|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Kernel-based Virtual Machine -- Performance Monitoring Unit support | 
|  | * | 
|  | * Copyright 2015 Red Hat, Inc. and/or its affiliates. | 
|  | * | 
|  | * Authors: | 
|  | *   Avi Kivity   <avi@redhat.com> | 
|  | *   Gleb Natapov <gleb@redhat.com> | 
|  | *   Wei Huang    <wei@redhat.com> | 
|  | */ | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/kvm_host.h> | 
|  | #include <linux/perf_event.h> | 
|  | #include <linux/bsearch.h> | 
|  | #include <linux/sort.h> | 
|  | #include <asm/perf_event.h> | 
|  | #include <asm/cpu_device_id.h> | 
|  | #include "x86.h" | 
|  | #include "cpuid.h" | 
|  | #include "lapic.h" | 
|  | #include "pmu.h" | 
|  |  | 
|  | /* This is enough to filter the vast majority of currently defined events. */ | 
|  | #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300 | 
|  |  | 
|  | /* Unadultered PMU capabilities of the host, i.e. of hardware. */ | 
|  | static struct x86_pmu_capability __read_mostly kvm_host_pmu; | 
|  |  | 
|  | /* KVM's PMU capabilities, i.e. the intersection of KVM and hardware support. */ | 
|  | struct x86_pmu_capability __read_mostly kvm_pmu_cap; | 
|  | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_pmu_cap); | 
|  |  | 
|  | struct kvm_pmu_emulated_event_selectors { | 
|  | u64 INSTRUCTIONS_RETIRED; | 
|  | u64 BRANCH_INSTRUCTIONS_RETIRED; | 
|  | }; | 
|  | static struct kvm_pmu_emulated_event_selectors __read_mostly kvm_pmu_eventsel; | 
|  |  | 
|  | /* Precise Distribution of Instructions Retired (PDIR) */ | 
|  | static const struct x86_cpu_id vmx_pebs_pdir_cpu[] = { | 
|  | X86_MATCH_VFM(INTEL_ICELAKE_D, NULL), | 
|  | X86_MATCH_VFM(INTEL_ICELAKE_X, NULL), | 
|  | /* Instruction-Accurate PDIR (PDIR++) */ | 
|  | X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, NULL), | 
|  | {} | 
|  | }; | 
|  |  | 
|  | /* Precise Distribution (PDist) */ | 
|  | static const struct x86_cpu_id vmx_pebs_pdist_cpu[] = { | 
|  | X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, NULL), | 
|  | {} | 
|  | }; | 
|  |  | 
|  | /* NOTE: | 
|  | * - Each perf counter is defined as "struct kvm_pmc"; | 
|  | * - There are two types of perf counters: general purpose (gp) and fixed. | 
|  | *   gp counters are stored in gp_counters[] and fixed counters are stored | 
|  | *   in fixed_counters[] respectively. Both of them are part of "struct | 
|  | *   kvm_pmu"; | 
|  | * - pmu.c understands the difference between gp counters and fixed counters. | 
|  | *   However AMD doesn't support fixed-counters; | 
|  | * - There are three types of index to access perf counters (PMC): | 
|  | *     1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD | 
|  | *        has MSR_K7_PERFCTRn and, for families 15H and later, | 
|  | *        MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are | 
|  | *        aliased to MSR_K7_PERFCTRn. | 
|  | *     2. MSR Index (named idx): This normally is used by RDPMC instruction. | 
|  | *        For instance AMD RDPMC instruction uses 0000_0003h in ECX to access | 
|  | *        C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except | 
|  | *        that it also supports fixed counters. idx can be used to as index to | 
|  | *        gp and fixed counters. | 
|  | *     3. Global PMC Index (named pmc): pmc is an index specific to PMU | 
|  | *        code. Each pmc, stored in kvm_pmc.idx field, is unique across | 
|  | *        all perf counters (both gp and fixed). The mapping relationship | 
|  | *        between pmc and perf counters is as the following: | 
|  | *        * Intel: [0 .. KVM_MAX_NR_INTEL_GP_COUNTERS-1] <=> gp counters | 
|  | *                 [KVM_FIXED_PMC_BASE_IDX .. KVM_FIXED_PMC_BASE_IDX + 2] <=> fixed | 
|  | *        * AMD:   [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H | 
|  | *          and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters | 
|  | */ | 
|  |  | 
|  | static struct kvm_pmu_ops kvm_pmu_ops __read_mostly; | 
|  |  | 
|  | #define KVM_X86_PMU_OP(func)					     \ | 
|  | DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func,			     \ | 
|  | *(((struct kvm_pmu_ops *)0)->func)); | 
|  | #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP | 
|  | #include <asm/kvm-x86-pmu-ops.h> | 
|  |  | 
|  | void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops) | 
|  | { | 
|  | memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops)); | 
|  |  | 
|  | #define __KVM_X86_PMU_OP(func) \ | 
|  | static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func); | 
|  | #define KVM_X86_PMU_OP(func) \ | 
|  | WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func) | 
|  | #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP | 
|  | #include <asm/kvm-x86-pmu-ops.h> | 
|  | #undef __KVM_X86_PMU_OP | 
|  | } | 
|  |  | 
|  | void kvm_init_pmu_capability(const struct kvm_pmu_ops *pmu_ops) | 
|  | { | 
|  | bool is_intel = boot_cpu_data.x86_vendor == X86_VENDOR_INTEL; | 
|  | int min_nr_gp_ctrs = pmu_ops->MIN_NR_GP_COUNTERS; | 
|  |  | 
|  | /* | 
|  | * Hybrid PMUs don't play nice with virtualization without careful | 
|  | * configuration by userspace, and KVM's APIs for reporting supported | 
|  | * vPMU features do not account for hybrid PMUs.  Disable vPMU support | 
|  | * for hybrid PMUs until KVM gains a way to let userspace opt-in. | 
|  | */ | 
|  | if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) { | 
|  | enable_pmu = false; | 
|  | memset(&kvm_host_pmu, 0, sizeof(kvm_host_pmu)); | 
|  | } else { | 
|  | perf_get_x86_pmu_capability(&kvm_host_pmu); | 
|  | } | 
|  |  | 
|  | if (enable_pmu) { | 
|  | /* | 
|  | * WARN if perf did NOT disable hardware PMU if the number of | 
|  | * architecturally required GP counters aren't present, i.e. if | 
|  | * there are a non-zero number of counters, but fewer than what | 
|  | * is architecturally required. | 
|  | */ | 
|  | if (!kvm_host_pmu.num_counters_gp || | 
|  | WARN_ON_ONCE(kvm_host_pmu.num_counters_gp < min_nr_gp_ctrs)) | 
|  | enable_pmu = false; | 
|  | else if (is_intel && !kvm_host_pmu.version) | 
|  | enable_pmu = false; | 
|  | } | 
|  |  | 
|  | if (!enable_pmu) { | 
|  | memset(&kvm_pmu_cap, 0, sizeof(kvm_pmu_cap)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | memcpy(&kvm_pmu_cap, &kvm_host_pmu, sizeof(kvm_host_pmu)); | 
|  | kvm_pmu_cap.version = min(kvm_pmu_cap.version, 2); | 
|  | kvm_pmu_cap.num_counters_gp = min(kvm_pmu_cap.num_counters_gp, | 
|  | pmu_ops->MAX_NR_GP_COUNTERS); | 
|  | kvm_pmu_cap.num_counters_fixed = min(kvm_pmu_cap.num_counters_fixed, | 
|  | KVM_MAX_NR_FIXED_COUNTERS); | 
|  |  | 
|  | kvm_pmu_eventsel.INSTRUCTIONS_RETIRED = | 
|  | perf_get_hw_event_config(PERF_COUNT_HW_INSTRUCTIONS); | 
|  | kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED = | 
|  | perf_get_hw_event_config(PERF_COUNT_HW_BRANCH_INSTRUCTIONS); | 
|  | } | 
|  |  | 
|  | static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi) | 
|  | { | 
|  | struct kvm_pmu *pmu = pmc_to_pmu(pmc); | 
|  | bool skip_pmi = false; | 
|  |  | 
|  | if (pmc->perf_event && pmc->perf_event->attr.precise_ip) { | 
|  | if (!in_pmi) { | 
|  | /* | 
|  | * TODO: KVM is currently _choosing_ to not generate records | 
|  | * for emulated instructions, avoiding BUFFER_OVF PMI when | 
|  | * there are no records. Strictly speaking, it should be done | 
|  | * as well in the right context to improve sampling accuracy. | 
|  | */ | 
|  | skip_pmi = true; | 
|  | } else { | 
|  | /* Indicate PEBS overflow PMI to guest. */ | 
|  | skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, | 
|  | (unsigned long *)&pmu->global_status); | 
|  | } | 
|  | } else { | 
|  | __set_bit(pmc->idx, (unsigned long *)&pmu->global_status); | 
|  | } | 
|  |  | 
|  | if (pmc->intr && !skip_pmi) | 
|  | kvm_make_request(KVM_REQ_PMI, pmc->vcpu); | 
|  | } | 
|  |  | 
|  | static void kvm_perf_overflow(struct perf_event *perf_event, | 
|  | struct perf_sample_data *data, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | struct kvm_pmc *pmc = perf_event->overflow_handler_context; | 
|  |  | 
|  | /* | 
|  | * Ignore asynchronous overflow events for counters that are scheduled | 
|  | * to be reprogrammed, e.g. if a PMI for the previous event races with | 
|  | * KVM's handling of a related guest WRMSR. | 
|  | */ | 
|  | if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi)) | 
|  | return; | 
|  |  | 
|  | __kvm_perf_overflow(pmc, true); | 
|  |  | 
|  | kvm_make_request(KVM_REQ_PMU, pmc->vcpu); | 
|  | } | 
|  |  | 
|  | static u64 pmc_get_pebs_precise_level(struct kvm_pmc *pmc) | 
|  | { | 
|  | /* | 
|  | * For some model specific pebs counters with special capabilities | 
|  | * (PDIR, PDIR++, PDIST), KVM needs to raise the event precise | 
|  | * level to the maximum value (currently 3, backwards compatible) | 
|  | * so that the perf subsystem would assign specific hardware counter | 
|  | * with that capability for vPMC. | 
|  | */ | 
|  | if ((pmc->idx == 0 && x86_match_cpu(vmx_pebs_pdist_cpu)) || | 
|  | (pmc->idx == 32 && x86_match_cpu(vmx_pebs_pdir_cpu))) | 
|  | return 3; | 
|  |  | 
|  | /* | 
|  | * The non-zero precision level of guest event makes the ordinary | 
|  | * guest event becomes a guest PEBS event and triggers the host | 
|  | * PEBS PMI handler to determine whether the PEBS overflow PMI | 
|  | * comes from the host counters or the guest. | 
|  | */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static u64 get_sample_period(struct kvm_pmc *pmc, u64 counter_value) | 
|  | { | 
|  | u64 sample_period = (-counter_value) & pmc_bitmask(pmc); | 
|  |  | 
|  | if (!sample_period) | 
|  | sample_period = pmc_bitmask(pmc) + 1; | 
|  | return sample_period; | 
|  | } | 
|  |  | 
|  | static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config, | 
|  | bool exclude_user, bool exclude_kernel, | 
|  | bool intr) | 
|  | { | 
|  | struct kvm_pmu *pmu = pmc_to_pmu(pmc); | 
|  | struct perf_event *event; | 
|  | struct perf_event_attr attr = { | 
|  | .type = type, | 
|  | .size = sizeof(attr), | 
|  | .pinned = true, | 
|  | .exclude_idle = true, | 
|  | .exclude_host = 1, | 
|  | .exclude_user = exclude_user, | 
|  | .exclude_kernel = exclude_kernel, | 
|  | .config = config, | 
|  | }; | 
|  | bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable); | 
|  |  | 
|  | attr.sample_period = get_sample_period(pmc, pmc->counter); | 
|  |  | 
|  | if ((attr.config & HSW_IN_TX_CHECKPOINTED) && | 
|  | (boot_cpu_has(X86_FEATURE_RTM) || boot_cpu_has(X86_FEATURE_HLE))) { | 
|  | /* | 
|  | * HSW_IN_TX_CHECKPOINTED is not supported with nonzero | 
|  | * period. Just clear the sample period so at least | 
|  | * allocating the counter doesn't fail. | 
|  | */ | 
|  | attr.sample_period = 0; | 
|  | } | 
|  | if (pebs) { | 
|  | /* | 
|  | * For most PEBS hardware events, the difference in the software | 
|  | * precision levels of guest and host PEBS events will not affect | 
|  | * the accuracy of the PEBS profiling result, because the "event IP" | 
|  | * in the PEBS record is calibrated on the guest side. | 
|  | */ | 
|  | attr.precise_ip = pmc_get_pebs_precise_level(pmc); | 
|  | } | 
|  |  | 
|  | event = perf_event_create_kernel_counter(&attr, -1, current, | 
|  | kvm_perf_overflow, pmc); | 
|  | if (IS_ERR(event)) { | 
|  | pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n", | 
|  | PTR_ERR(event), pmc->idx); | 
|  | return PTR_ERR(event); | 
|  | } | 
|  |  | 
|  | pmc->perf_event = event; | 
|  | pmc_to_pmu(pmc)->event_count++; | 
|  | pmc->is_paused = false; | 
|  | pmc->intr = intr || pebs; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool pmc_pause_counter(struct kvm_pmc *pmc) | 
|  | { | 
|  | u64 counter = pmc->counter; | 
|  | u64 prev_counter; | 
|  |  | 
|  | /* update counter, reset event value to avoid redundant accumulation */ | 
|  | if (pmc->perf_event && !pmc->is_paused) | 
|  | counter += perf_event_pause(pmc->perf_event, true); | 
|  |  | 
|  | /* | 
|  | * Snapshot the previous counter *after* accumulating state from perf. | 
|  | * If overflow already happened, hardware (via perf) is responsible for | 
|  | * generating a PMI.  KVM just needs to detect overflow on emulated | 
|  | * counter events that haven't yet been processed. | 
|  | */ | 
|  | prev_counter = counter & pmc_bitmask(pmc); | 
|  |  | 
|  | counter += pmc->emulated_counter; | 
|  | pmc->counter = counter & pmc_bitmask(pmc); | 
|  |  | 
|  | pmc->emulated_counter = 0; | 
|  | pmc->is_paused = true; | 
|  |  | 
|  | return pmc->counter < prev_counter; | 
|  | } | 
|  |  | 
|  | static bool pmc_resume_counter(struct kvm_pmc *pmc) | 
|  | { | 
|  | if (!pmc->perf_event) | 
|  | return false; | 
|  |  | 
|  | /* recalibrate sample period and check if it's accepted by perf core */ | 
|  | if (is_sampling_event(pmc->perf_event) && | 
|  | perf_event_period(pmc->perf_event, | 
|  | get_sample_period(pmc, pmc->counter))) | 
|  | return false; | 
|  |  | 
|  | if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) != | 
|  | (!!pmc->perf_event->attr.precise_ip)) | 
|  | return false; | 
|  |  | 
|  | /* reuse perf_event to serve as pmc_reprogram_counter() does*/ | 
|  | perf_event_enable(pmc->perf_event); | 
|  | pmc->is_paused = false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void pmc_release_perf_event(struct kvm_pmc *pmc) | 
|  | { | 
|  | if (pmc->perf_event) { | 
|  | perf_event_release_kernel(pmc->perf_event); | 
|  | pmc->perf_event = NULL; | 
|  | pmc->current_config = 0; | 
|  | pmc_to_pmu(pmc)->event_count--; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pmc_stop_counter(struct kvm_pmc *pmc) | 
|  | { | 
|  | if (pmc->perf_event) { | 
|  | pmc->counter = pmc_read_counter(pmc); | 
|  | pmc_release_perf_event(pmc); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void pmc_update_sample_period(struct kvm_pmc *pmc) | 
|  | { | 
|  | if (!pmc->perf_event || pmc->is_paused || | 
|  | !is_sampling_event(pmc->perf_event)) | 
|  | return; | 
|  |  | 
|  | perf_event_period(pmc->perf_event, | 
|  | get_sample_period(pmc, pmc->counter)); | 
|  | } | 
|  |  | 
|  | void pmc_write_counter(struct kvm_pmc *pmc, u64 val) | 
|  | { | 
|  | /* | 
|  | * Drop any unconsumed accumulated counts, the WRMSR is a write, not a | 
|  | * read-modify-write.  Adjust the counter value so that its value is | 
|  | * relative to the current count, as reading the current count from | 
|  | * perf is faster than pausing and repgrogramming the event in order to | 
|  | * reset it to '0'.  Note, this very sneakily offsets the accumulated | 
|  | * emulated count too, by using pmc_read_counter()! | 
|  | */ | 
|  | pmc->emulated_counter = 0; | 
|  | pmc->counter += val - pmc_read_counter(pmc); | 
|  | pmc->counter &= pmc_bitmask(pmc); | 
|  | pmc_update_sample_period(pmc); | 
|  | } | 
|  | EXPORT_SYMBOL_FOR_KVM_INTERNAL(pmc_write_counter); | 
|  |  | 
|  | static int filter_cmp(const void *pa, const void *pb, u64 mask) | 
|  | { | 
|  | u64 a = *(u64 *)pa & mask; | 
|  | u64 b = *(u64 *)pb & mask; | 
|  |  | 
|  | return (a > b) - (a < b); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int filter_sort_cmp(const void *pa, const void *pb) | 
|  | { | 
|  | return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT | | 
|  | KVM_PMU_MASKED_ENTRY_EXCLUDE)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For the event filter, searching is done on the 'includes' list and | 
|  | * 'excludes' list separately rather than on the 'events' list (which | 
|  | * has both).  As a result the exclude bit can be ignored. | 
|  | */ | 
|  | static int filter_event_cmp(const void *pa, const void *pb) | 
|  | { | 
|  | return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT)); | 
|  | } | 
|  |  | 
|  | static int find_filter_index(u64 *events, u64 nevents, u64 key) | 
|  | { | 
|  | u64 *fe = bsearch(&key, events, nevents, sizeof(events[0]), | 
|  | filter_event_cmp); | 
|  |  | 
|  | if (!fe) | 
|  | return -1; | 
|  |  | 
|  | return fe - events; | 
|  | } | 
|  |  | 
|  | static bool is_filter_entry_match(u64 filter_event, u64 umask) | 
|  | { | 
|  | u64 mask = filter_event >> (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8); | 
|  | u64 match = filter_event & KVM_PMU_MASKED_ENTRY_UMASK_MATCH; | 
|  |  | 
|  | BUILD_BUG_ON((KVM_PMU_ENCODE_MASKED_ENTRY(0, 0xff, 0, false) >> | 
|  | (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8)) != | 
|  | ARCH_PERFMON_EVENTSEL_UMASK); | 
|  |  | 
|  | return (umask & mask) == match; | 
|  | } | 
|  |  | 
|  | static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel) | 
|  | { | 
|  | u64 event_select = eventsel & kvm_pmu_ops.EVENTSEL_EVENT; | 
|  | u64 umask = eventsel & ARCH_PERFMON_EVENTSEL_UMASK; | 
|  | int i, index; | 
|  |  | 
|  | index = find_filter_index(events, nevents, event_select); | 
|  | if (index < 0) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Entries are sorted by the event select.  Walk the list in both | 
|  | * directions to process all entries with the targeted event select. | 
|  | */ | 
|  | for (i = index; i < nevents; i++) { | 
|  | if (filter_event_cmp(&events[i], &event_select)) | 
|  | break; | 
|  |  | 
|  | if (is_filter_entry_match(events[i], umask)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | for (i = index - 1; i >= 0; i--) { | 
|  | if (filter_event_cmp(&events[i], &event_select)) | 
|  | break; | 
|  |  | 
|  | if (is_filter_entry_match(events[i], umask)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f, | 
|  | u64 eventsel) | 
|  | { | 
|  | if (filter_contains_match(f->includes, f->nr_includes, eventsel) && | 
|  | !filter_contains_match(f->excludes, f->nr_excludes, eventsel)) | 
|  | return f->action == KVM_PMU_EVENT_ALLOW; | 
|  |  | 
|  | return f->action == KVM_PMU_EVENT_DENY; | 
|  | } | 
|  |  | 
|  | static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter, | 
|  | int idx) | 
|  | { | 
|  | int fixed_idx = idx - KVM_FIXED_PMC_BASE_IDX; | 
|  |  | 
|  | if (filter->action == KVM_PMU_EVENT_DENY && | 
|  | test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap)) | 
|  | return false; | 
|  | if (filter->action == KVM_PMU_EVENT_ALLOW && | 
|  | !test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool pmc_is_event_allowed(struct kvm_pmc *pmc) | 
|  | { | 
|  | struct kvm_x86_pmu_event_filter *filter; | 
|  | struct kvm *kvm = pmc->vcpu->kvm; | 
|  |  | 
|  | filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu); | 
|  | if (!filter) | 
|  | return true; | 
|  |  | 
|  | if (pmc_is_gp(pmc)) | 
|  | return is_gp_event_allowed(filter, pmc->eventsel); | 
|  |  | 
|  | return is_fixed_event_allowed(filter, pmc->idx); | 
|  | } | 
|  |  | 
|  | static int reprogram_counter(struct kvm_pmc *pmc) | 
|  | { | 
|  | struct kvm_pmu *pmu = pmc_to_pmu(pmc); | 
|  | u64 eventsel = pmc->eventsel; | 
|  | u64 new_config = eventsel; | 
|  | bool emulate_overflow; | 
|  | u8 fixed_ctr_ctrl; | 
|  |  | 
|  | emulate_overflow = pmc_pause_counter(pmc); | 
|  |  | 
|  | if (!pmc_is_globally_enabled(pmc) || !pmc_is_locally_enabled(pmc) || | 
|  | !pmc_is_event_allowed(pmc)) | 
|  | return 0; | 
|  |  | 
|  | if (emulate_overflow) | 
|  | __kvm_perf_overflow(pmc, false); | 
|  |  | 
|  | if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL) | 
|  | printk_once("kvm pmu: pin control bit is ignored\n"); | 
|  |  | 
|  | if (pmc_is_fixed(pmc)) { | 
|  | fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, | 
|  | pmc->idx - KVM_FIXED_PMC_BASE_IDX); | 
|  | if (fixed_ctr_ctrl & INTEL_FIXED_0_KERNEL) | 
|  | eventsel |= ARCH_PERFMON_EVENTSEL_OS; | 
|  | if (fixed_ctr_ctrl & INTEL_FIXED_0_USER) | 
|  | eventsel |= ARCH_PERFMON_EVENTSEL_USR; | 
|  | if (fixed_ctr_ctrl & INTEL_FIXED_0_ENABLE_PMI) | 
|  | eventsel |= ARCH_PERFMON_EVENTSEL_INT; | 
|  | new_config = (u64)fixed_ctr_ctrl; | 
|  | } | 
|  |  | 
|  | if (pmc->current_config == new_config && pmc_resume_counter(pmc)) | 
|  | return 0; | 
|  |  | 
|  | pmc_release_perf_event(pmc); | 
|  |  | 
|  | pmc->current_config = new_config; | 
|  |  | 
|  | return pmc_reprogram_counter(pmc, PERF_TYPE_RAW, | 
|  | (eventsel & pmu->raw_event_mask), | 
|  | !(eventsel & ARCH_PERFMON_EVENTSEL_USR), | 
|  | !(eventsel & ARCH_PERFMON_EVENTSEL_OS), | 
|  | eventsel & ARCH_PERFMON_EVENTSEL_INT); | 
|  | } | 
|  |  | 
|  | static bool pmc_is_event_match(struct kvm_pmc *pmc, u64 eventsel) | 
|  | { | 
|  | /* | 
|  | * Ignore checks for edge detect (all events currently emulated by KVM | 
|  | * are always rising edges), pin control (unsupported by modern CPUs), | 
|  | * and counter mask and its invert flag (KVM doesn't emulate multiple | 
|  | * events in a single clock cycle). | 
|  | * | 
|  | * Note, the uppermost nibble of AMD's mask overlaps Intel's IN_TX (bit | 
|  | * 32) and IN_TXCP (bit 33), as well as two reserved bits (bits 35:34). | 
|  | * Checking the "in HLE/RTM transaction" flags is correct as the vCPU | 
|  | * can't be in a transaction if KVM is emulating an instruction. | 
|  | * | 
|  | * Checking the reserved bits might be wrong if they are defined in the | 
|  | * future, but so could ignoring them, so do the simple thing for now. | 
|  | */ | 
|  | return !((pmc->eventsel ^ eventsel) & AMD64_RAW_EVENT_MASK_NB); | 
|  | } | 
|  |  | 
|  | void kvm_pmu_recalc_pmc_emulation(struct kvm_pmu *pmu, struct kvm_pmc *pmc) | 
|  | { | 
|  | bitmap_clear(pmu->pmc_counting_instructions, pmc->idx, 1); | 
|  | bitmap_clear(pmu->pmc_counting_branches, pmc->idx, 1); | 
|  |  | 
|  | /* | 
|  | * Do NOT consult the PMU event filters, as the filters must be checked | 
|  | * at the time of emulation to ensure KVM uses fresh information, e.g. | 
|  | * omitting a PMC from a bitmap could result in a missed event if the | 
|  | * filter is changed to allow counting the event. | 
|  | */ | 
|  | if (!pmc_is_locally_enabled(pmc)) | 
|  | return; | 
|  |  | 
|  | if (pmc_is_event_match(pmc, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED)) | 
|  | bitmap_set(pmu->pmc_counting_instructions, pmc->idx, 1); | 
|  |  | 
|  | if (pmc_is_event_match(pmc, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED)) | 
|  | bitmap_set(pmu->pmc_counting_branches, pmc->idx, 1); | 
|  | } | 
|  | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_pmu_recalc_pmc_emulation); | 
|  |  | 
|  | void kvm_pmu_handle_event(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | DECLARE_BITMAP(bitmap, X86_PMC_IDX_MAX); | 
|  | struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); | 
|  | struct kvm_pmc *pmc; | 
|  | int bit; | 
|  |  | 
|  | bitmap_copy(bitmap, pmu->reprogram_pmi, X86_PMC_IDX_MAX); | 
|  |  | 
|  | /* | 
|  | * The reprogramming bitmap can be written asynchronously by something | 
|  | * other than the task that holds vcpu->mutex, take care to clear only | 
|  | * the bits that will actually processed. | 
|  | */ | 
|  | BUILD_BUG_ON(sizeof(bitmap) != sizeof(atomic64_t)); | 
|  | atomic64_andnot(*(s64 *)bitmap, &pmu->__reprogram_pmi); | 
|  |  | 
|  | kvm_for_each_pmc(pmu, pmc, bit, bitmap) { | 
|  | /* | 
|  | * If reprogramming fails, e.g. due to contention, re-set the | 
|  | * regprogram bit set, i.e. opportunistically try again on the | 
|  | * next PMU refresh.  Don't make a new request as doing so can | 
|  | * stall the guest if reprogramming repeatedly fails. | 
|  | */ | 
|  | if (reprogram_counter(pmc)) | 
|  | set_bit(pmc->idx, pmu->reprogram_pmi); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release unused perf_events if the corresponding guest MSRs weren't | 
|  | * accessed during the last vCPU time slice (need_cleanup is set when | 
|  | * the vCPU is scheduled back in). | 
|  | */ | 
|  | if (unlikely(pmu->need_cleanup)) | 
|  | kvm_pmu_cleanup(vcpu); | 
|  |  | 
|  | kvm_for_each_pmc(pmu, pmc, bit, bitmap) | 
|  | kvm_pmu_recalc_pmc_emulation(pmu, pmc); | 
|  | } | 
|  |  | 
|  | int kvm_pmu_check_rdpmc_early(struct kvm_vcpu *vcpu, unsigned int idx) | 
|  | { | 
|  | /* | 
|  | * On Intel, VMX interception has priority over RDPMC exceptions that | 
|  | * aren't already handled by the emulator, i.e. there are no additional | 
|  | * check needed for Intel PMUs. | 
|  | * | 
|  | * On AMD, _all_ exceptions on RDPMC have priority over SVM intercepts, | 
|  | * i.e. an invalid PMC results in a #GP, not #VMEXIT. | 
|  | */ | 
|  | if (!kvm_pmu_ops.check_rdpmc_early) | 
|  | return 0; | 
|  |  | 
|  | return kvm_pmu_call(check_rdpmc_early)(vcpu, idx); | 
|  | } | 
|  |  | 
|  | bool is_vmware_backdoor_pmc(u32 pmc_idx) | 
|  | { | 
|  | switch (pmc_idx) { | 
|  | case VMWARE_BACKDOOR_PMC_HOST_TSC: | 
|  | case VMWARE_BACKDOOR_PMC_REAL_TIME: | 
|  | case VMWARE_BACKDOOR_PMC_APPARENT_TIME: | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) | 
|  | { | 
|  | u64 ctr_val; | 
|  |  | 
|  | switch (idx) { | 
|  | case VMWARE_BACKDOOR_PMC_HOST_TSC: | 
|  | ctr_val = rdtsc(); | 
|  | break; | 
|  | case VMWARE_BACKDOOR_PMC_REAL_TIME: | 
|  | ctr_val = ktime_get_boottime_ns(); | 
|  | break; | 
|  | case VMWARE_BACKDOOR_PMC_APPARENT_TIME: | 
|  | ctr_val = ktime_get_boottime_ns() + | 
|  | vcpu->kvm->arch.kvmclock_offset; | 
|  | break; | 
|  | default: | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | *data = ctr_val; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) | 
|  | { | 
|  | struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); | 
|  | struct kvm_pmc *pmc; | 
|  | u64 mask = ~0ull; | 
|  |  | 
|  | if (!pmu->version) | 
|  | return 1; | 
|  |  | 
|  | if (is_vmware_backdoor_pmc(idx)) | 
|  | return kvm_pmu_rdpmc_vmware(vcpu, idx, data); | 
|  |  | 
|  | pmc = kvm_pmu_call(rdpmc_ecx_to_pmc)(vcpu, idx, &mask); | 
|  | if (!pmc) | 
|  | return 1; | 
|  |  | 
|  | if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCE) && | 
|  | (kvm_x86_call(get_cpl)(vcpu) != 0) && | 
|  | kvm_is_cr0_bit_set(vcpu, X86_CR0_PE)) | 
|  | return 1; | 
|  |  | 
|  | *data = pmc_read_counter(pmc) & mask; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (lapic_in_kernel(vcpu)) { | 
|  | kvm_pmu_call(deliver_pmi)(vcpu); | 
|  | kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr) | 
|  | { | 
|  | switch (msr) { | 
|  | case MSR_CORE_PERF_GLOBAL_STATUS: | 
|  | case MSR_CORE_PERF_GLOBAL_CTRL: | 
|  | case MSR_CORE_PERF_GLOBAL_OVF_CTRL: | 
|  | return kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)); | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return kvm_pmu_call(msr_idx_to_pmc)(vcpu, msr) || | 
|  | kvm_pmu_call(is_valid_msr)(vcpu, msr); | 
|  | } | 
|  |  | 
|  | static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr) | 
|  | { | 
|  | struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); | 
|  | struct kvm_pmc *pmc = kvm_pmu_call(msr_idx_to_pmc)(vcpu, msr); | 
|  |  | 
|  | if (pmc) | 
|  | __set_bit(pmc->idx, pmu->pmc_in_use); | 
|  | } | 
|  |  | 
|  | int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) | 
|  | { | 
|  | struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); | 
|  | u32 msr = msr_info->index; | 
|  |  | 
|  | switch (msr) { | 
|  | case MSR_CORE_PERF_GLOBAL_STATUS: | 
|  | case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: | 
|  | msr_info->data = pmu->global_status; | 
|  | break; | 
|  | case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: | 
|  | case MSR_CORE_PERF_GLOBAL_CTRL: | 
|  | msr_info->data = pmu->global_ctrl; | 
|  | break; | 
|  | case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: | 
|  | case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_SET: | 
|  | case MSR_CORE_PERF_GLOBAL_OVF_CTRL: | 
|  | msr_info->data = 0; | 
|  | break; | 
|  | default: | 
|  | return kvm_pmu_call(get_msr)(vcpu, msr_info); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) | 
|  | { | 
|  | struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); | 
|  | u32 msr = msr_info->index; | 
|  | u64 data = msr_info->data; | 
|  | u64 diff; | 
|  |  | 
|  | /* | 
|  | * Note, AMD ignores writes to reserved bits and read-only PMU MSRs, | 
|  | * whereas Intel generates #GP on attempts to write reserved/RO MSRs. | 
|  | */ | 
|  | switch (msr) { | 
|  | case MSR_CORE_PERF_GLOBAL_STATUS: | 
|  | if (!msr_info->host_initiated) | 
|  | return 1; /* RO MSR */ | 
|  | fallthrough; | 
|  | case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: | 
|  | /* Per PPR, Read-only MSR. Writes are ignored. */ | 
|  | if (!msr_info->host_initiated) | 
|  | break; | 
|  |  | 
|  | if (data & pmu->global_status_rsvd) | 
|  | return 1; | 
|  |  | 
|  | pmu->global_status = data; | 
|  | break; | 
|  | case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: | 
|  | data &= ~pmu->global_ctrl_rsvd; | 
|  | fallthrough; | 
|  | case MSR_CORE_PERF_GLOBAL_CTRL: | 
|  | if (!kvm_valid_perf_global_ctrl(pmu, data)) | 
|  | return 1; | 
|  |  | 
|  | if (pmu->global_ctrl != data) { | 
|  | diff = pmu->global_ctrl ^ data; | 
|  | pmu->global_ctrl = data; | 
|  | reprogram_counters(pmu, diff); | 
|  | } | 
|  | break; | 
|  | case MSR_CORE_PERF_GLOBAL_OVF_CTRL: | 
|  | /* | 
|  | * GLOBAL_OVF_CTRL, a.k.a. GLOBAL STATUS_RESET, clears bits in | 
|  | * GLOBAL_STATUS, and so the set of reserved bits is the same. | 
|  | */ | 
|  | if (data & pmu->global_status_rsvd) | 
|  | return 1; | 
|  | fallthrough; | 
|  | case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: | 
|  | if (!msr_info->host_initiated) | 
|  | pmu->global_status &= ~data; | 
|  | break; | 
|  | case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_SET: | 
|  | if (!msr_info->host_initiated) | 
|  | pmu->global_status |= data & ~pmu->global_status_rsvd; | 
|  | break; | 
|  | default: | 
|  | kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index); | 
|  | return kvm_pmu_call(set_msr)(vcpu, msr_info); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void kvm_pmu_reset(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); | 
|  | struct kvm_pmc *pmc; | 
|  | int i; | 
|  |  | 
|  | pmu->need_cleanup = false; | 
|  |  | 
|  | bitmap_zero(pmu->reprogram_pmi, X86_PMC_IDX_MAX); | 
|  |  | 
|  | kvm_for_each_pmc(pmu, pmc, i, pmu->all_valid_pmc_idx) { | 
|  | pmc_stop_counter(pmc); | 
|  | pmc->counter = 0; | 
|  | pmc->emulated_counter = 0; | 
|  |  | 
|  | if (pmc_is_gp(pmc)) | 
|  | pmc->eventsel = 0; | 
|  | } | 
|  |  | 
|  | pmu->fixed_ctr_ctrl = pmu->global_ctrl = pmu->global_status = 0; | 
|  |  | 
|  | kvm_pmu_call(reset)(vcpu); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Refresh the PMU configuration for the vCPU, e.g. if userspace changes CPUID | 
|  | * and/or PERF_CAPABILITIES. | 
|  | */ | 
|  | void kvm_pmu_refresh(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); | 
|  |  | 
|  | if (KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Stop/release all existing counters/events before realizing the new | 
|  | * vPMU model. | 
|  | */ | 
|  | kvm_pmu_reset(vcpu); | 
|  |  | 
|  | pmu->version = 0; | 
|  | pmu->nr_arch_gp_counters = 0; | 
|  | pmu->nr_arch_fixed_counters = 0; | 
|  | pmu->counter_bitmask[KVM_PMC_GP] = 0; | 
|  | pmu->counter_bitmask[KVM_PMC_FIXED] = 0; | 
|  | pmu->reserved_bits = 0xffffffff00200000ull; | 
|  | pmu->raw_event_mask = X86_RAW_EVENT_MASK; | 
|  | pmu->global_ctrl_rsvd = ~0ull; | 
|  | pmu->global_status_rsvd = ~0ull; | 
|  | pmu->fixed_ctr_ctrl_rsvd = ~0ull; | 
|  | pmu->pebs_enable_rsvd = ~0ull; | 
|  | pmu->pebs_data_cfg_rsvd = ~0ull; | 
|  | bitmap_zero(pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX); | 
|  |  | 
|  | if (!vcpu->kvm->arch.enable_pmu) | 
|  | return; | 
|  |  | 
|  | kvm_pmu_call(refresh)(vcpu); | 
|  |  | 
|  | /* | 
|  | * At RESET, both Intel and AMD CPUs set all enable bits for general | 
|  | * purpose counters in IA32_PERF_GLOBAL_CTRL (so that software that | 
|  | * was written for v1 PMUs don't unknowingly leave GP counters disabled | 
|  | * in the global controls).  Emulate that behavior when refreshing the | 
|  | * PMU so that userspace doesn't need to manually set PERF_GLOBAL_CTRL. | 
|  | */ | 
|  | if (kvm_pmu_has_perf_global_ctrl(pmu) && pmu->nr_arch_gp_counters) | 
|  | pmu->global_ctrl = GENMASK_ULL(pmu->nr_arch_gp_counters - 1, 0); | 
|  |  | 
|  | bitmap_set(pmu->all_valid_pmc_idx, 0, pmu->nr_arch_gp_counters); | 
|  | bitmap_set(pmu->all_valid_pmc_idx, KVM_FIXED_PMC_BASE_IDX, | 
|  | pmu->nr_arch_fixed_counters); | 
|  | } | 
|  |  | 
|  | void kvm_pmu_init(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); | 
|  |  | 
|  | memset(pmu, 0, sizeof(*pmu)); | 
|  | kvm_pmu_call(init)(vcpu); | 
|  | } | 
|  |  | 
|  | /* Release perf_events for vPMCs that have been unused for a full time slice.  */ | 
|  | void kvm_pmu_cleanup(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); | 
|  | struct kvm_pmc *pmc = NULL; | 
|  | DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX); | 
|  | int i; | 
|  |  | 
|  | pmu->need_cleanup = false; | 
|  |  | 
|  | bitmap_andnot(bitmask, pmu->all_valid_pmc_idx, | 
|  | pmu->pmc_in_use, X86_PMC_IDX_MAX); | 
|  |  | 
|  | kvm_for_each_pmc(pmu, pmc, i, bitmask) { | 
|  | if (pmc->perf_event && !pmc_is_locally_enabled(pmc)) | 
|  | pmc_stop_counter(pmc); | 
|  | } | 
|  |  | 
|  | kvm_pmu_call(cleanup)(vcpu); | 
|  |  | 
|  | bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX); | 
|  | } | 
|  |  | 
|  | void kvm_pmu_destroy(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | kvm_pmu_reset(vcpu); | 
|  | } | 
|  |  | 
|  | static void kvm_pmu_incr_counter(struct kvm_pmc *pmc) | 
|  | { | 
|  | pmc->emulated_counter++; | 
|  | kvm_pmu_request_counter_reprogram(pmc); | 
|  | } | 
|  |  | 
|  | static inline bool cpl_is_matched(struct kvm_pmc *pmc) | 
|  | { | 
|  | bool select_os, select_user; | 
|  | u64 config; | 
|  |  | 
|  | if (pmc_is_gp(pmc)) { | 
|  | config = pmc->eventsel; | 
|  | select_os = config & ARCH_PERFMON_EVENTSEL_OS; | 
|  | select_user = config & ARCH_PERFMON_EVENTSEL_USR; | 
|  | } else { | 
|  | config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl, | 
|  | pmc->idx - KVM_FIXED_PMC_BASE_IDX); | 
|  | select_os = config & INTEL_FIXED_0_KERNEL; | 
|  | select_user = config & INTEL_FIXED_0_USER; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Skip the CPL lookup, which isn't free on Intel, if the result will | 
|  | * be the same regardless of the CPL. | 
|  | */ | 
|  | if (select_os == select_user) | 
|  | return select_os; | 
|  |  | 
|  | return (kvm_x86_call(get_cpl)(pmc->vcpu) == 0) ? select_os : | 
|  | select_user; | 
|  | } | 
|  |  | 
|  | static void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, | 
|  | const unsigned long *event_pmcs) | 
|  | { | 
|  | DECLARE_BITMAP(bitmap, X86_PMC_IDX_MAX); | 
|  | struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); | 
|  | struct kvm_pmc *pmc; | 
|  | int i, idx; | 
|  |  | 
|  | BUILD_BUG_ON(sizeof(pmu->global_ctrl) * BITS_PER_BYTE != X86_PMC_IDX_MAX); | 
|  |  | 
|  | if (bitmap_empty(event_pmcs, X86_PMC_IDX_MAX)) | 
|  | return; | 
|  |  | 
|  | if (!kvm_pmu_has_perf_global_ctrl(pmu)) | 
|  | bitmap_copy(bitmap, event_pmcs, X86_PMC_IDX_MAX); | 
|  | else if (!bitmap_and(bitmap, event_pmcs, | 
|  | (unsigned long *)&pmu->global_ctrl, X86_PMC_IDX_MAX)) | 
|  | return; | 
|  |  | 
|  | idx = srcu_read_lock(&vcpu->kvm->srcu); | 
|  | kvm_for_each_pmc(pmu, pmc, i, bitmap) { | 
|  | if (!pmc_is_event_allowed(pmc) || !cpl_is_matched(pmc)) | 
|  | continue; | 
|  |  | 
|  | kvm_pmu_incr_counter(pmc); | 
|  | } | 
|  | srcu_read_unlock(&vcpu->kvm->srcu, idx); | 
|  | } | 
|  |  | 
|  | void kvm_pmu_instruction_retired(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | kvm_pmu_trigger_event(vcpu, vcpu_to_pmu(vcpu)->pmc_counting_instructions); | 
|  | } | 
|  | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_pmu_instruction_retired); | 
|  |  | 
|  | void kvm_pmu_branch_retired(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | kvm_pmu_trigger_event(vcpu, vcpu_to_pmu(vcpu)->pmc_counting_branches); | 
|  | } | 
|  | EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_pmu_branch_retired); | 
|  |  | 
|  | static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter) | 
|  | { | 
|  | u64 mask = kvm_pmu_ops.EVENTSEL_EVENT | | 
|  | KVM_PMU_MASKED_ENTRY_UMASK_MASK | | 
|  | KVM_PMU_MASKED_ENTRY_UMASK_MATCH | | 
|  | KVM_PMU_MASKED_ENTRY_EXCLUDE; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < filter->nevents; i++) { | 
|  | if (filter->events[i] & ~mask) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter) | 
|  | { | 
|  | int i, j; | 
|  |  | 
|  | for (i = 0, j = 0; i < filter->nevents; i++) { | 
|  | /* | 
|  | * Skip events that are impossible to match against a guest | 
|  | * event.  When filtering, only the event select + unit mask | 
|  | * of the guest event is used.  To maintain backwards | 
|  | * compatibility, impossible filters can't be rejected :-( | 
|  | */ | 
|  | if (filter->events[i] & ~(kvm_pmu_ops.EVENTSEL_EVENT | | 
|  | ARCH_PERFMON_EVENTSEL_UMASK)) | 
|  | continue; | 
|  | /* | 
|  | * Convert userspace events to a common in-kernel event so | 
|  | * only one code path is needed to support both events.  For | 
|  | * the in-kernel events use masked events because they are | 
|  | * flexible enough to handle both cases.  To convert to masked | 
|  | * events all that's needed is to add an "all ones" umask_mask, | 
|  | * (unmasked filter events don't support EXCLUDE). | 
|  | */ | 
|  | filter->events[j++] = filter->events[i] | | 
|  | (0xFFULL << KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT); | 
|  | } | 
|  |  | 
|  | filter->nevents = j; | 
|  | } | 
|  |  | 
|  | static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!(filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS)) | 
|  | convert_to_masked_filter(filter); | 
|  | else if (!is_masked_filter_valid(filter)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Sort entries by event select and includes vs. excludes so that all | 
|  | * entries for a given event select can be processed efficiently during | 
|  | * filtering.  The EXCLUDE flag uses a more significant bit than the | 
|  | * event select, and so the sorted list is also effectively split into | 
|  | * includes and excludes sub-lists. | 
|  | */ | 
|  | sort(&filter->events, filter->nevents, sizeof(filter->events[0]), | 
|  | filter_sort_cmp, NULL); | 
|  |  | 
|  | i = filter->nevents; | 
|  | /* Find the first EXCLUDE event (only supported for masked events). */ | 
|  | if (filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS) { | 
|  | for (i = 0; i < filter->nevents; i++) { | 
|  | if (filter->events[i] & KVM_PMU_MASKED_ENTRY_EXCLUDE) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | filter->nr_includes = i; | 
|  | filter->nr_excludes = filter->nevents - filter->nr_includes; | 
|  | filter->includes = filter->events; | 
|  | filter->excludes = filter->events + filter->nr_includes; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp) | 
|  | { | 
|  | struct kvm_pmu_event_filter __user *user_filter = argp; | 
|  | struct kvm_x86_pmu_event_filter *filter; | 
|  | struct kvm_pmu_event_filter tmp; | 
|  | struct kvm_vcpu *vcpu; | 
|  | unsigned long i; | 
|  | size_t size; | 
|  | int r; | 
|  |  | 
|  | if (copy_from_user(&tmp, user_filter, sizeof(tmp))) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (tmp.action != KVM_PMU_EVENT_ALLOW && | 
|  | tmp.action != KVM_PMU_EVENT_DENY) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (tmp.flags & ~KVM_PMU_EVENT_FLAGS_VALID_MASK) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS) | 
|  | return -E2BIG; | 
|  |  | 
|  | size = struct_size(filter, events, tmp.nevents); | 
|  | filter = kzalloc(size, GFP_KERNEL_ACCOUNT); | 
|  | if (!filter) | 
|  | return -ENOMEM; | 
|  |  | 
|  | filter->action = tmp.action; | 
|  | filter->nevents = tmp.nevents; | 
|  | filter->fixed_counter_bitmap = tmp.fixed_counter_bitmap; | 
|  | filter->flags = tmp.flags; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_from_user(filter->events, user_filter->events, | 
|  | sizeof(filter->events[0]) * filter->nevents)) | 
|  | goto cleanup; | 
|  |  | 
|  | r = prepare_filter_lists(filter); | 
|  | if (r) | 
|  | goto cleanup; | 
|  |  | 
|  | mutex_lock(&kvm->lock); | 
|  | filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter, | 
|  | mutex_is_locked(&kvm->lock)); | 
|  | mutex_unlock(&kvm->lock); | 
|  | synchronize_srcu_expedited(&kvm->srcu); | 
|  |  | 
|  | BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) > | 
|  | sizeof(((struct kvm_pmu *)0)->__reprogram_pmi)); | 
|  |  | 
|  | kvm_for_each_vcpu(i, vcpu, kvm) | 
|  | atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull); | 
|  |  | 
|  | kvm_make_all_cpus_request(kvm, KVM_REQ_PMU); | 
|  |  | 
|  | r = 0; | 
|  | cleanup: | 
|  | kfree(filter); | 
|  | return r; | 
|  | } |