2_page_ring_funcs;
adev->sdma.instance[i].page.me = i;
}
dev_inst = GET_INST(SDMA0, i);
/* AID to which SDMA belongs depends on physical instance */
adev->sdma.instance[i].aid_id =
dev_inst / adev->sdma.num_inst_per_aid;
}
}
static const struct amdgpu_irq_src_funcs sdma_v4_4_2_trap_irq_funcs = {
.set = sdma_v4_4_2_set_trap_irq_state,
.process = sdma_v4_4_2_process_trap_irq,
};
static const struct amdgpu_irq_src_funcs sdma_v4_4_2_illegal_inst_irq_funcs = {
.process = sdma_v4_4_2_process_illegal_inst_irq,
};
static const struct amdgpu_irq_src_funcs sdma_v4_4_2_ecc_irq_funcs = {
.set = sdma_v4_4_2_set_ecc_irq_state,
.process = amdgpu_sdma_process_ecc_irq,
};
static const struct amdgpu_irq_src_funcs sdma_v4_4_2_vm_hole_irq_funcs = {
.process = sdma_v4_4_2_process_vm_hole_irq,
};
static const struct amdgpu_irq_src_funcs sdma_v4_4_2_doorbell_invalid_irq_funcs = {
.process = sdma_v4_4_2_process_doorbell_invalid_irq,
};
static const struct amdgpu_irq_src_funcs sdma_v4_4_2_pool_timeout_irq_funcs = {
.process = sdma_v4_4_2_process_pool_timeout_irq,
};
static const struct amdgpu_irq_src_funcs sdma_v4_4_2_srbm_write_irq_funcs = {
.process = sdma_v4_4_2_process_srbm_write_irq,
};
static void sdma_v4_4_2_set_irq_funcs(struct amdgpu_device *adev)
{
adev->sdma.trap_irq.num_types = adev->sdma.num_instances;
adev->sdma.ecc_irq.num_types = adev->sdma.num_instances;
adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances;
adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances;
adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances;
adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances;
adev->sdma.trap_irq.funcs = &sdma_v4_4_2_trap_irq_funcs;
adev->sdma.illegal_inst_irq.funcs = &sdma_v4_4_2_illegal_inst_irq_funcs;
adev->sdma.ecc_irq.funcs = &sdma_v4_4_2_ecc_irq_funcs;
adev->sdma.vm_hole_irq.funcs = &sdma_v4_4_2_vm_hole_irq_funcs;
adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_4_2_doorbell_invalid_irq_funcs;
adev->sdma.pool_timeout_irq.funcs = &sdma_v4_4_2_pool_timeout_irq_funcs;
adev->sdma.srbm_write_irq.funcs = &sdma_v4_4_2_srbm_write_irq_funcs;
}
/**
* sdma_v4_4_2_emit_copy_buffer - copy buffer using the sDMA engine
*
* @ib: indirect buffer to copy to
* @src_offset: src GPU address
* @dst_offset: dst GPU address
* @byte_count: number of bytes to xfer
* @tmz: if a secure copy should be used
*
* Copy GPU buffers using the DMA engine.
* Used by the amdgpu ttm implementation to move pages if
* registered as the asic copy callback.
*/
static void sdma_v4_4_2_emit_copy_buffer(struct amdgpu_ib *ib,
uint64_t src_offset,
uint64_t dst_offset,
uint32_t byte_count,
bool tmz)
{
ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
ib->ptr[ib->length_dw++] = byte_count - 1;
ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
}
/**
* sdma_v4_4_2_emit_fill_buffer - fill buffer using the sDMA engine
*
* @ib: indirect buffer to copy to
* @src_data: value to write to buffer
* @dst_offset: dst GPU address
* @byte_count: number of bytes to xfer
*
* Fill GPU buffers using the DMA engine.
*/
static void sdma_v4_4_2_emit_fill_buffer(struct amdgpu_ib *ib,
uint32_t src_data,
uint64_t dst_offset,
uint32_t byte_count)
{
ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
ib->ptr[ib->length_dw++] = src_data;
ib->ptr[ib->length_dw++] = byte_count - 1;
}
static const struct amdgpu_buffer_funcs sdma_v4_4_2_buffer_funcs = {
.copy_max_bytes = 0x400000,
.copy_num_dw = 7,
.emit_copy_buffer = sdma_v4_4_2_emit_copy_buffer,
.fill_max_bytes = 0x400000,
.fill_num_dw = 5,
.emit_fill_buffer = sdma_v4_4_2_emit_fill_buffer,
};
static void sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device *adev)
{
adev->mman.buffer_funcs = &sdma_v4_4_2_buffer_funcs;
if (adev->sdma.has_page_queue)
adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
else
adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
}
static const struct amdgpu_vm_pte_funcs sdma_v4_4_2_vm_pte_funcs = {
.copy_pte_num_dw = 7,
.copy_pte = sdma_v4_4_2_vm_copy_pte,
.write_pte = sdma_v4_4_2_vm_write_pte,
.set_pte_pde = sdma_v4_4_2_vm_set_pte_pde,
};
static void sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device *adev)
{
struct drm_gpu_scheduler *sched;
unsigned i;
adev->vm_manager.vm_pte_funcs = &sdma_v4_4_2_vm_pte_funcs;
for (i = 0; i < adev->sdma.num_instances; i++) {
if (adev->sdma.has_page_queue)
sched = &adev->sdma.instance[i].page.sched;
else
sched = &adev->sdma.instance[i].ring.sched;
adev->vm_manager.vm_pte_scheds[i] = sched;
}
adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
}
const struct amdgpu_ip_block_version sdma_v4_4_2_ip_block = {
.type = AMD_IP_BLOCK_TYPE_SDMA,
.major = 4,
.minor = 4,
.rev = 2,
.funcs = &sdma_v4_4_2_ip_funcs,
};
static int sdma_v4_4_2_xcp_resume(void *handle, uint32_t inst_mask)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int r;
if (!amdgpu_sriov_vf(adev))
sdma_v4_4_2_inst_init_golden_registers(adev, inst_mask);
r = sdma_v4_4_2_inst_start(adev, inst_mask);
return r;
}
static int sdma_v4_4_2_xcp_suspend(void *handle, uint32_t inst_mask)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
uint32_t tmp_mask = inst_mask;
int i;
if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
for_each_inst(i, tmp_mask) {
amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
AMDGPU_SDMA_IRQ_INSTANCE0 + i);
}
}
sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask);
sdma_v4_4_2_inst_enable(adev, false, inst_mask);
return 0;
}
struct amdgpu_xcp_ip_funcs sdma_v4_4_2_xcp_funcs = {
.suspend = &sdma_v4_4_2_xcp_suspend,
.resume = &sdma_v4_4_2_xcp_resume
};
static const struct amdgpu_ras_err_status_reg_entry sdma_v4_2_2_ue_reg_list[] = {
{AMDGPU_RAS_REG_ENTRY(SDMA0, 0, regSDMA_UE_ERR_STATUS_LO, regSDMA_UE_ERR_STATUS_HI),
1, (AMDGPU_RAS_ERR_INFO_VALID | AMDGPU_RAS_ERR_STATUS_VALID), "SDMA"},
};
static const struct amdgpu_ras_memory_id_entry sdma_v4_4_2_ras_memory_list[] = {
{AMDGPU_SDMA_MBANK_DATA_BUF0, "SDMA_MBANK_DATA_BUF0"},
{AMDGPU_SDMA_MBANK_DATA_BUF1, "SDMA_MBANK_DATA_BUF1"},
{AMDGPU_SDMA_MBANK_DATA_BUF2, "SDMA_MBANK_DATA_BUF2"},
{AMDGPU_SDMA_MBANK_DATA_BUF3, "SDMA_MBANK_DATA_BUF3"},
{AMDGPU_SDMA_MBANK_DATA_BUF4, "SDMA_MBANK_DATA_BUF4"},
{AMDGPU_SDMA_MBANK_DATA_BUF5, "SDMA_MBANK_DATA_BUF5"},
{AMDGPU_SDMA_MBANK_DATA_BUF6, "SDMA_MBANK_DATA_BUF6"},
{AMDGPU_SDMA_MBANK_DATA_BUF7, "SDMA_MBANK_DATA_BUF7"},
{AMDGPU_SDMA_MBANK_DATA_BUF8, "SDMA_MBANK_DATA_BUF8"},
{AMDGPU_SDMA_MBANK_DATA_BUF9, "SDMA_MBANK_DATA_BUF9"},
{AMDGPU_SDMA_MBANK_DATA_BUF10, "SDMA_MBANK_DATA_BUF10"},
{AMDGPU_SDMA_MBANK_DATA_BUF11, "SDMA_MBANK_DATA_BUF11"},
{AMDGPU_SDMA_MBANK_DATA_BUF12, "SDMA_MBANK_DATA_BUF12"},
{AMDGPU_SDMA_MBANK_DATA_BUF13, "SDMA_MBANK_DATA_BUF13"},
{AMDGPU_SDMA_MBANK_DATA_BUF14, "SDMA_MBANK_DATA_BUF14"},
{AMDGPU_SDMA_MBANK_DATA_BUF15, "SDMA_MBANK_DATA_BUF15"},
{AMDGPU_SDMA_UCODE_BUF, "SDMA_UCODE_BUF"},
{AMDGPU_SDMA_RB_CMD_BUF, "SDMA_RB_CMD_BUF"},
{AMDGPU_SDMA_IB_CMD_BUF, "SDMA_IB_CMD_BUF"},
{AMDGPU_SDMA_UTCL1_RD_FIFO, "SDMA_UTCL1_RD_FIFO"},
{AMDGPU_SDMA_UTCL1_RDBST_FIFO, "SDMA_UTCL1_RDBST_FIFO"},
{AMDGPU_SDMA_UTCL1_WR_FIFO, "SDMA_UTCL1_WR_FIFO"},
{AMDGPU_SDMA_DATA_LUT_FIFO, "SDMA_DATA_LUT_FIFO"},
{AMDGPU_SDMA_SPLIT_DAT_BUF, "SDMA_SPLIT_DAT_BUF"},
};
static void sdma_v4_4_2_inst_query_ras_error_count(struct amdgpu_device *adev,
uint32_t sdma_inst,
void *ras_err_status)
{
struct ras_err_data *err_data = (struct ras_err_data *)ras_err_status;
uint32_t sdma_dev_inst = GET_INST(SDMA0, sdma_inst);
unsigned long ue_count = 0;
struct amdgpu_smuio_mcm_config_info mcm_info = {
.socket_id = adev->smuio.funcs->get_socket_id(adev),
.die_id = adev->sdma.instance[sdma_inst].aid_id,
};
/* sdma v4_4_2 doesn't support query ce counts */
amdgpu_ras_inst_query_ras_error_count(adev,
sdma_v4_2_2_ue_reg_list,
ARRAY_SIZE(sdma_v4_2_2_ue_reg_list),
sdma_v4_4_2_ras_memory_list,
ARRAY_SIZE(sdma_v4_4_2_ras_memory_list),
sdma_dev_inst,
AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE,
&ue_count);
amdgpu_ras_error_statistic_ue_count(err_data, &mcm_info, NULL, ue_count);
}
static void sdma_v4_4_2_query_ras_error_count(struct amdgpu_device *adev,
void *ras_err_status)
{
uint32_t inst_mask;
int i = 0;
inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
for_each_inst(i, inst_mask)
sdma_v4_4_2_inst_query_ras_error_count(adev, i, ras_err_status);
} else {
dev_warn(adev->dev, "SDMA RAS is not supported\n");
}
}
static void sdma_v4_4_2_inst_reset_ras_error_count(struct amdgpu_device *adev,
uint32_t sdma_inst)
{
uint32_t sdma_dev_inst = GET_INST(SDMA0, sdma_inst);
amdgpu_ras_inst_reset_ras_error_count(adev,
sdma_v4_2_2_ue_reg_list,
ARRAY_SIZE(sdma_v4_2_2_ue_reg_list),
sdma_dev_inst);
}
static void sdma_v4_4_2_reset_ras_error_count(struct amdgpu_device *adev)
{
uint32_t inst_mask;
int i = 0;
inst_mask = GENMASK(adev->sdma.num_instances - 1, 0);
if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
for_each_inst(i, inst_mask)
sdma_v4_4_2_inst_reset_ras_error_count(adev, i);
} else {
dev_warn(adev->dev, "SDMA RAS is not supported\n");
}
}
static const struct amdgpu_ras_block_hw_ops sdma_v4_4_2_ras_hw_ops = {
.query_ras_error_count = sdma_v4_4_2_query_ras_error_count,
.reset_ras_error_count = sdma_v4_4_2_reset_ras_error_count,
};
static int sdma_v4_4_2_aca_bank_generate_report(struct aca_handle *handle,
struct aca_bank *bank, enum aca_error_type type,
struct aca_bank_report *report, void *data)
{
u64 status, misc0;
int ret;
status = bank->regs[ACA_REG_IDX_STATUS];
if ((type == ACA_ERROR_TYPE_UE &&
ACA_REG__STATUS__ERRORCODEEXT(status) == ACA_EXTERROR_CODE_FAULT) ||
(type == ACA_ERROR_TYPE_CE &&
ACA_REG__STATUS__ERRORCODEEXT(status) == ACA_EXTERROR_CODE_CE)) {
ret = aca_bank_info_decode(bank, &report->info);
if (ret)
return ret;
misc0 = bank->regs[ACA_REG_IDX_MISC0];
report->count[type] = ACA_REG__MISC0__ERRCNT(misc0);
}
return 0;
}
/* CODE_SDMA0 - CODE_SDMA4, reference to smu driver if header file */
static int sdma_v4_4_2_err_codes[] = { 33, 34, 35, 36 };
static bool sdma_v4_4_2_aca_bank_is_valid(struct aca_handle *handle, struct aca_bank *bank,
enum aca_error_type type, void *data)
{
u32 instlo;
instlo = ACA_REG__IPID__INSTANCEIDLO(bank->regs[ACA_REG_IDX_IPID]);
instlo &= GENMASK(31, 1);
if (instlo != mmSMNAID_AID0_MCA_SMU)
return false;
if (aca_bank_check_error_codes(handle->adev, bank,
sdma_v4_4_2_err_codes,
ARRAY_SIZE(sdma_v4_4_2_err_codes)))
return false;
return true;
}
static const struct aca_bank_ops sdma_v4_4_2_aca_bank_ops = {
.aca_bank_generate_report = sdma_v4_4_2_aca_bank_generate_report,
.aca_bank_is_valid = sdma_v4_4_2_aca_bank_is_valid,
};
static const struct aca_info sdma_v4_4_2_aca_info = {
.hwip = ACA_HWIP_TYPE_SMU,
.mask = ACA_ERROR_UE_MASK,
.bank_ops = &sdma_v4_4_2_aca_bank_ops,
};
static int sdma_v4_4_2_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
{
int r;
r = amdgpu_sdma_ras_late_init(adev, ras_block);
if (r)
return r;
return amdgpu_ras_bind_aca(adev, AMDGPU_RAS_BLOCK__SDMA,
&sdma_v4_4_2_aca_info, NULL);
}
static struct amdgpu_sdma_ras sdma_v4_4_2_ras = {
.ras_block = {
.hw_ops = &sdma_v4_4_2_ras_hw_ops,
.ras_late_init = sdma_v4_4_2_ras_late_init,
},
};
static void sdma_v4_4_2_set_ras_funcs(struct amdgpu_device *adev)
{
adev->sdma.ras = &sdma_v4_4_2_ras;
}