|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (c) 2000-2003 Silicon Graphics, Inc. | 
|  | * All Rights Reserved. | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include "xfs_fs.h" | 
|  | #include "xfs_format.h" | 
|  | #include "xfs_log_format.h" | 
|  | #include "xfs_shared.h" | 
|  | #include "xfs_trans_resv.h" | 
|  | #include "xfs_bit.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_defer.h" | 
|  | #include "xfs_inode.h" | 
|  | #include "xfs_bmap.h" | 
|  | #include "xfs_quota.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_buf_item.h" | 
|  | #include "xfs_trans_space.h" | 
|  | #include "xfs_trans_priv.h" | 
|  | #include "xfs_qm.h" | 
|  | #include "xfs_trace.h" | 
|  | #include "xfs_log.h" | 
|  | #include "xfs_bmap_btree.h" | 
|  |  | 
|  | /* | 
|  | * Lock order: | 
|  | * | 
|  | * ip->i_lock | 
|  | *   qi->qi_tree_lock | 
|  | *     dquot->q_qlock (xfs_dqlock() and friends) | 
|  | *       dquot->q_flush (xfs_dqflock() and friends) | 
|  | *       qi->qi_lru_lock | 
|  | * | 
|  | * If two dquots need to be locked the order is user before group/project, | 
|  | * otherwise by the lowest id first, see xfs_dqlock2. | 
|  | */ | 
|  |  | 
|  | struct kmem_zone		*xfs_qm_dqtrxzone; | 
|  | static struct kmem_zone		*xfs_qm_dqzone; | 
|  |  | 
|  | static struct lock_class_key xfs_dquot_group_class; | 
|  | static struct lock_class_key xfs_dquot_project_class; | 
|  |  | 
|  | /* | 
|  | * This is called to free all the memory associated with a dquot | 
|  | */ | 
|  | void | 
|  | xfs_qm_dqdestroy( | 
|  | struct xfs_dquot	*dqp) | 
|  | { | 
|  | ASSERT(list_empty(&dqp->q_lru)); | 
|  |  | 
|  | kmem_free(dqp->q_logitem.qli_item.li_lv_shadow); | 
|  | mutex_destroy(&dqp->q_qlock); | 
|  |  | 
|  | XFS_STATS_DEC(dqp->q_mount, xs_qm_dquot); | 
|  | kmem_cache_free(xfs_qm_dqzone, dqp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If default limits are in force, push them into the dquot now. | 
|  | * We overwrite the dquot limits only if they are zero and this | 
|  | * is not the root dquot. | 
|  | */ | 
|  | void | 
|  | xfs_qm_adjust_dqlimits( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_dquot	*dq) | 
|  | { | 
|  | struct xfs_quotainfo	*q = mp->m_quotainfo; | 
|  | struct xfs_disk_dquot	*d = &dq->q_core; | 
|  | struct xfs_def_quota	*defq; | 
|  | int			prealloc = 0; | 
|  |  | 
|  | ASSERT(d->d_id); | 
|  | defq = xfs_get_defquota(dq, q); | 
|  |  | 
|  | if (defq->bsoftlimit && !d->d_blk_softlimit) { | 
|  | d->d_blk_softlimit = cpu_to_be64(defq->bsoftlimit); | 
|  | prealloc = 1; | 
|  | } | 
|  | if (defq->bhardlimit && !d->d_blk_hardlimit) { | 
|  | d->d_blk_hardlimit = cpu_to_be64(defq->bhardlimit); | 
|  | prealloc = 1; | 
|  | } | 
|  | if (defq->isoftlimit && !d->d_ino_softlimit) | 
|  | d->d_ino_softlimit = cpu_to_be64(defq->isoftlimit); | 
|  | if (defq->ihardlimit && !d->d_ino_hardlimit) | 
|  | d->d_ino_hardlimit = cpu_to_be64(defq->ihardlimit); | 
|  | if (defq->rtbsoftlimit && !d->d_rtb_softlimit) | 
|  | d->d_rtb_softlimit = cpu_to_be64(defq->rtbsoftlimit); | 
|  | if (defq->rtbhardlimit && !d->d_rtb_hardlimit) | 
|  | d->d_rtb_hardlimit = cpu_to_be64(defq->rtbhardlimit); | 
|  |  | 
|  | if (prealloc) | 
|  | xfs_dquot_set_prealloc_limits(dq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check the limits and timers of a dquot and start or reset timers | 
|  | * if necessary. | 
|  | * This gets called even when quota enforcement is OFF, which makes our | 
|  | * life a little less complicated. (We just don't reject any quota | 
|  | * reservations in that case, when enforcement is off). | 
|  | * We also return 0 as the values of the timers in Q_GETQUOTA calls, when | 
|  | * enforcement's off. | 
|  | * In contrast, warnings are a little different in that they don't | 
|  | * 'automatically' get started when limits get exceeded.  They do | 
|  | * get reset to zero, however, when we find the count to be under | 
|  | * the soft limit (they are only ever set non-zero via userspace). | 
|  | */ | 
|  | void | 
|  | xfs_qm_adjust_dqtimers( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_disk_dquot	*d) | 
|  | { | 
|  | ASSERT(d->d_id); | 
|  |  | 
|  | #ifdef DEBUG | 
|  | if (d->d_blk_hardlimit) | 
|  | ASSERT(be64_to_cpu(d->d_blk_softlimit) <= | 
|  | be64_to_cpu(d->d_blk_hardlimit)); | 
|  | if (d->d_ino_hardlimit) | 
|  | ASSERT(be64_to_cpu(d->d_ino_softlimit) <= | 
|  | be64_to_cpu(d->d_ino_hardlimit)); | 
|  | if (d->d_rtb_hardlimit) | 
|  | ASSERT(be64_to_cpu(d->d_rtb_softlimit) <= | 
|  | be64_to_cpu(d->d_rtb_hardlimit)); | 
|  | #endif | 
|  |  | 
|  | if (!d->d_btimer) { | 
|  | if ((d->d_blk_softlimit && | 
|  | (be64_to_cpu(d->d_bcount) > | 
|  | be64_to_cpu(d->d_blk_softlimit))) || | 
|  | (d->d_blk_hardlimit && | 
|  | (be64_to_cpu(d->d_bcount) > | 
|  | be64_to_cpu(d->d_blk_hardlimit)))) { | 
|  | d->d_btimer = cpu_to_be32(get_seconds() + | 
|  | mp->m_quotainfo->qi_btimelimit); | 
|  | } else { | 
|  | d->d_bwarns = 0; | 
|  | } | 
|  | } else { | 
|  | if ((!d->d_blk_softlimit || | 
|  | (be64_to_cpu(d->d_bcount) <= | 
|  | be64_to_cpu(d->d_blk_softlimit))) && | 
|  | (!d->d_blk_hardlimit || | 
|  | (be64_to_cpu(d->d_bcount) <= | 
|  | be64_to_cpu(d->d_blk_hardlimit)))) { | 
|  | d->d_btimer = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!d->d_itimer) { | 
|  | if ((d->d_ino_softlimit && | 
|  | (be64_to_cpu(d->d_icount) > | 
|  | be64_to_cpu(d->d_ino_softlimit))) || | 
|  | (d->d_ino_hardlimit && | 
|  | (be64_to_cpu(d->d_icount) > | 
|  | be64_to_cpu(d->d_ino_hardlimit)))) { | 
|  | d->d_itimer = cpu_to_be32(get_seconds() + | 
|  | mp->m_quotainfo->qi_itimelimit); | 
|  | } else { | 
|  | d->d_iwarns = 0; | 
|  | } | 
|  | } else { | 
|  | if ((!d->d_ino_softlimit || | 
|  | (be64_to_cpu(d->d_icount) <= | 
|  | be64_to_cpu(d->d_ino_softlimit)))  && | 
|  | (!d->d_ino_hardlimit || | 
|  | (be64_to_cpu(d->d_icount) <= | 
|  | be64_to_cpu(d->d_ino_hardlimit)))) { | 
|  | d->d_itimer = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!d->d_rtbtimer) { | 
|  | if ((d->d_rtb_softlimit && | 
|  | (be64_to_cpu(d->d_rtbcount) > | 
|  | be64_to_cpu(d->d_rtb_softlimit))) || | 
|  | (d->d_rtb_hardlimit && | 
|  | (be64_to_cpu(d->d_rtbcount) > | 
|  | be64_to_cpu(d->d_rtb_hardlimit)))) { | 
|  | d->d_rtbtimer = cpu_to_be32(get_seconds() + | 
|  | mp->m_quotainfo->qi_rtbtimelimit); | 
|  | } else { | 
|  | d->d_rtbwarns = 0; | 
|  | } | 
|  | } else { | 
|  | if ((!d->d_rtb_softlimit || | 
|  | (be64_to_cpu(d->d_rtbcount) <= | 
|  | be64_to_cpu(d->d_rtb_softlimit))) && | 
|  | (!d->d_rtb_hardlimit || | 
|  | (be64_to_cpu(d->d_rtbcount) <= | 
|  | be64_to_cpu(d->d_rtb_hardlimit)))) { | 
|  | d->d_rtbtimer = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * initialize a buffer full of dquots and log the whole thing | 
|  | */ | 
|  | STATIC void | 
|  | xfs_qm_init_dquot_blk( | 
|  | xfs_trans_t	*tp, | 
|  | xfs_mount_t	*mp, | 
|  | xfs_dqid_t	id, | 
|  | uint		type, | 
|  | xfs_buf_t	*bp) | 
|  | { | 
|  | struct xfs_quotainfo	*q = mp->m_quotainfo; | 
|  | xfs_dqblk_t	*d; | 
|  | xfs_dqid_t	curid; | 
|  | int		i; | 
|  |  | 
|  | ASSERT(tp); | 
|  | ASSERT(xfs_buf_islocked(bp)); | 
|  |  | 
|  | d = bp->b_addr; | 
|  |  | 
|  | /* | 
|  | * ID of the first dquot in the block - id's are zero based. | 
|  | */ | 
|  | curid = id - (id % q->qi_dqperchunk); | 
|  | memset(d, 0, BBTOB(q->qi_dqchunklen)); | 
|  | for (i = 0; i < q->qi_dqperchunk; i++, d++, curid++) { | 
|  | d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC); | 
|  | d->dd_diskdq.d_version = XFS_DQUOT_VERSION; | 
|  | d->dd_diskdq.d_id = cpu_to_be32(curid); | 
|  | d->dd_diskdq.d_flags = type; | 
|  | if (xfs_sb_version_hascrc(&mp->m_sb)) { | 
|  | uuid_copy(&d->dd_uuid, &mp->m_sb.sb_meta_uuid); | 
|  | xfs_update_cksum((char *)d, sizeof(struct xfs_dqblk), | 
|  | XFS_DQUOT_CRC_OFF); | 
|  | } | 
|  | } | 
|  |  | 
|  | xfs_trans_dquot_buf(tp, bp, | 
|  | (type & XFS_DQ_USER ? XFS_BLF_UDQUOT_BUF : | 
|  | ((type & XFS_DQ_PROJ) ? XFS_BLF_PDQUOT_BUF : | 
|  | XFS_BLF_GDQUOT_BUF))); | 
|  | xfs_trans_log_buf(tp, bp, 0, BBTOB(q->qi_dqchunklen) - 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the dynamic speculative preallocation thresholds. The lo/hi | 
|  | * watermarks correspond to the soft and hard limits by default. If a soft limit | 
|  | * is not specified, we use 95% of the hard limit. | 
|  | */ | 
|  | void | 
|  | xfs_dquot_set_prealloc_limits(struct xfs_dquot *dqp) | 
|  | { | 
|  | uint64_t space; | 
|  |  | 
|  | dqp->q_prealloc_hi_wmark = be64_to_cpu(dqp->q_core.d_blk_hardlimit); | 
|  | dqp->q_prealloc_lo_wmark = be64_to_cpu(dqp->q_core.d_blk_softlimit); | 
|  | if (!dqp->q_prealloc_lo_wmark) { | 
|  | dqp->q_prealloc_lo_wmark = dqp->q_prealloc_hi_wmark; | 
|  | do_div(dqp->q_prealloc_lo_wmark, 100); | 
|  | dqp->q_prealloc_lo_wmark *= 95; | 
|  | } | 
|  |  | 
|  | space = dqp->q_prealloc_hi_wmark; | 
|  |  | 
|  | do_div(space, 100); | 
|  | dqp->q_low_space[XFS_QLOWSP_1_PCNT] = space; | 
|  | dqp->q_low_space[XFS_QLOWSP_3_PCNT] = space * 3; | 
|  | dqp->q_low_space[XFS_QLOWSP_5_PCNT] = space * 5; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ensure that the given in-core dquot has a buffer on disk backing it, and | 
|  | * return the buffer locked and held. This is called when the bmapi finds a | 
|  | * hole. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_dquot_disk_alloc( | 
|  | struct xfs_trans	**tpp, | 
|  | struct xfs_dquot	*dqp, | 
|  | struct xfs_buf		**bpp) | 
|  | { | 
|  | struct xfs_bmbt_irec	map; | 
|  | struct xfs_trans	*tp = *tpp; | 
|  | struct xfs_mount	*mp = tp->t_mountp; | 
|  | struct xfs_buf		*bp; | 
|  | struct xfs_inode	*quotip = xfs_quota_inode(mp, dqp->dq_flags); | 
|  | int			nmaps = 1; | 
|  | int			error; | 
|  |  | 
|  | trace_xfs_dqalloc(dqp); | 
|  |  | 
|  | xfs_ilock(quotip, XFS_ILOCK_EXCL); | 
|  | if (!xfs_this_quota_on(dqp->q_mount, dqp->dq_flags)) { | 
|  | /* | 
|  | * Return if this type of quotas is turned off while we didn't | 
|  | * have an inode lock | 
|  | */ | 
|  | xfs_iunlock(quotip, XFS_ILOCK_EXCL); | 
|  | return -ESRCH; | 
|  | } | 
|  |  | 
|  | /* Create the block mapping. */ | 
|  | xfs_trans_ijoin(tp, quotip, XFS_ILOCK_EXCL); | 
|  | error = xfs_bmapi_write(tp, quotip, dqp->q_fileoffset, | 
|  | XFS_DQUOT_CLUSTER_SIZE_FSB, XFS_BMAPI_METADATA, 0, &map, | 
|  | &nmaps); | 
|  | if (error) | 
|  | return error; | 
|  | ASSERT(map.br_blockcount == XFS_DQUOT_CLUSTER_SIZE_FSB); | 
|  | ASSERT(nmaps == 1); | 
|  | ASSERT((map.br_startblock != DELAYSTARTBLOCK) && | 
|  | (map.br_startblock != HOLESTARTBLOCK)); | 
|  |  | 
|  | /* | 
|  | * Keep track of the blkno to save a lookup later | 
|  | */ | 
|  | dqp->q_blkno = XFS_FSB_TO_DADDR(mp, map.br_startblock); | 
|  |  | 
|  | /* now we can just get the buffer (there's nothing to read yet) */ | 
|  | bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, dqp->q_blkno, | 
|  | mp->m_quotainfo->qi_dqchunklen, 0); | 
|  | if (!bp) | 
|  | return -ENOMEM; | 
|  | bp->b_ops = &xfs_dquot_buf_ops; | 
|  |  | 
|  | /* | 
|  | * Make a chunk of dquots out of this buffer and log | 
|  | * the entire thing. | 
|  | */ | 
|  | xfs_qm_init_dquot_blk(tp, mp, be32_to_cpu(dqp->q_core.d_id), | 
|  | dqp->dq_flags & XFS_DQ_ALLTYPES, bp); | 
|  | xfs_buf_set_ref(bp, XFS_DQUOT_REF); | 
|  |  | 
|  | /* | 
|  | * Hold the buffer and join it to the dfops so that we'll still own | 
|  | * the buffer when we return to the caller.  The buffer disposal on | 
|  | * error must be paid attention to very carefully, as it has been | 
|  | * broken since commit efa092f3d4c6 "[XFS] Fixes a bug in the quota | 
|  | * code when allocating a new dquot record" in 2005, and the later | 
|  | * conversion to xfs_defer_ops in commit 310a75a3c6c747 failed to keep | 
|  | * the buffer locked across the _defer_finish call.  We can now do | 
|  | * this correctly with xfs_defer_bjoin. | 
|  | * | 
|  | * Above, we allocated a disk block for the dquot information and used | 
|  | * get_buf to initialize the dquot. If the _defer_finish fails, the old | 
|  | * transaction is gone but the new buffer is not joined or held to any | 
|  | * transaction, so we must _buf_relse it. | 
|  | * | 
|  | * If everything succeeds, the caller of this function is returned a | 
|  | * buffer that is locked and held to the transaction.  The caller | 
|  | * is responsible for unlocking any buffer passed back, either | 
|  | * manually or by committing the transaction.  On error, the buffer is | 
|  | * released and not passed back. | 
|  | */ | 
|  | xfs_trans_bhold(tp, bp); | 
|  | error = xfs_defer_finish(tpp); | 
|  | if (error) { | 
|  | xfs_trans_bhold_release(*tpp, bp); | 
|  | xfs_trans_brelse(*tpp, bp); | 
|  | return error; | 
|  | } | 
|  | *bpp = bp; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read in the in-core dquot's on-disk metadata and return the buffer. | 
|  | * Returns ENOENT to signal a hole. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_dquot_disk_read( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_dquot	*dqp, | 
|  | struct xfs_buf		**bpp) | 
|  | { | 
|  | struct xfs_bmbt_irec	map; | 
|  | struct xfs_buf		*bp; | 
|  | struct xfs_inode	*quotip = xfs_quota_inode(mp, dqp->dq_flags); | 
|  | uint			lock_mode; | 
|  | int			nmaps = 1; | 
|  | int			error; | 
|  |  | 
|  | lock_mode = xfs_ilock_data_map_shared(quotip); | 
|  | if (!xfs_this_quota_on(mp, dqp->dq_flags)) { | 
|  | /* | 
|  | * Return if this type of quotas is turned off while we | 
|  | * didn't have the quota inode lock. | 
|  | */ | 
|  | xfs_iunlock(quotip, lock_mode); | 
|  | return -ESRCH; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the block map; no allocations yet | 
|  | */ | 
|  | error = xfs_bmapi_read(quotip, dqp->q_fileoffset, | 
|  | XFS_DQUOT_CLUSTER_SIZE_FSB, &map, &nmaps, 0); | 
|  | xfs_iunlock(quotip, lock_mode); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | ASSERT(nmaps == 1); | 
|  | ASSERT(map.br_blockcount >= 1); | 
|  | ASSERT(map.br_startblock != DELAYSTARTBLOCK); | 
|  | if (map.br_startblock == HOLESTARTBLOCK) | 
|  | return -ENOENT; | 
|  |  | 
|  | trace_xfs_dqtobp_read(dqp); | 
|  |  | 
|  | /* | 
|  | * store the blkno etc so that we don't have to do the | 
|  | * mapping all the time | 
|  | */ | 
|  | dqp->q_blkno = XFS_FSB_TO_DADDR(mp, map.br_startblock); | 
|  |  | 
|  | error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dqp->q_blkno, | 
|  | mp->m_quotainfo->qi_dqchunklen, 0, &bp, | 
|  | &xfs_dquot_buf_ops); | 
|  | if (error) { | 
|  | ASSERT(bp == NULL); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | ASSERT(xfs_buf_islocked(bp)); | 
|  | xfs_buf_set_ref(bp, XFS_DQUOT_REF); | 
|  | *bpp = bp; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Allocate and initialize everything we need for an incore dquot. */ | 
|  | STATIC struct xfs_dquot * | 
|  | xfs_dquot_alloc( | 
|  | struct xfs_mount	*mp, | 
|  | xfs_dqid_t		id, | 
|  | uint			type) | 
|  | { | 
|  | struct xfs_dquot	*dqp; | 
|  |  | 
|  | dqp = kmem_zone_zalloc(xfs_qm_dqzone, 0); | 
|  |  | 
|  | dqp->dq_flags = type; | 
|  | dqp->q_core.d_id = cpu_to_be32(id); | 
|  | dqp->q_mount = mp; | 
|  | INIT_LIST_HEAD(&dqp->q_lru); | 
|  | mutex_init(&dqp->q_qlock); | 
|  | init_waitqueue_head(&dqp->q_pinwait); | 
|  | dqp->q_fileoffset = (xfs_fileoff_t)id / mp->m_quotainfo->qi_dqperchunk; | 
|  | /* | 
|  | * Offset of dquot in the (fixed sized) dquot chunk. | 
|  | */ | 
|  | dqp->q_bufoffset = (id % mp->m_quotainfo->qi_dqperchunk) * | 
|  | sizeof(xfs_dqblk_t); | 
|  |  | 
|  | /* | 
|  | * Because we want to use a counting completion, complete | 
|  | * the flush completion once to allow a single access to | 
|  | * the flush completion without blocking. | 
|  | */ | 
|  | init_completion(&dqp->q_flush); | 
|  | complete(&dqp->q_flush); | 
|  |  | 
|  | /* | 
|  | * Make sure group quotas have a different lock class than user | 
|  | * quotas. | 
|  | */ | 
|  | switch (type) { | 
|  | case XFS_DQ_USER: | 
|  | /* uses the default lock class */ | 
|  | break; | 
|  | case XFS_DQ_GROUP: | 
|  | lockdep_set_class(&dqp->q_qlock, &xfs_dquot_group_class); | 
|  | break; | 
|  | case XFS_DQ_PROJ: | 
|  | lockdep_set_class(&dqp->q_qlock, &xfs_dquot_project_class); | 
|  | break; | 
|  | default: | 
|  | ASSERT(0); | 
|  | break; | 
|  | } | 
|  |  | 
|  | xfs_qm_dquot_logitem_init(dqp); | 
|  |  | 
|  | XFS_STATS_INC(mp, xs_qm_dquot); | 
|  | return dqp; | 
|  | } | 
|  |  | 
|  | /* Copy the in-core quota fields in from the on-disk buffer. */ | 
|  | STATIC void | 
|  | xfs_dquot_from_disk( | 
|  | struct xfs_dquot	*dqp, | 
|  | struct xfs_buf		*bp) | 
|  | { | 
|  | struct xfs_disk_dquot	*ddqp = bp->b_addr + dqp->q_bufoffset; | 
|  |  | 
|  | /* copy everything from disk dquot to the incore dquot */ | 
|  | memcpy(&dqp->q_core, ddqp, sizeof(struct xfs_disk_dquot)); | 
|  |  | 
|  | /* | 
|  | * Reservation counters are defined as reservation plus current usage | 
|  | * to avoid having to add every time. | 
|  | */ | 
|  | dqp->q_res_bcount = be64_to_cpu(ddqp->d_bcount); | 
|  | dqp->q_res_icount = be64_to_cpu(ddqp->d_icount); | 
|  | dqp->q_res_rtbcount = be64_to_cpu(ddqp->d_rtbcount); | 
|  |  | 
|  | /* initialize the dquot speculative prealloc thresholds */ | 
|  | xfs_dquot_set_prealloc_limits(dqp); | 
|  | } | 
|  |  | 
|  | /* Allocate and initialize the dquot buffer for this in-core dquot. */ | 
|  | static int | 
|  | xfs_qm_dqread_alloc( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_dquot	*dqp, | 
|  | struct xfs_buf		**bpp) | 
|  | { | 
|  | struct xfs_trans	*tp; | 
|  | int			error; | 
|  |  | 
|  | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_qm_dqalloc, | 
|  | XFS_QM_DQALLOC_SPACE_RES(mp), 0, 0, &tp); | 
|  | if (error) | 
|  | goto err; | 
|  |  | 
|  | error = xfs_dquot_disk_alloc(&tp, dqp, bpp); | 
|  | if (error) | 
|  | goto err_cancel; | 
|  |  | 
|  | error = xfs_trans_commit(tp); | 
|  | if (error) { | 
|  | /* | 
|  | * Buffer was held to the transaction, so we have to unlock it | 
|  | * manually here because we're not passing it back. | 
|  | */ | 
|  | xfs_buf_relse(*bpp); | 
|  | *bpp = NULL; | 
|  | goto err; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | err_cancel: | 
|  | xfs_trans_cancel(tp); | 
|  | err: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read in the ondisk dquot using dqtobp() then copy it to an incore version, | 
|  | * and release the buffer immediately.  If @can_alloc is true, fill any | 
|  | * holes in the on-disk metadata. | 
|  | */ | 
|  | static int | 
|  | xfs_qm_dqread( | 
|  | struct xfs_mount	*mp, | 
|  | xfs_dqid_t		id, | 
|  | uint			type, | 
|  | bool			can_alloc, | 
|  | struct xfs_dquot	**dqpp) | 
|  | { | 
|  | struct xfs_dquot	*dqp; | 
|  | struct xfs_buf		*bp; | 
|  | int			error; | 
|  |  | 
|  | dqp = xfs_dquot_alloc(mp, id, type); | 
|  | trace_xfs_dqread(dqp); | 
|  |  | 
|  | /* Try to read the buffer, allocating if necessary. */ | 
|  | error = xfs_dquot_disk_read(mp, dqp, &bp); | 
|  | if (error == -ENOENT && can_alloc) | 
|  | error = xfs_qm_dqread_alloc(mp, dqp, &bp); | 
|  | if (error) | 
|  | goto err; | 
|  |  | 
|  | /* | 
|  | * At this point we should have a clean locked buffer.  Copy the data | 
|  | * to the incore dquot and release the buffer since the incore dquot | 
|  | * has its own locking protocol so we needn't tie up the buffer any | 
|  | * further. | 
|  | */ | 
|  | ASSERT(xfs_buf_islocked(bp)); | 
|  | xfs_dquot_from_disk(dqp, bp); | 
|  |  | 
|  | xfs_buf_relse(bp); | 
|  | *dqpp = dqp; | 
|  | return error; | 
|  |  | 
|  | err: | 
|  | trace_xfs_dqread_fail(dqp); | 
|  | xfs_qm_dqdestroy(dqp); | 
|  | *dqpp = NULL; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Advance to the next id in the current chunk, or if at the | 
|  | * end of the chunk, skip ahead to first id in next allocated chunk | 
|  | * using the SEEK_DATA interface. | 
|  | */ | 
|  | static int | 
|  | xfs_dq_get_next_id( | 
|  | struct xfs_mount	*mp, | 
|  | uint			type, | 
|  | xfs_dqid_t		*id) | 
|  | { | 
|  | struct xfs_inode	*quotip = xfs_quota_inode(mp, type); | 
|  | xfs_dqid_t		next_id = *id + 1; /* simple advance */ | 
|  | uint			lock_flags; | 
|  | struct xfs_bmbt_irec	got; | 
|  | struct xfs_iext_cursor	cur; | 
|  | xfs_fsblock_t		start; | 
|  | int			error = 0; | 
|  |  | 
|  | /* If we'd wrap past the max ID, stop */ | 
|  | if (next_id < *id) | 
|  | return -ENOENT; | 
|  |  | 
|  | /* If new ID is within the current chunk, advancing it sufficed */ | 
|  | if (next_id % mp->m_quotainfo->qi_dqperchunk) { | 
|  | *id = next_id; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Nope, next_id is now past the current chunk, so find the next one */ | 
|  | start = (xfs_fsblock_t)next_id / mp->m_quotainfo->qi_dqperchunk; | 
|  |  | 
|  | lock_flags = xfs_ilock_data_map_shared(quotip); | 
|  | if (!(quotip->i_df.if_flags & XFS_IFEXTENTS)) { | 
|  | error = xfs_iread_extents(NULL, quotip, XFS_DATA_FORK); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  |  | 
|  | if (xfs_iext_lookup_extent(quotip, "ip->i_df, start, &cur, &got)) { | 
|  | /* contiguous chunk, bump startoff for the id calculation */ | 
|  | if (got.br_startoff < start) | 
|  | got.br_startoff = start; | 
|  | *id = got.br_startoff * mp->m_quotainfo->qi_dqperchunk; | 
|  | } else { | 
|  | error = -ENOENT; | 
|  | } | 
|  |  | 
|  | xfs_iunlock(quotip, lock_flags); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Look up the dquot in the in-core cache.  If found, the dquot is returned | 
|  | * locked and ready to go. | 
|  | */ | 
|  | static struct xfs_dquot * | 
|  | xfs_qm_dqget_cache_lookup( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_quotainfo	*qi, | 
|  | struct radix_tree_root	*tree, | 
|  | xfs_dqid_t		id) | 
|  | { | 
|  | struct xfs_dquot	*dqp; | 
|  |  | 
|  | restart: | 
|  | mutex_lock(&qi->qi_tree_lock); | 
|  | dqp = radix_tree_lookup(tree, id); | 
|  | if (!dqp) { | 
|  | mutex_unlock(&qi->qi_tree_lock); | 
|  | XFS_STATS_INC(mp, xs_qm_dqcachemisses); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | xfs_dqlock(dqp); | 
|  | if (dqp->dq_flags & XFS_DQ_FREEING) { | 
|  | xfs_dqunlock(dqp); | 
|  | mutex_unlock(&qi->qi_tree_lock); | 
|  | trace_xfs_dqget_freeing(dqp); | 
|  | delay(1); | 
|  | goto restart; | 
|  | } | 
|  |  | 
|  | dqp->q_nrefs++; | 
|  | mutex_unlock(&qi->qi_tree_lock); | 
|  |  | 
|  | trace_xfs_dqget_hit(dqp); | 
|  | XFS_STATS_INC(mp, xs_qm_dqcachehits); | 
|  | return dqp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to insert a new dquot into the in-core cache.  If an error occurs the | 
|  | * caller should throw away the dquot and start over.  Otherwise, the dquot | 
|  | * is returned locked (and held by the cache) as if there had been a cache | 
|  | * hit. | 
|  | */ | 
|  | static int | 
|  | xfs_qm_dqget_cache_insert( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_quotainfo	*qi, | 
|  | struct radix_tree_root	*tree, | 
|  | xfs_dqid_t		id, | 
|  | struct xfs_dquot	*dqp) | 
|  | { | 
|  | int			error; | 
|  |  | 
|  | mutex_lock(&qi->qi_tree_lock); | 
|  | error = radix_tree_insert(tree, id, dqp); | 
|  | if (unlikely(error)) { | 
|  | /* Duplicate found!  Caller must try again. */ | 
|  | WARN_ON(error != -EEXIST); | 
|  | mutex_unlock(&qi->qi_tree_lock); | 
|  | trace_xfs_dqget_dup(dqp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* Return a locked dquot to the caller, with a reference taken. */ | 
|  | xfs_dqlock(dqp); | 
|  | dqp->q_nrefs = 1; | 
|  |  | 
|  | qi->qi_dquots++; | 
|  | mutex_unlock(&qi->qi_tree_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Check our input parameters. */ | 
|  | static int | 
|  | xfs_qm_dqget_checks( | 
|  | struct xfs_mount	*mp, | 
|  | uint			type) | 
|  | { | 
|  | if (WARN_ON_ONCE(!XFS_IS_QUOTA_RUNNING(mp))) | 
|  | return -ESRCH; | 
|  |  | 
|  | switch (type) { | 
|  | case XFS_DQ_USER: | 
|  | if (!XFS_IS_UQUOTA_ON(mp)) | 
|  | return -ESRCH; | 
|  | return 0; | 
|  | case XFS_DQ_GROUP: | 
|  | if (!XFS_IS_GQUOTA_ON(mp)) | 
|  | return -ESRCH; | 
|  | return 0; | 
|  | case XFS_DQ_PROJ: | 
|  | if (!XFS_IS_PQUOTA_ON(mp)) | 
|  | return -ESRCH; | 
|  | return 0; | 
|  | default: | 
|  | WARN_ON_ONCE(0); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Given the file system, id, and type (UDQUOT/GDQUOT), return a a locked | 
|  | * dquot, doing an allocation (if requested) as needed. | 
|  | */ | 
|  | int | 
|  | xfs_qm_dqget( | 
|  | struct xfs_mount	*mp, | 
|  | xfs_dqid_t		id, | 
|  | uint			type, | 
|  | bool			can_alloc, | 
|  | struct xfs_dquot	**O_dqpp) | 
|  | { | 
|  | struct xfs_quotainfo	*qi = mp->m_quotainfo; | 
|  | struct radix_tree_root	*tree = xfs_dquot_tree(qi, type); | 
|  | struct xfs_dquot	*dqp; | 
|  | int			error; | 
|  |  | 
|  | error = xfs_qm_dqget_checks(mp, type); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | restart: | 
|  | dqp = xfs_qm_dqget_cache_lookup(mp, qi, tree, id); | 
|  | if (dqp) { | 
|  | *O_dqpp = dqp; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | error = xfs_qm_dqread(mp, id, type, can_alloc, &dqp); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | error = xfs_qm_dqget_cache_insert(mp, qi, tree, id, dqp); | 
|  | if (error) { | 
|  | /* | 
|  | * Duplicate found. Just throw away the new dquot and start | 
|  | * over. | 
|  | */ | 
|  | xfs_qm_dqdestroy(dqp); | 
|  | XFS_STATS_INC(mp, xs_qm_dquot_dups); | 
|  | goto restart; | 
|  | } | 
|  |  | 
|  | trace_xfs_dqget_miss(dqp); | 
|  | *O_dqpp = dqp; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Given a dquot id and type, read and initialize a dquot from the on-disk | 
|  | * metadata.  This function is only for use during quota initialization so | 
|  | * it ignores the dquot cache assuming that the dquot shrinker isn't set up. | 
|  | * The caller is responsible for _qm_dqdestroy'ing the returned dquot. | 
|  | */ | 
|  | int | 
|  | xfs_qm_dqget_uncached( | 
|  | struct xfs_mount	*mp, | 
|  | xfs_dqid_t		id, | 
|  | uint			type, | 
|  | struct xfs_dquot	**dqpp) | 
|  | { | 
|  | int			error; | 
|  |  | 
|  | error = xfs_qm_dqget_checks(mp, type); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | return xfs_qm_dqread(mp, id, type, 0, dqpp); | 
|  | } | 
|  |  | 
|  | /* Return the quota id for a given inode and type. */ | 
|  | xfs_dqid_t | 
|  | xfs_qm_id_for_quotatype( | 
|  | struct xfs_inode	*ip, | 
|  | uint			type) | 
|  | { | 
|  | switch (type) { | 
|  | case XFS_DQ_USER: | 
|  | return ip->i_d.di_uid; | 
|  | case XFS_DQ_GROUP: | 
|  | return ip->i_d.di_gid; | 
|  | case XFS_DQ_PROJ: | 
|  | return ip->i_d.di_projid; | 
|  | } | 
|  | ASSERT(0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the dquot for a given inode and type.  If @can_alloc is true, then | 
|  | * allocate blocks if needed.  The inode's ILOCK must be held and it must not | 
|  | * have already had an inode attached. | 
|  | */ | 
|  | int | 
|  | xfs_qm_dqget_inode( | 
|  | struct xfs_inode	*ip, | 
|  | uint			type, | 
|  | bool			can_alloc, | 
|  | struct xfs_dquot	**O_dqpp) | 
|  | { | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | struct xfs_quotainfo	*qi = mp->m_quotainfo; | 
|  | struct radix_tree_root	*tree = xfs_dquot_tree(qi, type); | 
|  | struct xfs_dquot	*dqp; | 
|  | xfs_dqid_t		id; | 
|  | int			error; | 
|  |  | 
|  | error = xfs_qm_dqget_checks(mp, type); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); | 
|  | ASSERT(xfs_inode_dquot(ip, type) == NULL); | 
|  |  | 
|  | id = xfs_qm_id_for_quotatype(ip, type); | 
|  |  | 
|  | restart: | 
|  | dqp = xfs_qm_dqget_cache_lookup(mp, qi, tree, id); | 
|  | if (dqp) { | 
|  | *O_dqpp = dqp; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dquot cache miss. We don't want to keep the inode lock across | 
|  | * a (potential) disk read. Also we don't want to deal with the lock | 
|  | * ordering between quotainode and this inode. OTOH, dropping the inode | 
|  | * lock here means dealing with a chown that can happen before | 
|  | * we re-acquire the lock. | 
|  | */ | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | error = xfs_qm_dqread(mp, id, type, can_alloc, &dqp); | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | /* | 
|  | * A dquot could be attached to this inode by now, since we had | 
|  | * dropped the ilock. | 
|  | */ | 
|  | if (xfs_this_quota_on(mp, type)) { | 
|  | struct xfs_dquot	*dqp1; | 
|  |  | 
|  | dqp1 = xfs_inode_dquot(ip, type); | 
|  | if (dqp1) { | 
|  | xfs_qm_dqdestroy(dqp); | 
|  | dqp = dqp1; | 
|  | xfs_dqlock(dqp); | 
|  | goto dqret; | 
|  | } | 
|  | } else { | 
|  | /* inode stays locked on return */ | 
|  | xfs_qm_dqdestroy(dqp); | 
|  | return -ESRCH; | 
|  | } | 
|  |  | 
|  | error = xfs_qm_dqget_cache_insert(mp, qi, tree, id, dqp); | 
|  | if (error) { | 
|  | /* | 
|  | * Duplicate found. Just throw away the new dquot and start | 
|  | * over. | 
|  | */ | 
|  | xfs_qm_dqdestroy(dqp); | 
|  | XFS_STATS_INC(mp, xs_qm_dquot_dups); | 
|  | goto restart; | 
|  | } | 
|  |  | 
|  | dqret: | 
|  | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); | 
|  | trace_xfs_dqget_miss(dqp); | 
|  | *O_dqpp = dqp; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Starting at @id and progressing upwards, look for an initialized incore | 
|  | * dquot, lock it, and return it. | 
|  | */ | 
|  | int | 
|  | xfs_qm_dqget_next( | 
|  | struct xfs_mount	*mp, | 
|  | xfs_dqid_t		id, | 
|  | uint			type, | 
|  | struct xfs_dquot	**dqpp) | 
|  | { | 
|  | struct xfs_dquot	*dqp; | 
|  | int			error = 0; | 
|  |  | 
|  | *dqpp = NULL; | 
|  | for (; !error; error = xfs_dq_get_next_id(mp, type, &id)) { | 
|  | error = xfs_qm_dqget(mp, id, type, false, &dqp); | 
|  | if (error == -ENOENT) | 
|  | continue; | 
|  | else if (error != 0) | 
|  | break; | 
|  |  | 
|  | if (!XFS_IS_DQUOT_UNINITIALIZED(dqp)) { | 
|  | *dqpp = dqp; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | xfs_qm_dqput(dqp); | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release a reference to the dquot (decrement ref-count) and unlock it. | 
|  | * | 
|  | * If there is a group quota attached to this dquot, carefully release that | 
|  | * too without tripping over deadlocks'n'stuff. | 
|  | */ | 
|  | void | 
|  | xfs_qm_dqput( | 
|  | struct xfs_dquot	*dqp) | 
|  | { | 
|  | ASSERT(dqp->q_nrefs > 0); | 
|  | ASSERT(XFS_DQ_IS_LOCKED(dqp)); | 
|  |  | 
|  | trace_xfs_dqput(dqp); | 
|  |  | 
|  | if (--dqp->q_nrefs == 0) { | 
|  | struct xfs_quotainfo	*qi = dqp->q_mount->m_quotainfo; | 
|  | trace_xfs_dqput_free(dqp); | 
|  |  | 
|  | if (list_lru_add(&qi->qi_lru, &dqp->q_lru)) | 
|  | XFS_STATS_INC(dqp->q_mount, xs_qm_dquot_unused); | 
|  | } | 
|  | xfs_dqunlock(dqp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release a dquot. Flush it if dirty, then dqput() it. | 
|  | * dquot must not be locked. | 
|  | */ | 
|  | void | 
|  | xfs_qm_dqrele( | 
|  | struct xfs_dquot	*dqp) | 
|  | { | 
|  | if (!dqp) | 
|  | return; | 
|  |  | 
|  | trace_xfs_dqrele(dqp); | 
|  |  | 
|  | xfs_dqlock(dqp); | 
|  | /* | 
|  | * We don't care to flush it if the dquot is dirty here. | 
|  | * That will create stutters that we want to avoid. | 
|  | * Instead we do a delayed write when we try to reclaim | 
|  | * a dirty dquot. Also xfs_sync will take part of the burden... | 
|  | */ | 
|  | xfs_qm_dqput(dqp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the dquot flushing I/O completion routine.  It is called | 
|  | * from interrupt level when the buffer containing the dquot is | 
|  | * flushed to disk.  It is responsible for removing the dquot logitem | 
|  | * from the AIL if it has not been re-logged, and unlocking the dquot's | 
|  | * flush lock. This behavior is very similar to that of inodes.. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_qm_dqflush_done( | 
|  | struct xfs_buf		*bp, | 
|  | struct xfs_log_item	*lip) | 
|  | { | 
|  | struct xfs_dq_logitem	*qip = (struct xfs_dq_logitem *)lip; | 
|  | struct xfs_dquot	*dqp = qip->qli_dquot; | 
|  | struct xfs_ail		*ailp = lip->li_ailp; | 
|  |  | 
|  | /* | 
|  | * We only want to pull the item from the AIL if its | 
|  | * location in the log has not changed since we started the flush. | 
|  | * Thus, we only bother if the dquot's lsn has | 
|  | * not changed. First we check the lsn outside the lock | 
|  | * since it's cheaper, and then we recheck while | 
|  | * holding the lock before removing the dquot from the AIL. | 
|  | */ | 
|  | if (test_bit(XFS_LI_IN_AIL, &lip->li_flags) && | 
|  | ((lip->li_lsn == qip->qli_flush_lsn) || | 
|  | test_bit(XFS_LI_FAILED, &lip->li_flags))) { | 
|  |  | 
|  | /* xfs_trans_ail_delete() drops the AIL lock. */ | 
|  | spin_lock(&ailp->ail_lock); | 
|  | if (lip->li_lsn == qip->qli_flush_lsn) { | 
|  | xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE); | 
|  | } else { | 
|  | /* | 
|  | * Clear the failed state since we are about to drop the | 
|  | * flush lock | 
|  | */ | 
|  | xfs_clear_li_failed(lip); | 
|  | spin_unlock(&ailp->ail_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release the dq's flush lock since we're done with it. | 
|  | */ | 
|  | xfs_dqfunlock(dqp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write a modified dquot to disk. | 
|  | * The dquot must be locked and the flush lock too taken by caller. | 
|  | * The flush lock will not be unlocked until the dquot reaches the disk, | 
|  | * but the dquot is free to be unlocked and modified by the caller | 
|  | * in the interim. Dquot is still locked on return. This behavior is | 
|  | * identical to that of inodes. | 
|  | */ | 
|  | int | 
|  | xfs_qm_dqflush( | 
|  | struct xfs_dquot	*dqp, | 
|  | struct xfs_buf		**bpp) | 
|  | { | 
|  | struct xfs_mount	*mp = dqp->q_mount; | 
|  | struct xfs_buf		*bp; | 
|  | struct xfs_dqblk	*dqb; | 
|  | struct xfs_disk_dquot	*ddqp; | 
|  | xfs_failaddr_t		fa; | 
|  | int			error; | 
|  |  | 
|  | ASSERT(XFS_DQ_IS_LOCKED(dqp)); | 
|  | ASSERT(!completion_done(&dqp->q_flush)); | 
|  |  | 
|  | trace_xfs_dqflush(dqp); | 
|  |  | 
|  | *bpp = NULL; | 
|  |  | 
|  | xfs_qm_dqunpin_wait(dqp); | 
|  |  | 
|  | /* | 
|  | * This may have been unpinned because the filesystem is shutting | 
|  | * down forcibly. If that's the case we must not write this dquot | 
|  | * to disk, because the log record didn't make it to disk. | 
|  | * | 
|  | * We also have to remove the log item from the AIL in this case, | 
|  | * as we wait for an emptry AIL as part of the unmount process. | 
|  | */ | 
|  | if (XFS_FORCED_SHUTDOWN(mp)) { | 
|  | struct xfs_log_item	*lip = &dqp->q_logitem.qli_item; | 
|  | dqp->dq_flags &= ~XFS_DQ_DIRTY; | 
|  |  | 
|  | xfs_trans_ail_remove(lip, SHUTDOWN_CORRUPT_INCORE); | 
|  |  | 
|  | error = -EIO; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the buffer containing the on-disk dquot | 
|  | */ | 
|  | error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dqp->q_blkno, | 
|  | mp->m_quotainfo->qi_dqchunklen, 0, &bp, | 
|  | &xfs_dquot_buf_ops); | 
|  | if (error) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* | 
|  | * Calculate the location of the dquot inside the buffer. | 
|  | */ | 
|  | dqb = bp->b_addr + dqp->q_bufoffset; | 
|  | ddqp = &dqb->dd_diskdq; | 
|  |  | 
|  | /* | 
|  | * A simple sanity check in case we got a corrupted dquot. | 
|  | */ | 
|  | fa = xfs_dqblk_verify(mp, dqb, be32_to_cpu(ddqp->d_id), 0); | 
|  | if (fa) { | 
|  | xfs_alert(mp, "corrupt dquot ID 0x%x in memory at %pS", | 
|  | be32_to_cpu(ddqp->d_id), fa); | 
|  | xfs_buf_relse(bp); | 
|  | xfs_dqfunlock(dqp); | 
|  | xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  |  | 
|  | /* This is the only portion of data that needs to persist */ | 
|  | memcpy(ddqp, &dqp->q_core, sizeof(struct xfs_disk_dquot)); | 
|  |  | 
|  | /* | 
|  | * Clear the dirty field and remember the flush lsn for later use. | 
|  | */ | 
|  | dqp->dq_flags &= ~XFS_DQ_DIRTY; | 
|  |  | 
|  | xfs_trans_ail_copy_lsn(mp->m_ail, &dqp->q_logitem.qli_flush_lsn, | 
|  | &dqp->q_logitem.qli_item.li_lsn); | 
|  |  | 
|  | /* | 
|  | * copy the lsn into the on-disk dquot now while we have the in memory | 
|  | * dquot here. This can't be done later in the write verifier as we | 
|  | * can't get access to the log item at that point in time. | 
|  | * | 
|  | * We also calculate the CRC here so that the on-disk dquot in the | 
|  | * buffer always has a valid CRC. This ensures there is no possibility | 
|  | * of a dquot without an up-to-date CRC getting to disk. | 
|  | */ | 
|  | if (xfs_sb_version_hascrc(&mp->m_sb)) { | 
|  | dqb->dd_lsn = cpu_to_be64(dqp->q_logitem.qli_item.li_lsn); | 
|  | xfs_update_cksum((char *)dqb, sizeof(struct xfs_dqblk), | 
|  | XFS_DQUOT_CRC_OFF); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attach an iodone routine so that we can remove this dquot from the | 
|  | * AIL and release the flush lock once the dquot is synced to disk. | 
|  | */ | 
|  | xfs_buf_attach_iodone(bp, xfs_qm_dqflush_done, | 
|  | &dqp->q_logitem.qli_item); | 
|  |  | 
|  | /* | 
|  | * If the buffer is pinned then push on the log so we won't | 
|  | * get stuck waiting in the write for too long. | 
|  | */ | 
|  | if (xfs_buf_ispinned(bp)) { | 
|  | trace_xfs_dqflush_force(dqp); | 
|  | xfs_log_force(mp, 0); | 
|  | } | 
|  |  | 
|  | trace_xfs_dqflush_done(dqp); | 
|  | *bpp = bp; | 
|  | return 0; | 
|  |  | 
|  | out_unlock: | 
|  | xfs_dqfunlock(dqp); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lock two xfs_dquot structures. | 
|  | * | 
|  | * To avoid deadlocks we always lock the quota structure with | 
|  | * the lowerd id first. | 
|  | */ | 
|  | void | 
|  | xfs_dqlock2( | 
|  | struct xfs_dquot	*d1, | 
|  | struct xfs_dquot	*d2) | 
|  | { | 
|  | if (d1 && d2) { | 
|  | ASSERT(d1 != d2); | 
|  | if (be32_to_cpu(d1->q_core.d_id) > | 
|  | be32_to_cpu(d2->q_core.d_id)) { | 
|  | mutex_lock(&d2->q_qlock); | 
|  | mutex_lock_nested(&d1->q_qlock, XFS_QLOCK_NESTED); | 
|  | } else { | 
|  | mutex_lock(&d1->q_qlock); | 
|  | mutex_lock_nested(&d2->q_qlock, XFS_QLOCK_NESTED); | 
|  | } | 
|  | } else if (d1) { | 
|  | mutex_lock(&d1->q_qlock); | 
|  | } else if (d2) { | 
|  | mutex_lock(&d2->q_qlock); | 
|  | } | 
|  | } | 
|  |  | 
|  | int __init | 
|  | xfs_qm_init(void) | 
|  | { | 
|  | xfs_qm_dqzone = kmem_cache_create("xfs_dquot", | 
|  | sizeof(struct xfs_dquot), | 
|  | 0, 0, NULL); | 
|  | if (!xfs_qm_dqzone) | 
|  | goto out; | 
|  |  | 
|  | xfs_qm_dqtrxzone = kmem_cache_create("xfs_dqtrx", | 
|  | sizeof(struct xfs_dquot_acct), | 
|  | 0, 0, NULL); | 
|  | if (!xfs_qm_dqtrxzone) | 
|  | goto out_free_dqzone; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_free_dqzone: | 
|  | kmem_cache_destroy(xfs_qm_dqzone); | 
|  | out: | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_qm_exit(void) | 
|  | { | 
|  | kmem_cache_destroy(xfs_qm_dqtrxzone); | 
|  | kmem_cache_destroy(xfs_qm_dqzone); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Iterate every dquot of a particular type.  The caller must ensure that the | 
|  | * particular quota type is active.  iter_fn can return negative error codes, | 
|  | * or -ECANCELED to indicate that it wants to stop iterating. | 
|  | */ | 
|  | int | 
|  | xfs_qm_dqiterate( | 
|  | struct xfs_mount	*mp, | 
|  | uint			dqtype, | 
|  | xfs_qm_dqiterate_fn	iter_fn, | 
|  | void			*priv) | 
|  | { | 
|  | struct xfs_dquot	*dq; | 
|  | xfs_dqid_t		id = 0; | 
|  | int			error; | 
|  |  | 
|  | do { | 
|  | error = xfs_qm_dqget_next(mp, id, dqtype, &dq); | 
|  | if (error == -ENOENT) | 
|  | return 0; | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | error = iter_fn(dq, dqtype, priv); | 
|  | id = be32_to_cpu(dq->q_core.d_id); | 
|  | xfs_qm_dqput(dq); | 
|  | id++; | 
|  | } while (error == 0 && id != 0); | 
|  |  | 
|  | return error; | 
|  | } |