|  | /* | 
|  | * Driver for STM32 DMA controller | 
|  | * | 
|  | * Inspired by dma-jz4740.c and tegra20-apb-dma.c | 
|  | * | 
|  | * Copyright (C) M'boumba Cedric Madianga 2015 | 
|  | * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com> | 
|  | *         Pierre-Yves Mordret <pierre-yves.mordret@st.com> | 
|  | * | 
|  | * License terms:  GNU General Public License (GPL), version 2 | 
|  | */ | 
|  |  | 
|  | #include <linux/clk.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/dmaengine.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/of_device.h> | 
|  | #include <linux/of_dma.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/pm_runtime.h> | 
|  | #include <linux/reset.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include "virt-dma.h" | 
|  |  | 
|  | #define STM32_DMA_LISR			0x0000 /* DMA Low Int Status Reg */ | 
|  | #define STM32_DMA_HISR			0x0004 /* DMA High Int Status Reg */ | 
|  | #define STM32_DMA_LIFCR			0x0008 /* DMA Low Int Flag Clear Reg */ | 
|  | #define STM32_DMA_HIFCR			0x000c /* DMA High Int Flag Clear Reg */ | 
|  | #define STM32_DMA_TCI			BIT(5) /* Transfer Complete Interrupt */ | 
|  | #define STM32_DMA_HTI			BIT(4) /* Half Transfer Interrupt */ | 
|  | #define STM32_DMA_TEI			BIT(3) /* Transfer Error Interrupt */ | 
|  | #define STM32_DMA_DMEI			BIT(2) /* Direct Mode Error Interrupt */ | 
|  | #define STM32_DMA_FEI			BIT(0) /* FIFO Error Interrupt */ | 
|  | #define STM32_DMA_MASKI			(STM32_DMA_TCI \ | 
|  | | STM32_DMA_TEI \ | 
|  | | STM32_DMA_DMEI \ | 
|  | | STM32_DMA_FEI) | 
|  |  | 
|  | /* DMA Stream x Configuration Register */ | 
|  | #define STM32_DMA_SCR(x)		(0x0010 + 0x18 * (x)) /* x = 0..7 */ | 
|  | #define STM32_DMA_SCR_REQ(n)		((n & 0x7) << 25) | 
|  | #define STM32_DMA_SCR_MBURST_MASK	GENMASK(24, 23) | 
|  | #define STM32_DMA_SCR_MBURST(n)	        ((n & 0x3) << 23) | 
|  | #define STM32_DMA_SCR_PBURST_MASK	GENMASK(22, 21) | 
|  | #define STM32_DMA_SCR_PBURST(n)	        ((n & 0x3) << 21) | 
|  | #define STM32_DMA_SCR_PL_MASK		GENMASK(17, 16) | 
|  | #define STM32_DMA_SCR_PL(n)		((n & 0x3) << 16) | 
|  | #define STM32_DMA_SCR_MSIZE_MASK	GENMASK(14, 13) | 
|  | #define STM32_DMA_SCR_MSIZE(n)		((n & 0x3) << 13) | 
|  | #define STM32_DMA_SCR_PSIZE_MASK	GENMASK(12, 11) | 
|  | #define STM32_DMA_SCR_PSIZE(n)		((n & 0x3) << 11) | 
|  | #define STM32_DMA_SCR_PSIZE_GET(n)	((n & STM32_DMA_SCR_PSIZE_MASK) >> 11) | 
|  | #define STM32_DMA_SCR_DIR_MASK		GENMASK(7, 6) | 
|  | #define STM32_DMA_SCR_DIR(n)		((n & 0x3) << 6) | 
|  | #define STM32_DMA_SCR_CT		BIT(19) /* Target in double buffer */ | 
|  | #define STM32_DMA_SCR_DBM		BIT(18) /* Double Buffer Mode */ | 
|  | #define STM32_DMA_SCR_PINCOS		BIT(15) /* Peripheral inc offset size */ | 
|  | #define STM32_DMA_SCR_MINC		BIT(10) /* Memory increment mode */ | 
|  | #define STM32_DMA_SCR_PINC		BIT(9) /* Peripheral increment mode */ | 
|  | #define STM32_DMA_SCR_CIRC		BIT(8) /* Circular mode */ | 
|  | #define STM32_DMA_SCR_PFCTRL		BIT(5) /* Peripheral Flow Controller */ | 
|  | #define STM32_DMA_SCR_TCIE		BIT(4) /* Transfer Complete Int Enable | 
|  | */ | 
|  | #define STM32_DMA_SCR_TEIE		BIT(2) /* Transfer Error Int Enable */ | 
|  | #define STM32_DMA_SCR_DMEIE		BIT(1) /* Direct Mode Err Int Enable */ | 
|  | #define STM32_DMA_SCR_EN		BIT(0) /* Stream Enable */ | 
|  | #define STM32_DMA_SCR_CFG_MASK		(STM32_DMA_SCR_PINC \ | 
|  | | STM32_DMA_SCR_MINC \ | 
|  | | STM32_DMA_SCR_PINCOS \ | 
|  | | STM32_DMA_SCR_PL_MASK) | 
|  | #define STM32_DMA_SCR_IRQ_MASK		(STM32_DMA_SCR_TCIE \ | 
|  | | STM32_DMA_SCR_TEIE \ | 
|  | | STM32_DMA_SCR_DMEIE) | 
|  |  | 
|  | /* DMA Stream x number of data register */ | 
|  | #define STM32_DMA_SNDTR(x)		(0x0014 + 0x18 * (x)) | 
|  |  | 
|  | /* DMA stream peripheral address register */ | 
|  | #define STM32_DMA_SPAR(x)		(0x0018 + 0x18 * (x)) | 
|  |  | 
|  | /* DMA stream x memory 0 address register */ | 
|  | #define STM32_DMA_SM0AR(x)		(0x001c + 0x18 * (x)) | 
|  |  | 
|  | /* DMA stream x memory 1 address register */ | 
|  | #define STM32_DMA_SM1AR(x)		(0x0020 + 0x18 * (x)) | 
|  |  | 
|  | /* DMA stream x FIFO control register */ | 
|  | #define STM32_DMA_SFCR(x)		(0x0024 + 0x18 * (x)) | 
|  | #define STM32_DMA_SFCR_FTH_MASK		GENMASK(1, 0) | 
|  | #define STM32_DMA_SFCR_FTH(n)		(n & STM32_DMA_SFCR_FTH_MASK) | 
|  | #define STM32_DMA_SFCR_FEIE		BIT(7) /* FIFO error interrupt enable */ | 
|  | #define STM32_DMA_SFCR_DMDIS		BIT(2) /* Direct mode disable */ | 
|  | #define STM32_DMA_SFCR_MASK		(STM32_DMA_SFCR_FEIE \ | 
|  | | STM32_DMA_SFCR_DMDIS) | 
|  |  | 
|  | /* DMA direction */ | 
|  | #define STM32_DMA_DEV_TO_MEM		0x00 | 
|  | #define	STM32_DMA_MEM_TO_DEV		0x01 | 
|  | #define	STM32_DMA_MEM_TO_MEM		0x02 | 
|  |  | 
|  | /* DMA priority level */ | 
|  | #define STM32_DMA_PRIORITY_LOW		0x00 | 
|  | #define STM32_DMA_PRIORITY_MEDIUM	0x01 | 
|  | #define STM32_DMA_PRIORITY_HIGH		0x02 | 
|  | #define STM32_DMA_PRIORITY_VERY_HIGH	0x03 | 
|  |  | 
|  | /* DMA FIFO threshold selection */ | 
|  | #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL		0x00 | 
|  | #define STM32_DMA_FIFO_THRESHOLD_HALFFULL		0x01 | 
|  | #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL		0x02 | 
|  | #define STM32_DMA_FIFO_THRESHOLD_FULL			0x03 | 
|  |  | 
|  | #define STM32_DMA_MAX_DATA_ITEMS	0xffff | 
|  | /* | 
|  | * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter | 
|  | * gather at boundary. Thus it's safer to round down this value on FIFO | 
|  | * size (16 Bytes) | 
|  | */ | 
|  | #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS	\ | 
|  | ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16) | 
|  | #define STM32_DMA_MAX_CHANNELS		0x08 | 
|  | #define STM32_DMA_MAX_REQUEST_ID	0x08 | 
|  | #define STM32_DMA_MAX_DATA_PARAM	0x03 | 
|  | #define STM32_DMA_FIFO_SIZE		16	/* FIFO is 16 bytes */ | 
|  | #define STM32_DMA_MIN_BURST		4 | 
|  | #define STM32_DMA_MAX_BURST		16 | 
|  |  | 
|  | /* DMA Features */ | 
|  | #define STM32_DMA_THRESHOLD_FTR_MASK	GENMASK(1, 0) | 
|  | #define STM32_DMA_THRESHOLD_FTR_GET(n)	((n) & STM32_DMA_THRESHOLD_FTR_MASK) | 
|  |  | 
|  | enum stm32_dma_width { | 
|  | STM32_DMA_BYTE, | 
|  | STM32_DMA_HALF_WORD, | 
|  | STM32_DMA_WORD, | 
|  | }; | 
|  |  | 
|  | enum stm32_dma_burst_size { | 
|  | STM32_DMA_BURST_SINGLE, | 
|  | STM32_DMA_BURST_INCR4, | 
|  | STM32_DMA_BURST_INCR8, | 
|  | STM32_DMA_BURST_INCR16, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct stm32_dma_cfg - STM32 DMA custom configuration | 
|  | * @channel_id: channel ID | 
|  | * @request_line: DMA request | 
|  | * @stream_config: 32bit mask specifying the DMA channel configuration | 
|  | * @features: 32bit mask specifying the DMA Feature list | 
|  | */ | 
|  | struct stm32_dma_cfg { | 
|  | u32 channel_id; | 
|  | u32 request_line; | 
|  | u32 stream_config; | 
|  | u32 features; | 
|  | }; | 
|  |  | 
|  | struct stm32_dma_chan_reg { | 
|  | u32 dma_lisr; | 
|  | u32 dma_hisr; | 
|  | u32 dma_lifcr; | 
|  | u32 dma_hifcr; | 
|  | u32 dma_scr; | 
|  | u32 dma_sndtr; | 
|  | u32 dma_spar; | 
|  | u32 dma_sm0ar; | 
|  | u32 dma_sm1ar; | 
|  | u32 dma_sfcr; | 
|  | }; | 
|  |  | 
|  | struct stm32_dma_sg_req { | 
|  | u32 len; | 
|  | struct stm32_dma_chan_reg chan_reg; | 
|  | }; | 
|  |  | 
|  | struct stm32_dma_desc { | 
|  | struct virt_dma_desc vdesc; | 
|  | bool cyclic; | 
|  | u32 num_sgs; | 
|  | struct stm32_dma_sg_req sg_req[]; | 
|  | }; | 
|  |  | 
|  | struct stm32_dma_chan { | 
|  | struct virt_dma_chan vchan; | 
|  | bool config_init; | 
|  | bool busy; | 
|  | u32 id; | 
|  | u32 irq; | 
|  | struct stm32_dma_desc *desc; | 
|  | u32 next_sg; | 
|  | struct dma_slave_config	dma_sconfig; | 
|  | struct stm32_dma_chan_reg chan_reg; | 
|  | u32 threshold; | 
|  | u32 mem_burst; | 
|  | u32 mem_width; | 
|  | }; | 
|  |  | 
|  | struct stm32_dma_device { | 
|  | struct dma_device ddev; | 
|  | void __iomem *base; | 
|  | struct clk *clk; | 
|  | struct reset_control *rst; | 
|  | bool mem2mem; | 
|  | struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS]; | 
|  | }; | 
|  |  | 
|  | static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan) | 
|  | { | 
|  | return container_of(chan->vchan.chan.device, struct stm32_dma_device, | 
|  | ddev); | 
|  | } | 
|  |  | 
|  | static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c) | 
|  | { | 
|  | return container_of(c, struct stm32_dma_chan, vchan.chan); | 
|  | } | 
|  |  | 
|  | static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc) | 
|  | { | 
|  | return container_of(vdesc, struct stm32_dma_desc, vdesc); | 
|  | } | 
|  |  | 
|  | static struct device *chan2dev(struct stm32_dma_chan *chan) | 
|  | { | 
|  | return &chan->vchan.chan.dev->device; | 
|  | } | 
|  |  | 
|  | static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg) | 
|  | { | 
|  | return readl_relaxed(dmadev->base + reg); | 
|  | } | 
|  |  | 
|  | static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val) | 
|  | { | 
|  | writel_relaxed(val, dmadev->base + reg); | 
|  | } | 
|  |  | 
|  | static struct stm32_dma_desc *stm32_dma_alloc_desc(u32 num_sgs) | 
|  | { | 
|  | return kzalloc(sizeof(struct stm32_dma_desc) + | 
|  | sizeof(struct stm32_dma_sg_req) * num_sgs, GFP_NOWAIT); | 
|  | } | 
|  |  | 
|  | static int stm32_dma_get_width(struct stm32_dma_chan *chan, | 
|  | enum dma_slave_buswidth width) | 
|  | { | 
|  | switch (width) { | 
|  | case DMA_SLAVE_BUSWIDTH_1_BYTE: | 
|  | return STM32_DMA_BYTE; | 
|  | case DMA_SLAVE_BUSWIDTH_2_BYTES: | 
|  | return STM32_DMA_HALF_WORD; | 
|  | case DMA_SLAVE_BUSWIDTH_4_BYTES: | 
|  | return STM32_DMA_WORD; | 
|  | default: | 
|  | dev_err(chan2dev(chan), "Dma bus width not supported\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len, | 
|  | u32 threshold) | 
|  | { | 
|  | enum dma_slave_buswidth max_width; | 
|  |  | 
|  | if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL) | 
|  | max_width = DMA_SLAVE_BUSWIDTH_4_BYTES; | 
|  | else | 
|  | max_width = DMA_SLAVE_BUSWIDTH_2_BYTES; | 
|  |  | 
|  | while ((buf_len < max_width  || buf_len % max_width) && | 
|  | max_width > DMA_SLAVE_BUSWIDTH_1_BYTE) | 
|  | max_width = max_width >> 1; | 
|  |  | 
|  | return max_width; | 
|  | } | 
|  |  | 
|  | static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold, | 
|  | enum dma_slave_buswidth width) | 
|  | { | 
|  | u32 remaining; | 
|  |  | 
|  | if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) { | 
|  | if (burst != 0) { | 
|  | /* | 
|  | * If number of beats fit in several whole bursts | 
|  | * this configuration is allowed. | 
|  | */ | 
|  | remaining = ((STM32_DMA_FIFO_SIZE / width) * | 
|  | (threshold + 1) / 4) % burst; | 
|  |  | 
|  | if (remaining == 0) | 
|  | return true; | 
|  | } else { | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold) | 
|  | { | 
|  | /* | 
|  | * Buffer or period length has to be aligned on FIFO depth. | 
|  | * Otherwise bytes may be stuck within FIFO at buffer or period | 
|  | * length. | 
|  | */ | 
|  | return ((buf_len % ((threshold + 1) * 4)) == 0); | 
|  | } | 
|  |  | 
|  | static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold, | 
|  | enum dma_slave_buswidth width) | 
|  | { | 
|  | u32 best_burst = max_burst; | 
|  |  | 
|  | if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold)) | 
|  | return 0; | 
|  |  | 
|  | while ((buf_len < best_burst * width && best_burst > 1) || | 
|  | !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold, | 
|  | width)) { | 
|  | if (best_burst > STM32_DMA_MIN_BURST) | 
|  | best_burst = best_burst >> 1; | 
|  | else | 
|  | best_burst = 0; | 
|  | } | 
|  |  | 
|  | return best_burst; | 
|  | } | 
|  |  | 
|  | static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst) | 
|  | { | 
|  | switch (maxburst) { | 
|  | case 0: | 
|  | case 1: | 
|  | return STM32_DMA_BURST_SINGLE; | 
|  | case 4: | 
|  | return STM32_DMA_BURST_INCR4; | 
|  | case 8: | 
|  | return STM32_DMA_BURST_INCR8; | 
|  | case 16: | 
|  | return STM32_DMA_BURST_INCR16; | 
|  | default: | 
|  | dev_err(chan2dev(chan), "Dma burst size not supported\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan, | 
|  | u32 src_burst, u32 dst_burst) | 
|  | { | 
|  | chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK; | 
|  | chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE; | 
|  |  | 
|  | if (!src_burst && !dst_burst) { | 
|  | /* Using direct mode */ | 
|  | chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE; | 
|  | } else { | 
|  | /* Using FIFO mode */ | 
|  | chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int stm32_dma_slave_config(struct dma_chan *c, | 
|  | struct dma_slave_config *config) | 
|  | { | 
|  | struct stm32_dma_chan *chan = to_stm32_dma_chan(c); | 
|  |  | 
|  | memcpy(&chan->dma_sconfig, config, sizeof(*config)); | 
|  |  | 
|  | chan->config_init = true; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan) | 
|  | { | 
|  | struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); | 
|  | u32 flags, dma_isr; | 
|  |  | 
|  | /* | 
|  | * Read "flags" from DMA_xISR register corresponding to the selected | 
|  | * DMA channel at the correct bit offset inside that register. | 
|  | * | 
|  | * If (ch % 4) is 2 or 3, left shift the mask by 16 bits. | 
|  | * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits. | 
|  | */ | 
|  |  | 
|  | if (chan->id & 4) | 
|  | dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR); | 
|  | else | 
|  | dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR); | 
|  |  | 
|  | flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6)); | 
|  |  | 
|  | return flags & STM32_DMA_MASKI; | 
|  | } | 
|  |  | 
|  | static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags) | 
|  | { | 
|  | struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); | 
|  | u32 dma_ifcr; | 
|  |  | 
|  | /* | 
|  | * Write "flags" to the DMA_xIFCR register corresponding to the selected | 
|  | * DMA channel at the correct bit offset inside that register. | 
|  | * | 
|  | * If (ch % 4) is 2 or 3, left shift the mask by 16 bits. | 
|  | * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits. | 
|  | */ | 
|  | flags &= STM32_DMA_MASKI; | 
|  | dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6)); | 
|  |  | 
|  | if (chan->id & 4) | 
|  | stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr); | 
|  | else | 
|  | stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr); | 
|  | } | 
|  |  | 
|  | static int stm32_dma_disable_chan(struct stm32_dma_chan *chan) | 
|  | { | 
|  | struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); | 
|  | unsigned long timeout = jiffies + msecs_to_jiffies(5000); | 
|  | u32 dma_scr, id; | 
|  |  | 
|  | id = chan->id; | 
|  | dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); | 
|  |  | 
|  | if (dma_scr & STM32_DMA_SCR_EN) { | 
|  | dma_scr &= ~STM32_DMA_SCR_EN; | 
|  | stm32_dma_write(dmadev, STM32_DMA_SCR(id), dma_scr); | 
|  |  | 
|  | do { | 
|  | dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); | 
|  | dma_scr &= STM32_DMA_SCR_EN; | 
|  | if (!dma_scr) | 
|  | break; | 
|  |  | 
|  | if (time_after_eq(jiffies, timeout)) { | 
|  | dev_err(chan2dev(chan), "%s: timeout!\n", | 
|  | __func__); | 
|  | return -EBUSY; | 
|  | } | 
|  | cond_resched(); | 
|  | } while (1); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void stm32_dma_stop(struct stm32_dma_chan *chan) | 
|  | { | 
|  | struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); | 
|  | u32 dma_scr, dma_sfcr, status; | 
|  | int ret; | 
|  |  | 
|  | /* Disable interrupts */ | 
|  | dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); | 
|  | dma_scr &= ~STM32_DMA_SCR_IRQ_MASK; | 
|  | stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr); | 
|  | dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id)); | 
|  | dma_sfcr &= ~STM32_DMA_SFCR_FEIE; | 
|  | stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr); | 
|  |  | 
|  | /* Disable DMA */ | 
|  | ret = stm32_dma_disable_chan(chan); | 
|  | if (ret < 0) | 
|  | return; | 
|  |  | 
|  | /* Clear interrupt status if it is there */ | 
|  | status = stm32_dma_irq_status(chan); | 
|  | if (status) { | 
|  | dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n", | 
|  | __func__, status); | 
|  | stm32_dma_irq_clear(chan, status); | 
|  | } | 
|  |  | 
|  | chan->busy = false; | 
|  | } | 
|  |  | 
|  | static int stm32_dma_terminate_all(struct dma_chan *c) | 
|  | { | 
|  | struct stm32_dma_chan *chan = to_stm32_dma_chan(c); | 
|  | unsigned long flags; | 
|  | LIST_HEAD(head); | 
|  |  | 
|  | spin_lock_irqsave(&chan->vchan.lock, flags); | 
|  |  | 
|  | if (chan->busy) { | 
|  | stm32_dma_stop(chan); | 
|  | chan->desc = NULL; | 
|  | } | 
|  |  | 
|  | vchan_get_all_descriptors(&chan->vchan, &head); | 
|  | spin_unlock_irqrestore(&chan->vchan.lock, flags); | 
|  | vchan_dma_desc_free_list(&chan->vchan, &head); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void stm32_dma_synchronize(struct dma_chan *c) | 
|  | { | 
|  | struct stm32_dma_chan *chan = to_stm32_dma_chan(c); | 
|  |  | 
|  | vchan_synchronize(&chan->vchan); | 
|  | } | 
|  |  | 
|  | static void stm32_dma_dump_reg(struct stm32_dma_chan *chan) | 
|  | { | 
|  | struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); | 
|  | u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); | 
|  | u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id)); | 
|  | u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id)); | 
|  | u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id)); | 
|  | u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id)); | 
|  | u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id)); | 
|  |  | 
|  | dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr); | 
|  | dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr); | 
|  | dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar); | 
|  | dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar); | 
|  | dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar); | 
|  | dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr); | 
|  | } | 
|  |  | 
|  | static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan); | 
|  |  | 
|  | static void stm32_dma_start_transfer(struct stm32_dma_chan *chan) | 
|  | { | 
|  | struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); | 
|  | struct virt_dma_desc *vdesc; | 
|  | struct stm32_dma_sg_req *sg_req; | 
|  | struct stm32_dma_chan_reg *reg; | 
|  | u32 status; | 
|  | int ret; | 
|  |  | 
|  | ret = stm32_dma_disable_chan(chan); | 
|  | if (ret < 0) | 
|  | return; | 
|  |  | 
|  | if (!chan->desc) { | 
|  | vdesc = vchan_next_desc(&chan->vchan); | 
|  | if (!vdesc) | 
|  | return; | 
|  |  | 
|  | chan->desc = to_stm32_dma_desc(vdesc); | 
|  | chan->next_sg = 0; | 
|  | } | 
|  |  | 
|  | if (chan->next_sg == chan->desc->num_sgs) | 
|  | chan->next_sg = 0; | 
|  |  | 
|  | sg_req = &chan->desc->sg_req[chan->next_sg]; | 
|  | reg = &sg_req->chan_reg; | 
|  |  | 
|  | stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr); | 
|  | stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar); | 
|  | stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar); | 
|  | stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr); | 
|  | stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar); | 
|  | stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr); | 
|  |  | 
|  | chan->next_sg++; | 
|  |  | 
|  | /* Clear interrupt status if it is there */ | 
|  | status = stm32_dma_irq_status(chan); | 
|  | if (status) | 
|  | stm32_dma_irq_clear(chan, status); | 
|  |  | 
|  | if (chan->desc->cyclic) | 
|  | stm32_dma_configure_next_sg(chan); | 
|  |  | 
|  | stm32_dma_dump_reg(chan); | 
|  |  | 
|  | /* Start DMA */ | 
|  | reg->dma_scr |= STM32_DMA_SCR_EN; | 
|  | stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr); | 
|  |  | 
|  | chan->busy = true; | 
|  |  | 
|  | dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan); | 
|  | } | 
|  |  | 
|  | static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan) | 
|  | { | 
|  | struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); | 
|  | struct stm32_dma_sg_req *sg_req; | 
|  | u32 dma_scr, dma_sm0ar, dma_sm1ar, id; | 
|  |  | 
|  | id = chan->id; | 
|  | dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); | 
|  |  | 
|  | if (dma_scr & STM32_DMA_SCR_DBM) { | 
|  | if (chan->next_sg == chan->desc->num_sgs) | 
|  | chan->next_sg = 0; | 
|  |  | 
|  | sg_req = &chan->desc->sg_req[chan->next_sg]; | 
|  |  | 
|  | if (dma_scr & STM32_DMA_SCR_CT) { | 
|  | dma_sm0ar = sg_req->chan_reg.dma_sm0ar; | 
|  | stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar); | 
|  | dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n", | 
|  | stm32_dma_read(dmadev, STM32_DMA_SM0AR(id))); | 
|  | } else { | 
|  | dma_sm1ar = sg_req->chan_reg.dma_sm1ar; | 
|  | stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar); | 
|  | dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n", | 
|  | stm32_dma_read(dmadev, STM32_DMA_SM1AR(id))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan) | 
|  | { | 
|  | if (chan->desc) { | 
|  | if (chan->desc->cyclic) { | 
|  | vchan_cyclic_callback(&chan->desc->vdesc); | 
|  | chan->next_sg++; | 
|  | stm32_dma_configure_next_sg(chan); | 
|  | } else { | 
|  | chan->busy = false; | 
|  | if (chan->next_sg == chan->desc->num_sgs) { | 
|  | list_del(&chan->desc->vdesc.node); | 
|  | vchan_cookie_complete(&chan->desc->vdesc); | 
|  | chan->desc = NULL; | 
|  | } | 
|  | stm32_dma_start_transfer(chan); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static irqreturn_t stm32_dma_chan_irq(int irq, void *devid) | 
|  | { | 
|  | struct stm32_dma_chan *chan = devid; | 
|  | struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); | 
|  | u32 status, scr, sfcr; | 
|  |  | 
|  | spin_lock(&chan->vchan.lock); | 
|  |  | 
|  | status = stm32_dma_irq_status(chan); | 
|  | scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); | 
|  | sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id)); | 
|  |  | 
|  | if (status & STM32_DMA_TCI) { | 
|  | stm32_dma_irq_clear(chan, STM32_DMA_TCI); | 
|  | if (scr & STM32_DMA_SCR_TCIE) | 
|  | stm32_dma_handle_chan_done(chan); | 
|  | status &= ~STM32_DMA_TCI; | 
|  | } | 
|  | if (status & STM32_DMA_HTI) { | 
|  | stm32_dma_irq_clear(chan, STM32_DMA_HTI); | 
|  | status &= ~STM32_DMA_HTI; | 
|  | } | 
|  | if (status & STM32_DMA_FEI) { | 
|  | stm32_dma_irq_clear(chan, STM32_DMA_FEI); | 
|  | status &= ~STM32_DMA_FEI; | 
|  | if (sfcr & STM32_DMA_SFCR_FEIE) { | 
|  | if (!(scr & STM32_DMA_SCR_EN)) | 
|  | dev_err(chan2dev(chan), "FIFO Error\n"); | 
|  | else | 
|  | dev_dbg(chan2dev(chan), "FIFO over/underrun\n"); | 
|  | } | 
|  | } | 
|  | if (status) { | 
|  | stm32_dma_irq_clear(chan, status); | 
|  | dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status); | 
|  | if (!(scr & STM32_DMA_SCR_EN)) | 
|  | dev_err(chan2dev(chan), "chan disabled by HW\n"); | 
|  | } | 
|  |  | 
|  | spin_unlock(&chan->vchan.lock); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static void stm32_dma_issue_pending(struct dma_chan *c) | 
|  | { | 
|  | struct stm32_dma_chan *chan = to_stm32_dma_chan(c); | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&chan->vchan.lock, flags); | 
|  | if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) { | 
|  | dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan); | 
|  | stm32_dma_start_transfer(chan); | 
|  |  | 
|  | } | 
|  | spin_unlock_irqrestore(&chan->vchan.lock, flags); | 
|  | } | 
|  |  | 
|  | static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan, | 
|  | enum dma_transfer_direction direction, | 
|  | enum dma_slave_buswidth *buswidth, | 
|  | u32 buf_len) | 
|  | { | 
|  | enum dma_slave_buswidth src_addr_width, dst_addr_width; | 
|  | int src_bus_width, dst_bus_width; | 
|  | int src_burst_size, dst_burst_size; | 
|  | u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst; | 
|  | u32 dma_scr, threshold; | 
|  |  | 
|  | src_addr_width = chan->dma_sconfig.src_addr_width; | 
|  | dst_addr_width = chan->dma_sconfig.dst_addr_width; | 
|  | src_maxburst = chan->dma_sconfig.src_maxburst; | 
|  | dst_maxburst = chan->dma_sconfig.dst_maxburst; | 
|  | threshold = chan->threshold; | 
|  |  | 
|  | switch (direction) { | 
|  | case DMA_MEM_TO_DEV: | 
|  | /* Set device data size */ | 
|  | dst_bus_width = stm32_dma_get_width(chan, dst_addr_width); | 
|  | if (dst_bus_width < 0) | 
|  | return dst_bus_width; | 
|  |  | 
|  | /* Set device burst size */ | 
|  | dst_best_burst = stm32_dma_get_best_burst(buf_len, | 
|  | dst_maxburst, | 
|  | threshold, | 
|  | dst_addr_width); | 
|  |  | 
|  | dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst); | 
|  | if (dst_burst_size < 0) | 
|  | return dst_burst_size; | 
|  |  | 
|  | /* Set memory data size */ | 
|  | src_addr_width = stm32_dma_get_max_width(buf_len, threshold); | 
|  | chan->mem_width = src_addr_width; | 
|  | src_bus_width = stm32_dma_get_width(chan, src_addr_width); | 
|  | if (src_bus_width < 0) | 
|  | return src_bus_width; | 
|  |  | 
|  | /* Set memory burst size */ | 
|  | src_maxburst = STM32_DMA_MAX_BURST; | 
|  | src_best_burst = stm32_dma_get_best_burst(buf_len, | 
|  | src_maxburst, | 
|  | threshold, | 
|  | src_addr_width); | 
|  | src_burst_size = stm32_dma_get_burst(chan, src_best_burst); | 
|  | if (src_burst_size < 0) | 
|  | return src_burst_size; | 
|  |  | 
|  | dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) | | 
|  | STM32_DMA_SCR_PSIZE(dst_bus_width) | | 
|  | STM32_DMA_SCR_MSIZE(src_bus_width) | | 
|  | STM32_DMA_SCR_PBURST(dst_burst_size) | | 
|  | STM32_DMA_SCR_MBURST(src_burst_size); | 
|  |  | 
|  | /* Set FIFO threshold */ | 
|  | chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK; | 
|  | chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold); | 
|  |  | 
|  | /* Set peripheral address */ | 
|  | chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr; | 
|  | *buswidth = dst_addr_width; | 
|  | break; | 
|  |  | 
|  | case DMA_DEV_TO_MEM: | 
|  | /* Set device data size */ | 
|  | src_bus_width = stm32_dma_get_width(chan, src_addr_width); | 
|  | if (src_bus_width < 0) | 
|  | return src_bus_width; | 
|  |  | 
|  | /* Set device burst size */ | 
|  | src_best_burst = stm32_dma_get_best_burst(buf_len, | 
|  | src_maxburst, | 
|  | threshold, | 
|  | src_addr_width); | 
|  | chan->mem_burst = src_best_burst; | 
|  | src_burst_size = stm32_dma_get_burst(chan, src_best_burst); | 
|  | if (src_burst_size < 0) | 
|  | return src_burst_size; | 
|  |  | 
|  | /* Set memory data size */ | 
|  | dst_addr_width = stm32_dma_get_max_width(buf_len, threshold); | 
|  | chan->mem_width = dst_addr_width; | 
|  | dst_bus_width = stm32_dma_get_width(chan, dst_addr_width); | 
|  | if (dst_bus_width < 0) | 
|  | return dst_bus_width; | 
|  |  | 
|  | /* Set memory burst size */ | 
|  | dst_maxburst = STM32_DMA_MAX_BURST; | 
|  | dst_best_burst = stm32_dma_get_best_burst(buf_len, | 
|  | dst_maxburst, | 
|  | threshold, | 
|  | dst_addr_width); | 
|  | chan->mem_burst = dst_best_burst; | 
|  | dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst); | 
|  | if (dst_burst_size < 0) | 
|  | return dst_burst_size; | 
|  |  | 
|  | dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) | | 
|  | STM32_DMA_SCR_PSIZE(src_bus_width) | | 
|  | STM32_DMA_SCR_MSIZE(dst_bus_width) | | 
|  | STM32_DMA_SCR_PBURST(src_burst_size) | | 
|  | STM32_DMA_SCR_MBURST(dst_burst_size); | 
|  |  | 
|  | /* Set FIFO threshold */ | 
|  | chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK; | 
|  | chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold); | 
|  |  | 
|  | /* Set peripheral address */ | 
|  | chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr; | 
|  | *buswidth = chan->dma_sconfig.src_addr_width; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | dev_err(chan2dev(chan), "Dma direction is not supported\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst); | 
|  |  | 
|  | /* Set DMA control register */ | 
|  | chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK | | 
|  | STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK | | 
|  | STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK); | 
|  | chan->chan_reg.dma_scr |= dma_scr; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs) | 
|  | { | 
|  | memset(regs, 0, sizeof(struct stm32_dma_chan_reg)); | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg( | 
|  | struct dma_chan *c, struct scatterlist *sgl, | 
|  | u32 sg_len, enum dma_transfer_direction direction, | 
|  | unsigned long flags, void *context) | 
|  | { | 
|  | struct stm32_dma_chan *chan = to_stm32_dma_chan(c); | 
|  | struct stm32_dma_desc *desc; | 
|  | struct scatterlist *sg; | 
|  | enum dma_slave_buswidth buswidth; | 
|  | u32 nb_data_items; | 
|  | int i, ret; | 
|  |  | 
|  | if (!chan->config_init) { | 
|  | dev_err(chan2dev(chan), "dma channel is not configured\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (sg_len < 1) { | 
|  | dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | desc = stm32_dma_alloc_desc(sg_len); | 
|  | if (!desc) | 
|  | return NULL; | 
|  |  | 
|  | /* Set peripheral flow controller */ | 
|  | if (chan->dma_sconfig.device_fc) | 
|  | chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL; | 
|  | else | 
|  | chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL; | 
|  |  | 
|  | for_each_sg(sgl, sg, sg_len, i) { | 
|  | ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, | 
|  | sg_dma_len(sg)); | 
|  | if (ret < 0) | 
|  | goto err; | 
|  |  | 
|  | desc->sg_req[i].len = sg_dma_len(sg); | 
|  |  | 
|  | nb_data_items = desc->sg_req[i].len / buswidth; | 
|  | if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) { | 
|  | dev_err(chan2dev(chan), "nb items not supported\n"); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); | 
|  | desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr; | 
|  | desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr; | 
|  | desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar; | 
|  | desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg); | 
|  | desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg); | 
|  | desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items; | 
|  | } | 
|  |  | 
|  | desc->num_sgs = sg_len; | 
|  | desc->cyclic = false; | 
|  |  | 
|  | return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); | 
|  |  | 
|  | err: | 
|  | kfree(desc); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic( | 
|  | struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len, | 
|  | size_t period_len, enum dma_transfer_direction direction, | 
|  | unsigned long flags) | 
|  | { | 
|  | struct stm32_dma_chan *chan = to_stm32_dma_chan(c); | 
|  | struct stm32_dma_desc *desc; | 
|  | enum dma_slave_buswidth buswidth; | 
|  | u32 num_periods, nb_data_items; | 
|  | int i, ret; | 
|  |  | 
|  | if (!buf_len || !period_len) { | 
|  | dev_err(chan2dev(chan), "Invalid buffer/period len\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (!chan->config_init) { | 
|  | dev_err(chan2dev(chan), "dma channel is not configured\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (buf_len % period_len) { | 
|  | dev_err(chan2dev(chan), "buf_len not multiple of period_len\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We allow to take more number of requests till DMA is | 
|  | * not started. The driver will loop over all requests. | 
|  | * Once DMA is started then new requests can be queued only after | 
|  | * terminating the DMA. | 
|  | */ | 
|  | if (chan->busy) { | 
|  | dev_err(chan2dev(chan), "Request not allowed when dma busy\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len); | 
|  | if (ret < 0) | 
|  | return NULL; | 
|  |  | 
|  | nb_data_items = period_len / buswidth; | 
|  | if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) { | 
|  | dev_err(chan2dev(chan), "number of items not supported\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /*  Enable Circular mode or double buffer mode */ | 
|  | if (buf_len == period_len) | 
|  | chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC; | 
|  | else | 
|  | chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM; | 
|  |  | 
|  | /* Clear periph ctrl if client set it */ | 
|  | chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL; | 
|  |  | 
|  | num_periods = buf_len / period_len; | 
|  |  | 
|  | desc = stm32_dma_alloc_desc(num_periods); | 
|  | if (!desc) | 
|  | return NULL; | 
|  |  | 
|  | for (i = 0; i < num_periods; i++) { | 
|  | desc->sg_req[i].len = period_len; | 
|  |  | 
|  | stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); | 
|  | desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr; | 
|  | desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr; | 
|  | desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar; | 
|  | desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr; | 
|  | desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr; | 
|  | desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items; | 
|  | buf_addr += period_len; | 
|  | } | 
|  |  | 
|  | desc->num_sgs = num_periods; | 
|  | desc->cyclic = true; | 
|  |  | 
|  | return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy( | 
|  | struct dma_chan *c, dma_addr_t dest, | 
|  | dma_addr_t src, size_t len, unsigned long flags) | 
|  | { | 
|  | struct stm32_dma_chan *chan = to_stm32_dma_chan(c); | 
|  | enum dma_slave_buswidth max_width; | 
|  | struct stm32_dma_desc *desc; | 
|  | size_t xfer_count, offset; | 
|  | u32 num_sgs, best_burst, dma_burst, threshold; | 
|  | int i; | 
|  |  | 
|  | num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS); | 
|  | desc = stm32_dma_alloc_desc(num_sgs); | 
|  | if (!desc) | 
|  | return NULL; | 
|  |  | 
|  | threshold = chan->threshold; | 
|  |  | 
|  | for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) { | 
|  | xfer_count = min_t(size_t, len - offset, | 
|  | STM32_DMA_ALIGNED_MAX_DATA_ITEMS); | 
|  |  | 
|  | /* Compute best burst size */ | 
|  | max_width = DMA_SLAVE_BUSWIDTH_1_BYTE; | 
|  | best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST, | 
|  | threshold, max_width); | 
|  | dma_burst = stm32_dma_get_burst(chan, best_burst); | 
|  |  | 
|  | stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); | 
|  | desc->sg_req[i].chan_reg.dma_scr = | 
|  | STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) | | 
|  | STM32_DMA_SCR_PBURST(dma_burst) | | 
|  | STM32_DMA_SCR_MBURST(dma_burst) | | 
|  | STM32_DMA_SCR_MINC | | 
|  | STM32_DMA_SCR_PINC | | 
|  | STM32_DMA_SCR_TCIE | | 
|  | STM32_DMA_SCR_TEIE; | 
|  | desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK; | 
|  | desc->sg_req[i].chan_reg.dma_sfcr |= | 
|  | STM32_DMA_SFCR_FTH(threshold); | 
|  | desc->sg_req[i].chan_reg.dma_spar = src + offset; | 
|  | desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset; | 
|  | desc->sg_req[i].chan_reg.dma_sndtr = xfer_count; | 
|  | desc->sg_req[i].len = xfer_count; | 
|  | } | 
|  |  | 
|  | desc->num_sgs = num_sgs; | 
|  | desc->cyclic = false; | 
|  |  | 
|  | return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); | 
|  | } | 
|  |  | 
|  | static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan) | 
|  | { | 
|  | u32 dma_scr, width, ndtr; | 
|  | struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); | 
|  |  | 
|  | dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); | 
|  | width = STM32_DMA_SCR_PSIZE_GET(dma_scr); | 
|  | ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id)); | 
|  |  | 
|  | return ndtr << width; | 
|  | } | 
|  |  | 
|  | static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan, | 
|  | struct stm32_dma_desc *desc, | 
|  | u32 next_sg) | 
|  | { | 
|  | u32 modulo, burst_size; | 
|  | u32 residue = 0; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * In cyclic mode, for the last period, residue = remaining bytes from | 
|  | * NDTR | 
|  | */ | 
|  | if (chan->desc->cyclic && next_sg == 0) { | 
|  | residue = stm32_dma_get_remaining_bytes(chan); | 
|  | goto end; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For all other periods in cyclic mode, and in sg mode, | 
|  | * residue = remaining bytes from NDTR + remaining periods/sg to be | 
|  | * transferred | 
|  | */ | 
|  | for (i = next_sg; i < desc->num_sgs; i++) | 
|  | residue += desc->sg_req[i].len; | 
|  | residue += stm32_dma_get_remaining_bytes(chan); | 
|  |  | 
|  | end: | 
|  | if (!chan->mem_burst) | 
|  | return residue; | 
|  |  | 
|  | burst_size = chan->mem_burst * chan->mem_width; | 
|  | modulo = residue % burst_size; | 
|  | if (modulo) | 
|  | residue = residue - modulo + burst_size; | 
|  |  | 
|  | return residue; | 
|  | } | 
|  |  | 
|  | static enum dma_status stm32_dma_tx_status(struct dma_chan *c, | 
|  | dma_cookie_t cookie, | 
|  | struct dma_tx_state *state) | 
|  | { | 
|  | struct stm32_dma_chan *chan = to_stm32_dma_chan(c); | 
|  | struct virt_dma_desc *vdesc; | 
|  | enum dma_status status; | 
|  | unsigned long flags; | 
|  | u32 residue = 0; | 
|  |  | 
|  | status = dma_cookie_status(c, cookie, state); | 
|  | if (status == DMA_COMPLETE || !state) | 
|  | return status; | 
|  |  | 
|  | spin_lock_irqsave(&chan->vchan.lock, flags); | 
|  | vdesc = vchan_find_desc(&chan->vchan, cookie); | 
|  | if (chan->desc && cookie == chan->desc->vdesc.tx.cookie) | 
|  | residue = stm32_dma_desc_residue(chan, chan->desc, | 
|  | chan->next_sg); | 
|  | else if (vdesc) | 
|  | residue = stm32_dma_desc_residue(chan, | 
|  | to_stm32_dma_desc(vdesc), 0); | 
|  | dma_set_residue(state, residue); | 
|  |  | 
|  | spin_unlock_irqrestore(&chan->vchan.lock, flags); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static int stm32_dma_alloc_chan_resources(struct dma_chan *c) | 
|  | { | 
|  | struct stm32_dma_chan *chan = to_stm32_dma_chan(c); | 
|  | struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); | 
|  | int ret; | 
|  |  | 
|  | chan->config_init = false; | 
|  |  | 
|  | ret = pm_runtime_get_sync(dmadev->ddev.dev); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | ret = stm32_dma_disable_chan(chan); | 
|  | if (ret < 0) | 
|  | pm_runtime_put(dmadev->ddev.dev); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void stm32_dma_free_chan_resources(struct dma_chan *c) | 
|  | { | 
|  | struct stm32_dma_chan *chan = to_stm32_dma_chan(c); | 
|  | struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); | 
|  | unsigned long flags; | 
|  |  | 
|  | dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id); | 
|  |  | 
|  | if (chan->busy) { | 
|  | spin_lock_irqsave(&chan->vchan.lock, flags); | 
|  | stm32_dma_stop(chan); | 
|  | chan->desc = NULL; | 
|  | spin_unlock_irqrestore(&chan->vchan.lock, flags); | 
|  | } | 
|  |  | 
|  | pm_runtime_put(dmadev->ddev.dev); | 
|  |  | 
|  | vchan_free_chan_resources(to_virt_chan(c)); | 
|  | } | 
|  |  | 
|  | static void stm32_dma_desc_free(struct virt_dma_desc *vdesc) | 
|  | { | 
|  | kfree(container_of(vdesc, struct stm32_dma_desc, vdesc)); | 
|  | } | 
|  |  | 
|  | static void stm32_dma_set_config(struct stm32_dma_chan *chan, | 
|  | struct stm32_dma_cfg *cfg) | 
|  | { | 
|  | stm32_dma_clear_reg(&chan->chan_reg); | 
|  |  | 
|  | chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK; | 
|  | chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line); | 
|  |  | 
|  | /* Enable Interrupts  */ | 
|  | chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE; | 
|  |  | 
|  | chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features); | 
|  | } | 
|  |  | 
|  | static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec, | 
|  | struct of_dma *ofdma) | 
|  | { | 
|  | struct stm32_dma_device *dmadev = ofdma->of_dma_data; | 
|  | struct device *dev = dmadev->ddev.dev; | 
|  | struct stm32_dma_cfg cfg; | 
|  | struct stm32_dma_chan *chan; | 
|  | struct dma_chan *c; | 
|  |  | 
|  | if (dma_spec->args_count < 4) { | 
|  | dev_err(dev, "Bad number of cells\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | cfg.channel_id = dma_spec->args[0]; | 
|  | cfg.request_line = dma_spec->args[1]; | 
|  | cfg.stream_config = dma_spec->args[2]; | 
|  | cfg.features = dma_spec->args[3]; | 
|  |  | 
|  | if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS || | 
|  | cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) { | 
|  | dev_err(dev, "Bad channel and/or request id\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | chan = &dmadev->chan[cfg.channel_id]; | 
|  |  | 
|  | c = dma_get_slave_channel(&chan->vchan.chan); | 
|  | if (!c) { | 
|  | dev_err(dev, "No more channels available\n"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | stm32_dma_set_config(chan, &cfg); | 
|  |  | 
|  | return c; | 
|  | } | 
|  |  | 
|  | static const struct of_device_id stm32_dma_of_match[] = { | 
|  | { .compatible = "st,stm32-dma", }, | 
|  | { /* sentinel */ }, | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(of, stm32_dma_of_match); | 
|  |  | 
|  | static int stm32_dma_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct stm32_dma_chan *chan; | 
|  | struct stm32_dma_device *dmadev; | 
|  | struct dma_device *dd; | 
|  | const struct of_device_id *match; | 
|  | struct resource *res; | 
|  | int i, ret; | 
|  |  | 
|  | match = of_match_device(stm32_dma_of_match, &pdev->dev); | 
|  | if (!match) { | 
|  | dev_err(&pdev->dev, "Error: No device match found\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL); | 
|  | if (!dmadev) | 
|  | return -ENOMEM; | 
|  |  | 
|  | dd = &dmadev->ddev; | 
|  |  | 
|  | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
|  | dmadev->base = devm_ioremap_resource(&pdev->dev, res); | 
|  | if (IS_ERR(dmadev->base)) | 
|  | return PTR_ERR(dmadev->base); | 
|  |  | 
|  | dmadev->clk = devm_clk_get(&pdev->dev, NULL); | 
|  | if (IS_ERR(dmadev->clk)) { | 
|  | dev_err(&pdev->dev, "Error: Missing controller clock\n"); | 
|  | return PTR_ERR(dmadev->clk); | 
|  | } | 
|  |  | 
|  | ret = clk_prepare_enable(dmadev->clk); | 
|  | if (ret < 0) { | 
|  | dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node, | 
|  | "st,mem2mem"); | 
|  |  | 
|  | dmadev->rst = devm_reset_control_get(&pdev->dev, NULL); | 
|  | if (!IS_ERR(dmadev->rst)) { | 
|  | reset_control_assert(dmadev->rst); | 
|  | udelay(2); | 
|  | reset_control_deassert(dmadev->rst); | 
|  | } | 
|  |  | 
|  | dma_cap_set(DMA_SLAVE, dd->cap_mask); | 
|  | dma_cap_set(DMA_PRIVATE, dd->cap_mask); | 
|  | dma_cap_set(DMA_CYCLIC, dd->cap_mask); | 
|  | dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources; | 
|  | dd->device_free_chan_resources = stm32_dma_free_chan_resources; | 
|  | dd->device_tx_status = stm32_dma_tx_status; | 
|  | dd->device_issue_pending = stm32_dma_issue_pending; | 
|  | dd->device_prep_slave_sg = stm32_dma_prep_slave_sg; | 
|  | dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic; | 
|  | dd->device_config = stm32_dma_slave_config; | 
|  | dd->device_terminate_all = stm32_dma_terminate_all; | 
|  | dd->device_synchronize = stm32_dma_synchronize; | 
|  | dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | | 
|  | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | | 
|  | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); | 
|  | dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | | 
|  | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | | 
|  | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); | 
|  | dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); | 
|  | dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; | 
|  | dd->max_burst = STM32_DMA_MAX_BURST; | 
|  | dd->dev = &pdev->dev; | 
|  | INIT_LIST_HEAD(&dd->channels); | 
|  |  | 
|  | if (dmadev->mem2mem) { | 
|  | dma_cap_set(DMA_MEMCPY, dd->cap_mask); | 
|  | dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy; | 
|  | dd->directions |= BIT(DMA_MEM_TO_MEM); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) { | 
|  | chan = &dmadev->chan[i]; | 
|  | chan->id = i; | 
|  | chan->vchan.desc_free = stm32_dma_desc_free; | 
|  | vchan_init(&chan->vchan, dd); | 
|  | } | 
|  |  | 
|  | ret = dma_async_device_register(dd); | 
|  | if (ret) | 
|  | goto clk_free; | 
|  |  | 
|  | for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) { | 
|  | chan = &dmadev->chan[i]; | 
|  | res = platform_get_resource(pdev, IORESOURCE_IRQ, i); | 
|  | if (!res) { | 
|  | ret = -EINVAL; | 
|  | dev_err(&pdev->dev, "No irq resource for chan %d\n", i); | 
|  | goto err_unregister; | 
|  | } | 
|  | chan->irq = res->start; | 
|  | ret = devm_request_irq(&pdev->dev, chan->irq, | 
|  | stm32_dma_chan_irq, 0, | 
|  | dev_name(chan2dev(chan)), chan); | 
|  | if (ret) { | 
|  | dev_err(&pdev->dev, | 
|  | "request_irq failed with err %d channel %d\n", | 
|  | ret, i); | 
|  | goto err_unregister; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = of_dma_controller_register(pdev->dev.of_node, | 
|  | stm32_dma_of_xlate, dmadev); | 
|  | if (ret < 0) { | 
|  | dev_err(&pdev->dev, | 
|  | "STM32 DMA DMA OF registration failed %d\n", ret); | 
|  | goto err_unregister; | 
|  | } | 
|  |  | 
|  | platform_set_drvdata(pdev, dmadev); | 
|  |  | 
|  | pm_runtime_set_active(&pdev->dev); | 
|  | pm_runtime_enable(&pdev->dev); | 
|  | pm_runtime_get_noresume(&pdev->dev); | 
|  | pm_runtime_put(&pdev->dev); | 
|  |  | 
|  | dev_info(&pdev->dev, "STM32 DMA driver registered\n"); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_unregister: | 
|  | dma_async_device_unregister(dd); | 
|  | clk_free: | 
|  | clk_disable_unprepare(dmadev->clk); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | static int stm32_dma_runtime_suspend(struct device *dev) | 
|  | { | 
|  | struct stm32_dma_device *dmadev = dev_get_drvdata(dev); | 
|  |  | 
|  | clk_disable_unprepare(dmadev->clk); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int stm32_dma_runtime_resume(struct device *dev) | 
|  | { | 
|  | struct stm32_dma_device *dmadev = dev_get_drvdata(dev); | 
|  | int ret; | 
|  |  | 
|  | ret = clk_prepare_enable(dmadev->clk); | 
|  | if (ret) { | 
|  | dev_err(dev, "failed to prepare_enable clock\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static const struct dev_pm_ops stm32_dma_pm_ops = { | 
|  | SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend, | 
|  | stm32_dma_runtime_resume, NULL) | 
|  | }; | 
|  |  | 
|  | static struct platform_driver stm32_dma_driver = { | 
|  | .driver = { | 
|  | .name = "stm32-dma", | 
|  | .of_match_table = stm32_dma_of_match, | 
|  | .pm = &stm32_dma_pm_ops, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static int __init stm32_dma_init(void) | 
|  | { | 
|  | return platform_driver_probe(&stm32_dma_driver, stm32_dma_probe); | 
|  | } | 
|  | subsys_initcall(stm32_dma_init); |