| // SPDX-License-Identifier: GPL-2.0-only | 
 | #include <linux/kernel.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/err.h> | 
 | #include <linux/spinlock.h> | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/memremap.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/rmap.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/swapops.h> | 
 |  | 
 | #include <linux/sched/signal.h> | 
 | #include <linux/rwsem.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/migrate.h> | 
 | #include <linux/mm_inline.h> | 
 | #include <linux/sched/mm.h> | 
 |  | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/tlbflush.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 | struct follow_page_context { | 
 | 	struct dev_pagemap *pgmap; | 
 | 	unsigned int page_mask; | 
 | }; | 
 |  | 
 | /* | 
 |  * Return the compound head page with ref appropriately incremented, | 
 |  * or NULL if that failed. | 
 |  */ | 
 | static inline struct page *try_get_compound_head(struct page *page, int refs) | 
 | { | 
 | 	struct page *head = compound_head(page); | 
 |  | 
 | 	if (WARN_ON_ONCE(page_ref_count(head) < 0)) | 
 | 		return NULL; | 
 | 	if (unlikely(!page_cache_add_speculative(head, refs))) | 
 | 		return NULL; | 
 | 	return head; | 
 | } | 
 |  | 
 | /** | 
 |  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages | 
 |  * @pages:  array of pages to be maybe marked dirty, and definitely released. | 
 |  * @npages: number of pages in the @pages array. | 
 |  * @make_dirty: whether to mark the pages dirty | 
 |  * | 
 |  * "gup-pinned page" refers to a page that has had one of the get_user_pages() | 
 |  * variants called on that page. | 
 |  * | 
 |  * For each page in the @pages array, make that page (or its head page, if a | 
 |  * compound page) dirty, if @make_dirty is true, and if the page was previously | 
 |  * listed as clean. In any case, releases all pages using unpin_user_page(), | 
 |  * possibly via unpin_user_pages(), for the non-dirty case. | 
 |  * | 
 |  * Please see the unpin_user_page() documentation for details. | 
 |  * | 
 |  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is | 
 |  * required, then the caller should a) verify that this is really correct, | 
 |  * because _lock() is usually required, and b) hand code it: | 
 |  * set_page_dirty_lock(), unpin_user_page(). | 
 |  * | 
 |  */ | 
 | void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, | 
 | 				 bool make_dirty) | 
 | { | 
 | 	unsigned long index; | 
 |  | 
 | 	/* | 
 | 	 * TODO: this can be optimized for huge pages: if a series of pages is | 
 | 	 * physically contiguous and part of the same compound page, then a | 
 | 	 * single operation to the head page should suffice. | 
 | 	 */ | 
 |  | 
 | 	if (!make_dirty) { | 
 | 		unpin_user_pages(pages, npages); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	for (index = 0; index < npages; index++) { | 
 | 		struct page *page = compound_head(pages[index]); | 
 | 		/* | 
 | 		 * Checking PageDirty at this point may race with | 
 | 		 * clear_page_dirty_for_io(), but that's OK. Two key | 
 | 		 * cases: | 
 | 		 * | 
 | 		 * 1) This code sees the page as already dirty, so it | 
 | 		 * skips the call to set_page_dirty(). That could happen | 
 | 		 * because clear_page_dirty_for_io() called | 
 | 		 * page_mkclean(), followed by set_page_dirty(). | 
 | 		 * However, now the page is going to get written back, | 
 | 		 * which meets the original intention of setting it | 
 | 		 * dirty, so all is well: clear_page_dirty_for_io() goes | 
 | 		 * on to call TestClearPageDirty(), and write the page | 
 | 		 * back. | 
 | 		 * | 
 | 		 * 2) This code sees the page as clean, so it calls | 
 | 		 * set_page_dirty(). The page stays dirty, despite being | 
 | 		 * written back, so it gets written back again in the | 
 | 		 * next writeback cycle. This is harmless. | 
 | 		 */ | 
 | 		if (!PageDirty(page)) | 
 | 			set_page_dirty_lock(page); | 
 | 		unpin_user_page(page); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(unpin_user_pages_dirty_lock); | 
 |  | 
 | /** | 
 |  * unpin_user_pages() - release an array of gup-pinned pages. | 
 |  * @pages:  array of pages to be marked dirty and released. | 
 |  * @npages: number of pages in the @pages array. | 
 |  * | 
 |  * For each page in the @pages array, release the page using unpin_user_page(). | 
 |  * | 
 |  * Please see the unpin_user_page() documentation for details. | 
 |  */ | 
 | void unpin_user_pages(struct page **pages, unsigned long npages) | 
 | { | 
 | 	unsigned long index; | 
 |  | 
 | 	/* | 
 | 	 * TODO: this can be optimized for huge pages: if a series of pages is | 
 | 	 * physically contiguous and part of the same compound page, then a | 
 | 	 * single operation to the head page should suffice. | 
 | 	 */ | 
 | 	for (index = 0; index < npages; index++) | 
 | 		unpin_user_page(pages[index]); | 
 | } | 
 | EXPORT_SYMBOL(unpin_user_pages); | 
 |  | 
 | #ifdef CONFIG_MMU | 
 | static struct page *no_page_table(struct vm_area_struct *vma, | 
 | 		unsigned int flags) | 
 | { | 
 | 	/* | 
 | 	 * When core dumping an enormous anonymous area that nobody | 
 | 	 * has touched so far, we don't want to allocate unnecessary pages or | 
 | 	 * page tables.  Return error instead of NULL to skip handle_mm_fault, | 
 | 	 * then get_dump_page() will return NULL to leave a hole in the dump. | 
 | 	 * But we can only make this optimization where a hole would surely | 
 | 	 * be zero-filled if handle_mm_fault() actually did handle it. | 
 | 	 */ | 
 | 	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) | 
 | 		return ERR_PTR(-EFAULT); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, | 
 | 		pte_t *pte, unsigned int flags) | 
 | { | 
 | 	/* No page to get reference */ | 
 | 	if (flags & FOLL_GET) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (flags & FOLL_TOUCH) { | 
 | 		pte_t entry = *pte; | 
 |  | 
 | 		if (flags & FOLL_WRITE) | 
 | 			entry = pte_mkdirty(entry); | 
 | 		entry = pte_mkyoung(entry); | 
 |  | 
 | 		if (!pte_same(*pte, entry)) { | 
 | 			set_pte_at(vma->vm_mm, address, pte, entry); | 
 | 			update_mmu_cache(vma, address, pte); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Proper page table entry exists, but no corresponding struct page */ | 
 | 	return -EEXIST; | 
 | } | 
 |  | 
 | /* | 
 |  * FOLL_FORCE can write to even unwritable pte's, but only | 
 |  * after we've gone through a COW cycle and they are dirty. | 
 |  */ | 
 | static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) | 
 | { | 
 | 	return pte_write(pte) || | 
 | 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); | 
 | } | 
 |  | 
 | static struct page *follow_page_pte(struct vm_area_struct *vma, | 
 | 		unsigned long address, pmd_t *pmd, unsigned int flags, | 
 | 		struct dev_pagemap **pgmap) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	struct page *page; | 
 | 	spinlock_t *ptl; | 
 | 	pte_t *ptep, pte; | 
 |  | 
 | 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */ | 
 | 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == | 
 | 			 (FOLL_PIN | FOLL_GET))) | 
 | 		return ERR_PTR(-EINVAL); | 
 | retry: | 
 | 	if (unlikely(pmd_bad(*pmd))) | 
 | 		return no_page_table(vma, flags); | 
 |  | 
 | 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | 
 | 	pte = *ptep; | 
 | 	if (!pte_present(pte)) { | 
 | 		swp_entry_t entry; | 
 | 		/* | 
 | 		 * KSM's break_ksm() relies upon recognizing a ksm page | 
 | 		 * even while it is being migrated, so for that case we | 
 | 		 * need migration_entry_wait(). | 
 | 		 */ | 
 | 		if (likely(!(flags & FOLL_MIGRATION))) | 
 | 			goto no_page; | 
 | 		if (pte_none(pte)) | 
 | 			goto no_page; | 
 | 		entry = pte_to_swp_entry(pte); | 
 | 		if (!is_migration_entry(entry)) | 
 | 			goto no_page; | 
 | 		pte_unmap_unlock(ptep, ptl); | 
 | 		migration_entry_wait(mm, pmd, address); | 
 | 		goto retry; | 
 | 	} | 
 | 	if ((flags & FOLL_NUMA) && pte_protnone(pte)) | 
 | 		goto no_page; | 
 | 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { | 
 | 		pte_unmap_unlock(ptep, ptl); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	page = vm_normal_page(vma, address, pte); | 
 | 	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) { | 
 | 		/* | 
 | 		 * Only return device mapping pages in the FOLL_GET case since | 
 | 		 * they are only valid while holding the pgmap reference. | 
 | 		 */ | 
 | 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); | 
 | 		if (*pgmap) | 
 | 			page = pte_page(pte); | 
 | 		else | 
 | 			goto no_page; | 
 | 	} else if (unlikely(!page)) { | 
 | 		if (flags & FOLL_DUMP) { | 
 | 			/* Avoid special (like zero) pages in core dumps */ | 
 | 			page = ERR_PTR(-EFAULT); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (is_zero_pfn(pte_pfn(pte))) { | 
 | 			page = pte_page(pte); | 
 | 		} else { | 
 | 			int ret; | 
 |  | 
 | 			ret = follow_pfn_pte(vma, address, ptep, flags); | 
 | 			page = ERR_PTR(ret); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (flags & FOLL_SPLIT && PageTransCompound(page)) { | 
 | 		int ret; | 
 | 		get_page(page); | 
 | 		pte_unmap_unlock(ptep, ptl); | 
 | 		lock_page(page); | 
 | 		ret = split_huge_page(page); | 
 | 		unlock_page(page); | 
 | 		put_page(page); | 
 | 		if (ret) | 
 | 			return ERR_PTR(ret); | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	if (flags & FOLL_GET) { | 
 | 		if (unlikely(!try_get_page(page))) { | 
 | 			page = ERR_PTR(-ENOMEM); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | 	if (flags & FOLL_TOUCH) { | 
 | 		if ((flags & FOLL_WRITE) && | 
 | 		    !pte_dirty(pte) && !PageDirty(page)) | 
 | 			set_page_dirty(page); | 
 | 		/* | 
 | 		 * pte_mkyoung() would be more correct here, but atomic care | 
 | 		 * is needed to avoid losing the dirty bit: it is easier to use | 
 | 		 * mark_page_accessed(). | 
 | 		 */ | 
 | 		mark_page_accessed(page); | 
 | 	} | 
 | 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { | 
 | 		/* Do not mlock pte-mapped THP */ | 
 | 		if (PageTransCompound(page)) | 
 | 			goto out; | 
 |  | 
 | 		/* | 
 | 		 * The preliminary mapping check is mainly to avoid the | 
 | 		 * pointless overhead of lock_page on the ZERO_PAGE | 
 | 		 * which might bounce very badly if there is contention. | 
 | 		 * | 
 | 		 * If the page is already locked, we don't need to | 
 | 		 * handle it now - vmscan will handle it later if and | 
 | 		 * when it attempts to reclaim the page. | 
 | 		 */ | 
 | 		if (page->mapping && trylock_page(page)) { | 
 | 			lru_add_drain();  /* push cached pages to LRU */ | 
 | 			/* | 
 | 			 * Because we lock page here, and migration is | 
 | 			 * blocked by the pte's page reference, and we | 
 | 			 * know the page is still mapped, we don't even | 
 | 			 * need to check for file-cache page truncation. | 
 | 			 */ | 
 | 			mlock_vma_page(page); | 
 | 			unlock_page(page); | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	pte_unmap_unlock(ptep, ptl); | 
 | 	return page; | 
 | no_page: | 
 | 	pte_unmap_unlock(ptep, ptl); | 
 | 	if (!pte_none(pte)) | 
 | 		return NULL; | 
 | 	return no_page_table(vma, flags); | 
 | } | 
 |  | 
 | static struct page *follow_pmd_mask(struct vm_area_struct *vma, | 
 | 				    unsigned long address, pud_t *pudp, | 
 | 				    unsigned int flags, | 
 | 				    struct follow_page_context *ctx) | 
 | { | 
 | 	pmd_t *pmd, pmdval; | 
 | 	spinlock_t *ptl; | 
 | 	struct page *page; | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 |  | 
 | 	pmd = pmd_offset(pudp, address); | 
 | 	/* | 
 | 	 * The READ_ONCE() will stabilize the pmdval in a register or | 
 | 	 * on the stack so that it will stop changing under the code. | 
 | 	 */ | 
 | 	pmdval = READ_ONCE(*pmd); | 
 | 	if (pmd_none(pmdval)) | 
 | 		return no_page_table(vma, flags); | 
 | 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { | 
 | 		page = follow_huge_pmd(mm, address, pmd, flags); | 
 | 		if (page) | 
 | 			return page; | 
 | 		return no_page_table(vma, flags); | 
 | 	} | 
 | 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) { | 
 | 		page = follow_huge_pd(vma, address, | 
 | 				      __hugepd(pmd_val(pmdval)), flags, | 
 | 				      PMD_SHIFT); | 
 | 		if (page) | 
 | 			return page; | 
 | 		return no_page_table(vma, flags); | 
 | 	} | 
 | retry: | 
 | 	if (!pmd_present(pmdval)) { | 
 | 		if (likely(!(flags & FOLL_MIGRATION))) | 
 | 			return no_page_table(vma, flags); | 
 | 		VM_BUG_ON(thp_migration_supported() && | 
 | 				  !is_pmd_migration_entry(pmdval)); | 
 | 		if (is_pmd_migration_entry(pmdval)) | 
 | 			pmd_migration_entry_wait(mm, pmd); | 
 | 		pmdval = READ_ONCE(*pmd); | 
 | 		/* | 
 | 		 * MADV_DONTNEED may convert the pmd to null because | 
 | 		 * mmap_sem is held in read mode | 
 | 		 */ | 
 | 		if (pmd_none(pmdval)) | 
 | 			return no_page_table(vma, flags); | 
 | 		goto retry; | 
 | 	} | 
 | 	if (pmd_devmap(pmdval)) { | 
 | 		ptl = pmd_lock(mm, pmd); | 
 | 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); | 
 | 		spin_unlock(ptl); | 
 | 		if (page) | 
 | 			return page; | 
 | 	} | 
 | 	if (likely(!pmd_trans_huge(pmdval))) | 
 | 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); | 
 |  | 
 | 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) | 
 | 		return no_page_table(vma, flags); | 
 |  | 
 | retry_locked: | 
 | 	ptl = pmd_lock(mm, pmd); | 
 | 	if (unlikely(pmd_none(*pmd))) { | 
 | 		spin_unlock(ptl); | 
 | 		return no_page_table(vma, flags); | 
 | 	} | 
 | 	if (unlikely(!pmd_present(*pmd))) { | 
 | 		spin_unlock(ptl); | 
 | 		if (likely(!(flags & FOLL_MIGRATION))) | 
 | 			return no_page_table(vma, flags); | 
 | 		pmd_migration_entry_wait(mm, pmd); | 
 | 		goto retry_locked; | 
 | 	} | 
 | 	if (unlikely(!pmd_trans_huge(*pmd))) { | 
 | 		spin_unlock(ptl); | 
 | 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); | 
 | 	} | 
 | 	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) { | 
 | 		int ret; | 
 | 		page = pmd_page(*pmd); | 
 | 		if (is_huge_zero_page(page)) { | 
 | 			spin_unlock(ptl); | 
 | 			ret = 0; | 
 | 			split_huge_pmd(vma, pmd, address); | 
 | 			if (pmd_trans_unstable(pmd)) | 
 | 				ret = -EBUSY; | 
 | 		} else if (flags & FOLL_SPLIT) { | 
 | 			if (unlikely(!try_get_page(page))) { | 
 | 				spin_unlock(ptl); | 
 | 				return ERR_PTR(-ENOMEM); | 
 | 			} | 
 | 			spin_unlock(ptl); | 
 | 			lock_page(page); | 
 | 			ret = split_huge_page(page); | 
 | 			unlock_page(page); | 
 | 			put_page(page); | 
 | 			if (pmd_none(*pmd)) | 
 | 				return no_page_table(vma, flags); | 
 | 		} else {  /* flags & FOLL_SPLIT_PMD */ | 
 | 			spin_unlock(ptl); | 
 | 			split_huge_pmd(vma, pmd, address); | 
 | 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; | 
 | 		} | 
 |  | 
 | 		return ret ? ERR_PTR(ret) : | 
 | 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); | 
 | 	} | 
 | 	page = follow_trans_huge_pmd(vma, address, pmd, flags); | 
 | 	spin_unlock(ptl); | 
 | 	ctx->page_mask = HPAGE_PMD_NR - 1; | 
 | 	return page; | 
 | } | 
 |  | 
 | static struct page *follow_pud_mask(struct vm_area_struct *vma, | 
 | 				    unsigned long address, p4d_t *p4dp, | 
 | 				    unsigned int flags, | 
 | 				    struct follow_page_context *ctx) | 
 | { | 
 | 	pud_t *pud; | 
 | 	spinlock_t *ptl; | 
 | 	struct page *page; | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 |  | 
 | 	pud = pud_offset(p4dp, address); | 
 | 	if (pud_none(*pud)) | 
 | 		return no_page_table(vma, flags); | 
 | 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { | 
 | 		page = follow_huge_pud(mm, address, pud, flags); | 
 | 		if (page) | 
 | 			return page; | 
 | 		return no_page_table(vma, flags); | 
 | 	} | 
 | 	if (is_hugepd(__hugepd(pud_val(*pud)))) { | 
 | 		page = follow_huge_pd(vma, address, | 
 | 				      __hugepd(pud_val(*pud)), flags, | 
 | 				      PUD_SHIFT); | 
 | 		if (page) | 
 | 			return page; | 
 | 		return no_page_table(vma, flags); | 
 | 	} | 
 | 	if (pud_devmap(*pud)) { | 
 | 		ptl = pud_lock(mm, pud); | 
 | 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); | 
 | 		spin_unlock(ptl); | 
 | 		if (page) | 
 | 			return page; | 
 | 	} | 
 | 	if (unlikely(pud_bad(*pud))) | 
 | 		return no_page_table(vma, flags); | 
 |  | 
 | 	return follow_pmd_mask(vma, address, pud, flags, ctx); | 
 | } | 
 |  | 
 | static struct page *follow_p4d_mask(struct vm_area_struct *vma, | 
 | 				    unsigned long address, pgd_t *pgdp, | 
 | 				    unsigned int flags, | 
 | 				    struct follow_page_context *ctx) | 
 | { | 
 | 	p4d_t *p4d; | 
 | 	struct page *page; | 
 |  | 
 | 	p4d = p4d_offset(pgdp, address); | 
 | 	if (p4d_none(*p4d)) | 
 | 		return no_page_table(vma, flags); | 
 | 	BUILD_BUG_ON(p4d_huge(*p4d)); | 
 | 	if (unlikely(p4d_bad(*p4d))) | 
 | 		return no_page_table(vma, flags); | 
 |  | 
 | 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) { | 
 | 		page = follow_huge_pd(vma, address, | 
 | 				      __hugepd(p4d_val(*p4d)), flags, | 
 | 				      P4D_SHIFT); | 
 | 		if (page) | 
 | 			return page; | 
 | 		return no_page_table(vma, flags); | 
 | 	} | 
 | 	return follow_pud_mask(vma, address, p4d, flags, ctx); | 
 | } | 
 |  | 
 | /** | 
 |  * follow_page_mask - look up a page descriptor from a user-virtual address | 
 |  * @vma: vm_area_struct mapping @address | 
 |  * @address: virtual address to look up | 
 |  * @flags: flags modifying lookup behaviour | 
 |  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a | 
 |  *       pointer to output page_mask | 
 |  * | 
 |  * @flags can have FOLL_ flags set, defined in <linux/mm.h> | 
 |  * | 
 |  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches | 
 |  * the device's dev_pagemap metadata to avoid repeating expensive lookups. | 
 |  * | 
 |  * On output, the @ctx->page_mask is set according to the size of the page. | 
 |  * | 
 |  * Return: the mapped (struct page *), %NULL if no mapping exists, or | 
 |  * an error pointer if there is a mapping to something not represented | 
 |  * by a page descriptor (see also vm_normal_page()). | 
 |  */ | 
 | static struct page *follow_page_mask(struct vm_area_struct *vma, | 
 | 			      unsigned long address, unsigned int flags, | 
 | 			      struct follow_page_context *ctx) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	struct page *page; | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 |  | 
 | 	ctx->page_mask = 0; | 
 |  | 
 | 	/* make this handle hugepd */ | 
 | 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE); | 
 | 	if (!IS_ERR(page)) { | 
 | 		BUG_ON(flags & FOLL_GET); | 
 | 		return page; | 
 | 	} | 
 |  | 
 | 	pgd = pgd_offset(mm, address); | 
 |  | 
 | 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | 
 | 		return no_page_table(vma, flags); | 
 |  | 
 | 	if (pgd_huge(*pgd)) { | 
 | 		page = follow_huge_pgd(mm, address, pgd, flags); | 
 | 		if (page) | 
 | 			return page; | 
 | 		return no_page_table(vma, flags); | 
 | 	} | 
 | 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) { | 
 | 		page = follow_huge_pd(vma, address, | 
 | 				      __hugepd(pgd_val(*pgd)), flags, | 
 | 				      PGDIR_SHIFT); | 
 | 		if (page) | 
 | 			return page; | 
 | 		return no_page_table(vma, flags); | 
 | 	} | 
 |  | 
 | 	return follow_p4d_mask(vma, address, pgd, flags, ctx); | 
 | } | 
 |  | 
 | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, | 
 | 			 unsigned int foll_flags) | 
 | { | 
 | 	struct follow_page_context ctx = { NULL }; | 
 | 	struct page *page; | 
 |  | 
 | 	page = follow_page_mask(vma, address, foll_flags, &ctx); | 
 | 	if (ctx.pgmap) | 
 | 		put_dev_pagemap(ctx.pgmap); | 
 | 	return page; | 
 | } | 
 |  | 
 | static int get_gate_page(struct mm_struct *mm, unsigned long address, | 
 | 		unsigned int gup_flags, struct vm_area_struct **vma, | 
 | 		struct page **page) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	p4d_t *p4d; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte; | 
 | 	int ret = -EFAULT; | 
 |  | 
 | 	/* user gate pages are read-only */ | 
 | 	if (gup_flags & FOLL_WRITE) | 
 | 		return -EFAULT; | 
 | 	if (address > TASK_SIZE) | 
 | 		pgd = pgd_offset_k(address); | 
 | 	else | 
 | 		pgd = pgd_offset_gate(mm, address); | 
 | 	if (pgd_none(*pgd)) | 
 | 		return -EFAULT; | 
 | 	p4d = p4d_offset(pgd, address); | 
 | 	if (p4d_none(*p4d)) | 
 | 		return -EFAULT; | 
 | 	pud = pud_offset(p4d, address); | 
 | 	if (pud_none(*pud)) | 
 | 		return -EFAULT; | 
 | 	pmd = pmd_offset(pud, address); | 
 | 	if (!pmd_present(*pmd)) | 
 | 		return -EFAULT; | 
 | 	VM_BUG_ON(pmd_trans_huge(*pmd)); | 
 | 	pte = pte_offset_map(pmd, address); | 
 | 	if (pte_none(*pte)) | 
 | 		goto unmap; | 
 | 	*vma = get_gate_vma(mm); | 
 | 	if (!page) | 
 | 		goto out; | 
 | 	*page = vm_normal_page(*vma, address, *pte); | 
 | 	if (!*page) { | 
 | 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) | 
 | 			goto unmap; | 
 | 		*page = pte_page(*pte); | 
 | 	} | 
 | 	if (unlikely(!try_get_page(*page))) { | 
 | 		ret = -ENOMEM; | 
 | 		goto unmap; | 
 | 	} | 
 | out: | 
 | 	ret = 0; | 
 | unmap: | 
 | 	pte_unmap(pte); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * mmap_sem must be held on entry.  If @nonblocking != NULL and | 
 |  * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released. | 
 |  * If it is, *@nonblocking will be set to 0 and -EBUSY returned. | 
 |  */ | 
 | static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, | 
 | 		unsigned long address, unsigned int *flags, int *nonblocking) | 
 | { | 
 | 	unsigned int fault_flags = 0; | 
 | 	vm_fault_t ret; | 
 |  | 
 | 	/* mlock all present pages, but do not fault in new pages */ | 
 | 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) | 
 | 		return -ENOENT; | 
 | 	if (*flags & FOLL_WRITE) | 
 | 		fault_flags |= FAULT_FLAG_WRITE; | 
 | 	if (*flags & FOLL_REMOTE) | 
 | 		fault_flags |= FAULT_FLAG_REMOTE; | 
 | 	if (nonblocking) | 
 | 		fault_flags |= FAULT_FLAG_ALLOW_RETRY; | 
 | 	if (*flags & FOLL_NOWAIT) | 
 | 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; | 
 | 	if (*flags & FOLL_TRIED) { | 
 | 		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY); | 
 | 		fault_flags |= FAULT_FLAG_TRIED; | 
 | 	} | 
 |  | 
 | 	ret = handle_mm_fault(vma, address, fault_flags); | 
 | 	if (ret & VM_FAULT_ERROR) { | 
 | 		int err = vm_fault_to_errno(ret, *flags); | 
 |  | 
 | 		if (err) | 
 | 			return err; | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	if (tsk) { | 
 | 		if (ret & VM_FAULT_MAJOR) | 
 | 			tsk->maj_flt++; | 
 | 		else | 
 | 			tsk->min_flt++; | 
 | 	} | 
 |  | 
 | 	if (ret & VM_FAULT_RETRY) { | 
 | 		if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) | 
 | 			*nonblocking = 0; | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when | 
 | 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We | 
 | 	 * can thus safely do subsequent page lookups as if they were reads. | 
 | 	 * But only do so when looping for pte_write is futile: in some cases | 
 | 	 * userspace may also be wanting to write to the gotten user page, | 
 | 	 * which a read fault here might prevent (a readonly page might get | 
 | 	 * reCOWed by userspace write). | 
 | 	 */ | 
 | 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) | 
 | 		*flags |= FOLL_COW; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) | 
 | { | 
 | 	vm_flags_t vm_flags = vma->vm_flags; | 
 | 	int write = (gup_flags & FOLL_WRITE); | 
 | 	int foreign = (gup_flags & FOLL_REMOTE); | 
 |  | 
 | 	if (vm_flags & (VM_IO | VM_PFNMAP)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (write) { | 
 | 		if (!(vm_flags & VM_WRITE)) { | 
 | 			if (!(gup_flags & FOLL_FORCE)) | 
 | 				return -EFAULT; | 
 | 			/* | 
 | 			 * We used to let the write,force case do COW in a | 
 | 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could | 
 | 			 * set a breakpoint in a read-only mapping of an | 
 | 			 * executable, without corrupting the file (yet only | 
 | 			 * when that file had been opened for writing!). | 
 | 			 * Anon pages in shared mappings are surprising: now | 
 | 			 * just reject it. | 
 | 			 */ | 
 | 			if (!is_cow_mapping(vm_flags)) | 
 | 				return -EFAULT; | 
 | 		} | 
 | 	} else if (!(vm_flags & VM_READ)) { | 
 | 		if (!(gup_flags & FOLL_FORCE)) | 
 | 			return -EFAULT; | 
 | 		/* | 
 | 		 * Is there actually any vma we can reach here which does not | 
 | 		 * have VM_MAYREAD set? | 
 | 		 */ | 
 | 		if (!(vm_flags & VM_MAYREAD)) | 
 | 			return -EFAULT; | 
 | 	} | 
 | 	/* | 
 | 	 * gups are always data accesses, not instruction | 
 | 	 * fetches, so execute=false here | 
 | 	 */ | 
 | 	if (!arch_vma_access_permitted(vma, write, false, foreign)) | 
 | 		return -EFAULT; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * __get_user_pages() - pin user pages in memory | 
 |  * @tsk:	task_struct of target task | 
 |  * @mm:		mm_struct of target mm | 
 |  * @start:	starting user address | 
 |  * @nr_pages:	number of pages from start to pin | 
 |  * @gup_flags:	flags modifying pin behaviour | 
 |  * @pages:	array that receives pointers to the pages pinned. | 
 |  *		Should be at least nr_pages long. Or NULL, if caller | 
 |  *		only intends to ensure the pages are faulted in. | 
 |  * @vmas:	array of pointers to vmas corresponding to each page. | 
 |  *		Or NULL if the caller does not require them. | 
 |  * @nonblocking: whether waiting for disk IO or mmap_sem contention | 
 |  * | 
 |  * Returns either number of pages pinned (which may be less than the | 
 |  * number requested), or an error. Details about the return value: | 
 |  * | 
 |  * -- If nr_pages is 0, returns 0. | 
 |  * -- If nr_pages is >0, but no pages were pinned, returns -errno. | 
 |  * -- If nr_pages is >0, and some pages were pinned, returns the number of | 
 |  *    pages pinned. Again, this may be less than nr_pages. | 
 |  * | 
 |  * The caller is responsible for releasing returned @pages, via put_page(). | 
 |  * | 
 |  * @vmas are valid only as long as mmap_sem is held. | 
 |  * | 
 |  * Must be called with mmap_sem held.  It may be released.  See below. | 
 |  * | 
 |  * __get_user_pages walks a process's page tables and takes a reference to | 
 |  * each struct page that each user address corresponds to at a given | 
 |  * instant. That is, it takes the page that would be accessed if a user | 
 |  * thread accesses the given user virtual address at that instant. | 
 |  * | 
 |  * This does not guarantee that the page exists in the user mappings when | 
 |  * __get_user_pages returns, and there may even be a completely different | 
 |  * page there in some cases (eg. if mmapped pagecache has been invalidated | 
 |  * and subsequently re faulted). However it does guarantee that the page | 
 |  * won't be freed completely. And mostly callers simply care that the page | 
 |  * contains data that was valid *at some point in time*. Typically, an IO | 
 |  * or similar operation cannot guarantee anything stronger anyway because | 
 |  * locks can't be held over the syscall boundary. | 
 |  * | 
 |  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If | 
 |  * the page is written to, set_page_dirty (or set_page_dirty_lock, as | 
 |  * appropriate) must be called after the page is finished with, and | 
 |  * before put_page is called. | 
 |  * | 
 |  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO | 
 |  * or mmap_sem contention, and if waiting is needed to pin all pages, | 
 |  * *@nonblocking will be set to 0.  Further, if @gup_flags does not | 
 |  * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in | 
 |  * this case. | 
 |  * | 
 |  * A caller using such a combination of @nonblocking and @gup_flags | 
 |  * must therefore hold the mmap_sem for reading only, and recognize | 
 |  * when it's been released.  Otherwise, it must be held for either | 
 |  * reading or writing and will not be released. | 
 |  * | 
 |  * In most cases, get_user_pages or get_user_pages_fast should be used | 
 |  * instead of __get_user_pages. __get_user_pages should be used only if | 
 |  * you need some special @gup_flags. | 
 |  */ | 
 | static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | 
 | 		unsigned long start, unsigned long nr_pages, | 
 | 		unsigned int gup_flags, struct page **pages, | 
 | 		struct vm_area_struct **vmas, int *nonblocking) | 
 | { | 
 | 	long ret = 0, i = 0; | 
 | 	struct vm_area_struct *vma = NULL; | 
 | 	struct follow_page_context ctx = { NULL }; | 
 |  | 
 | 	if (!nr_pages) | 
 | 		return 0; | 
 |  | 
 | 	start = untagged_addr(start); | 
 |  | 
 | 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); | 
 |  | 
 | 	/* | 
 | 	 * If FOLL_FORCE is set then do not force a full fault as the hinting | 
 | 	 * fault information is unrelated to the reference behaviour of a task | 
 | 	 * using the address space | 
 | 	 */ | 
 | 	if (!(gup_flags & FOLL_FORCE)) | 
 | 		gup_flags |= FOLL_NUMA; | 
 |  | 
 | 	do { | 
 | 		struct page *page; | 
 | 		unsigned int foll_flags = gup_flags; | 
 | 		unsigned int page_increm; | 
 |  | 
 | 		/* first iteration or cross vma bound */ | 
 | 		if (!vma || start >= vma->vm_end) { | 
 | 			vma = find_extend_vma(mm, start); | 
 | 			if (!vma && in_gate_area(mm, start)) { | 
 | 				ret = get_gate_page(mm, start & PAGE_MASK, | 
 | 						gup_flags, &vma, | 
 | 						pages ? &pages[i] : NULL); | 
 | 				if (ret) | 
 | 					goto out; | 
 | 				ctx.page_mask = 0; | 
 | 				goto next_page; | 
 | 			} | 
 |  | 
 | 			if (!vma || check_vma_flags(vma, gup_flags)) { | 
 | 				ret = -EFAULT; | 
 | 				goto out; | 
 | 			} | 
 | 			if (is_vm_hugetlb_page(vma)) { | 
 | 				i = follow_hugetlb_page(mm, vma, pages, vmas, | 
 | 						&start, &nr_pages, i, | 
 | 						gup_flags, nonblocking); | 
 | 				continue; | 
 | 			} | 
 | 		} | 
 | retry: | 
 | 		/* | 
 | 		 * If we have a pending SIGKILL, don't keep faulting pages and | 
 | 		 * potentially allocating memory. | 
 | 		 */ | 
 | 		if (fatal_signal_pending(current)) { | 
 | 			ret = -ERESTARTSYS; | 
 | 			goto out; | 
 | 		} | 
 | 		cond_resched(); | 
 |  | 
 | 		page = follow_page_mask(vma, start, foll_flags, &ctx); | 
 | 		if (!page) { | 
 | 			ret = faultin_page(tsk, vma, start, &foll_flags, | 
 | 					nonblocking); | 
 | 			switch (ret) { | 
 | 			case 0: | 
 | 				goto retry; | 
 | 			case -EBUSY: | 
 | 				ret = 0; | 
 | 				/* FALLTHRU */ | 
 | 			case -EFAULT: | 
 | 			case -ENOMEM: | 
 | 			case -EHWPOISON: | 
 | 				goto out; | 
 | 			case -ENOENT: | 
 | 				goto next_page; | 
 | 			} | 
 | 			BUG(); | 
 | 		} else if (PTR_ERR(page) == -EEXIST) { | 
 | 			/* | 
 | 			 * Proper page table entry exists, but no corresponding | 
 | 			 * struct page. | 
 | 			 */ | 
 | 			goto next_page; | 
 | 		} else if (IS_ERR(page)) { | 
 | 			ret = PTR_ERR(page); | 
 | 			goto out; | 
 | 		} | 
 | 		if (pages) { | 
 | 			pages[i] = page; | 
 | 			flush_anon_page(vma, page, start); | 
 | 			flush_dcache_page(page); | 
 | 			ctx.page_mask = 0; | 
 | 		} | 
 | next_page: | 
 | 		if (vmas) { | 
 | 			vmas[i] = vma; | 
 | 			ctx.page_mask = 0; | 
 | 		} | 
 | 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); | 
 | 		if (page_increm > nr_pages) | 
 | 			page_increm = nr_pages; | 
 | 		i += page_increm; | 
 | 		start += page_increm * PAGE_SIZE; | 
 | 		nr_pages -= page_increm; | 
 | 	} while (nr_pages); | 
 | out: | 
 | 	if (ctx.pgmap) | 
 | 		put_dev_pagemap(ctx.pgmap); | 
 | 	return i ? i : ret; | 
 | } | 
 |  | 
 | static bool vma_permits_fault(struct vm_area_struct *vma, | 
 | 			      unsigned int fault_flags) | 
 | { | 
 | 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE); | 
 | 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); | 
 | 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; | 
 |  | 
 | 	if (!(vm_flags & vma->vm_flags)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * The architecture might have a hardware protection | 
 | 	 * mechanism other than read/write that can deny access. | 
 | 	 * | 
 | 	 * gup always represents data access, not instruction | 
 | 	 * fetches, so execute=false here: | 
 | 	 */ | 
 | 	if (!arch_vma_access_permitted(vma, write, false, foreign)) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * fixup_user_fault() - manually resolve a user page fault | 
 |  * @tsk:	the task_struct to use for page fault accounting, or | 
 |  *		NULL if faults are not to be recorded. | 
 |  * @mm:		mm_struct of target mm | 
 |  * @address:	user address | 
 |  * @fault_flags:flags to pass down to handle_mm_fault() | 
 |  * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller | 
 |  *		does not allow retry | 
 |  * | 
 |  * This is meant to be called in the specific scenario where for locking reasons | 
 |  * we try to access user memory in atomic context (within a pagefault_disable() | 
 |  * section), this returns -EFAULT, and we want to resolve the user fault before | 
 |  * trying again. | 
 |  * | 
 |  * Typically this is meant to be used by the futex code. | 
 |  * | 
 |  * The main difference with get_user_pages() is that this function will | 
 |  * unconditionally call handle_mm_fault() which will in turn perform all the | 
 |  * necessary SW fixup of the dirty and young bits in the PTE, while | 
 |  * get_user_pages() only guarantees to update these in the struct page. | 
 |  * | 
 |  * This is important for some architectures where those bits also gate the | 
 |  * access permission to the page because they are maintained in software.  On | 
 |  * such architectures, gup() will not be enough to make a subsequent access | 
 |  * succeed. | 
 |  * | 
 |  * This function will not return with an unlocked mmap_sem. So it has not the | 
 |  * same semantics wrt the @mm->mmap_sem as does filemap_fault(). | 
 |  */ | 
 | int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, | 
 | 		     unsigned long address, unsigned int fault_flags, | 
 | 		     bool *unlocked) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 | 	vm_fault_t ret, major = 0; | 
 |  | 
 | 	address = untagged_addr(address); | 
 |  | 
 | 	if (unlocked) | 
 | 		fault_flags |= FAULT_FLAG_ALLOW_RETRY; | 
 |  | 
 | retry: | 
 | 	vma = find_extend_vma(mm, address); | 
 | 	if (!vma || address < vma->vm_start) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (!vma_permits_fault(vma, fault_flags)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	ret = handle_mm_fault(vma, address, fault_flags); | 
 | 	major |= ret & VM_FAULT_MAJOR; | 
 | 	if (ret & VM_FAULT_ERROR) { | 
 | 		int err = vm_fault_to_errno(ret, 0); | 
 |  | 
 | 		if (err) | 
 | 			return err; | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	if (ret & VM_FAULT_RETRY) { | 
 | 		down_read(&mm->mmap_sem); | 
 | 		if (!(fault_flags & FAULT_FLAG_TRIED)) { | 
 | 			*unlocked = true; | 
 | 			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY; | 
 | 			fault_flags |= FAULT_FLAG_TRIED; | 
 | 			goto retry; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (tsk) { | 
 | 		if (major) | 
 | 			tsk->maj_flt++; | 
 | 		else | 
 | 			tsk->min_flt++; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(fixup_user_fault); | 
 |  | 
 | static __always_inline long __get_user_pages_locked(struct task_struct *tsk, | 
 | 						struct mm_struct *mm, | 
 | 						unsigned long start, | 
 | 						unsigned long nr_pages, | 
 | 						struct page **pages, | 
 | 						struct vm_area_struct **vmas, | 
 | 						int *locked, | 
 | 						unsigned int flags) | 
 | { | 
 | 	long ret, pages_done; | 
 | 	bool lock_dropped; | 
 |  | 
 | 	if (locked) { | 
 | 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */ | 
 | 		BUG_ON(vmas); | 
 | 		/* check caller initialized locked */ | 
 | 		BUG_ON(*locked != 1); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior | 
 | 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has | 
 | 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only | 
 | 	 * for FOLL_GET, not for the newer FOLL_PIN. | 
 | 	 * | 
 | 	 * FOLL_PIN always expects pages to be non-null, but no need to assert | 
 | 	 * that here, as any failures will be obvious enough. | 
 | 	 */ | 
 | 	if (pages && !(flags & FOLL_PIN)) | 
 | 		flags |= FOLL_GET; | 
 |  | 
 | 	pages_done = 0; | 
 | 	lock_dropped = false; | 
 | 	for (;;) { | 
 | 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, | 
 | 				       vmas, locked); | 
 | 		if (!locked) | 
 | 			/* VM_FAULT_RETRY couldn't trigger, bypass */ | 
 | 			return ret; | 
 |  | 
 | 		/* VM_FAULT_RETRY cannot return errors */ | 
 | 		if (!*locked) { | 
 | 			BUG_ON(ret < 0); | 
 | 			BUG_ON(ret >= nr_pages); | 
 | 		} | 
 |  | 
 | 		if (ret > 0) { | 
 | 			nr_pages -= ret; | 
 | 			pages_done += ret; | 
 | 			if (!nr_pages) | 
 | 				break; | 
 | 		} | 
 | 		if (*locked) { | 
 | 			/* | 
 | 			 * VM_FAULT_RETRY didn't trigger or it was a | 
 | 			 * FOLL_NOWAIT. | 
 | 			 */ | 
 | 			if (!pages_done) | 
 | 				pages_done = ret; | 
 | 			break; | 
 | 		} | 
 | 		/* | 
 | 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset. | 
 | 		 * For the prefault case (!pages) we only update counts. | 
 | 		 */ | 
 | 		if (likely(pages)) | 
 | 			pages += ret; | 
 | 		start += ret << PAGE_SHIFT; | 
 |  | 
 | 		/* | 
 | 		 * Repeat on the address that fired VM_FAULT_RETRY | 
 | 		 * without FAULT_FLAG_ALLOW_RETRY but with | 
 | 		 * FAULT_FLAG_TRIED. | 
 | 		 */ | 
 | 		*locked = 1; | 
 | 		lock_dropped = true; | 
 | 		down_read(&mm->mmap_sem); | 
 | 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, | 
 | 				       pages, NULL, NULL); | 
 | 		if (ret != 1) { | 
 | 			BUG_ON(ret > 1); | 
 | 			if (!pages_done) | 
 | 				pages_done = ret; | 
 | 			break; | 
 | 		} | 
 | 		nr_pages--; | 
 | 		pages_done++; | 
 | 		if (!nr_pages) | 
 | 			break; | 
 | 		if (likely(pages)) | 
 | 			pages++; | 
 | 		start += PAGE_SIZE; | 
 | 	} | 
 | 	if (lock_dropped && *locked) { | 
 | 		/* | 
 | 		 * We must let the caller know we temporarily dropped the lock | 
 | 		 * and so the critical section protected by it was lost. | 
 | 		 */ | 
 | 		up_read(&mm->mmap_sem); | 
 | 		*locked = 0; | 
 | 	} | 
 | 	return pages_done; | 
 | } | 
 |  | 
 | /** | 
 |  * populate_vma_page_range() -  populate a range of pages in the vma. | 
 |  * @vma:   target vma | 
 |  * @start: start address | 
 |  * @end:   end address | 
 |  * @nonblocking: | 
 |  * | 
 |  * This takes care of mlocking the pages too if VM_LOCKED is set. | 
 |  * | 
 |  * return 0 on success, negative error code on error. | 
 |  * | 
 |  * vma->vm_mm->mmap_sem must be held. | 
 |  * | 
 |  * If @nonblocking is NULL, it may be held for read or write and will | 
 |  * be unperturbed. | 
 |  * | 
 |  * If @nonblocking is non-NULL, it must held for read only and may be | 
 |  * released.  If it's released, *@nonblocking will be set to 0. | 
 |  */ | 
 | long populate_vma_page_range(struct vm_area_struct *vma, | 
 | 		unsigned long start, unsigned long end, int *nonblocking) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	unsigned long nr_pages = (end - start) / PAGE_SIZE; | 
 | 	int gup_flags; | 
 |  | 
 | 	VM_BUG_ON(start & ~PAGE_MASK); | 
 | 	VM_BUG_ON(end   & ~PAGE_MASK); | 
 | 	VM_BUG_ON_VMA(start < vma->vm_start, vma); | 
 | 	VM_BUG_ON_VMA(end   > vma->vm_end, vma); | 
 | 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); | 
 |  | 
 | 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; | 
 | 	if (vma->vm_flags & VM_LOCKONFAULT) | 
 | 		gup_flags &= ~FOLL_POPULATE; | 
 | 	/* | 
 | 	 * We want to touch writable mappings with a write fault in order | 
 | 	 * to break COW, except for shared mappings because these don't COW | 
 | 	 * and we would not want to dirty them for nothing. | 
 | 	 */ | 
 | 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) | 
 | 		gup_flags |= FOLL_WRITE; | 
 |  | 
 | 	/* | 
 | 	 * We want mlock to succeed for regions that have any permissions | 
 | 	 * other than PROT_NONE. | 
 | 	 */ | 
 | 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) | 
 | 		gup_flags |= FOLL_FORCE; | 
 |  | 
 | 	/* | 
 | 	 * We made sure addr is within a VMA, so the following will | 
 | 	 * not result in a stack expansion that recurses back here. | 
 | 	 */ | 
 | 	return __get_user_pages(current, mm, start, nr_pages, gup_flags, | 
 | 				NULL, NULL, nonblocking); | 
 | } | 
 |  | 
 | /* | 
 |  * __mm_populate - populate and/or mlock pages within a range of address space. | 
 |  * | 
 |  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap | 
 |  * flags. VMAs must be already marked with the desired vm_flags, and | 
 |  * mmap_sem must not be held. | 
 |  */ | 
 | int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) | 
 | { | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	unsigned long end, nstart, nend; | 
 | 	struct vm_area_struct *vma = NULL; | 
 | 	int locked = 0; | 
 | 	long ret = 0; | 
 |  | 
 | 	end = start + len; | 
 |  | 
 | 	for (nstart = start; nstart < end; nstart = nend) { | 
 | 		/* | 
 | 		 * We want to fault in pages for [nstart; end) address range. | 
 | 		 * Find first corresponding VMA. | 
 | 		 */ | 
 | 		if (!locked) { | 
 | 			locked = 1; | 
 | 			down_read(&mm->mmap_sem); | 
 | 			vma = find_vma(mm, nstart); | 
 | 		} else if (nstart >= vma->vm_end) | 
 | 			vma = vma->vm_next; | 
 | 		if (!vma || vma->vm_start >= end) | 
 | 			break; | 
 | 		/* | 
 | 		 * Set [nstart; nend) to intersection of desired address | 
 | 		 * range with the first VMA. Also, skip undesirable VMA types. | 
 | 		 */ | 
 | 		nend = min(end, vma->vm_end); | 
 | 		if (vma->vm_flags & (VM_IO | VM_PFNMAP)) | 
 | 			continue; | 
 | 		if (nstart < vma->vm_start) | 
 | 			nstart = vma->vm_start; | 
 | 		/* | 
 | 		 * Now fault in a range of pages. populate_vma_page_range() | 
 | 		 * double checks the vma flags, so that it won't mlock pages | 
 | 		 * if the vma was already munlocked. | 
 | 		 */ | 
 | 		ret = populate_vma_page_range(vma, nstart, nend, &locked); | 
 | 		if (ret < 0) { | 
 | 			if (ignore_errors) { | 
 | 				ret = 0; | 
 | 				continue;	/* continue at next VMA */ | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		nend = nstart + ret * PAGE_SIZE; | 
 | 		ret = 0; | 
 | 	} | 
 | 	if (locked) | 
 | 		up_read(&mm->mmap_sem); | 
 | 	return ret;	/* 0 or negative error code */ | 
 | } | 
 |  | 
 | /** | 
 |  * get_dump_page() - pin user page in memory while writing it to core dump | 
 |  * @addr: user address | 
 |  * | 
 |  * Returns struct page pointer of user page pinned for dump, | 
 |  * to be freed afterwards by put_page(). | 
 |  * | 
 |  * Returns NULL on any kind of failure - a hole must then be inserted into | 
 |  * the corefile, to preserve alignment with its headers; and also returns | 
 |  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - | 
 |  * allowing a hole to be left in the corefile to save diskspace. | 
 |  * | 
 |  * Called without mmap_sem, but after all other threads have been killed. | 
 |  */ | 
 | #ifdef CONFIG_ELF_CORE | 
 | struct page *get_dump_page(unsigned long addr) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 | 	struct page *page; | 
 |  | 
 | 	if (__get_user_pages(current, current->mm, addr, 1, | 
 | 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, | 
 | 			     NULL) < 1) | 
 | 		return NULL; | 
 | 	flush_cache_page(vma, addr, page_to_pfn(page)); | 
 | 	return page; | 
 | } | 
 | #endif /* CONFIG_ELF_CORE */ | 
 | #else /* CONFIG_MMU */ | 
 | static long __get_user_pages_locked(struct task_struct *tsk, | 
 | 		struct mm_struct *mm, unsigned long start, | 
 | 		unsigned long nr_pages, struct page **pages, | 
 | 		struct vm_area_struct **vmas, int *locked, | 
 | 		unsigned int foll_flags) | 
 | { | 
 | 	struct vm_area_struct *vma; | 
 | 	unsigned long vm_flags; | 
 | 	int i; | 
 |  | 
 | 	/* calculate required read or write permissions. | 
 | 	 * If FOLL_FORCE is set, we only require the "MAY" flags. | 
 | 	 */ | 
 | 	vm_flags  = (foll_flags & FOLL_WRITE) ? | 
 | 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); | 
 | 	vm_flags &= (foll_flags & FOLL_FORCE) ? | 
 | 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | 
 |  | 
 | 	for (i = 0; i < nr_pages; i++) { | 
 | 		vma = find_vma(mm, start); | 
 | 		if (!vma) | 
 | 			goto finish_or_fault; | 
 |  | 
 | 		/* protect what we can, including chardevs */ | 
 | 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || | 
 | 		    !(vm_flags & vma->vm_flags)) | 
 | 			goto finish_or_fault; | 
 |  | 
 | 		if (pages) { | 
 | 			pages[i] = virt_to_page(start); | 
 | 			if (pages[i]) | 
 | 				get_page(pages[i]); | 
 | 		} | 
 | 		if (vmas) | 
 | 			vmas[i] = vma; | 
 | 		start = (start + PAGE_SIZE) & PAGE_MASK; | 
 | 	} | 
 |  | 
 | 	return i; | 
 |  | 
 | finish_or_fault: | 
 | 	return i ? : -EFAULT; | 
 | } | 
 | #endif /* !CONFIG_MMU */ | 
 |  | 
 | #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA) | 
 | static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages) | 
 | { | 
 | 	long i; | 
 | 	struct vm_area_struct *vma_prev = NULL; | 
 |  | 
 | 	for (i = 0; i < nr_pages; i++) { | 
 | 		struct vm_area_struct *vma = vmas[i]; | 
 |  | 
 | 		if (vma == vma_prev) | 
 | 			continue; | 
 |  | 
 | 		vma_prev = vma; | 
 |  | 
 | 		if (vma_is_fsdax(vma)) | 
 | 			return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | #ifdef CONFIG_CMA | 
 | static struct page *new_non_cma_page(struct page *page, unsigned long private) | 
 | { | 
 | 	/* | 
 | 	 * We want to make sure we allocate the new page from the same node | 
 | 	 * as the source page. | 
 | 	 */ | 
 | 	int nid = page_to_nid(page); | 
 | 	/* | 
 | 	 * Trying to allocate a page for migration. Ignore allocation | 
 | 	 * failure warnings. We don't force __GFP_THISNODE here because | 
 | 	 * this node here is the node where we have CMA reservation and | 
 | 	 * in some case these nodes will have really less non movable | 
 | 	 * allocation memory. | 
 | 	 */ | 
 | 	gfp_t gfp_mask = GFP_USER | __GFP_NOWARN; | 
 |  | 
 | 	if (PageHighMem(page)) | 
 | 		gfp_mask |= __GFP_HIGHMEM; | 
 |  | 
 | #ifdef CONFIG_HUGETLB_PAGE | 
 | 	if (PageHuge(page)) { | 
 | 		struct hstate *h = page_hstate(page); | 
 | 		/* | 
 | 		 * We don't want to dequeue from the pool because pool pages will | 
 | 		 * mostly be from the CMA region. | 
 | 		 */ | 
 | 		return alloc_migrate_huge_page(h, gfp_mask, nid, NULL); | 
 | 	} | 
 | #endif | 
 | 	if (PageTransHuge(page)) { | 
 | 		struct page *thp; | 
 | 		/* | 
 | 		 * ignore allocation failure warnings | 
 | 		 */ | 
 | 		gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN; | 
 |  | 
 | 		/* | 
 | 		 * Remove the movable mask so that we don't allocate from | 
 | 		 * CMA area again. | 
 | 		 */ | 
 | 		thp_gfpmask &= ~__GFP_MOVABLE; | 
 | 		thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER); | 
 | 		if (!thp) | 
 | 			return NULL; | 
 | 		prep_transhuge_page(thp); | 
 | 		return thp; | 
 | 	} | 
 |  | 
 | 	return __alloc_pages_node(nid, gfp_mask, 0); | 
 | } | 
 |  | 
 | static long check_and_migrate_cma_pages(struct task_struct *tsk, | 
 | 					struct mm_struct *mm, | 
 | 					unsigned long start, | 
 | 					unsigned long nr_pages, | 
 | 					struct page **pages, | 
 | 					struct vm_area_struct **vmas, | 
 | 					unsigned int gup_flags) | 
 | { | 
 | 	unsigned long i; | 
 | 	unsigned long step; | 
 | 	bool drain_allow = true; | 
 | 	bool migrate_allow = true; | 
 | 	LIST_HEAD(cma_page_list); | 
 | 	long ret = nr_pages; | 
 |  | 
 | check_again: | 
 | 	for (i = 0; i < nr_pages;) { | 
 |  | 
 | 		struct page *head = compound_head(pages[i]); | 
 |  | 
 | 		/* | 
 | 		 * gup may start from a tail page. Advance step by the left | 
 | 		 * part. | 
 | 		 */ | 
 | 		step = compound_nr(head) - (pages[i] - head); | 
 | 		/* | 
 | 		 * If we get a page from the CMA zone, since we are going to | 
 | 		 * be pinning these entries, we might as well move them out | 
 | 		 * of the CMA zone if possible. | 
 | 		 */ | 
 | 		if (is_migrate_cma_page(head)) { | 
 | 			if (PageHuge(head)) | 
 | 				isolate_huge_page(head, &cma_page_list); | 
 | 			else { | 
 | 				if (!PageLRU(head) && drain_allow) { | 
 | 					lru_add_drain_all(); | 
 | 					drain_allow = false; | 
 | 				} | 
 |  | 
 | 				if (!isolate_lru_page(head)) { | 
 | 					list_add_tail(&head->lru, &cma_page_list); | 
 | 					mod_node_page_state(page_pgdat(head), | 
 | 							    NR_ISOLATED_ANON + | 
 | 							    page_is_file_cache(head), | 
 | 							    hpage_nr_pages(head)); | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 		i += step; | 
 | 	} | 
 |  | 
 | 	if (!list_empty(&cma_page_list)) { | 
 | 		/* | 
 | 		 * drop the above get_user_pages reference. | 
 | 		 */ | 
 | 		for (i = 0; i < nr_pages; i++) | 
 | 			put_page(pages[i]); | 
 |  | 
 | 		if (migrate_pages(&cma_page_list, new_non_cma_page, | 
 | 				  NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) { | 
 | 			/* | 
 | 			 * some of the pages failed migration. Do get_user_pages | 
 | 			 * without migration. | 
 | 			 */ | 
 | 			migrate_allow = false; | 
 |  | 
 | 			if (!list_empty(&cma_page_list)) | 
 | 				putback_movable_pages(&cma_page_list); | 
 | 		} | 
 | 		/* | 
 | 		 * We did migrate all the pages, Try to get the page references | 
 | 		 * again migrating any new CMA pages which we failed to isolate | 
 | 		 * earlier. | 
 | 		 */ | 
 | 		ret = __get_user_pages_locked(tsk, mm, start, nr_pages, | 
 | 						   pages, vmas, NULL, | 
 | 						   gup_flags); | 
 |  | 
 | 		if ((ret > 0) && migrate_allow) { | 
 | 			nr_pages = ret; | 
 | 			drain_allow = true; | 
 | 			goto check_again; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 | #else | 
 | static long check_and_migrate_cma_pages(struct task_struct *tsk, | 
 | 					struct mm_struct *mm, | 
 | 					unsigned long start, | 
 | 					unsigned long nr_pages, | 
 | 					struct page **pages, | 
 | 					struct vm_area_struct **vmas, | 
 | 					unsigned int gup_flags) | 
 | { | 
 | 	return nr_pages; | 
 | } | 
 | #endif /* CONFIG_CMA */ | 
 |  | 
 | /* | 
 |  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which | 
 |  * allows us to process the FOLL_LONGTERM flag. | 
 |  */ | 
 | static long __gup_longterm_locked(struct task_struct *tsk, | 
 | 				  struct mm_struct *mm, | 
 | 				  unsigned long start, | 
 | 				  unsigned long nr_pages, | 
 | 				  struct page **pages, | 
 | 				  struct vm_area_struct **vmas, | 
 | 				  unsigned int gup_flags) | 
 | { | 
 | 	struct vm_area_struct **vmas_tmp = vmas; | 
 | 	unsigned long flags = 0; | 
 | 	long rc, i; | 
 |  | 
 | 	if (gup_flags & FOLL_LONGTERM) { | 
 | 		if (!pages) | 
 | 			return -EINVAL; | 
 |  | 
 | 		if (!vmas_tmp) { | 
 | 			vmas_tmp = kcalloc(nr_pages, | 
 | 					   sizeof(struct vm_area_struct *), | 
 | 					   GFP_KERNEL); | 
 | 			if (!vmas_tmp) | 
 | 				return -ENOMEM; | 
 | 		} | 
 | 		flags = memalloc_nocma_save(); | 
 | 	} | 
 |  | 
 | 	rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, | 
 | 				     vmas_tmp, NULL, gup_flags); | 
 |  | 
 | 	if (gup_flags & FOLL_LONGTERM) { | 
 | 		memalloc_nocma_restore(flags); | 
 | 		if (rc < 0) | 
 | 			goto out; | 
 |  | 
 | 		if (check_dax_vmas(vmas_tmp, rc)) { | 
 | 			for (i = 0; i < rc; i++) | 
 | 				put_page(pages[i]); | 
 | 			rc = -EOPNOTSUPP; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages, | 
 | 						 vmas_tmp, gup_flags); | 
 | 	} | 
 |  | 
 | out: | 
 | 	if (vmas_tmp != vmas) | 
 | 		kfree(vmas_tmp); | 
 | 	return rc; | 
 | } | 
 | #else /* !CONFIG_FS_DAX && !CONFIG_CMA */ | 
 | static __always_inline long __gup_longterm_locked(struct task_struct *tsk, | 
 | 						  struct mm_struct *mm, | 
 | 						  unsigned long start, | 
 | 						  unsigned long nr_pages, | 
 | 						  struct page **pages, | 
 | 						  struct vm_area_struct **vmas, | 
 | 						  unsigned int flags) | 
 | { | 
 | 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, | 
 | 				       NULL, flags); | 
 | } | 
 | #endif /* CONFIG_FS_DAX || CONFIG_CMA */ | 
 |  | 
 | /* | 
 |  * get_user_pages_remote() - pin user pages in memory | 
 |  * @tsk:	the task_struct to use for page fault accounting, or | 
 |  *		NULL if faults are not to be recorded. | 
 |  * @mm:		mm_struct of target mm | 
 |  * @start:	starting user address | 
 |  * @nr_pages:	number of pages from start to pin | 
 |  * @gup_flags:	flags modifying lookup behaviour | 
 |  * @pages:	array that receives pointers to the pages pinned. | 
 |  *		Should be at least nr_pages long. Or NULL, if caller | 
 |  *		only intends to ensure the pages are faulted in. | 
 |  * @vmas:	array of pointers to vmas corresponding to each page. | 
 |  *		Or NULL if the caller does not require them. | 
 |  * @locked:	pointer to lock flag indicating whether lock is held and | 
 |  *		subsequently whether VM_FAULT_RETRY functionality can be | 
 |  *		utilised. Lock must initially be held. | 
 |  * | 
 |  * Returns either number of pages pinned (which may be less than the | 
 |  * number requested), or an error. Details about the return value: | 
 |  * | 
 |  * -- If nr_pages is 0, returns 0. | 
 |  * -- If nr_pages is >0, but no pages were pinned, returns -errno. | 
 |  * -- If nr_pages is >0, and some pages were pinned, returns the number of | 
 |  *    pages pinned. Again, this may be less than nr_pages. | 
 |  * | 
 |  * The caller is responsible for releasing returned @pages, via put_page(). | 
 |  * | 
 |  * @vmas are valid only as long as mmap_sem is held. | 
 |  * | 
 |  * Must be called with mmap_sem held for read or write. | 
 |  * | 
 |  * get_user_pages walks a process's page tables and takes a reference to | 
 |  * each struct page that each user address corresponds to at a given | 
 |  * instant. That is, it takes the page that would be accessed if a user | 
 |  * thread accesses the given user virtual address at that instant. | 
 |  * | 
 |  * This does not guarantee that the page exists in the user mappings when | 
 |  * get_user_pages returns, and there may even be a completely different | 
 |  * page there in some cases (eg. if mmapped pagecache has been invalidated | 
 |  * and subsequently re faulted). However it does guarantee that the page | 
 |  * won't be freed completely. And mostly callers simply care that the page | 
 |  * contains data that was valid *at some point in time*. Typically, an IO | 
 |  * or similar operation cannot guarantee anything stronger anyway because | 
 |  * locks can't be held over the syscall boundary. | 
 |  * | 
 |  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page | 
 |  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must | 
 |  * be called after the page is finished with, and before put_page is called. | 
 |  * | 
 |  * get_user_pages is typically used for fewer-copy IO operations, to get a | 
 |  * handle on the memory by some means other than accesses via the user virtual | 
 |  * addresses. The pages may be submitted for DMA to devices or accessed via | 
 |  * their kernel linear mapping (via the kmap APIs). Care should be taken to | 
 |  * use the correct cache flushing APIs. | 
 |  * | 
 |  * See also get_user_pages_fast, for performance critical applications. | 
 |  * | 
 |  * get_user_pages should be phased out in favor of | 
 |  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing | 
 |  * should use get_user_pages because it cannot pass | 
 |  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. | 
 |  */ | 
 | #ifdef CONFIG_MMU | 
 | long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, | 
 | 		unsigned long start, unsigned long nr_pages, | 
 | 		unsigned int gup_flags, struct page **pages, | 
 | 		struct vm_area_struct **vmas, int *locked) | 
 | { | 
 | 	/* | 
 | 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, | 
 | 	 * never directly by the caller, so enforce that with an assertion: | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Parts of FOLL_LONGTERM behavior are incompatible with | 
 | 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on | 
 | 	 * vmas. However, this only comes up if locked is set, and there are | 
 | 	 * callers that do request FOLL_LONGTERM, but do not set locked. So, | 
 | 	 * allow what we can. | 
 | 	 */ | 
 | 	if (gup_flags & FOLL_LONGTERM) { | 
 | 		if (WARN_ON_ONCE(locked)) | 
 | 			return -EINVAL; | 
 | 		/* | 
 | 		 * This will check the vmas (even if our vmas arg is NULL) | 
 | 		 * and return -ENOTSUPP if DAX isn't allowed in this case: | 
 | 		 */ | 
 | 		return __gup_longterm_locked(tsk, mm, start, nr_pages, pages, | 
 | 					     vmas, gup_flags | FOLL_TOUCH | | 
 | 					     FOLL_REMOTE); | 
 | 	} | 
 |  | 
 | 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, | 
 | 				       locked, | 
 | 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE); | 
 | } | 
 | EXPORT_SYMBOL(get_user_pages_remote); | 
 |  | 
 | #else /* CONFIG_MMU */ | 
 | long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, | 
 | 			   unsigned long start, unsigned long nr_pages, | 
 | 			   unsigned int gup_flags, struct page **pages, | 
 | 			   struct vm_area_struct **vmas, int *locked) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif /* !CONFIG_MMU */ | 
 |  | 
 | /* | 
 |  * This is the same as get_user_pages_remote(), just with a | 
 |  * less-flexible calling convention where we assume that the task | 
 |  * and mm being operated on are the current task's and don't allow | 
 |  * passing of a locked parameter.  We also obviously don't pass | 
 |  * FOLL_REMOTE in here. | 
 |  */ | 
 | long get_user_pages(unsigned long start, unsigned long nr_pages, | 
 | 		unsigned int gup_flags, struct page **pages, | 
 | 		struct vm_area_struct **vmas) | 
 | { | 
 | 	/* | 
 | 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, | 
 | 	 * never directly by the caller, so enforce that with an assertion: | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return __gup_longterm_locked(current, current->mm, start, nr_pages, | 
 | 				     pages, vmas, gup_flags | FOLL_TOUCH); | 
 | } | 
 | EXPORT_SYMBOL(get_user_pages); | 
 |  | 
 | /* | 
 |  * We can leverage the VM_FAULT_RETRY functionality in the page fault | 
 |  * paths better by using either get_user_pages_locked() or | 
 |  * get_user_pages_unlocked(). | 
 |  * | 
 |  * get_user_pages_locked() is suitable to replace the form: | 
 |  * | 
 |  *      down_read(&mm->mmap_sem); | 
 |  *      do_something() | 
 |  *      get_user_pages(tsk, mm, ..., pages, NULL); | 
 |  *      up_read(&mm->mmap_sem); | 
 |  * | 
 |  *  to: | 
 |  * | 
 |  *      int locked = 1; | 
 |  *      down_read(&mm->mmap_sem); | 
 |  *      do_something() | 
 |  *      get_user_pages_locked(tsk, mm, ..., pages, &locked); | 
 |  *      if (locked) | 
 |  *          up_read(&mm->mmap_sem); | 
 |  */ | 
 | long get_user_pages_locked(unsigned long start, unsigned long nr_pages, | 
 | 			   unsigned int gup_flags, struct page **pages, | 
 | 			   int *locked) | 
 | { | 
 | 	/* | 
 | 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with | 
 | 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on | 
 | 	 * vmas.  As there are no users of this flag in this call we simply | 
 | 	 * disallow this option for now. | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return __get_user_pages_locked(current, current->mm, start, nr_pages, | 
 | 				       pages, NULL, locked, | 
 | 				       gup_flags | FOLL_TOUCH); | 
 | } | 
 | EXPORT_SYMBOL(get_user_pages_locked); | 
 |  | 
 | /* | 
 |  * get_user_pages_unlocked() is suitable to replace the form: | 
 |  * | 
 |  *      down_read(&mm->mmap_sem); | 
 |  *      get_user_pages(tsk, mm, ..., pages, NULL); | 
 |  *      up_read(&mm->mmap_sem); | 
 |  * | 
 |  *  with: | 
 |  * | 
 |  *      get_user_pages_unlocked(tsk, mm, ..., pages); | 
 |  * | 
 |  * It is functionally equivalent to get_user_pages_fast so | 
 |  * get_user_pages_fast should be used instead if specific gup_flags | 
 |  * (e.g. FOLL_FORCE) are not required. | 
 |  */ | 
 | long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, | 
 | 			     struct page **pages, unsigned int gup_flags) | 
 | { | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	int locked = 1; | 
 | 	long ret; | 
 |  | 
 | 	/* | 
 | 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with | 
 | 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on | 
 | 	 * vmas.  As there are no users of this flag in this call we simply | 
 | 	 * disallow this option for now. | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	down_read(&mm->mmap_sem); | 
 | 	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL, | 
 | 				      &locked, gup_flags | FOLL_TOUCH); | 
 | 	if (locked) | 
 | 		up_read(&mm->mmap_sem); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(get_user_pages_unlocked); | 
 |  | 
 | /* | 
 |  * Fast GUP | 
 |  * | 
 |  * get_user_pages_fast attempts to pin user pages by walking the page | 
 |  * tables directly and avoids taking locks. Thus the walker needs to be | 
 |  * protected from page table pages being freed from under it, and should | 
 |  * block any THP splits. | 
 |  * | 
 |  * One way to achieve this is to have the walker disable interrupts, and | 
 |  * rely on IPIs from the TLB flushing code blocking before the page table | 
 |  * pages are freed. This is unsuitable for architectures that do not need | 
 |  * to broadcast an IPI when invalidating TLBs. | 
 |  * | 
 |  * Another way to achieve this is to batch up page table containing pages | 
 |  * belonging to more than one mm_user, then rcu_sched a callback to free those | 
 |  * pages. Disabling interrupts will allow the fast_gup walker to both block | 
 |  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs | 
 |  * (which is a relatively rare event). The code below adopts this strategy. | 
 |  * | 
 |  * Before activating this code, please be aware that the following assumptions | 
 |  * are currently made: | 
 |  * | 
 |  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to | 
 |  *  free pages containing page tables or TLB flushing requires IPI broadcast. | 
 |  * | 
 |  *  *) ptes can be read atomically by the architecture. | 
 |  * | 
 |  *  *) access_ok is sufficient to validate userspace address ranges. | 
 |  * | 
 |  * The last two assumptions can be relaxed by the addition of helper functions. | 
 |  * | 
 |  * This code is based heavily on the PowerPC implementation by Nick Piggin. | 
 |  */ | 
 | #ifdef CONFIG_HAVE_FAST_GUP | 
 | #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH | 
 | /* | 
 |  * WARNING: only to be used in the get_user_pages_fast() implementation. | 
 |  * | 
 |  * With get_user_pages_fast(), we walk down the pagetables without taking any | 
 |  * locks.  For this we would like to load the pointers atomically, but sometimes | 
 |  * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What | 
 |  * we do have is the guarantee that a PTE will only either go from not present | 
 |  * to present, or present to not present or both -- it will not switch to a | 
 |  * completely different present page without a TLB flush in between; something | 
 |  * that we are blocking by holding interrupts off. | 
 |  * | 
 |  * Setting ptes from not present to present goes: | 
 |  * | 
 |  *   ptep->pte_high = h; | 
 |  *   smp_wmb(); | 
 |  *   ptep->pte_low = l; | 
 |  * | 
 |  * And present to not present goes: | 
 |  * | 
 |  *   ptep->pte_low = 0; | 
 |  *   smp_wmb(); | 
 |  *   ptep->pte_high = 0; | 
 |  * | 
 |  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. | 
 |  * We load pte_high *after* loading pte_low, which ensures we don't see an older | 
 |  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't | 
 |  * picked up a changed pte high. We might have gotten rubbish values from | 
 |  * pte_low and pte_high, but we are guaranteed that pte_low will not have the | 
 |  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only | 
 |  * operates on present ptes we're safe. | 
 |  */ | 
 | static inline pte_t gup_get_pte(pte_t *ptep) | 
 | { | 
 | 	pte_t pte; | 
 |  | 
 | 	do { | 
 | 		pte.pte_low = ptep->pte_low; | 
 | 		smp_rmb(); | 
 | 		pte.pte_high = ptep->pte_high; | 
 | 		smp_rmb(); | 
 | 	} while (unlikely(pte.pte_low != ptep->pte_low)); | 
 |  | 
 | 	return pte; | 
 | } | 
 | #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */ | 
 | /* | 
 |  * We require that the PTE can be read atomically. | 
 |  */ | 
 | static inline pte_t gup_get_pte(pte_t *ptep) | 
 | { | 
 | 	return READ_ONCE(*ptep); | 
 | } | 
 | #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */ | 
 |  | 
 | static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, | 
 | 					    struct page **pages) | 
 | { | 
 | 	while ((*nr) - nr_start) { | 
 | 		struct page *page = pages[--(*nr)]; | 
 |  | 
 | 		ClearPageReferenced(page); | 
 | 		put_page(page); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL | 
 | static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, | 
 | 			 unsigned int flags, struct page **pages, int *nr) | 
 | { | 
 | 	struct dev_pagemap *pgmap = NULL; | 
 | 	int nr_start = *nr, ret = 0; | 
 | 	pte_t *ptep, *ptem; | 
 |  | 
 | 	ptem = ptep = pte_offset_map(&pmd, addr); | 
 | 	do { | 
 | 		pte_t pte = gup_get_pte(ptep); | 
 | 		struct page *head, *page; | 
 |  | 
 | 		/* | 
 | 		 * Similar to the PMD case below, NUMA hinting must take slow | 
 | 		 * path using the pte_protnone check. | 
 | 		 */ | 
 | 		if (pte_protnone(pte)) | 
 | 			goto pte_unmap; | 
 |  | 
 | 		if (!pte_access_permitted(pte, flags & FOLL_WRITE)) | 
 | 			goto pte_unmap; | 
 |  | 
 | 		if (pte_devmap(pte)) { | 
 | 			if (unlikely(flags & FOLL_LONGTERM)) | 
 | 				goto pte_unmap; | 
 |  | 
 | 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); | 
 | 			if (unlikely(!pgmap)) { | 
 | 				undo_dev_pagemap(nr, nr_start, pages); | 
 | 				goto pte_unmap; | 
 | 			} | 
 | 		} else if (pte_special(pte)) | 
 | 			goto pte_unmap; | 
 |  | 
 | 		VM_BUG_ON(!pfn_valid(pte_pfn(pte))); | 
 | 		page = pte_page(pte); | 
 |  | 
 | 		head = try_get_compound_head(page, 1); | 
 | 		if (!head) | 
 | 			goto pte_unmap; | 
 |  | 
 | 		if (unlikely(pte_val(pte) != pte_val(*ptep))) { | 
 | 			put_page(head); | 
 | 			goto pte_unmap; | 
 | 		} | 
 |  | 
 | 		VM_BUG_ON_PAGE(compound_head(page) != head, page); | 
 |  | 
 | 		SetPageReferenced(page); | 
 | 		pages[*nr] = page; | 
 | 		(*nr)++; | 
 |  | 
 | 	} while (ptep++, addr += PAGE_SIZE, addr != end); | 
 |  | 
 | 	ret = 1; | 
 |  | 
 | pte_unmap: | 
 | 	if (pgmap) | 
 | 		put_dev_pagemap(pgmap); | 
 | 	pte_unmap(ptem); | 
 | 	return ret; | 
 | } | 
 | #else | 
 |  | 
 | /* | 
 |  * If we can't determine whether or not a pte is special, then fail immediately | 
 |  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not | 
 |  * to be special. | 
 |  * | 
 |  * For a futex to be placed on a THP tail page, get_futex_key requires a | 
 |  * __get_user_pages_fast implementation that can pin pages. Thus it's still | 
 |  * useful to have gup_huge_pmd even if we can't operate on ptes. | 
 |  */ | 
 | static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, | 
 | 			 unsigned int flags, struct page **pages, int *nr) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ | 
 |  | 
 | #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) | 
 | static int __gup_device_huge(unsigned long pfn, unsigned long addr, | 
 | 		unsigned long end, struct page **pages, int *nr) | 
 | { | 
 | 	int nr_start = *nr; | 
 | 	struct dev_pagemap *pgmap = NULL; | 
 |  | 
 | 	do { | 
 | 		struct page *page = pfn_to_page(pfn); | 
 |  | 
 | 		pgmap = get_dev_pagemap(pfn, pgmap); | 
 | 		if (unlikely(!pgmap)) { | 
 | 			undo_dev_pagemap(nr, nr_start, pages); | 
 | 			return 0; | 
 | 		} | 
 | 		SetPageReferenced(page); | 
 | 		pages[*nr] = page; | 
 | 		get_page(page); | 
 | 		(*nr)++; | 
 | 		pfn++; | 
 | 	} while (addr += PAGE_SIZE, addr != end); | 
 |  | 
 | 	if (pgmap) | 
 | 		put_dev_pagemap(pgmap); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, | 
 | 		unsigned long end, struct page **pages, int *nr) | 
 | { | 
 | 	unsigned long fault_pfn; | 
 | 	int nr_start = *nr; | 
 |  | 
 | 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); | 
 | 	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) | 
 | 		return 0; | 
 |  | 
 | 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { | 
 | 		undo_dev_pagemap(nr, nr_start, pages); | 
 | 		return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, | 
 | 		unsigned long end, struct page **pages, int *nr) | 
 | { | 
 | 	unsigned long fault_pfn; | 
 | 	int nr_start = *nr; | 
 |  | 
 | 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); | 
 | 	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) | 
 | 		return 0; | 
 |  | 
 | 	if (unlikely(pud_val(orig) != pud_val(*pudp))) { | 
 | 		undo_dev_pagemap(nr, nr_start, pages); | 
 | 		return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 | #else | 
 | static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, | 
 | 		unsigned long end, struct page **pages, int *nr) | 
 | { | 
 | 	BUILD_BUG(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, | 
 | 		unsigned long end, struct page **pages, int *nr) | 
 | { | 
 | 	BUILD_BUG(); | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static int record_subpages(struct page *page, unsigned long addr, | 
 | 			   unsigned long end, struct page **pages) | 
 | { | 
 | 	int nr; | 
 |  | 
 | 	for (nr = 0; addr != end; addr += PAGE_SIZE) | 
 | 		pages[nr++] = page++; | 
 |  | 
 | 	return nr; | 
 | } | 
 |  | 
 | static void put_compound_head(struct page *page, int refs) | 
 | { | 
 | 	VM_BUG_ON_PAGE(page_ref_count(page) < refs, page); | 
 | 	/* | 
 | 	 * Calling put_page() for each ref is unnecessarily slow. Only the last | 
 | 	 * ref needs a put_page(). | 
 | 	 */ | 
 | 	if (refs > 1) | 
 | 		page_ref_sub(page, refs - 1); | 
 | 	put_page(page); | 
 | } | 
 |  | 
 | #ifdef CONFIG_ARCH_HAS_HUGEPD | 
 | static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, | 
 | 				      unsigned long sz) | 
 | { | 
 | 	unsigned long __boundary = (addr + sz) & ~(sz-1); | 
 | 	return (__boundary - 1 < end - 1) ? __boundary : end; | 
 | } | 
 |  | 
 | static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, | 
 | 		       unsigned long end, unsigned int flags, | 
 | 		       struct page **pages, int *nr) | 
 | { | 
 | 	unsigned long pte_end; | 
 | 	struct page *head, *page; | 
 | 	pte_t pte; | 
 | 	int refs; | 
 |  | 
 | 	pte_end = (addr + sz) & ~(sz-1); | 
 | 	if (pte_end < end) | 
 | 		end = pte_end; | 
 |  | 
 | 	pte = READ_ONCE(*ptep); | 
 |  | 
 | 	if (!pte_access_permitted(pte, flags & FOLL_WRITE)) | 
 | 		return 0; | 
 |  | 
 | 	/* hugepages are never "special" */ | 
 | 	VM_BUG_ON(!pfn_valid(pte_pfn(pte))); | 
 |  | 
 | 	head = pte_page(pte); | 
 | 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT); | 
 | 	refs = record_subpages(page, addr, end, pages + *nr); | 
 |  | 
 | 	head = try_get_compound_head(head, refs); | 
 | 	if (!head) | 
 | 		return 0; | 
 |  | 
 | 	if (unlikely(pte_val(pte) != pte_val(*ptep))) { | 
 | 		put_compound_head(head, refs); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	*nr += refs; | 
 | 	SetPageReferenced(head); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, | 
 | 		unsigned int pdshift, unsigned long end, unsigned int flags, | 
 | 		struct page **pages, int *nr) | 
 | { | 
 | 	pte_t *ptep; | 
 | 	unsigned long sz = 1UL << hugepd_shift(hugepd); | 
 | 	unsigned long next; | 
 |  | 
 | 	ptep = hugepte_offset(hugepd, addr, pdshift); | 
 | 	do { | 
 | 		next = hugepte_addr_end(addr, end, sz); | 
 | 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) | 
 | 			return 0; | 
 | 	} while (ptep++, addr = next, addr != end); | 
 |  | 
 | 	return 1; | 
 | } | 
 | #else | 
 | static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, | 
 | 		unsigned int pdshift, unsigned long end, unsigned int flags, | 
 | 		struct page **pages, int *nr) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_ARCH_HAS_HUGEPD */ | 
 |  | 
 | static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, | 
 | 			unsigned long end, unsigned int flags, | 
 | 			struct page **pages, int *nr) | 
 | { | 
 | 	struct page *head, *page; | 
 | 	int refs; | 
 |  | 
 | 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) | 
 | 		return 0; | 
 |  | 
 | 	if (pmd_devmap(orig)) { | 
 | 		if (unlikely(flags & FOLL_LONGTERM)) | 
 | 			return 0; | 
 | 		return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr); | 
 | 	} | 
 |  | 
 | 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); | 
 | 	refs = record_subpages(page, addr, end, pages + *nr); | 
 |  | 
 | 	head = try_get_compound_head(pmd_page(orig), refs); | 
 | 	if (!head) | 
 | 		return 0; | 
 |  | 
 | 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { | 
 | 		put_compound_head(head, refs); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	*nr += refs; | 
 | 	SetPageReferenced(head); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, | 
 | 		unsigned long end, unsigned int flags, struct page **pages, int *nr) | 
 | { | 
 | 	struct page *head, *page; | 
 | 	int refs; | 
 |  | 
 | 	if (!pud_access_permitted(orig, flags & FOLL_WRITE)) | 
 | 		return 0; | 
 |  | 
 | 	if (pud_devmap(orig)) { | 
 | 		if (unlikely(flags & FOLL_LONGTERM)) | 
 | 			return 0; | 
 | 		return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr); | 
 | 	} | 
 |  | 
 | 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); | 
 | 	refs = record_subpages(page, addr, end, pages + *nr); | 
 |  | 
 | 	head = try_get_compound_head(pud_page(orig), refs); | 
 | 	if (!head) | 
 | 		return 0; | 
 |  | 
 | 	if (unlikely(pud_val(orig) != pud_val(*pudp))) { | 
 | 		put_compound_head(head, refs); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	*nr += refs; | 
 | 	SetPageReferenced(head); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, | 
 | 			unsigned long end, unsigned int flags, | 
 | 			struct page **pages, int *nr) | 
 | { | 
 | 	int refs; | 
 | 	struct page *head, *page; | 
 |  | 
 | 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) | 
 | 		return 0; | 
 |  | 
 | 	BUILD_BUG_ON(pgd_devmap(orig)); | 
 |  | 
 | 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); | 
 | 	refs = record_subpages(page, addr, end, pages + *nr); | 
 |  | 
 | 	head = try_get_compound_head(pgd_page(orig), refs); | 
 | 	if (!head) | 
 | 		return 0; | 
 |  | 
 | 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { | 
 | 		put_compound_head(head, refs); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	*nr += refs; | 
 | 	SetPageReferenced(head); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, | 
 | 		unsigned int flags, struct page **pages, int *nr) | 
 | { | 
 | 	unsigned long next; | 
 | 	pmd_t *pmdp; | 
 |  | 
 | 	pmdp = pmd_offset(&pud, addr); | 
 | 	do { | 
 | 		pmd_t pmd = READ_ONCE(*pmdp); | 
 |  | 
 | 		next = pmd_addr_end(addr, end); | 
 | 		if (!pmd_present(pmd)) | 
 | 			return 0; | 
 |  | 
 | 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || | 
 | 			     pmd_devmap(pmd))) { | 
 | 			/* | 
 | 			 * NUMA hinting faults need to be handled in the GUP | 
 | 			 * slowpath for accounting purposes and so that they | 
 | 			 * can be serialised against THP migration. | 
 | 			 */ | 
 | 			if (pmd_protnone(pmd)) | 
 | 				return 0; | 
 |  | 
 | 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, | 
 | 				pages, nr)) | 
 | 				return 0; | 
 |  | 
 | 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { | 
 | 			/* | 
 | 			 * architecture have different format for hugetlbfs | 
 | 			 * pmd format and THP pmd format | 
 | 			 */ | 
 | 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, | 
 | 					 PMD_SHIFT, next, flags, pages, nr)) | 
 | 				return 0; | 
 | 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) | 
 | 			return 0; | 
 | 	} while (pmdp++, addr = next, addr != end); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, | 
 | 			 unsigned int flags, struct page **pages, int *nr) | 
 | { | 
 | 	unsigned long next; | 
 | 	pud_t *pudp; | 
 |  | 
 | 	pudp = pud_offset(&p4d, addr); | 
 | 	do { | 
 | 		pud_t pud = READ_ONCE(*pudp); | 
 |  | 
 | 		next = pud_addr_end(addr, end); | 
 | 		if (unlikely(!pud_present(pud))) | 
 | 			return 0; | 
 | 		if (unlikely(pud_huge(pud))) { | 
 | 			if (!gup_huge_pud(pud, pudp, addr, next, flags, | 
 | 					  pages, nr)) | 
 | 				return 0; | 
 | 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { | 
 | 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, | 
 | 					 PUD_SHIFT, next, flags, pages, nr)) | 
 | 				return 0; | 
 | 		} else if (!gup_pmd_range(pud, addr, next, flags, pages, nr)) | 
 | 			return 0; | 
 | 	} while (pudp++, addr = next, addr != end); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, | 
 | 			 unsigned int flags, struct page **pages, int *nr) | 
 | { | 
 | 	unsigned long next; | 
 | 	p4d_t *p4dp; | 
 |  | 
 | 	p4dp = p4d_offset(&pgd, addr); | 
 | 	do { | 
 | 		p4d_t p4d = READ_ONCE(*p4dp); | 
 |  | 
 | 		next = p4d_addr_end(addr, end); | 
 | 		if (p4d_none(p4d)) | 
 | 			return 0; | 
 | 		BUILD_BUG_ON(p4d_huge(p4d)); | 
 | 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { | 
 | 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, | 
 | 					 P4D_SHIFT, next, flags, pages, nr)) | 
 | 				return 0; | 
 | 		} else if (!gup_pud_range(p4d, addr, next, flags, pages, nr)) | 
 | 			return 0; | 
 | 	} while (p4dp++, addr = next, addr != end); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void gup_pgd_range(unsigned long addr, unsigned long end, | 
 | 		unsigned int flags, struct page **pages, int *nr) | 
 | { | 
 | 	unsigned long next; | 
 | 	pgd_t *pgdp; | 
 |  | 
 | 	pgdp = pgd_offset(current->mm, addr); | 
 | 	do { | 
 | 		pgd_t pgd = READ_ONCE(*pgdp); | 
 |  | 
 | 		next = pgd_addr_end(addr, end); | 
 | 		if (pgd_none(pgd)) | 
 | 			return; | 
 | 		if (unlikely(pgd_huge(pgd))) { | 
 | 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, | 
 | 					  pages, nr)) | 
 | 				return; | 
 | 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { | 
 | 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, | 
 | 					 PGDIR_SHIFT, next, flags, pages, nr)) | 
 | 				return; | 
 | 		} else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr)) | 
 | 			return; | 
 | 	} while (pgdp++, addr = next, addr != end); | 
 | } | 
 | #else | 
 | static inline void gup_pgd_range(unsigned long addr, unsigned long end, | 
 | 		unsigned int flags, struct page **pages, int *nr) | 
 | { | 
 | } | 
 | #endif /* CONFIG_HAVE_FAST_GUP */ | 
 |  | 
 | #ifndef gup_fast_permitted | 
 | /* | 
 |  * Check if it's allowed to use __get_user_pages_fast() for the range, or | 
 |  * we need to fall back to the slow version: | 
 |  */ | 
 | static bool gup_fast_permitted(unsigned long start, unsigned long end) | 
 | { | 
 | 	return true; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to | 
 |  * the regular GUP. | 
 |  * Note a difference with get_user_pages_fast: this always returns the | 
 |  * number of pages pinned, 0 if no pages were pinned. | 
 |  * | 
 |  * If the architecture does not support this function, simply return with no | 
 |  * pages pinned. | 
 |  */ | 
 | int __get_user_pages_fast(unsigned long start, int nr_pages, int write, | 
 | 			  struct page **pages) | 
 | { | 
 | 	unsigned long len, end; | 
 | 	unsigned long flags; | 
 | 	int nr = 0; | 
 |  | 
 | 	start = untagged_addr(start) & PAGE_MASK; | 
 | 	len = (unsigned long) nr_pages << PAGE_SHIFT; | 
 | 	end = start + len; | 
 |  | 
 | 	if (end <= start) | 
 | 		return 0; | 
 | 	if (unlikely(!access_ok((void __user *)start, len))) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Disable interrupts.  We use the nested form as we can already have | 
 | 	 * interrupts disabled by get_futex_key. | 
 | 	 * | 
 | 	 * With interrupts disabled, we block page table pages from being | 
 | 	 * freed from under us. See struct mmu_table_batch comments in | 
 | 	 * include/asm-generic/tlb.h for more details. | 
 | 	 * | 
 | 	 * We do not adopt an rcu_read_lock(.) here as we also want to | 
 | 	 * block IPIs that come from THPs splitting. | 
 | 	 */ | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && | 
 | 	    gup_fast_permitted(start, end)) { | 
 | 		local_irq_save(flags); | 
 | 		gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr); | 
 | 		local_irq_restore(flags); | 
 | 	} | 
 |  | 
 | 	return nr; | 
 | } | 
 | EXPORT_SYMBOL_GPL(__get_user_pages_fast); | 
 |  | 
 | static int __gup_longterm_unlocked(unsigned long start, int nr_pages, | 
 | 				   unsigned int gup_flags, struct page **pages) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * FIXME: FOLL_LONGTERM does not work with | 
 | 	 * get_user_pages_unlocked() (see comments in that function) | 
 | 	 */ | 
 | 	if (gup_flags & FOLL_LONGTERM) { | 
 | 		down_read(¤t->mm->mmap_sem); | 
 | 		ret = __gup_longterm_locked(current, current->mm, | 
 | 					    start, nr_pages, | 
 | 					    pages, NULL, gup_flags); | 
 | 		up_read(¤t->mm->mmap_sem); | 
 | 	} else { | 
 | 		ret = get_user_pages_unlocked(start, nr_pages, | 
 | 					      pages, gup_flags); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int internal_get_user_pages_fast(unsigned long start, int nr_pages, | 
 | 					unsigned int gup_flags, | 
 | 					struct page **pages) | 
 | { | 
 | 	unsigned long addr, len, end; | 
 | 	int nr = 0, ret = 0; | 
 |  | 
 | 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | | 
 | 				       FOLL_FORCE | FOLL_PIN))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	start = untagged_addr(start) & PAGE_MASK; | 
 | 	addr = start; | 
 | 	len = (unsigned long) nr_pages << PAGE_SHIFT; | 
 | 	end = start + len; | 
 |  | 
 | 	if (end <= start) | 
 | 		return 0; | 
 | 	if (unlikely(!access_ok((void __user *)start, len))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && | 
 | 	    gup_fast_permitted(start, end)) { | 
 | 		local_irq_disable(); | 
 | 		gup_pgd_range(addr, end, gup_flags, pages, &nr); | 
 | 		local_irq_enable(); | 
 | 		ret = nr; | 
 | 	} | 
 |  | 
 | 	if (nr < nr_pages) { | 
 | 		/* Try to get the remaining pages with get_user_pages */ | 
 | 		start += nr << PAGE_SHIFT; | 
 | 		pages += nr; | 
 |  | 
 | 		ret = __gup_longterm_unlocked(start, nr_pages - nr, | 
 | 					      gup_flags, pages); | 
 |  | 
 | 		/* Have to be a bit careful with return values */ | 
 | 		if (nr > 0) { | 
 | 			if (ret < 0) | 
 | 				ret = nr; | 
 | 			else | 
 | 				ret += nr; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * get_user_pages_fast() - pin user pages in memory | 
 |  * @start:	starting user address | 
 |  * @nr_pages:	number of pages from start to pin | 
 |  * @gup_flags:	flags modifying pin behaviour | 
 |  * @pages:	array that receives pointers to the pages pinned. | 
 |  *		Should be at least nr_pages long. | 
 |  * | 
 |  * Attempt to pin user pages in memory without taking mm->mmap_sem. | 
 |  * If not successful, it will fall back to taking the lock and | 
 |  * calling get_user_pages(). | 
 |  * | 
 |  * Returns number of pages pinned. This may be fewer than the number requested. | 
 |  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns | 
 |  * -errno. | 
 |  */ | 
 | int get_user_pages_fast(unsigned long start, int nr_pages, | 
 | 			unsigned int gup_flags, struct page **pages) | 
 | { | 
 | 	/* | 
 | 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, | 
 | 	 * never directly by the caller, so enforce that: | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); | 
 | } | 
 | EXPORT_SYMBOL_GPL(get_user_pages_fast); | 
 |  | 
 | /** | 
 |  * pin_user_pages_fast() - pin user pages in memory without taking locks | 
 |  * | 
 |  * For now, this is a placeholder function, until various call sites are | 
 |  * converted to use the correct get_user_pages*() or pin_user_pages*() API. So, | 
 |  * this is identical to get_user_pages_fast(). | 
 |  * | 
 |  * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It | 
 |  * is NOT intended for Case 2 (RDMA: long-term pins). | 
 |  */ | 
 | int pin_user_pages_fast(unsigned long start, int nr_pages, | 
 | 			unsigned int gup_flags, struct page **pages) | 
 | { | 
 | 	/* | 
 | 	 * This is a placeholder, until the pin functionality is activated. | 
 | 	 * Until then, just behave like the corresponding get_user_pages*() | 
 | 	 * routine. | 
 | 	 */ | 
 | 	return get_user_pages_fast(start, nr_pages, gup_flags, pages); | 
 | } | 
 | EXPORT_SYMBOL_GPL(pin_user_pages_fast); | 
 |  | 
 | /** | 
 |  * pin_user_pages_remote() - pin pages of a remote process (task != current) | 
 |  * | 
 |  * For now, this is a placeholder function, until various call sites are | 
 |  * converted to use the correct get_user_pages*() or pin_user_pages*() API. So, | 
 |  * this is identical to get_user_pages_remote(). | 
 |  * | 
 |  * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It | 
 |  * is NOT intended for Case 2 (RDMA: long-term pins). | 
 |  */ | 
 | long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, | 
 | 			   unsigned long start, unsigned long nr_pages, | 
 | 			   unsigned int gup_flags, struct page **pages, | 
 | 			   struct vm_area_struct **vmas, int *locked) | 
 | { | 
 | 	/* | 
 | 	 * This is a placeholder, until the pin functionality is activated. | 
 | 	 * Until then, just behave like the corresponding get_user_pages*() | 
 | 	 * routine. | 
 | 	 */ | 
 | 	return get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags, pages, | 
 | 				     vmas, locked); | 
 | } | 
 | EXPORT_SYMBOL(pin_user_pages_remote); | 
 |  | 
 | /** | 
 |  * pin_user_pages() - pin user pages in memory for use by other devices | 
 |  * | 
 |  * For now, this is a placeholder function, until various call sites are | 
 |  * converted to use the correct get_user_pages*() or pin_user_pages*() API. So, | 
 |  * this is identical to get_user_pages(). | 
 |  * | 
 |  * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It | 
 |  * is NOT intended for Case 2 (RDMA: long-term pins). | 
 |  */ | 
 | long pin_user_pages(unsigned long start, unsigned long nr_pages, | 
 | 		    unsigned int gup_flags, struct page **pages, | 
 | 		    struct vm_area_struct **vmas) | 
 | { | 
 | 	/* | 
 | 	 * This is a placeholder, until the pin functionality is activated. | 
 | 	 * Until then, just behave like the corresponding get_user_pages*() | 
 | 	 * routine. | 
 | 	 */ | 
 | 	return get_user_pages(start, nr_pages, gup_flags, pages, vmas); | 
 | } | 
 | EXPORT_SYMBOL(pin_user_pages); |