blob: ec53fd40277b0c484df7179452e7ccd06ae46c4b [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for the Infineon TLV493D Low-Power 3D Magnetic Sensor
*
* Copyright (C) 2025 Dixit Parmar <dixitparmar19@gmail.com>
*/
#include <linux/array_size.h>
#include <linux/bits.h>
#include <linux/bitfield.h>
#include <linux/cleanup.h>
#include <linux/delay.h>
#include <linux/dev_printk.h>
#include <linux/i2c.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <linux/types.h>
#include <linux/units.h>
#include <linux/iio/buffer.h>
#include <linux/iio/iio.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
/*
* TLV493D sensor I2C communication note:
*
* The sensor supports only direct byte-stream write starting from the
* register address 0x0. So for any modification to be made to any write
* registers, it must be written starting from the register address 0x0.
* I2C write operation should not contain the register address in the I2C
* frame, it should contain only raw byte stream for the write registers.
* I2C Frame: |S|SlaveAddr Wr|Ack|Byte[0]|Ack|Byte[1]|Ack|.....|Sp|
*
* Same as the write operation, reading from the sensor registers is also
* performed starting from the register address 0x0 for as many bytes as
* need to be read.
* I2C read operation should not contain the register address in the I2C frame.
* I2C Frame: |S|SlaveAddr Rd|Ack|Byte[0]|Ack|Byte[1]|Ack|.....|Sp|
*/
#define TLV493D_RD_REG_BX 0x00
#define TLV493D_RD_REG_BY 0x01
#define TLV493D_RD_REG_BZ 0x02
#define TLV493D_RD_REG_TEMP 0x03
#define TLV493D_RD_REG_BX2 0x04
#define TLV493D_RD_REG_BZ2 0x05
#define TLV493D_RD_REG_TEMP2 0x06
#define TLV493D_RD_REG_RES1 0x07
#define TLV493D_RD_REG_RES2 0x08
#define TLV493D_RD_REG_RES3 0x09
#define TLV493D_RD_REG_MAX 0x0a
#define TLV493D_WR_REG_MODE1 0x01
#define TLV493D_WR_REG_MODE2 0x03
#define TLV493D_WR_REG_MAX 0x04
#define TLV493D_BX_MAG_X_AXIS_MSB GENMASK(7, 0)
#define TLV493D_BX2_MAG_X_AXIS_LSB GENMASK(7, 4)
#define TLV493D_BY_MAG_Y_AXIS_MSB GENMASK(7, 0)
#define TLV493D_BX2_MAG_Y_AXIS_LSB GENMASK(3, 0)
#define TLV493D_BZ_MAG_Z_AXIS_MSB GENMASK(7, 0)
#define TLV493D_BZ2_MAG_Z_AXIS_LSB GENMASK(3, 0)
#define TLV493D_TEMP_TEMP_MSB GENMASK(7, 4)
#define TLV493D_TEMP2_TEMP_LSB GENMASK(7, 0)
#define TLV493D_TEMP_CHANNEL GENMASK(1, 0)
#define TLV493D_MODE1_MOD_LOWFAST GENMASK(1, 0)
#define TLV493D_MODE2_LP_PERIOD BIT(6)
#define TLV493D_RD_REG_RES1_WR_MASK GENMASK(4, 3)
#define TLV493D_RD_REG_RES2_WR_MASK GENMASK(7, 0)
#define TLV493D_RD_REG_RES3_WR_MASK GENMASK(4, 0)
enum tlv493d_channels {
TLV493D_AXIS_X,
TLV493D_AXIS_Y,
TLV493D_AXIS_Z,
TLV493D_TEMPERATURE,
};
enum tlv493d_op_mode {
TLV493D_OP_MODE_POWERDOWN,
TLV493D_OP_MODE_FAST,
TLV493D_OP_MODE_LOWPOWER,
TLV493D_OP_MODE_ULTRA_LOWPOWER,
TLV493D_OP_MODE_MASTERCONTROLLED,
};
struct tlv493d_data {
struct i2c_client *client;
/* protects from simultaneous sensor access and register readings */
struct mutex lock;
enum tlv493d_op_mode mode;
u8 wr_regs[TLV493D_WR_REG_MAX];
};
/*
* Different mode has different measurement sampling time, this time is
* used in deriving the sleep and timeout while reading the data from
* sensor in polling.
* Power-down mode: No measurement.
* Fast mode: Freq:3.3 KHz. Measurement time:305 usec.
* Low-power mode: Freq:100 Hz. Measurement time:10 msec.
* Ultra low-power mode: Freq:10 Hz. Measurement time:100 msec.
* Master controlled mode: Freq:3.3 Khz. Measurement time:305 usec.
*/
static const u32 tlv493d_sample_rate_us[] = {
[TLV493D_OP_MODE_POWERDOWN] = 0,
[TLV493D_OP_MODE_FAST] = 305,
[TLV493D_OP_MODE_LOWPOWER] = 10 * USEC_PER_MSEC,
[TLV493D_OP_MODE_ULTRA_LOWPOWER] = 100 * USEC_PER_MSEC,
[TLV493D_OP_MODE_MASTERCONTROLLED] = 305,
};
static int tlv493d_write_all_regs(struct tlv493d_data *data)
{
int ret;
struct device *dev = &data->client->dev;
ret = i2c_master_send(data->client, data->wr_regs, ARRAY_SIZE(data->wr_regs));
if (ret < 0) {
dev_err(dev, "i2c write registers failed, error: %d\n", ret);
return ret;
}
return 0;
}
static int tlv493d_set_operating_mode(struct tlv493d_data *data, enum tlv493d_op_mode mode)
{
u8 *mode1_cfg = &data->wr_regs[TLV493D_WR_REG_MODE1];
u8 *mode2_cfg = &data->wr_regs[TLV493D_WR_REG_MODE2];
switch (mode) {
case TLV493D_OP_MODE_POWERDOWN:
FIELD_MODIFY(TLV493D_MODE1_MOD_LOWFAST, mode1_cfg, 0);
FIELD_MODIFY(TLV493D_MODE2_LP_PERIOD, mode2_cfg, 0);
break;
case TLV493D_OP_MODE_FAST:
FIELD_MODIFY(TLV493D_MODE1_MOD_LOWFAST, mode1_cfg, 1);
FIELD_MODIFY(TLV493D_MODE2_LP_PERIOD, mode2_cfg, 0);
break;
case TLV493D_OP_MODE_LOWPOWER:
FIELD_MODIFY(TLV493D_MODE1_MOD_LOWFAST, mode1_cfg, 2);
FIELD_MODIFY(TLV493D_MODE2_LP_PERIOD, mode2_cfg, 1);
break;
case TLV493D_OP_MODE_ULTRA_LOWPOWER:
FIELD_MODIFY(TLV493D_MODE1_MOD_LOWFAST, mode1_cfg, 2);
FIELD_MODIFY(TLV493D_MODE2_LP_PERIOD, mode2_cfg, 0);
break;
case TLV493D_OP_MODE_MASTERCONTROLLED:
FIELD_MODIFY(TLV493D_MODE1_MOD_LOWFAST, mode1_cfg, 3);
FIELD_MODIFY(TLV493D_MODE2_LP_PERIOD, mode2_cfg, 0);
break;
}
return tlv493d_write_all_regs(data);
}
static s16 tlv493d_get_channel_data(u8 *b, enum tlv493d_channels ch)
{
u16 val;
switch (ch) {
case TLV493D_AXIS_X:
val = FIELD_GET(TLV493D_BX_MAG_X_AXIS_MSB, b[TLV493D_RD_REG_BX]) << 4 |
FIELD_GET(TLV493D_BX2_MAG_X_AXIS_LSB, b[TLV493D_RD_REG_BX2]) >> 4;
break;
case TLV493D_AXIS_Y:
val = FIELD_GET(TLV493D_BY_MAG_Y_AXIS_MSB, b[TLV493D_RD_REG_BY]) << 4 |
FIELD_GET(TLV493D_BX2_MAG_Y_AXIS_LSB, b[TLV493D_RD_REG_BX2]);
break;
case TLV493D_AXIS_Z:
val = FIELD_GET(TLV493D_BZ_MAG_Z_AXIS_MSB, b[TLV493D_RD_REG_BZ]) << 4 |
FIELD_GET(TLV493D_BZ2_MAG_Z_AXIS_LSB, b[TLV493D_RD_REG_BZ2]);
break;
case TLV493D_TEMPERATURE:
val = FIELD_GET(TLV493D_TEMP_TEMP_MSB, b[TLV493D_RD_REG_TEMP]) << 8 |
FIELD_GET(TLV493D_TEMP2_TEMP_LSB, b[TLV493D_RD_REG_TEMP2]);
break;
}
return sign_extend32(val, 11);
}
static int tlv493d_get_measurements(struct tlv493d_data *data, s16 *x, s16 *y,
s16 *z, s16 *t)
{
u8 buff[7] = {};
int err, ret;
struct device *dev = &data->client->dev;
u32 sleep_us = tlv493d_sample_rate_us[data->mode];
guard(mutex)(&data->lock);
ret = pm_runtime_resume_and_get(dev);
if (ret < 0)
return ret;
/*
* Poll until data is valid.
* For a valid data TLV493D_TEMP_CHANNEL bit of TLV493D_RD_REG_TEMP
* should be set to 0. The sampling time depends on the sensor mode.
* Poll 3x the time of the sampling time.
*/
ret = read_poll_timeout(i2c_master_recv, err,
err || !FIELD_GET(TLV493D_TEMP_CHANNEL, buff[TLV493D_RD_REG_TEMP]),
sleep_us, 3 * sleep_us, false, data->client, buff,
ARRAY_SIZE(buff));
if (ret) {
dev_err(dev, "i2c read poll timeout, error:%d\n", ret);
goto out_put_autosuspend;
}
if (err < 0) {
dev_err(dev, "i2c read data failed, error:%d\n", err);
ret = err;
goto out_put_autosuspend;
}
*x = tlv493d_get_channel_data(buff, TLV493D_AXIS_X);
*y = tlv493d_get_channel_data(buff, TLV493D_AXIS_Y);
*z = tlv493d_get_channel_data(buff, TLV493D_AXIS_Z);
*t = tlv493d_get_channel_data(buff, TLV493D_TEMPERATURE);
out_put_autosuspend:
pm_runtime_put_autosuspend(dev);
return ret;
}
static int tlv493d_init(struct tlv493d_data *data)
{
int ret;
u8 buff[TLV493D_RD_REG_MAX];
struct device *dev = &data->client->dev;
/*
* The sensor initialization requires below steps to be followed,
* 1. Power-up sensor.
* 2. Read and store read-registers map (0x0-0x9).
* 3. Copy values from read reserved registers to write reserved fields
* (0x0-0x3).
* 4. Set operating mode.
* 5. Write to all registers.
*/
ret = i2c_master_recv(data->client, buff, ARRAY_SIZE(buff));
if (ret < 0)
return dev_err_probe(dev, ret, "i2c read failed\n");
/* Write register 0x0 is reserved. Does not require to be updated.*/
data->wr_regs[0] = 0;
data->wr_regs[1] = buff[TLV493D_RD_REG_RES1] & TLV493D_RD_REG_RES1_WR_MASK;
data->wr_regs[2] = buff[TLV493D_RD_REG_RES2] & TLV493D_RD_REG_RES2_WR_MASK;
data->wr_regs[3] = buff[TLV493D_RD_REG_RES3] & TLV493D_RD_REG_RES3_WR_MASK;
ret = tlv493d_set_operating_mode(data, data->mode);
if (ret < 0)
return dev_err_probe(dev, ret, "failed to set operating mode\n");
return 0;
}
static int tlv493d_read_raw(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan, int *val,
int *val2, long mask)
{
struct tlv493d_data *data = iio_priv(indio_dev);
s16 x, y, z, t;
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = tlv493d_get_measurements(data, &x, &y, &z, &t);
if (ret)
return ret;
switch (chan->address) {
case TLV493D_AXIS_X:
*val = x;
return IIO_VAL_INT;
case TLV493D_AXIS_Y:
*val = y;
return IIO_VAL_INT;
case TLV493D_AXIS_Z:
*val = z;
return IIO_VAL_INT;
case TLV493D_TEMPERATURE:
*val = t;
return IIO_VAL_INT;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_MAGN:
/*
* Magnetic field scale: 0.0098 mTesla (i.e. 9.8 µT)
* Magnetic field in Gauss: mT * 10 = 0.098.
*/
*val = 98;
*val2 = 1000;
return IIO_VAL_FRACTIONAL;
case IIO_TEMP:
/*
* Temperature scale: 1.1 °C per LSB, expressed as 1100 m°C
* Returned as integer for IIO core to apply:
* temp = (raw + offset) * scale
*/
*val = 1100;
return IIO_VAL_INT;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_OFFSET:
switch (chan->type) {
case IIO_TEMP:
/*
* Temperature offset includes sensor-specific raw offset
* plus compensation for +25°C bias in formula.
* offset = -raw_offset + (25000 / 1100)
* -340 + 22.72 = -317.28
*/
*val = -31728;
*val2 = 100;
return IIO_VAL_FRACTIONAL;
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static irqreturn_t tlv493d_trigger_handler(int irq, void *ptr)
{
int ret;
s16 x, y, z, t;
struct iio_poll_func *pf = ptr;
struct iio_dev *indio_dev = pf->indio_dev;
struct tlv493d_data *data = iio_priv(indio_dev);
struct device *dev = &data->client->dev;
struct {
s16 channels[3];
s16 temperature;
aligned_s64 timestamp;
} scan;
ret = tlv493d_get_measurements(data, &x, &y, &z, &t);
if (ret) {
dev_err(dev, "failed to read sensor data\n");
goto out_trigger_notify;
}
scan.channels[0] = x;
scan.channels[1] = y;
scan.channels[2] = z;
scan.temperature = t;
iio_push_to_buffers_with_ts(indio_dev, &scan, sizeof(scan), pf->timestamp);
out_trigger_notify:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
#define TLV493D_AXIS_CHANNEL(axis, index) \
{ \
.type = IIO_MAGN, \
.modified = 1, \
.channel2 = IIO_MOD_##axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_SCALE), \
.address = index, \
.scan_index = index, \
.scan_type = { \
.sign = 's', \
.realbits = 12, \
.storagebits = 16, \
.endianness = IIO_CPU, \
}, \
}
static const struct iio_chan_spec tlv493d_channels[] = {
TLV493D_AXIS_CHANNEL(X, TLV493D_AXIS_X),
TLV493D_AXIS_CHANNEL(Y, TLV493D_AXIS_Y),
TLV493D_AXIS_CHANNEL(Z, TLV493D_AXIS_Z),
{
.type = IIO_TEMP,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_OFFSET),
.address = TLV493D_TEMPERATURE,
.scan_index = TLV493D_TEMPERATURE,
.scan_type = {
.sign = 's',
.realbits = 12,
.storagebits = 16,
.endianness = IIO_CPU,
},
},
IIO_CHAN_SOFT_TIMESTAMP(4),
};
static const struct iio_info tlv493d_info = {
.read_raw = tlv493d_read_raw,
};
static const unsigned long tlv493d_scan_masks[] = { GENMASK(3, 0), 0 };
static int tlv493d_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct iio_dev *indio_dev;
struct tlv493d_data *data;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
data->client = client;
i2c_set_clientdata(client, indio_dev);
ret = devm_mutex_init(dev, &data->lock);
if (ret)
return ret;
ret = devm_regulator_get_enable(dev, "vdd");
if (ret)
return dev_err_probe(dev, ret, "failed to enable regulator\n");
/*
* Setting Sensor default operating mode to Master-Controlled mode since
* it performs measurement cycle only on-request and stays in Power-Down
* state until next cycle is initiated.
*/
data->mode = TLV493D_OP_MODE_MASTERCONTROLLED;
ret = tlv493d_init(data);
if (ret)
return dev_err_probe(dev, ret, "failed to initialize\n");
indio_dev->info = &tlv493d_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->name = client->name;
indio_dev->channels = tlv493d_channels;
indio_dev->num_channels = ARRAY_SIZE(tlv493d_channels);
indio_dev->available_scan_masks = tlv493d_scan_masks;
ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
iio_pollfunc_store_time,
tlv493d_trigger_handler,
NULL);
if (ret)
return dev_err_probe(dev, ret, "iio triggered buffer setup failed\n");
ret = pm_runtime_set_active(dev);
if (ret)
return ret;
ret = devm_pm_runtime_enable(dev);
if (ret)
return ret;
pm_runtime_get_noresume(dev);
pm_runtime_set_autosuspend_delay(dev, 500);
pm_runtime_use_autosuspend(dev);
pm_runtime_put_autosuspend(dev);
ret = devm_iio_device_register(dev, indio_dev);
if (ret)
return dev_err_probe(dev, ret, "iio device register failed\n");
return 0;
}
static int tlv493d_runtime_suspend(struct device *dev)
{
struct tlv493d_data *data = iio_priv(dev_get_drvdata(dev));
return tlv493d_set_operating_mode(data, TLV493D_OP_MODE_POWERDOWN);
}
static int tlv493d_runtime_resume(struct device *dev)
{
struct tlv493d_data *data = iio_priv(dev_get_drvdata(dev));
return tlv493d_set_operating_mode(data, data->mode);
}
static DEFINE_RUNTIME_DEV_PM_OPS(tlv493d_pm_ops, tlv493d_runtime_suspend,
tlv493d_runtime_resume, NULL);
static const struct i2c_device_id tlv493d_id[] = {
{ "tlv493d" },
{ }
};
MODULE_DEVICE_TABLE(i2c, tlv493d_id);
static const struct of_device_id tlv493d_of_match[] = {
{ .compatible = "infineon,tlv493d-a1b6" },
{ }
};
MODULE_DEVICE_TABLE(of, tlv493d_of_match);
static struct i2c_driver tlv493d_driver = {
.driver = {
.name = "tlv493d",
.of_match_table = tlv493d_of_match,
.pm = pm_ptr(&tlv493d_pm_ops),
},
.probe = tlv493d_probe,
.id_table = tlv493d_id,
};
module_i2c_driver(tlv493d_driver);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Infineon TLV493D Low-Power 3D Magnetic Sensor");
MODULE_AUTHOR("Dixit Parmar <dixitparmar19@gmail.com>");