|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * In-Memory Collection (IMC) Performance Monitor counter support. | 
|  | * | 
|  | * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation. | 
|  | *           (C) 2017 Anju T Sudhakar, IBM Corporation. | 
|  | *           (C) 2017 Hemant K Shaw, IBM Corporation. | 
|  | */ | 
|  | #include <linux/of.h> | 
|  | #include <linux/perf_event.h> | 
|  | #include <linux/slab.h> | 
|  | #include <asm/opal.h> | 
|  | #include <asm/imc-pmu.h> | 
|  | #include <asm/cputhreads.h> | 
|  | #include <asm/smp.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/spinlock.h> | 
|  |  | 
|  | /* Nest IMC data structures and variables */ | 
|  |  | 
|  | /* | 
|  | * Used to avoid races in counting the nest-pmu units during hotplug | 
|  | * register and unregister | 
|  | */ | 
|  | static DEFINE_MUTEX(nest_init_lock); | 
|  | static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc); | 
|  | static struct imc_pmu **per_nest_pmu_arr; | 
|  | static cpumask_t nest_imc_cpumask; | 
|  | static struct imc_pmu_ref *nest_imc_refc; | 
|  | static int nest_pmus; | 
|  |  | 
|  | /* Core IMC data structures and variables */ | 
|  |  | 
|  | static cpumask_t core_imc_cpumask; | 
|  | static struct imc_pmu_ref *core_imc_refc; | 
|  | static struct imc_pmu *core_imc_pmu; | 
|  |  | 
|  | /* Thread IMC data structures and variables */ | 
|  |  | 
|  | static DEFINE_PER_CPU(u64 *, thread_imc_mem); | 
|  | static struct imc_pmu *thread_imc_pmu; | 
|  | static int thread_imc_mem_size; | 
|  |  | 
|  | /* Trace IMC data structures */ | 
|  | static DEFINE_PER_CPU(u64 *, trace_imc_mem); | 
|  | static struct imc_pmu_ref *trace_imc_refc; | 
|  | static int trace_imc_mem_size; | 
|  |  | 
|  | /* | 
|  | * Global data structure used to avoid races between thread, | 
|  | * core and trace-imc | 
|  | */ | 
|  | static struct imc_pmu_ref imc_global_refc = { | 
|  | .lock = __SPIN_LOCK_UNLOCKED(imc_global_refc.lock), | 
|  | .id = 0, | 
|  | .refc = 0, | 
|  | }; | 
|  |  | 
|  | static struct imc_pmu *imc_event_to_pmu(struct perf_event *event) | 
|  | { | 
|  | return container_of(event->pmu, struct imc_pmu, pmu); | 
|  | } | 
|  |  | 
|  | PMU_FORMAT_ATTR(event, "config:0-61"); | 
|  | PMU_FORMAT_ATTR(offset, "config:0-31"); | 
|  | PMU_FORMAT_ATTR(rvalue, "config:32"); | 
|  | PMU_FORMAT_ATTR(mode, "config:33-40"); | 
|  | static struct attribute *imc_format_attrs[] = { | 
|  | &format_attr_event.attr, | 
|  | &format_attr_offset.attr, | 
|  | &format_attr_rvalue.attr, | 
|  | &format_attr_mode.attr, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static const struct attribute_group imc_format_group = { | 
|  | .name = "format", | 
|  | .attrs = imc_format_attrs, | 
|  | }; | 
|  |  | 
|  | /* Format attribute for imc trace-mode */ | 
|  | PMU_FORMAT_ATTR(cpmc_reserved, "config:0-19"); | 
|  | PMU_FORMAT_ATTR(cpmc_event, "config:20-27"); | 
|  | PMU_FORMAT_ATTR(cpmc_samplesel, "config:28-29"); | 
|  | PMU_FORMAT_ATTR(cpmc_load, "config:30-61"); | 
|  | static struct attribute *trace_imc_format_attrs[] = { | 
|  | &format_attr_event.attr, | 
|  | &format_attr_cpmc_reserved.attr, | 
|  | &format_attr_cpmc_event.attr, | 
|  | &format_attr_cpmc_samplesel.attr, | 
|  | &format_attr_cpmc_load.attr, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static const struct attribute_group trace_imc_format_group = { | 
|  | .name = "format", | 
|  | .attrs = trace_imc_format_attrs, | 
|  | }; | 
|  |  | 
|  | /* Get the cpumask printed to a buffer "buf" */ | 
|  | static ssize_t imc_pmu_cpumask_get_attr(struct device *dev, | 
|  | struct device_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | struct pmu *pmu = dev_get_drvdata(dev); | 
|  | struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu); | 
|  | cpumask_t *active_mask; | 
|  |  | 
|  | switch(imc_pmu->domain){ | 
|  | case IMC_DOMAIN_NEST: | 
|  | active_mask = &nest_imc_cpumask; | 
|  | break; | 
|  | case IMC_DOMAIN_CORE: | 
|  | active_mask = &core_imc_cpumask; | 
|  | break; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return cpumap_print_to_pagebuf(true, buf, active_mask); | 
|  | } | 
|  |  | 
|  | static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL); | 
|  |  | 
|  | static struct attribute *imc_pmu_cpumask_attrs[] = { | 
|  | &dev_attr_cpumask.attr, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static const struct attribute_group imc_pmu_cpumask_attr_group = { | 
|  | .attrs = imc_pmu_cpumask_attrs, | 
|  | }; | 
|  |  | 
|  | /* device_str_attr_create : Populate event "name" and string "str" in attribute */ | 
|  | static struct attribute *device_str_attr_create(const char *name, const char *str) | 
|  | { | 
|  | struct perf_pmu_events_attr *attr; | 
|  |  | 
|  | attr = kzalloc(sizeof(*attr), GFP_KERNEL); | 
|  | if (!attr) | 
|  | return NULL; | 
|  | sysfs_attr_init(&attr->attr.attr); | 
|  |  | 
|  | attr->event_str = str; | 
|  | attr->attr.attr.name = name; | 
|  | attr->attr.attr.mode = 0444; | 
|  | attr->attr.show = perf_event_sysfs_show; | 
|  |  | 
|  | return &attr->attr.attr; | 
|  | } | 
|  |  | 
|  | static int imc_parse_event(struct device_node *np, const char *scale, | 
|  | const char *unit, const char *prefix, | 
|  | u32 base, struct imc_events *event) | 
|  | { | 
|  | const char *s; | 
|  | u32 reg; | 
|  |  | 
|  | if (of_property_read_u32(np, "reg", ®)) | 
|  | goto error; | 
|  | /* Add the base_reg value to the "reg" */ | 
|  | event->value = base + reg; | 
|  |  | 
|  | if (of_property_read_string(np, "event-name", &s)) | 
|  | goto error; | 
|  |  | 
|  | event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s); | 
|  | if (!event->name) | 
|  | goto error; | 
|  |  | 
|  | if (of_property_read_string(np, "scale", &s)) | 
|  | s = scale; | 
|  |  | 
|  | if (s) { | 
|  | event->scale = kstrdup(s, GFP_KERNEL); | 
|  | if (!event->scale) | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | if (of_property_read_string(np, "unit", &s)) | 
|  | s = unit; | 
|  |  | 
|  | if (s) { | 
|  | event->unit = kstrdup(s, GFP_KERNEL); | 
|  | if (!event->unit) | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | error: | 
|  | kfree(event->unit); | 
|  | kfree(event->scale); | 
|  | kfree(event->name); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * imc_free_events: Function to cleanup the events list, having | 
|  | * 		    "nr_entries". | 
|  | */ | 
|  | static void imc_free_events(struct imc_events *events, int nr_entries) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* Nothing to clean, return */ | 
|  | if (!events) | 
|  | return; | 
|  | for (i = 0; i < nr_entries; i++) { | 
|  | kfree(events[i].unit); | 
|  | kfree(events[i].scale); | 
|  | kfree(events[i].name); | 
|  | } | 
|  |  | 
|  | kfree(events); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * update_events_in_group: Update the "events" information in an attr_group | 
|  | *                         and assign the attr_group to the pmu "pmu". | 
|  | */ | 
|  | static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu) | 
|  | { | 
|  | struct attribute_group *attr_group; | 
|  | struct attribute **attrs, *dev_str; | 
|  | struct device_node *np, *pmu_events; | 
|  | u32 handle, base_reg; | 
|  | int i = 0, j = 0, ct, ret; | 
|  | const char *prefix, *g_scale, *g_unit; | 
|  | const char *ev_val_str, *ev_scale_str, *ev_unit_str; | 
|  |  | 
|  | if (!of_property_read_u32(node, "events", &handle)) | 
|  | pmu_events = of_find_node_by_phandle(handle); | 
|  | else | 
|  | return 0; | 
|  |  | 
|  | /* Did not find any node with a given phandle */ | 
|  | if (!pmu_events) | 
|  | return 0; | 
|  |  | 
|  | /* Get a count of number of child nodes */ | 
|  | ct = of_get_child_count(pmu_events); | 
|  |  | 
|  | /* Get the event prefix */ | 
|  | if (of_property_read_string(node, "events-prefix", &prefix)) { | 
|  | of_node_put(pmu_events); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Get a global unit and scale data if available */ | 
|  | if (of_property_read_string(node, "scale", &g_scale)) | 
|  | g_scale = NULL; | 
|  |  | 
|  | if (of_property_read_string(node, "unit", &g_unit)) | 
|  | g_unit = NULL; | 
|  |  | 
|  | /* "reg" property gives out the base offset of the counters data */ | 
|  | of_property_read_u32(node, "reg", &base_reg); | 
|  |  | 
|  | /* Allocate memory for the events */ | 
|  | pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL); | 
|  | if (!pmu->events) { | 
|  | of_node_put(pmu_events); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | ct = 0; | 
|  | /* Parse the events and update the struct */ | 
|  | for_each_child_of_node(pmu_events, np) { | 
|  | ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]); | 
|  | if (!ret) | 
|  | ct++; | 
|  | } | 
|  |  | 
|  | of_node_put(pmu_events); | 
|  |  | 
|  | /* Allocate memory for attribute group */ | 
|  | attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL); | 
|  | if (!attr_group) { | 
|  | imc_free_events(pmu->events, ct); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate memory for attributes. | 
|  | * Since we have count of events for this pmu, we also allocate | 
|  | * memory for the scale and unit attribute for now. | 
|  | * "ct" has the total event structs added from the events-parent node. | 
|  | * So allocate three times the "ct" (this includes event, event_scale and | 
|  | * event_unit). | 
|  | */ | 
|  | attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL); | 
|  | if (!attrs) { | 
|  | kfree(attr_group); | 
|  | imc_free_events(pmu->events, ct); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | attr_group->name = "events"; | 
|  | attr_group->attrs = attrs; | 
|  | do { | 
|  | ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value); | 
|  | if (!ev_val_str) | 
|  | continue; | 
|  | dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str); | 
|  | if (!dev_str) | 
|  | continue; | 
|  |  | 
|  | attrs[j++] = dev_str; | 
|  | if (pmu->events[i].scale) { | 
|  | ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name); | 
|  | if (!ev_scale_str) | 
|  | continue; | 
|  | dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale); | 
|  | if (!dev_str) | 
|  | continue; | 
|  |  | 
|  | attrs[j++] = dev_str; | 
|  | } | 
|  |  | 
|  | if (pmu->events[i].unit) { | 
|  | ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name); | 
|  | if (!ev_unit_str) | 
|  | continue; | 
|  | dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit); | 
|  | if (!dev_str) | 
|  | continue; | 
|  |  | 
|  | attrs[j++] = dev_str; | 
|  | } | 
|  | } while (++i < ct); | 
|  |  | 
|  | /* Save the event attribute */ | 
|  | pmu->attr_groups[IMC_EVENT_ATTR] = attr_group; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */ | 
|  | static struct imc_pmu_ref *get_nest_pmu_ref(int cpu) | 
|  | { | 
|  | return per_cpu(local_nest_imc_refc, cpu); | 
|  | } | 
|  |  | 
|  | static void nest_change_cpu_context(int old_cpu, int new_cpu) | 
|  | { | 
|  | struct imc_pmu **pn = per_nest_pmu_arr; | 
|  |  | 
|  | if (old_cpu < 0 || new_cpu < 0) | 
|  | return; | 
|  |  | 
|  | while (*pn) { | 
|  | perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu); | 
|  | pn++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int ppc_nest_imc_cpu_offline(unsigned int cpu) | 
|  | { | 
|  | int nid, target = -1; | 
|  | const struct cpumask *l_cpumask; | 
|  | struct imc_pmu_ref *ref; | 
|  |  | 
|  | /* | 
|  | * Check in the designated list for this cpu. Dont bother | 
|  | * if not one of them. | 
|  | */ | 
|  | if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Check whether nest_imc is registered. We could end up here if the | 
|  | * cpuhotplug callback registration fails. i.e, callback invokes the | 
|  | * offline path for all successfully registered nodes. At this stage, | 
|  | * nest_imc pmu will not be registered and we should return here. | 
|  | * | 
|  | * We return with a zero since this is not an offline failure. And | 
|  | * cpuhp_setup_state() returns the actual failure reason to the caller, | 
|  | * which in turn will call the cleanup routine. | 
|  | */ | 
|  | if (!nest_pmus) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Now that this cpu is one of the designated, | 
|  | * find a next cpu a) which is online and b) in same chip. | 
|  | */ | 
|  | nid = cpu_to_node(cpu); | 
|  | l_cpumask = cpumask_of_node(nid); | 
|  | target = cpumask_last(l_cpumask); | 
|  |  | 
|  | /* | 
|  | * If this(target) is the last cpu in the cpumask for this chip, | 
|  | * check for any possible online cpu in the chip. | 
|  | */ | 
|  | if (unlikely(target == cpu)) | 
|  | target = cpumask_any_but(l_cpumask, cpu); | 
|  |  | 
|  | /* | 
|  | * Update the cpumask with the target cpu and | 
|  | * migrate the context if needed | 
|  | */ | 
|  | if (target >= 0 && target < nr_cpu_ids) { | 
|  | cpumask_set_cpu(target, &nest_imc_cpumask); | 
|  | nest_change_cpu_context(cpu, target); | 
|  | } else { | 
|  | opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, | 
|  | get_hard_smp_processor_id(cpu)); | 
|  | /* | 
|  | * If this is the last cpu in this chip then, skip the reference | 
|  | * count lock and make the reference count on this chip zero. | 
|  | */ | 
|  | ref = get_nest_pmu_ref(cpu); | 
|  | if (!ref) | 
|  | return -EINVAL; | 
|  |  | 
|  | ref->refc = 0; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ppc_nest_imc_cpu_online(unsigned int cpu) | 
|  | { | 
|  | const struct cpumask *l_cpumask; | 
|  | static struct cpumask tmp_mask; | 
|  | int res; | 
|  |  | 
|  | /* Get the cpumask of this node */ | 
|  | l_cpumask = cpumask_of_node(cpu_to_node(cpu)); | 
|  |  | 
|  | /* | 
|  | * If this is not the first online CPU on this node, then | 
|  | * just return. | 
|  | */ | 
|  | if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If this is the first online cpu on this node | 
|  | * disable the nest counters by making an OPAL call. | 
|  | */ | 
|  | res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, | 
|  | get_hard_smp_processor_id(cpu)); | 
|  | if (res) | 
|  | return res; | 
|  |  | 
|  | /* Make this CPU the designated target for counter collection */ | 
|  | cpumask_set_cpu(cpu, &nest_imc_cpumask); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int nest_pmu_cpumask_init(void) | 
|  | { | 
|  | return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE, | 
|  | "perf/powerpc/imc:online", | 
|  | ppc_nest_imc_cpu_online, | 
|  | ppc_nest_imc_cpu_offline); | 
|  | } | 
|  |  | 
|  | static void nest_imc_counters_release(struct perf_event *event) | 
|  | { | 
|  | int rc, node_id; | 
|  | struct imc_pmu_ref *ref; | 
|  |  | 
|  | if (event->cpu < 0) | 
|  | return; | 
|  |  | 
|  | node_id = cpu_to_node(event->cpu); | 
|  |  | 
|  | /* | 
|  | * See if we need to disable the nest PMU. | 
|  | * If no events are currently in use, then we have to take a | 
|  | * lock to ensure that we don't race with another task doing | 
|  | * enable or disable the nest counters. | 
|  | */ | 
|  | ref = get_nest_pmu_ref(event->cpu); | 
|  | if (!ref) | 
|  | return; | 
|  |  | 
|  | /* Take the lock for this node and then decrement the reference count */ | 
|  | spin_lock(&ref->lock); | 
|  | if (ref->refc == 0) { | 
|  | /* | 
|  | * The scenario where this is true is, when perf session is | 
|  | * started, followed by offlining of all cpus in a given node. | 
|  | * | 
|  | * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline() | 
|  | * function set the ref->count to zero, if the cpu which is | 
|  | * about to offline is the last cpu in a given node and make | 
|  | * an OPAL call to disable the engine in that node. | 
|  | * | 
|  | */ | 
|  | spin_unlock(&ref->lock); | 
|  | return; | 
|  | } | 
|  | ref->refc--; | 
|  | if (ref->refc == 0) { | 
|  | rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST, | 
|  | get_hard_smp_processor_id(event->cpu)); | 
|  | if (rc) { | 
|  | spin_unlock(&ref->lock); | 
|  | pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id); | 
|  | return; | 
|  | } | 
|  | } else if (ref->refc < 0) { | 
|  | WARN(1, "nest-imc: Invalid event reference count\n"); | 
|  | ref->refc = 0; | 
|  | } | 
|  | spin_unlock(&ref->lock); | 
|  | } | 
|  |  | 
|  | static int nest_imc_event_init(struct perf_event *event) | 
|  | { | 
|  | int chip_id, rc, node_id; | 
|  | u32 l_config, config = event->attr.config; | 
|  | struct imc_mem_info *pcni; | 
|  | struct imc_pmu *pmu; | 
|  | struct imc_pmu_ref *ref; | 
|  | bool flag = false; | 
|  |  | 
|  | if (event->attr.type != event->pmu->type) | 
|  | return -ENOENT; | 
|  |  | 
|  | /* Sampling not supported */ | 
|  | if (event->hw.sample_period) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (event->cpu < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | pmu = imc_event_to_pmu(event); | 
|  |  | 
|  | /* Sanity check for config (event offset) */ | 
|  | if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Nest HW counter memory resides in a per-chip reserve-memory (HOMER). | 
|  | * Get the base memory address for this cpu. | 
|  | */ | 
|  | chip_id = cpu_to_chip_id(event->cpu); | 
|  |  | 
|  | /* Return, if chip_id is not valid */ | 
|  | if (chip_id < 0) | 
|  | return -ENODEV; | 
|  |  | 
|  | pcni = pmu->mem_info; | 
|  | do { | 
|  | if (pcni->id == chip_id) { | 
|  | flag = true; | 
|  | break; | 
|  | } | 
|  | pcni++; | 
|  | } while (pcni->vbase); | 
|  |  | 
|  | if (!flag) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* | 
|  | * Add the event offset to the base address. | 
|  | */ | 
|  | l_config = config & IMC_EVENT_OFFSET_MASK; | 
|  | event->hw.event_base = (u64)pcni->vbase + l_config; | 
|  | node_id = cpu_to_node(event->cpu); | 
|  |  | 
|  | /* | 
|  | * Get the imc_pmu_ref struct for this node. | 
|  | * Take the lock and then increment the count of nest pmu events inited. | 
|  | */ | 
|  | ref = get_nest_pmu_ref(event->cpu); | 
|  | if (!ref) | 
|  | return -EINVAL; | 
|  |  | 
|  | spin_lock(&ref->lock); | 
|  | if (ref->refc == 0) { | 
|  | rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST, | 
|  | get_hard_smp_processor_id(event->cpu)); | 
|  | if (rc) { | 
|  | spin_unlock(&ref->lock); | 
|  | pr_err("nest-imc: Unable to start the counters for node %d\n", | 
|  | node_id); | 
|  | return rc; | 
|  | } | 
|  | } | 
|  | ++ref->refc; | 
|  | spin_unlock(&ref->lock); | 
|  |  | 
|  | event->destroy = nest_imc_counters_release; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * core_imc_mem_init : Initializes memory for the current core. | 
|  | * | 
|  | * Uses alloc_pages_node() and uses the returned address as an argument to | 
|  | * an opal call to configure the pdbar. The address sent as an argument is | 
|  | * converted to physical address before the opal call is made. This is the | 
|  | * base address at which the core imc counters are populated. | 
|  | */ | 
|  | static int core_imc_mem_init(int cpu, int size) | 
|  | { | 
|  | int nid, rc = 0, core_id = (cpu / threads_per_core); | 
|  | struct imc_mem_info *mem_info; | 
|  | struct page *page; | 
|  |  | 
|  | /* | 
|  | * alloc_pages_node() will allocate memory for core in the | 
|  | * local node only. | 
|  | */ | 
|  | nid = cpu_to_node(cpu); | 
|  | mem_info = &core_imc_pmu->mem_info[core_id]; | 
|  | mem_info->id = core_id; | 
|  |  | 
|  | /* We need only vbase for core counters */ | 
|  | page = alloc_pages_node(nid, | 
|  | GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | | 
|  | __GFP_NOWARN, get_order(size)); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  | mem_info->vbase = page_address(page); | 
|  |  | 
|  | core_imc_refc[core_id].id = core_id; | 
|  | spin_lock_init(&core_imc_refc[core_id].lock); | 
|  |  | 
|  | rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE, | 
|  | __pa((void *)mem_info->vbase), | 
|  | get_hard_smp_processor_id(cpu)); | 
|  | if (rc) { | 
|  | free_pages((u64)mem_info->vbase, get_order(size)); | 
|  | mem_info->vbase = NULL; | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static bool is_core_imc_mem_inited(int cpu) | 
|  | { | 
|  | struct imc_mem_info *mem_info; | 
|  | int core_id = (cpu / threads_per_core); | 
|  |  | 
|  | mem_info = &core_imc_pmu->mem_info[core_id]; | 
|  | if (!mem_info->vbase) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int ppc_core_imc_cpu_online(unsigned int cpu) | 
|  | { | 
|  | const struct cpumask *l_cpumask; | 
|  | static struct cpumask tmp_mask; | 
|  | int ret = 0; | 
|  |  | 
|  | /* Get the cpumask for this core */ | 
|  | l_cpumask = cpu_sibling_mask(cpu); | 
|  |  | 
|  | /* If a cpu for this core is already set, then, don't do anything */ | 
|  | if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask)) | 
|  | return 0; | 
|  |  | 
|  | if (!is_core_imc_mem_inited(cpu)) { | 
|  | ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size); | 
|  | if (ret) { | 
|  | pr_info("core_imc memory allocation for cpu %d failed\n", cpu); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* set the cpu in the mask */ | 
|  | cpumask_set_cpu(cpu, &core_imc_cpumask); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ppc_core_imc_cpu_offline(unsigned int cpu) | 
|  | { | 
|  | unsigned int core_id; | 
|  | int ncpu; | 
|  | struct imc_pmu_ref *ref; | 
|  |  | 
|  | /* | 
|  | * clear this cpu out of the mask, if not present in the mask, | 
|  | * don't bother doing anything. | 
|  | */ | 
|  | if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Check whether core_imc is registered. We could end up here | 
|  | * if the cpuhotplug callback registration fails. i.e, callback | 
|  | * invokes the offline path for all successfully registered cpus. | 
|  | * At this stage, core_imc pmu will not be registered and we | 
|  | * should return here. | 
|  | * | 
|  | * We return with a zero since this is not an offline failure. | 
|  | * And cpuhp_setup_state() returns the actual failure reason | 
|  | * to the caller, which inturn will call the cleanup routine. | 
|  | */ | 
|  | if (!core_imc_pmu->pmu.event_init) | 
|  | return 0; | 
|  |  | 
|  | /* Find any online cpu in that core except the current "cpu" */ | 
|  | ncpu = cpumask_last(cpu_sibling_mask(cpu)); | 
|  |  | 
|  | if (unlikely(ncpu == cpu)) | 
|  | ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu); | 
|  |  | 
|  | if (ncpu >= 0 && ncpu < nr_cpu_ids) { | 
|  | cpumask_set_cpu(ncpu, &core_imc_cpumask); | 
|  | perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu); | 
|  | } else { | 
|  | /* | 
|  | * If this is the last cpu in this core then skip taking reference | 
|  | * count lock for this core and directly zero "refc" for this core. | 
|  | */ | 
|  | opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, | 
|  | get_hard_smp_processor_id(cpu)); | 
|  | core_id = cpu / threads_per_core; | 
|  | ref = &core_imc_refc[core_id]; | 
|  | if (!ref) | 
|  | return -EINVAL; | 
|  |  | 
|  | ref->refc = 0; | 
|  | /* | 
|  | * Reduce the global reference count, if this is the | 
|  | * last cpu in this core and core-imc event running | 
|  | * in this cpu. | 
|  | */ | 
|  | spin_lock(&imc_global_refc.lock); | 
|  | if (imc_global_refc.id == IMC_DOMAIN_CORE) | 
|  | imc_global_refc.refc--; | 
|  |  | 
|  | spin_unlock(&imc_global_refc.lock); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int core_imc_pmu_cpumask_init(void) | 
|  | { | 
|  | return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE, | 
|  | "perf/powerpc/imc_core:online", | 
|  | ppc_core_imc_cpu_online, | 
|  | ppc_core_imc_cpu_offline); | 
|  | } | 
|  |  | 
|  | static void reset_global_refc(struct perf_event *event) | 
|  | { | 
|  | spin_lock(&imc_global_refc.lock); | 
|  | imc_global_refc.refc--; | 
|  |  | 
|  | /* | 
|  | * If no other thread is running any | 
|  | * event for this domain(thread/core/trace), | 
|  | * set the global id to zero. | 
|  | */ | 
|  | if (imc_global_refc.refc <= 0) { | 
|  | imc_global_refc.refc = 0; | 
|  | imc_global_refc.id = 0; | 
|  | } | 
|  | spin_unlock(&imc_global_refc.lock); | 
|  | } | 
|  |  | 
|  | static void core_imc_counters_release(struct perf_event *event) | 
|  | { | 
|  | int rc, core_id; | 
|  | struct imc_pmu_ref *ref; | 
|  |  | 
|  | if (event->cpu < 0) | 
|  | return; | 
|  | /* | 
|  | * See if we need to disable the IMC PMU. | 
|  | * If no events are currently in use, then we have to take a | 
|  | * lock to ensure that we don't race with another task doing | 
|  | * enable or disable the core counters. | 
|  | */ | 
|  | core_id = event->cpu / threads_per_core; | 
|  |  | 
|  | /* Take the lock and decrement the refernce count for this core */ | 
|  | ref = &core_imc_refc[core_id]; | 
|  | if (!ref) | 
|  | return; | 
|  |  | 
|  | spin_lock(&ref->lock); | 
|  | if (ref->refc == 0) { | 
|  | /* | 
|  | * The scenario where this is true is, when perf session is | 
|  | * started, followed by offlining of all cpus in a given core. | 
|  | * | 
|  | * In the cpuhotplug offline path, ppc_core_imc_cpu_offline() | 
|  | * function set the ref->count to zero, if the cpu which is | 
|  | * about to offline is the last cpu in a given core and make | 
|  | * an OPAL call to disable the engine in that core. | 
|  | * | 
|  | */ | 
|  | spin_unlock(&ref->lock); | 
|  | return; | 
|  | } | 
|  | ref->refc--; | 
|  | if (ref->refc == 0) { | 
|  | rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, | 
|  | get_hard_smp_processor_id(event->cpu)); | 
|  | if (rc) { | 
|  | spin_unlock(&ref->lock); | 
|  | pr_err("IMC: Unable to stop the counters for core %d\n", core_id); | 
|  | return; | 
|  | } | 
|  | } else if (ref->refc < 0) { | 
|  | WARN(1, "core-imc: Invalid event reference count\n"); | 
|  | ref->refc = 0; | 
|  | } | 
|  | spin_unlock(&ref->lock); | 
|  |  | 
|  | reset_global_refc(event); | 
|  | } | 
|  |  | 
|  | static int core_imc_event_init(struct perf_event *event) | 
|  | { | 
|  | int core_id, rc; | 
|  | u64 config = event->attr.config; | 
|  | struct imc_mem_info *pcmi; | 
|  | struct imc_pmu *pmu; | 
|  | struct imc_pmu_ref *ref; | 
|  |  | 
|  | if (event->attr.type != event->pmu->type) | 
|  | return -ENOENT; | 
|  |  | 
|  | /* Sampling not supported */ | 
|  | if (event->hw.sample_period) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (event->cpu < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | event->hw.idx = -1; | 
|  | pmu = imc_event_to_pmu(event); | 
|  |  | 
|  | /* Sanity check for config (event offset) */ | 
|  | if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!is_core_imc_mem_inited(event->cpu)) | 
|  | return -ENODEV; | 
|  |  | 
|  | core_id = event->cpu / threads_per_core; | 
|  | pcmi = &core_imc_pmu->mem_info[core_id]; | 
|  | if ((!pcmi->vbase)) | 
|  | return -ENODEV; | 
|  |  | 
|  | ref = &core_imc_refc[core_id]; | 
|  | if (!ref) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Core pmu units are enabled only when it is used. | 
|  | * See if this is triggered for the first time. | 
|  | * If yes, take the lock and enable the core counters. | 
|  | * If not, just increment the count in core_imc_refc struct. | 
|  | */ | 
|  | spin_lock(&ref->lock); | 
|  | if (ref->refc == 0) { | 
|  | rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE, | 
|  | get_hard_smp_processor_id(event->cpu)); | 
|  | if (rc) { | 
|  | spin_unlock(&ref->lock); | 
|  | pr_err("core-imc: Unable to start the counters for core %d\n", | 
|  | core_id); | 
|  | return rc; | 
|  | } | 
|  | } | 
|  | ++ref->refc; | 
|  | spin_unlock(&ref->lock); | 
|  |  | 
|  | /* | 
|  | * Since the system can run either in accumulation or trace-mode | 
|  | * of IMC at a time, core-imc events are allowed only if no other | 
|  | * trace/thread imc events are enabled/monitored. | 
|  | * | 
|  | * Take the global lock, and check the refc.id | 
|  | * to know whether any other trace/thread imc | 
|  | * events are running. | 
|  | */ | 
|  | spin_lock(&imc_global_refc.lock); | 
|  | if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_CORE) { | 
|  | /* | 
|  | * No other trace/thread imc events are running in | 
|  | * the system, so set the refc.id to core-imc. | 
|  | */ | 
|  | imc_global_refc.id = IMC_DOMAIN_CORE; | 
|  | imc_global_refc.refc++; | 
|  | } else { | 
|  | spin_unlock(&imc_global_refc.lock); | 
|  | return -EBUSY; | 
|  | } | 
|  | spin_unlock(&imc_global_refc.lock); | 
|  |  | 
|  | event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK); | 
|  | event->destroy = core_imc_counters_release; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocates a page of memory for each of the online cpus, and load | 
|  | * LDBAR with 0. | 
|  | * The physical base address of the page allocated for a cpu will be | 
|  | * written to the LDBAR for that cpu, when the thread-imc event | 
|  | * is added. | 
|  | * | 
|  | * LDBAR Register Layout: | 
|  | * | 
|  | *  0          4         8         12        16        20        24        28 | 
|  | * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | | 
|  | *   | |       [   ]    [                   Counter Address [8:50] | 
|  | *   | * Mode    | | 
|  | *   |           * PB Scope | 
|  | *   * Enable/Disable | 
|  | * | 
|  | *  32        36        40        44        48        52        56        60 | 
|  | * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | | 
|  | *           Counter Address [8:50]              ] | 
|  | * | 
|  | */ | 
|  | static int thread_imc_mem_alloc(int cpu_id, int size) | 
|  | { | 
|  | u64 *local_mem = per_cpu(thread_imc_mem, cpu_id); | 
|  | int nid = cpu_to_node(cpu_id); | 
|  |  | 
|  | if (!local_mem) { | 
|  | struct page *page; | 
|  | /* | 
|  | * This case could happen only once at start, since we dont | 
|  | * free the memory in cpu offline path. | 
|  | */ | 
|  | page = alloc_pages_node(nid, | 
|  | GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | | 
|  | __GFP_NOWARN, get_order(size)); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  | local_mem = page_address(page); | 
|  |  | 
|  | per_cpu(thread_imc_mem, cpu_id) = local_mem; | 
|  | } | 
|  |  | 
|  | mtspr(SPRN_LDBAR, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ppc_thread_imc_cpu_online(unsigned int cpu) | 
|  | { | 
|  | return thread_imc_mem_alloc(cpu, thread_imc_mem_size); | 
|  | } | 
|  |  | 
|  | static int ppc_thread_imc_cpu_offline(unsigned int cpu) | 
|  | { | 
|  | /* | 
|  | * Set the bit 0 of LDBAR to zero. | 
|  | * | 
|  | * If bit 0 of LDBAR is unset, it will stop posting | 
|  | * the counter data to memory. | 
|  | * For thread-imc, bit 0 of LDBAR will be set to 1 in the | 
|  | * event_add function. So reset this bit here, to stop the updates | 
|  | * to memory in the cpu_offline path. | 
|  | */ | 
|  | mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63)))); | 
|  |  | 
|  | /* Reduce the refc if thread-imc event running on this cpu */ | 
|  | spin_lock(&imc_global_refc.lock); | 
|  | if (imc_global_refc.id == IMC_DOMAIN_THREAD) | 
|  | imc_global_refc.refc--; | 
|  | spin_unlock(&imc_global_refc.lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int thread_imc_cpu_init(void) | 
|  | { | 
|  | return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE, | 
|  | "perf/powerpc/imc_thread:online", | 
|  | ppc_thread_imc_cpu_online, | 
|  | ppc_thread_imc_cpu_offline); | 
|  | } | 
|  |  | 
|  | static int thread_imc_event_init(struct perf_event *event) | 
|  | { | 
|  | u32 config = event->attr.config; | 
|  | struct task_struct *target; | 
|  | struct imc_pmu *pmu; | 
|  |  | 
|  | if (event->attr.type != event->pmu->type) | 
|  | return -ENOENT; | 
|  |  | 
|  | if (!perfmon_capable()) | 
|  | return -EACCES; | 
|  |  | 
|  | /* Sampling not supported */ | 
|  | if (event->hw.sample_period) | 
|  | return -EINVAL; | 
|  |  | 
|  | event->hw.idx = -1; | 
|  | pmu = imc_event_to_pmu(event); | 
|  |  | 
|  | /* Sanity check for config offset */ | 
|  | if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)) | 
|  | return -EINVAL; | 
|  |  | 
|  | target = event->hw.target; | 
|  | if (!target) | 
|  | return -EINVAL; | 
|  |  | 
|  | spin_lock(&imc_global_refc.lock); | 
|  | /* | 
|  | * Check if any other trace/core imc events are running in the | 
|  | * system, if not set the global id to thread-imc. | 
|  | */ | 
|  | if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_THREAD) { | 
|  | imc_global_refc.id = IMC_DOMAIN_THREAD; | 
|  | imc_global_refc.refc++; | 
|  | } else { | 
|  | spin_unlock(&imc_global_refc.lock); | 
|  | return -EBUSY; | 
|  | } | 
|  | spin_unlock(&imc_global_refc.lock); | 
|  |  | 
|  | event->pmu->task_ctx_nr = perf_sw_context; | 
|  | event->destroy = reset_global_refc; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool is_thread_imc_pmu(struct perf_event *event) | 
|  | { | 
|  | if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc"))) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static __be64 *get_event_base_addr(struct perf_event *event) | 
|  | { | 
|  | u64 addr; | 
|  |  | 
|  | if (is_thread_imc_pmu(event)) { | 
|  | addr = (u64)per_cpu(thread_imc_mem, smp_processor_id()); | 
|  | return (__be64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK)); | 
|  | } | 
|  |  | 
|  | return (__be64 *)event->hw.event_base; | 
|  | } | 
|  |  | 
|  | static void thread_imc_pmu_start_txn(struct pmu *pmu, | 
|  | unsigned int txn_flags) | 
|  | { | 
|  | if (txn_flags & ~PERF_PMU_TXN_ADD) | 
|  | return; | 
|  | perf_pmu_disable(pmu); | 
|  | } | 
|  |  | 
|  | static void thread_imc_pmu_cancel_txn(struct pmu *pmu) | 
|  | { | 
|  | perf_pmu_enable(pmu); | 
|  | } | 
|  |  | 
|  | static int thread_imc_pmu_commit_txn(struct pmu *pmu) | 
|  | { | 
|  | perf_pmu_enable(pmu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 imc_read_counter(struct perf_event *event) | 
|  | { | 
|  | __be64 *addr; | 
|  | u64 data; | 
|  |  | 
|  | /* | 
|  | * In-Memory Collection (IMC) counters are free flowing counters. | 
|  | * So we take a snapshot of the counter value on enable and save it | 
|  | * to calculate the delta at later stage to present the event counter | 
|  | * value. | 
|  | */ | 
|  | addr = get_event_base_addr(event); | 
|  | data = be64_to_cpu(READ_ONCE(*addr)); | 
|  | local64_set(&event->hw.prev_count, data); | 
|  |  | 
|  | return data; | 
|  | } | 
|  |  | 
|  | static void imc_event_update(struct perf_event *event) | 
|  | { | 
|  | u64 counter_prev, counter_new, final_count; | 
|  |  | 
|  | counter_prev = local64_read(&event->hw.prev_count); | 
|  | counter_new = imc_read_counter(event); | 
|  | final_count = counter_new - counter_prev; | 
|  |  | 
|  | /* Update the delta to the event count */ | 
|  | local64_add(final_count, &event->count); | 
|  | } | 
|  |  | 
|  | static void imc_event_start(struct perf_event *event, int flags) | 
|  | { | 
|  | /* | 
|  | * In Memory Counters are free flowing counters. HW or the microcode | 
|  | * keeps adding to the counter offset in memory. To get event | 
|  | * counter value, we snapshot the value here and we calculate | 
|  | * delta at later point. | 
|  | */ | 
|  | imc_read_counter(event); | 
|  | } | 
|  |  | 
|  | static void imc_event_stop(struct perf_event *event, int flags) | 
|  | { | 
|  | /* | 
|  | * Take a snapshot and calculate the delta and update | 
|  | * the event counter values. | 
|  | */ | 
|  | imc_event_update(event); | 
|  | } | 
|  |  | 
|  | static int imc_event_add(struct perf_event *event, int flags) | 
|  | { | 
|  | if (flags & PERF_EF_START) | 
|  | imc_event_start(event, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int thread_imc_event_add(struct perf_event *event, int flags) | 
|  | { | 
|  | int core_id; | 
|  | struct imc_pmu_ref *ref; | 
|  | u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, smp_processor_id()); | 
|  |  | 
|  | if (flags & PERF_EF_START) | 
|  | imc_event_start(event, flags); | 
|  |  | 
|  | if (!is_core_imc_mem_inited(smp_processor_id())) | 
|  | return -EINVAL; | 
|  |  | 
|  | core_id = smp_processor_id() / threads_per_core; | 
|  | ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE; | 
|  | mtspr(SPRN_LDBAR, ldbar_value); | 
|  |  | 
|  | /* | 
|  | * imc pmus are enabled only when it is used. | 
|  | * See if this is triggered for the first time. | 
|  | * If yes, take the lock and enable the counters. | 
|  | * If not, just increment the count in ref count struct. | 
|  | */ | 
|  | ref = &core_imc_refc[core_id]; | 
|  | if (!ref) | 
|  | return -EINVAL; | 
|  |  | 
|  | spin_lock(&ref->lock); | 
|  | if (ref->refc == 0) { | 
|  | if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE, | 
|  | get_hard_smp_processor_id(smp_processor_id()))) { | 
|  | spin_unlock(&ref->lock); | 
|  | pr_err("thread-imc: Unable to start the counter\ | 
|  | for core %d\n", core_id); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | ++ref->refc; | 
|  | spin_unlock(&ref->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void thread_imc_event_del(struct perf_event *event, int flags) | 
|  | { | 
|  |  | 
|  | int core_id; | 
|  | struct imc_pmu_ref *ref; | 
|  |  | 
|  | core_id = smp_processor_id() / threads_per_core; | 
|  | ref = &core_imc_refc[core_id]; | 
|  | if (!ref) { | 
|  | pr_debug("imc: Failed to get event reference count\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_lock(&ref->lock); | 
|  | ref->refc--; | 
|  | if (ref->refc == 0) { | 
|  | if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE, | 
|  | get_hard_smp_processor_id(smp_processor_id()))) { | 
|  | spin_unlock(&ref->lock); | 
|  | pr_err("thread-imc: Unable to stop the counters\ | 
|  | for core %d\n", core_id); | 
|  | return; | 
|  | } | 
|  | } else if (ref->refc < 0) { | 
|  | ref->refc = 0; | 
|  | } | 
|  | spin_unlock(&ref->lock); | 
|  |  | 
|  | /* Set bit 0 of LDBAR to zero, to stop posting updates to memory */ | 
|  | mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63)))); | 
|  |  | 
|  | /* | 
|  | * Take a snapshot and calculate the delta and update | 
|  | * the event counter values. | 
|  | */ | 
|  | imc_event_update(event); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a page of memory for each cpu, and load LDBAR with 0. | 
|  | */ | 
|  | static int trace_imc_mem_alloc(int cpu_id, int size) | 
|  | { | 
|  | u64 *local_mem = per_cpu(trace_imc_mem, cpu_id); | 
|  | int phys_id = cpu_to_node(cpu_id), rc = 0; | 
|  | int core_id = (cpu_id / threads_per_core); | 
|  |  | 
|  | if (!local_mem) { | 
|  | struct page *page; | 
|  |  | 
|  | page = alloc_pages_node(phys_id, | 
|  | GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE | | 
|  | __GFP_NOWARN, get_order(size)); | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  | local_mem = page_address(page); | 
|  | per_cpu(trace_imc_mem, cpu_id) = local_mem; | 
|  |  | 
|  | /* Initialise the counters for trace mode */ | 
|  | rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_TRACE, __pa((void *)local_mem), | 
|  | get_hard_smp_processor_id(cpu_id)); | 
|  | if (rc) { | 
|  | pr_info("IMC:opal init failed for trace imc\n"); | 
|  | return rc; | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_imc_refc[core_id].id = core_id; | 
|  | spin_lock_init(&trace_imc_refc[core_id].lock); | 
|  |  | 
|  | mtspr(SPRN_LDBAR, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ppc_trace_imc_cpu_online(unsigned int cpu) | 
|  | { | 
|  | return trace_imc_mem_alloc(cpu, trace_imc_mem_size); | 
|  | } | 
|  |  | 
|  | static int ppc_trace_imc_cpu_offline(unsigned int cpu) | 
|  | { | 
|  | /* | 
|  | * No need to set bit 0 of LDBAR to zero, as | 
|  | * it is set to zero for imc trace-mode | 
|  | * | 
|  | * Reduce the refc if any trace-imc event running | 
|  | * on this cpu. | 
|  | */ | 
|  | spin_lock(&imc_global_refc.lock); | 
|  | if (imc_global_refc.id == IMC_DOMAIN_TRACE) | 
|  | imc_global_refc.refc--; | 
|  | spin_unlock(&imc_global_refc.lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int trace_imc_cpu_init(void) | 
|  | { | 
|  | return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE, | 
|  | "perf/powerpc/imc_trace:online", | 
|  | ppc_trace_imc_cpu_online, | 
|  | ppc_trace_imc_cpu_offline); | 
|  | } | 
|  |  | 
|  | static u64 get_trace_imc_event_base_addr(void) | 
|  | { | 
|  | return (u64)per_cpu(trace_imc_mem, smp_processor_id()); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Function to parse trace-imc data obtained | 
|  | * and to prepare the perf sample. | 
|  | */ | 
|  | static int trace_imc_prepare_sample(struct trace_imc_data *mem, | 
|  | struct perf_sample_data *data, | 
|  | u64 *prev_tb, | 
|  | struct perf_event_header *header, | 
|  | struct perf_event *event) | 
|  | { | 
|  | /* Sanity checks for a valid record */ | 
|  | if (be64_to_cpu(READ_ONCE(mem->tb1)) > *prev_tb) | 
|  | *prev_tb = be64_to_cpu(READ_ONCE(mem->tb1)); | 
|  | else | 
|  | return -EINVAL; | 
|  |  | 
|  | if ((be64_to_cpu(READ_ONCE(mem->tb1)) & IMC_TRACE_RECORD_TB1_MASK) != | 
|  | be64_to_cpu(READ_ONCE(mem->tb2))) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Prepare perf sample */ | 
|  | data->ip =  be64_to_cpu(READ_ONCE(mem->ip)); | 
|  | data->period = event->hw.last_period; | 
|  |  | 
|  | header->type = PERF_RECORD_SAMPLE; | 
|  | header->size = sizeof(*header) + event->header_size; | 
|  | header->misc = 0; | 
|  |  | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_31)) { | 
|  | switch (IMC_TRACE_RECORD_VAL_HVPR(be64_to_cpu(READ_ONCE(mem->val)))) { | 
|  | case 0:/* when MSR HV and PR not set in the trace-record */ | 
|  | header->misc |= PERF_RECORD_MISC_GUEST_KERNEL; | 
|  | break; | 
|  | case 1: /* MSR HV is 0 and PR is 1 */ | 
|  | header->misc |= PERF_RECORD_MISC_GUEST_USER; | 
|  | break; | 
|  | case 2: /* MSR HV is 1 and PR is 0 */ | 
|  | header->misc |= PERF_RECORD_MISC_KERNEL; | 
|  | break; | 
|  | case 3: /* MSR HV is 1 and PR is 1 */ | 
|  | header->misc |= PERF_RECORD_MISC_USER; | 
|  | break; | 
|  | default: | 
|  | pr_info("IMC: Unable to set the flag based on MSR bits\n"); | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | if (is_kernel_addr(data->ip)) | 
|  | header->misc |= PERF_RECORD_MISC_KERNEL; | 
|  | else | 
|  | header->misc |= PERF_RECORD_MISC_USER; | 
|  | } | 
|  | perf_event_header__init_id(header, data, event); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void dump_trace_imc_data(struct perf_event *event) | 
|  | { | 
|  | struct trace_imc_data *mem; | 
|  | int i, ret; | 
|  | u64 prev_tb = 0; | 
|  |  | 
|  | mem = (struct trace_imc_data *)get_trace_imc_event_base_addr(); | 
|  | for (i = 0; i < (trace_imc_mem_size / sizeof(struct trace_imc_data)); | 
|  | i++, mem++) { | 
|  | struct perf_sample_data data; | 
|  | struct perf_event_header header; | 
|  |  | 
|  | ret = trace_imc_prepare_sample(mem, &data, &prev_tb, &header, event); | 
|  | if (ret) /* Exit, if not a valid record */ | 
|  | break; | 
|  | else { | 
|  | /* If this is a valid record, create the sample */ | 
|  | struct perf_output_handle handle; | 
|  |  | 
|  | if (perf_output_begin(&handle, &data, event, header.size)) | 
|  | return; | 
|  |  | 
|  | perf_output_sample(&handle, &header, &data, event); | 
|  | perf_output_end(&handle); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int trace_imc_event_add(struct perf_event *event, int flags) | 
|  | { | 
|  | int core_id = smp_processor_id() / threads_per_core; | 
|  | struct imc_pmu_ref *ref = NULL; | 
|  | u64 local_mem, ldbar_value; | 
|  |  | 
|  | /* Set trace-imc bit in ldbar and load ldbar with per-thread memory address */ | 
|  | local_mem = get_trace_imc_event_base_addr(); | 
|  | ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | TRACE_IMC_ENABLE; | 
|  |  | 
|  | /* trace-imc reference count */ | 
|  | if (trace_imc_refc) | 
|  | ref = &trace_imc_refc[core_id]; | 
|  | if (!ref) { | 
|  | pr_debug("imc: Failed to get the event reference count\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | mtspr(SPRN_LDBAR, ldbar_value); | 
|  | spin_lock(&ref->lock); | 
|  | if (ref->refc == 0) { | 
|  | if (opal_imc_counters_start(OPAL_IMC_COUNTERS_TRACE, | 
|  | get_hard_smp_processor_id(smp_processor_id()))) { | 
|  | spin_unlock(&ref->lock); | 
|  | pr_err("trace-imc: Unable to start the counters for core %d\n", core_id); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | ++ref->refc; | 
|  | spin_unlock(&ref->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void trace_imc_event_read(struct perf_event *event) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void trace_imc_event_stop(struct perf_event *event, int flags) | 
|  | { | 
|  | u64 local_mem = get_trace_imc_event_base_addr(); | 
|  | dump_trace_imc_data(event); | 
|  | memset((void *)local_mem, 0, sizeof(u64)); | 
|  | } | 
|  |  | 
|  | static void trace_imc_event_start(struct perf_event *event, int flags) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void trace_imc_event_del(struct perf_event *event, int flags) | 
|  | { | 
|  | int core_id = smp_processor_id() / threads_per_core; | 
|  | struct imc_pmu_ref *ref = NULL; | 
|  |  | 
|  | if (trace_imc_refc) | 
|  | ref = &trace_imc_refc[core_id]; | 
|  | if (!ref) { | 
|  | pr_debug("imc: Failed to get event reference count\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_lock(&ref->lock); | 
|  | ref->refc--; | 
|  | if (ref->refc == 0) { | 
|  | if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_TRACE, | 
|  | get_hard_smp_processor_id(smp_processor_id()))) { | 
|  | spin_unlock(&ref->lock); | 
|  | pr_err("trace-imc: Unable to stop the counters for core %d\n", core_id); | 
|  | return; | 
|  | } | 
|  | } else if (ref->refc < 0) { | 
|  | ref->refc = 0; | 
|  | } | 
|  | spin_unlock(&ref->lock); | 
|  |  | 
|  | trace_imc_event_stop(event, flags); | 
|  | } | 
|  |  | 
|  | static int trace_imc_event_init(struct perf_event *event) | 
|  | { | 
|  | if (event->attr.type != event->pmu->type) | 
|  | return -ENOENT; | 
|  |  | 
|  | if (!perfmon_capable()) | 
|  | return -EACCES; | 
|  |  | 
|  | /* Return if this is a couting event */ | 
|  | if (event->attr.sample_period == 0) | 
|  | return -ENOENT; | 
|  |  | 
|  | /* | 
|  | * Take the global lock, and make sure | 
|  | * no other thread is running any core/thread imc | 
|  | * events | 
|  | */ | 
|  | spin_lock(&imc_global_refc.lock); | 
|  | if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_TRACE) { | 
|  | /* | 
|  | * No core/thread imc events are running in the | 
|  | * system, so set the refc.id to trace-imc. | 
|  | */ | 
|  | imc_global_refc.id = IMC_DOMAIN_TRACE; | 
|  | imc_global_refc.refc++; | 
|  | } else { | 
|  | spin_unlock(&imc_global_refc.lock); | 
|  | return -EBUSY; | 
|  | } | 
|  | spin_unlock(&imc_global_refc.lock); | 
|  |  | 
|  | event->hw.idx = -1; | 
|  |  | 
|  | /* | 
|  | * There can only be a single PMU for perf_hw_context events which is assigned to | 
|  | * core PMU. Hence use "perf_sw_context" for trace_imc. | 
|  | */ | 
|  | event->pmu->task_ctx_nr = perf_sw_context; | 
|  | event->destroy = reset_global_refc; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* update_pmu_ops : Populate the appropriate operations for "pmu" */ | 
|  | static int update_pmu_ops(struct imc_pmu *pmu) | 
|  | { | 
|  | pmu->pmu.task_ctx_nr = perf_invalid_context; | 
|  | pmu->pmu.add = imc_event_add; | 
|  | pmu->pmu.del = imc_event_stop; | 
|  | pmu->pmu.start = imc_event_start; | 
|  | pmu->pmu.stop = imc_event_stop; | 
|  | pmu->pmu.read = imc_event_update; | 
|  | pmu->pmu.attr_groups = pmu->attr_groups; | 
|  | pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE; | 
|  | pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group; | 
|  |  | 
|  | switch (pmu->domain) { | 
|  | case IMC_DOMAIN_NEST: | 
|  | pmu->pmu.event_init = nest_imc_event_init; | 
|  | pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group; | 
|  | break; | 
|  | case IMC_DOMAIN_CORE: | 
|  | pmu->pmu.event_init = core_imc_event_init; | 
|  | pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group; | 
|  | break; | 
|  | case IMC_DOMAIN_THREAD: | 
|  | pmu->pmu.event_init = thread_imc_event_init; | 
|  | pmu->pmu.add = thread_imc_event_add; | 
|  | pmu->pmu.del = thread_imc_event_del; | 
|  | pmu->pmu.start_txn = thread_imc_pmu_start_txn; | 
|  | pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn; | 
|  | pmu->pmu.commit_txn = thread_imc_pmu_commit_txn; | 
|  | break; | 
|  | case IMC_DOMAIN_TRACE: | 
|  | pmu->pmu.event_init = trace_imc_event_init; | 
|  | pmu->pmu.add = trace_imc_event_add; | 
|  | pmu->pmu.del = trace_imc_event_del; | 
|  | pmu->pmu.start = trace_imc_event_start; | 
|  | pmu->pmu.stop = trace_imc_event_stop; | 
|  | pmu->pmu.read = trace_imc_event_read; | 
|  | pmu->attr_groups[IMC_FORMAT_ATTR] = &trace_imc_format_group; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */ | 
|  | static int init_nest_pmu_ref(void) | 
|  | { | 
|  | int nid, i, cpu; | 
|  |  | 
|  | nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc), | 
|  | GFP_KERNEL); | 
|  |  | 
|  | if (!nest_imc_refc) | 
|  | return -ENOMEM; | 
|  |  | 
|  | i = 0; | 
|  | for_each_node(nid) { | 
|  | /* | 
|  | * Take the lock to avoid races while tracking the number of | 
|  | * sessions using the chip's nest pmu units. | 
|  | */ | 
|  | spin_lock_init(&nest_imc_refc[i].lock); | 
|  |  | 
|  | /* | 
|  | * Loop to init the "id" with the node_id. Variable "i" initialized to | 
|  | * 0 and will be used as index to the array. "i" will not go off the | 
|  | * end of the array since the "for_each_node" loops for "N_POSSIBLE" | 
|  | * nodes only. | 
|  | */ | 
|  | nest_imc_refc[i++].id = nid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Loop to init the per_cpu "local_nest_imc_refc" with the proper | 
|  | * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple. | 
|  | */ | 
|  | for_each_possible_cpu(cpu) { | 
|  | nid = cpu_to_node(cpu); | 
|  | for (i = 0; i < num_possible_nodes(); i++) { | 
|  | if (nest_imc_refc[i].id == nid) { | 
|  | per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i]; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void cleanup_all_core_imc_memory(void) | 
|  | { | 
|  | int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); | 
|  | struct imc_mem_info *ptr = core_imc_pmu->mem_info; | 
|  | int size = core_imc_pmu->counter_mem_size; | 
|  |  | 
|  | /* mem_info will never be NULL */ | 
|  | for (i = 0; i < nr_cores; i++) { | 
|  | if (ptr[i].vbase) | 
|  | free_pages((u64)ptr[i].vbase, get_order(size)); | 
|  | } | 
|  |  | 
|  | kfree(ptr); | 
|  | kfree(core_imc_refc); | 
|  | } | 
|  |  | 
|  | static void thread_imc_ldbar_disable(void *dummy) | 
|  | { | 
|  | /* | 
|  | * By setting 0th bit of LDBAR to zero, we disable thread-imc | 
|  | * updates to memory. | 
|  | */ | 
|  | mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63)))); | 
|  | } | 
|  |  | 
|  | void thread_imc_disable(void) | 
|  | { | 
|  | on_each_cpu(thread_imc_ldbar_disable, NULL, 1); | 
|  | } | 
|  |  | 
|  | static void cleanup_all_thread_imc_memory(void) | 
|  | { | 
|  | int i, order = get_order(thread_imc_mem_size); | 
|  |  | 
|  | for_each_online_cpu(i) { | 
|  | if (per_cpu(thread_imc_mem, i)) | 
|  | free_pages((u64)per_cpu(thread_imc_mem, i), order); | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cleanup_all_trace_imc_memory(void) | 
|  | { | 
|  | int i, order = get_order(trace_imc_mem_size); | 
|  |  | 
|  | for_each_online_cpu(i) { | 
|  | if (per_cpu(trace_imc_mem, i)) | 
|  | free_pages((u64)per_cpu(trace_imc_mem, i), order); | 
|  |  | 
|  | } | 
|  | kfree(trace_imc_refc); | 
|  | } | 
|  |  | 
|  | /* Function to free the attr_groups which are dynamically allocated */ | 
|  | static void imc_common_mem_free(struct imc_pmu *pmu_ptr) | 
|  | { | 
|  | if (pmu_ptr->attr_groups[IMC_EVENT_ATTR]) | 
|  | kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs); | 
|  | kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Common function to unregister cpu hotplug callback and | 
|  | * free the memory. | 
|  | * TODO: Need to handle pmu unregistering, which will be | 
|  | * done in followup series. | 
|  | */ | 
|  | static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr) | 
|  | { | 
|  | if (pmu_ptr->domain == IMC_DOMAIN_NEST) { | 
|  | mutex_lock(&nest_init_lock); | 
|  | if (nest_pmus == 1) { | 
|  | cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE); | 
|  | kfree(nest_imc_refc); | 
|  | kfree(per_nest_pmu_arr); | 
|  | per_nest_pmu_arr = NULL; | 
|  | } | 
|  |  | 
|  | if (nest_pmus > 0) | 
|  | nest_pmus--; | 
|  | mutex_unlock(&nest_init_lock); | 
|  | } | 
|  |  | 
|  | /* Free core_imc memory */ | 
|  | if (pmu_ptr->domain == IMC_DOMAIN_CORE) { | 
|  | cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE); | 
|  | cleanup_all_core_imc_memory(); | 
|  | } | 
|  |  | 
|  | /* Free thread_imc memory */ | 
|  | if (pmu_ptr->domain == IMC_DOMAIN_THREAD) { | 
|  | cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE); | 
|  | cleanup_all_thread_imc_memory(); | 
|  | } | 
|  |  | 
|  | if (pmu_ptr->domain == IMC_DOMAIN_TRACE) { | 
|  | cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE); | 
|  | cleanup_all_trace_imc_memory(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Function to unregister thread-imc if core-imc | 
|  | * is not registered. | 
|  | */ | 
|  | void unregister_thread_imc(void) | 
|  | { | 
|  | imc_common_cpuhp_mem_free(thread_imc_pmu); | 
|  | imc_common_mem_free(thread_imc_pmu); | 
|  | perf_pmu_unregister(&thread_imc_pmu->pmu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * imc_mem_init : Function to support memory allocation for core imc. | 
|  | */ | 
|  | static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent, | 
|  | int pmu_index) | 
|  | { | 
|  | const char *s; | 
|  | int nr_cores, cpu, res = -ENOMEM; | 
|  |  | 
|  | if (of_property_read_string(parent, "name", &s)) | 
|  | return -ENODEV; | 
|  |  | 
|  | switch (pmu_ptr->domain) { | 
|  | case IMC_DOMAIN_NEST: | 
|  | /* Update the pmu name */ | 
|  | pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s); | 
|  | if (!pmu_ptr->pmu.name) | 
|  | goto err; | 
|  |  | 
|  | /* Needed for hotplug/migration */ | 
|  | if (!per_nest_pmu_arr) { | 
|  | per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1, | 
|  | sizeof(struct imc_pmu *), | 
|  | GFP_KERNEL); | 
|  | if (!per_nest_pmu_arr) | 
|  | goto err; | 
|  | } | 
|  | per_nest_pmu_arr[pmu_index] = pmu_ptr; | 
|  | break; | 
|  | case IMC_DOMAIN_CORE: | 
|  | /* Update the pmu name */ | 
|  | pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); | 
|  | if (!pmu_ptr->pmu.name) | 
|  | goto err; | 
|  |  | 
|  | nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); | 
|  | pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info), | 
|  | GFP_KERNEL); | 
|  |  | 
|  | if (!pmu_ptr->mem_info) | 
|  | goto err; | 
|  |  | 
|  | core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref), | 
|  | GFP_KERNEL); | 
|  |  | 
|  | if (!core_imc_refc) { | 
|  | kfree(pmu_ptr->mem_info); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | core_imc_pmu = pmu_ptr; | 
|  | break; | 
|  | case IMC_DOMAIN_THREAD: | 
|  | /* Update the pmu name */ | 
|  | pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); | 
|  | if (!pmu_ptr->pmu.name) | 
|  | goto err; | 
|  |  | 
|  | thread_imc_mem_size = pmu_ptr->counter_mem_size; | 
|  | for_each_online_cpu(cpu) { | 
|  | res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size); | 
|  | if (res) { | 
|  | cleanup_all_thread_imc_memory(); | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | thread_imc_pmu = pmu_ptr; | 
|  | break; | 
|  | case IMC_DOMAIN_TRACE: | 
|  | /* Update the pmu name */ | 
|  | pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc"); | 
|  | if (!pmu_ptr->pmu.name) | 
|  | return -ENOMEM; | 
|  |  | 
|  | nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core); | 
|  | trace_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref), | 
|  | GFP_KERNEL); | 
|  | if (!trace_imc_refc) | 
|  | return -ENOMEM; | 
|  |  | 
|  | trace_imc_mem_size = pmu_ptr->counter_mem_size; | 
|  | for_each_online_cpu(cpu) { | 
|  | res = trace_imc_mem_alloc(cpu, trace_imc_mem_size); | 
|  | if (res) { | 
|  | cleanup_all_trace_imc_memory(); | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | err: | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * init_imc_pmu : Setup and register the IMC pmu device. | 
|  | * | 
|  | * @parent:	Device tree unit node | 
|  | * @pmu_ptr:	memory allocated for this pmu | 
|  | * @pmu_idx:	Count of nest pmc registered | 
|  | * | 
|  | * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback. | 
|  | * Handles failure cases and accordingly frees memory. | 
|  | */ | 
|  | int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = imc_mem_init(pmu_ptr, parent, pmu_idx); | 
|  | if (ret) | 
|  | goto err_free_mem; | 
|  |  | 
|  | switch (pmu_ptr->domain) { | 
|  | case IMC_DOMAIN_NEST: | 
|  | /* | 
|  | * Nest imc pmu need only one cpu per chip, we initialize the | 
|  | * cpumask for the first nest imc pmu and use the same for the | 
|  | * rest. To handle the cpuhotplug callback unregister, we track | 
|  | * the number of nest pmus in "nest_pmus". | 
|  | */ | 
|  | mutex_lock(&nest_init_lock); | 
|  | if (nest_pmus == 0) { | 
|  | ret = init_nest_pmu_ref(); | 
|  | if (ret) { | 
|  | mutex_unlock(&nest_init_lock); | 
|  | kfree(per_nest_pmu_arr); | 
|  | per_nest_pmu_arr = NULL; | 
|  | goto err_free_mem; | 
|  | } | 
|  | /* Register for cpu hotplug notification. */ | 
|  | ret = nest_pmu_cpumask_init(); | 
|  | if (ret) { | 
|  | mutex_unlock(&nest_init_lock); | 
|  | kfree(nest_imc_refc); | 
|  | kfree(per_nest_pmu_arr); | 
|  | per_nest_pmu_arr = NULL; | 
|  | goto err_free_mem; | 
|  | } | 
|  | } | 
|  | nest_pmus++; | 
|  | mutex_unlock(&nest_init_lock); | 
|  | break; | 
|  | case IMC_DOMAIN_CORE: | 
|  | ret = core_imc_pmu_cpumask_init(); | 
|  | if (ret) { | 
|  | cleanup_all_core_imc_memory(); | 
|  | goto err_free_mem; | 
|  | } | 
|  |  | 
|  | break; | 
|  | case IMC_DOMAIN_THREAD: | 
|  | ret = thread_imc_cpu_init(); | 
|  | if (ret) { | 
|  | cleanup_all_thread_imc_memory(); | 
|  | goto err_free_mem; | 
|  | } | 
|  |  | 
|  | break; | 
|  | case IMC_DOMAIN_TRACE: | 
|  | ret = trace_imc_cpu_init(); | 
|  | if (ret) { | 
|  | cleanup_all_trace_imc_memory(); | 
|  | goto err_free_mem; | 
|  | } | 
|  |  | 
|  | break; | 
|  | default: | 
|  | return  -EINVAL;	/* Unknown domain */ | 
|  | } | 
|  |  | 
|  | ret = update_events_in_group(parent, pmu_ptr); | 
|  | if (ret) | 
|  | goto err_free_cpuhp_mem; | 
|  |  | 
|  | ret = update_pmu_ops(pmu_ptr); | 
|  | if (ret) | 
|  | goto err_free_cpuhp_mem; | 
|  |  | 
|  | ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1); | 
|  | if (ret) | 
|  | goto err_free_cpuhp_mem; | 
|  |  | 
|  | pr_debug("%s performance monitor hardware support registered\n", | 
|  | pmu_ptr->pmu.name); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_free_cpuhp_mem: | 
|  | imc_common_cpuhp_mem_free(pmu_ptr); | 
|  | err_free_mem: | 
|  | imc_common_mem_free(pmu_ptr); | 
|  | return ret; | 
|  | } |