| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (c) 2009, Microsoft Corporation. |
| * |
| * Authors: |
| * Haiyang Zhang <haiyangz@microsoft.com> |
| * Hank Janssen <hjanssen@microsoft.com> |
| */ |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/io.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| #include <linux/hyperv.h> |
| #include <linux/random.h> |
| #include <linux/clockchips.h> |
| #include <linux/delay.h> |
| #include <linux/interrupt.h> |
| #include <linux/export.h> |
| #include <clocksource/hyperv_timer.h> |
| #include <asm/mshyperv.h> |
| #include <linux/set_memory.h> |
| #include "hyperv_vmbus.h" |
| |
| /* The one and only */ |
| struct hv_context hv_context; |
| EXPORT_SYMBOL_FOR_MODULES(hv_context, "mshv_vtl"); |
| |
| /* |
| * hv_init - Main initialization routine. |
| * |
| * This routine must be called before any other routines in here are called |
| */ |
| int hv_init(void) |
| { |
| hv_context.cpu_context = alloc_percpu(struct hv_per_cpu_context); |
| if (!hv_context.cpu_context) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| /* |
| * hv_post_message - Post a message using the hypervisor message IPC. |
| * |
| * This involves a hypercall. |
| */ |
| int hv_post_message(union hv_connection_id connection_id, |
| enum hv_message_type message_type, |
| void *payload, size_t payload_size) |
| { |
| struct hv_input_post_message *aligned_msg; |
| unsigned long flags; |
| u64 status; |
| |
| if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) |
| return -EMSGSIZE; |
| |
| local_irq_save(flags); |
| |
| /* |
| * A TDX VM with the paravisor must use the decrypted post_msg_page: see |
| * the comment in struct hv_per_cpu_context. A SNP VM with the paravisor |
| * can use the encrypted hyperv_pcpu_input_arg because it copies the |
| * input into the GHCB page, which has been decrypted by the paravisor. |
| */ |
| if (hv_isolation_type_tdx() && ms_hyperv.paravisor_present) |
| aligned_msg = this_cpu_ptr(hv_context.cpu_context)->post_msg_page; |
| else |
| aligned_msg = *this_cpu_ptr(hyperv_pcpu_input_arg); |
| |
| aligned_msg->connectionid = connection_id; |
| aligned_msg->reserved = 0; |
| aligned_msg->message_type = message_type; |
| aligned_msg->payload_size = payload_size; |
| memcpy((void *)aligned_msg->payload, payload, payload_size); |
| |
| if (ms_hyperv.paravisor_present && !vmbus_is_confidential()) { |
| /* |
| * If the VMBus isn't confidential, use the CoCo-specific |
| * mechanism to communicate with the hypervisor. |
| */ |
| if (hv_isolation_type_tdx()) |
| status = hv_tdx_hypercall(HVCALL_POST_MESSAGE, |
| virt_to_phys(aligned_msg), 0); |
| else if (hv_isolation_type_snp()) |
| status = hv_ghcb_hypercall(HVCALL_POST_MESSAGE, |
| aligned_msg, NULL, |
| sizeof(*aligned_msg)); |
| else |
| status = HV_STATUS_INVALID_PARAMETER; |
| } else { |
| u64 control = HVCALL_POST_MESSAGE; |
| |
| control |= hv_nested ? HV_HYPERCALL_NESTED : 0; |
| /* |
| * If there is no paravisor, this will go to the hypervisor. |
| * In the Confidential VMBus case, there is the paravisor |
| * to which this will trap. |
| */ |
| status = hv_do_hypercall(control, aligned_msg, NULL); |
| } |
| |
| local_irq_restore(flags); |
| |
| return hv_result(status); |
| } |
| EXPORT_SYMBOL_FOR_MODULES(hv_post_message, "mshv_vtl"); |
| |
| static int hv_alloc_page(void **page, bool decrypt, const char *note) |
| { |
| int ret = 0; |
| |
| /* |
| * After the page changes its encryption status, its contents might |
| * appear scrambled on some hardware. Thus `get_zeroed_page` would |
| * zero the page out in vain, so do that explicitly exactly once. |
| * |
| * By default, the page is allocated encrypted in a CoCo VM. |
| */ |
| *page = (void *)__get_free_page(GFP_KERNEL); |
| if (!*page) |
| return -ENOMEM; |
| |
| if (decrypt) |
| ret = set_memory_decrypted((unsigned long)*page, 1); |
| if (ret) |
| goto failed; |
| |
| memset(*page, 0, PAGE_SIZE); |
| return 0; |
| |
| failed: |
| /* |
| * Report the failure but don't put the page back on the free list as |
| * its encryption status is unknown. |
| */ |
| pr_err("allocation failed for %s page, error %d, decrypted %d\n", |
| note, ret, decrypt); |
| *page = NULL; |
| return ret; |
| } |
| |
| static int hv_free_page(void **page, bool encrypt, const char *note) |
| { |
| int ret = 0; |
| |
| if (!*page) |
| return 0; |
| |
| if (encrypt) |
| ret = set_memory_encrypted((unsigned long)*page, 1); |
| |
| /* |
| * In the case of the failure, the page is leaked. Something is wrong, |
| * prefer to lose the page with the unknown encryption status and stay afloat. |
| */ |
| if (ret) |
| pr_err("deallocation failed for %s page, error %d, encrypt %d\n", |
| note, ret, encrypt); |
| else |
| free_page((unsigned long)*page); |
| |
| *page = NULL; |
| |
| return ret; |
| } |
| |
| int hv_synic_alloc(void) |
| { |
| int cpu, ret = -ENOMEM; |
| struct hv_per_cpu_context *hv_cpu; |
| const bool decrypt = !vmbus_is_confidential(); |
| |
| /* |
| * First, zero all per-cpu memory areas so hv_synic_free() can |
| * detect what memory has been allocated and cleanup properly |
| * after any failures. |
| */ |
| for_each_present_cpu(cpu) { |
| hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu); |
| memset(hv_cpu, 0, sizeof(*hv_cpu)); |
| } |
| |
| hv_context.hv_numa_map = kcalloc(nr_node_ids, sizeof(struct cpumask), |
| GFP_KERNEL); |
| if (!hv_context.hv_numa_map) { |
| pr_err("Unable to allocate NUMA map\n"); |
| goto err; |
| } |
| |
| for_each_present_cpu(cpu) { |
| hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu); |
| |
| tasklet_init(&hv_cpu->msg_dpc, |
| vmbus_on_msg_dpc, (unsigned long)hv_cpu); |
| |
| if (ms_hyperv.paravisor_present && hv_isolation_type_tdx()) { |
| ret = hv_alloc_page(&hv_cpu->post_msg_page, |
| decrypt, "post msg"); |
| if (ret) |
| goto err; |
| } |
| |
| /* |
| * If these SynIC pages are not allocated, SIEF and SIM pages |
| * are configured using what the root partition or the paravisor |
| * provides upon reading the SIEFP and SIMP registers. |
| */ |
| if (!ms_hyperv.paravisor_present && !hv_root_partition()) { |
| ret = hv_alloc_page(&hv_cpu->hyp_synic_message_page, |
| decrypt, "hypervisor SynIC msg"); |
| if (ret) |
| goto err; |
| ret = hv_alloc_page(&hv_cpu->hyp_synic_event_page, |
| decrypt, "hypervisor SynIC event"); |
| if (ret) |
| goto err; |
| } |
| |
| if (vmbus_is_confidential()) { |
| ret = hv_alloc_page(&hv_cpu->para_synic_message_page, |
| false, "paravisor SynIC msg"); |
| if (ret) |
| goto err; |
| ret = hv_alloc_page(&hv_cpu->para_synic_event_page, |
| false, "paravisor SynIC event"); |
| if (ret) |
| goto err; |
| } |
| } |
| |
| return 0; |
| |
| err: |
| /* |
| * Any memory allocations that succeeded will be freed when |
| * the caller cleans up by calling hv_synic_free() |
| */ |
| return ret; |
| } |
| |
| void hv_synic_free(void) |
| { |
| int cpu; |
| const bool encrypt = !vmbus_is_confidential(); |
| |
| for_each_present_cpu(cpu) { |
| struct hv_per_cpu_context *hv_cpu = |
| per_cpu_ptr(hv_context.cpu_context, cpu); |
| |
| if (ms_hyperv.paravisor_present && hv_isolation_type_tdx()) |
| hv_free_page(&hv_cpu->post_msg_page, |
| encrypt, "post msg"); |
| if (!ms_hyperv.paravisor_present && !hv_root_partition()) { |
| hv_free_page(&hv_cpu->hyp_synic_event_page, |
| encrypt, "hypervisor SynIC event"); |
| hv_free_page(&hv_cpu->hyp_synic_message_page, |
| encrypt, "hypervisor SynIC msg"); |
| } |
| if (vmbus_is_confidential()) { |
| hv_free_page(&hv_cpu->para_synic_event_page, |
| false, "paravisor SynIC event"); |
| hv_free_page(&hv_cpu->para_synic_message_page, |
| false, "paravisor SynIC msg"); |
| } |
| } |
| |
| kfree(hv_context.hv_numa_map); |
| } |
| |
| /* |
| * hv_hyp_synic_enable_regs - Initialize the Synthetic Interrupt Controller |
| * with the hypervisor. |
| */ |
| void hv_hyp_synic_enable_regs(unsigned int cpu) |
| { |
| struct hv_per_cpu_context *hv_cpu = |
| per_cpu_ptr(hv_context.cpu_context, cpu); |
| union hv_synic_simp simp; |
| union hv_synic_siefp siefp; |
| union hv_synic_sint shared_sint; |
| |
| /* Setup the Synic's message page with the hypervisor. */ |
| simp.as_uint64 = hv_get_msr(HV_MSR_SIMP); |
| simp.simp_enabled = 1; |
| |
| if (ms_hyperv.paravisor_present || hv_root_partition()) { |
| /* Mask out vTOM bit. ioremap_cache() maps decrypted */ |
| u64 base = (simp.base_simp_gpa << HV_HYP_PAGE_SHIFT) & |
| ~ms_hyperv.shared_gpa_boundary; |
| hv_cpu->hyp_synic_message_page = |
| (void *)ioremap_cache(base, HV_HYP_PAGE_SIZE); |
| if (!hv_cpu->hyp_synic_message_page) |
| pr_err("Fail to map synic message page.\n"); |
| } else { |
| simp.base_simp_gpa = virt_to_phys(hv_cpu->hyp_synic_message_page) |
| >> HV_HYP_PAGE_SHIFT; |
| } |
| |
| hv_set_msr(HV_MSR_SIMP, simp.as_uint64); |
| |
| /* Setup the Synic's event page with the hypervisor. */ |
| siefp.as_uint64 = hv_get_msr(HV_MSR_SIEFP); |
| siefp.siefp_enabled = 1; |
| |
| if (ms_hyperv.paravisor_present || hv_root_partition()) { |
| /* Mask out vTOM bit. ioremap_cache() maps decrypted */ |
| u64 base = (siefp.base_siefp_gpa << HV_HYP_PAGE_SHIFT) & |
| ~ms_hyperv.shared_gpa_boundary; |
| hv_cpu->hyp_synic_event_page = |
| (void *)ioremap_cache(base, HV_HYP_PAGE_SIZE); |
| if (!hv_cpu->hyp_synic_event_page) |
| pr_err("Fail to map synic event page.\n"); |
| } else { |
| siefp.base_siefp_gpa = virt_to_phys(hv_cpu->hyp_synic_event_page) |
| >> HV_HYP_PAGE_SHIFT; |
| } |
| |
| hv_set_msr(HV_MSR_SIEFP, siefp.as_uint64); |
| hv_enable_coco_interrupt(cpu, vmbus_interrupt, true); |
| |
| /* Setup the shared SINT. */ |
| if (vmbus_irq != -1) |
| enable_percpu_irq(vmbus_irq, 0); |
| shared_sint.as_uint64 = hv_get_msr(HV_MSR_SINT0 + VMBUS_MESSAGE_SINT); |
| |
| shared_sint.vector = vmbus_interrupt; |
| shared_sint.masked = false; |
| shared_sint.auto_eoi = hv_recommend_using_aeoi(); |
| hv_set_msr(HV_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64); |
| } |
| |
| static void hv_hyp_synic_enable_interrupts(void) |
| { |
| union hv_synic_scontrol sctrl; |
| |
| /* Enable the global synic bit */ |
| sctrl.as_uint64 = hv_get_msr(HV_MSR_SCONTROL); |
| sctrl.enable = 1; |
| |
| hv_set_msr(HV_MSR_SCONTROL, sctrl.as_uint64); |
| } |
| |
| static void hv_para_synic_enable_regs(unsigned int cpu) |
| { |
| union hv_synic_simp simp; |
| union hv_synic_siefp siefp; |
| struct hv_per_cpu_context *hv_cpu |
| = per_cpu_ptr(hv_context.cpu_context, cpu); |
| |
| /* Setup the Synic's message page with the paravisor. */ |
| simp.as_uint64 = hv_para_get_synic_register(HV_MSR_SIMP); |
| simp.simp_enabled = 1; |
| simp.base_simp_gpa = virt_to_phys(hv_cpu->para_synic_message_page) |
| >> HV_HYP_PAGE_SHIFT; |
| hv_para_set_synic_register(HV_MSR_SIMP, simp.as_uint64); |
| |
| /* Setup the Synic's event page with the paravisor. */ |
| siefp.as_uint64 = hv_para_get_synic_register(HV_MSR_SIEFP); |
| siefp.siefp_enabled = 1; |
| siefp.base_siefp_gpa = virt_to_phys(hv_cpu->para_synic_event_page) |
| >> HV_HYP_PAGE_SHIFT; |
| hv_para_set_synic_register(HV_MSR_SIEFP, siefp.as_uint64); |
| } |
| |
| static void hv_para_synic_enable_interrupts(void) |
| { |
| union hv_synic_scontrol sctrl; |
| |
| /* Enable the global synic bit */ |
| sctrl.as_uint64 = hv_para_get_synic_register(HV_MSR_SCONTROL); |
| sctrl.enable = 1; |
| hv_para_set_synic_register(HV_MSR_SCONTROL, sctrl.as_uint64); |
| } |
| |
| int hv_synic_init(unsigned int cpu) |
| { |
| if (vmbus_is_confidential()) |
| hv_para_synic_enable_regs(cpu); |
| |
| /* |
| * The SINT is set in hv_hyp_synic_enable_regs() by calling |
| * hv_set_msr(). hv_set_msr() in turn has special case code for the |
| * SINT MSRs that write to the hypervisor version of the MSR *and* |
| * the paravisor version of the MSR (but *without* the proxy bit when |
| * VMBus is confidential). |
| * |
| * Then enable interrupts via the paravisor if VMBus is confidential, |
| * and otherwise via the hypervisor. |
| */ |
| |
| hv_hyp_synic_enable_regs(cpu); |
| if (vmbus_is_confidential()) |
| hv_para_synic_enable_interrupts(); |
| else |
| hv_hyp_synic_enable_interrupts(); |
| |
| hv_stimer_legacy_init(cpu, VMBUS_MESSAGE_SINT); |
| |
| return 0; |
| } |
| |
| void hv_hyp_synic_disable_regs(unsigned int cpu) |
| { |
| struct hv_per_cpu_context *hv_cpu = |
| per_cpu_ptr(hv_context.cpu_context, cpu); |
| union hv_synic_sint shared_sint; |
| union hv_synic_simp simp; |
| union hv_synic_siefp siefp; |
| |
| shared_sint.as_uint64 = hv_get_msr(HV_MSR_SINT0 + VMBUS_MESSAGE_SINT); |
| |
| shared_sint.masked = 1; |
| |
| /* Need to correctly cleanup in the case of SMP!!! */ |
| /* Disable the interrupt */ |
| hv_set_msr(HV_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64); |
| hv_enable_coco_interrupt(cpu, vmbus_interrupt, false); |
| |
| simp.as_uint64 = hv_get_msr(HV_MSR_SIMP); |
| /* |
| * In Isolation VM, simp and sief pages are allocated by |
| * paravisor. These pages also will be used by kdump |
| * kernel. So just reset enable bit here and keep page |
| * addresses. |
| */ |
| simp.simp_enabled = 0; |
| if (ms_hyperv.paravisor_present || hv_root_partition()) { |
| if (hv_cpu->hyp_synic_message_page) { |
| iounmap(hv_cpu->hyp_synic_message_page); |
| hv_cpu->hyp_synic_message_page = NULL; |
| } |
| } else { |
| simp.base_simp_gpa = 0; |
| } |
| |
| hv_set_msr(HV_MSR_SIMP, simp.as_uint64); |
| |
| siefp.as_uint64 = hv_get_msr(HV_MSR_SIEFP); |
| siefp.siefp_enabled = 0; |
| |
| if (ms_hyperv.paravisor_present || hv_root_partition()) { |
| if (hv_cpu->hyp_synic_event_page) { |
| iounmap(hv_cpu->hyp_synic_event_page); |
| hv_cpu->hyp_synic_event_page = NULL; |
| } |
| } else { |
| siefp.base_siefp_gpa = 0; |
| } |
| |
| hv_set_msr(HV_MSR_SIEFP, siefp.as_uint64); |
| } |
| |
| static void hv_hyp_synic_disable_interrupts(void) |
| { |
| union hv_synic_scontrol sctrl; |
| |
| /* Disable the global synic bit */ |
| sctrl.as_uint64 = hv_get_msr(HV_MSR_SCONTROL); |
| sctrl.enable = 0; |
| hv_set_msr(HV_MSR_SCONTROL, sctrl.as_uint64); |
| } |
| |
| static void hv_para_synic_disable_regs(unsigned int cpu) |
| { |
| union hv_synic_simp simp; |
| union hv_synic_siefp siefp; |
| |
| /* Disable SynIC's message page in the paravisor. */ |
| simp.as_uint64 = hv_para_get_synic_register(HV_MSR_SIMP); |
| simp.simp_enabled = 0; |
| hv_para_set_synic_register(HV_MSR_SIMP, simp.as_uint64); |
| |
| /* Disable SynIC's event page in the paravisor. */ |
| siefp.as_uint64 = hv_para_get_synic_register(HV_MSR_SIEFP); |
| siefp.siefp_enabled = 0; |
| hv_para_set_synic_register(HV_MSR_SIEFP, siefp.as_uint64); |
| } |
| |
| static void hv_para_synic_disable_interrupts(void) |
| { |
| union hv_synic_scontrol sctrl; |
| |
| /* Disable the global synic bit */ |
| sctrl.as_uint64 = hv_para_get_synic_register(HV_MSR_SCONTROL); |
| sctrl.enable = 0; |
| hv_para_set_synic_register(HV_MSR_SCONTROL, sctrl.as_uint64); |
| } |
| |
| #define HV_MAX_TRIES 3 |
| /* |
| * Scan the event flags page of 'this' CPU looking for any bit that is set. If we find one |
| * bit set, then wait for a few milliseconds. Repeat these steps for a maximum of 3 times. |
| * Return 'true', if there is still any set bit after this operation; 'false', otherwise. |
| * |
| * If a bit is set, that means there is a pending channel interrupt. The expectation is |
| * that the normal interrupt handling mechanism will find and process the channel interrupt |
| * "very soon", and in the process clear the bit. |
| */ |
| static bool __hv_synic_event_pending(union hv_synic_event_flags *event, int sint) |
| { |
| unsigned long *recv_int_page; |
| bool pending; |
| u32 relid; |
| int tries = 0; |
| |
| if (!event) |
| return false; |
| |
| event += sint; |
| recv_int_page = event->flags; /* assumes VMBus version >= VERSION_WIN8 */ |
| retry: |
| pending = false; |
| for_each_set_bit(relid, recv_int_page, HV_EVENT_FLAGS_COUNT) { |
| /* Special case - VMBus channel protocol messages */ |
| if (relid == 0) |
| continue; |
| pending = true; |
| break; |
| } |
| if (pending && tries++ < HV_MAX_TRIES) { |
| usleep_range(10000, 20000); |
| goto retry; |
| } |
| return pending; |
| } |
| |
| static bool hv_synic_event_pending(void) |
| { |
| struct hv_per_cpu_context *hv_cpu = this_cpu_ptr(hv_context.cpu_context); |
| union hv_synic_event_flags *hyp_synic_event_page = hv_cpu->hyp_synic_event_page; |
| union hv_synic_event_flags *para_synic_event_page = hv_cpu->para_synic_event_page; |
| |
| return |
| __hv_synic_event_pending(hyp_synic_event_page, VMBUS_MESSAGE_SINT) || |
| __hv_synic_event_pending(para_synic_event_page, VMBUS_MESSAGE_SINT); |
| } |
| |
| static int hv_pick_new_cpu(struct vmbus_channel *channel) |
| { |
| int ret = -EBUSY; |
| int start; |
| int cpu; |
| |
| lockdep_assert_cpus_held(); |
| lockdep_assert_held(&vmbus_connection.channel_mutex); |
| |
| /* |
| * We can't assume that the relevant interrupts will be sent before |
| * the cpu is offlined on older versions of hyperv. |
| */ |
| if (vmbus_proto_version < VERSION_WIN10_V5_3) |
| return -EBUSY; |
| |
| start = get_random_u32_below(nr_cpu_ids); |
| |
| for_each_cpu_wrap(cpu, cpu_online_mask, start) { |
| if (channel->target_cpu == cpu || |
| channel->target_cpu == VMBUS_CONNECT_CPU) |
| continue; |
| |
| ret = vmbus_channel_set_cpu(channel, cpu); |
| if (!ret) |
| break; |
| } |
| |
| if (ret) |
| ret = vmbus_channel_set_cpu(channel, VMBUS_CONNECT_CPU); |
| |
| return ret; |
| } |
| |
| /* |
| * hv_synic_cleanup - Cleanup routine for hv_synic_init(). |
| */ |
| int hv_synic_cleanup(unsigned int cpu) |
| { |
| struct vmbus_channel *channel, *sc; |
| int ret = 0; |
| |
| if (vmbus_connection.conn_state != CONNECTED) |
| goto always_cleanup; |
| |
| /* |
| * Hyper-V does not provide a way to change the connect CPU once |
| * it is set; we must prevent the connect CPU from going offline |
| * while the VM is running normally. But in the panic or kexec() |
| * path where the vmbus is already disconnected, the CPU must be |
| * allowed to shut down. |
| */ |
| if (cpu == VMBUS_CONNECT_CPU) |
| return -EBUSY; |
| |
| /* |
| * Search for channels which are bound to the CPU we're about to |
| * cleanup. |
| */ |
| mutex_lock(&vmbus_connection.channel_mutex); |
| list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { |
| if (channel->target_cpu == cpu) { |
| ret = hv_pick_new_cpu(channel); |
| if (ret) { |
| mutex_unlock(&vmbus_connection.channel_mutex); |
| return ret; |
| } |
| } |
| list_for_each_entry(sc, &channel->sc_list, sc_list) { |
| if (sc->target_cpu == cpu) { |
| ret = hv_pick_new_cpu(sc); |
| if (ret) { |
| mutex_unlock(&vmbus_connection.channel_mutex); |
| return ret; |
| } |
| } |
| } |
| } |
| mutex_unlock(&vmbus_connection.channel_mutex); |
| |
| /* |
| * Scan the event flags page looking for bits that are set and waiting |
| * with a timeout for vmbus_chan_sched() to process such bits. If bits |
| * are still set after this operation and VMBus is connected, fail the |
| * CPU offlining operation. |
| */ |
| if (vmbus_proto_version >= VERSION_WIN10_V4_1 && hv_synic_event_pending()) |
| return -EBUSY; |
| |
| always_cleanup: |
| hv_stimer_legacy_cleanup(cpu); |
| |
| /* |
| * First, disable the event and message pages |
| * used for communicating with the host, and then |
| * disable the host interrupts if VMBus is not |
| * confidential. |
| */ |
| hv_hyp_synic_disable_regs(cpu); |
| if (!vmbus_is_confidential()) |
| hv_hyp_synic_disable_interrupts(); |
| |
| /* |
| * Perform the same steps for the Confidential VMBus. |
| * The sequencing provides the guarantee that no data |
| * may be posted for processing before disabling interrupts. |
| */ |
| if (vmbus_is_confidential()) { |
| hv_para_synic_disable_regs(cpu); |
| hv_para_synic_disable_interrupts(); |
| } |
| if (vmbus_irq != -1) |
| disable_percpu_irq(vmbus_irq); |
| |
| return ret; |
| } |