|  | /* | 
|  | * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public Licens | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111- | 
|  | * | 
|  | */ | 
|  | #include <linux/mm.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/uio.h> | 
|  | #include <linux/iocontext.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/mempool.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/cgroup.h> | 
|  | #include <scsi/sg.h>		/* for struct sg_iovec */ | 
|  |  | 
|  | #include <trace/events/block.h> | 
|  |  | 
|  | /* | 
|  | * Test patch to inline a certain number of bi_io_vec's inside the bio | 
|  | * itself, to shrink a bio data allocation from two mempool calls to one | 
|  | */ | 
|  | #define BIO_INLINE_VECS		4 | 
|  |  | 
|  | /* | 
|  | * if you change this list, also change bvec_alloc or things will | 
|  | * break badly! cannot be bigger than what you can fit into an | 
|  | * unsigned short | 
|  | */ | 
|  | #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } | 
|  | static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = { | 
|  | BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), | 
|  | }; | 
|  | #undef BV | 
|  |  | 
|  | /* | 
|  | * fs_bio_set is the bio_set containing bio and iovec memory pools used by | 
|  | * IO code that does not need private memory pools. | 
|  | */ | 
|  | struct bio_set *fs_bio_set; | 
|  | EXPORT_SYMBOL(fs_bio_set); | 
|  |  | 
|  | /* | 
|  | * Our slab pool management | 
|  | */ | 
|  | struct bio_slab { | 
|  | struct kmem_cache *slab; | 
|  | unsigned int slab_ref; | 
|  | unsigned int slab_size; | 
|  | char name[8]; | 
|  | }; | 
|  | static DEFINE_MUTEX(bio_slab_lock); | 
|  | static struct bio_slab *bio_slabs; | 
|  | static unsigned int bio_slab_nr, bio_slab_max; | 
|  |  | 
|  | static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) | 
|  | { | 
|  | unsigned int sz = sizeof(struct bio) + extra_size; | 
|  | struct kmem_cache *slab = NULL; | 
|  | struct bio_slab *bslab, *new_bio_slabs; | 
|  | unsigned int new_bio_slab_max; | 
|  | unsigned int i, entry = -1; | 
|  |  | 
|  | mutex_lock(&bio_slab_lock); | 
|  |  | 
|  | i = 0; | 
|  | while (i < bio_slab_nr) { | 
|  | bslab = &bio_slabs[i]; | 
|  |  | 
|  | if (!bslab->slab && entry == -1) | 
|  | entry = i; | 
|  | else if (bslab->slab_size == sz) { | 
|  | slab = bslab->slab; | 
|  | bslab->slab_ref++; | 
|  | break; | 
|  | } | 
|  | i++; | 
|  | } | 
|  |  | 
|  | if (slab) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (bio_slab_nr == bio_slab_max && entry == -1) { | 
|  | new_bio_slab_max = bio_slab_max << 1; | 
|  | new_bio_slabs = krealloc(bio_slabs, | 
|  | new_bio_slab_max * sizeof(struct bio_slab), | 
|  | GFP_KERNEL); | 
|  | if (!new_bio_slabs) | 
|  | goto out_unlock; | 
|  | bio_slab_max = new_bio_slab_max; | 
|  | bio_slabs = new_bio_slabs; | 
|  | } | 
|  | if (entry == -1) | 
|  | entry = bio_slab_nr++; | 
|  |  | 
|  | bslab = &bio_slabs[entry]; | 
|  |  | 
|  | snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); | 
|  | slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, | 
|  | SLAB_HWCACHE_ALIGN, NULL); | 
|  | if (!slab) | 
|  | goto out_unlock; | 
|  |  | 
|  | bslab->slab = slab; | 
|  | bslab->slab_ref = 1; | 
|  | bslab->slab_size = sz; | 
|  | out_unlock: | 
|  | mutex_unlock(&bio_slab_lock); | 
|  | return slab; | 
|  | } | 
|  |  | 
|  | static void bio_put_slab(struct bio_set *bs) | 
|  | { | 
|  | struct bio_slab *bslab = NULL; | 
|  | unsigned int i; | 
|  |  | 
|  | mutex_lock(&bio_slab_lock); | 
|  |  | 
|  | for (i = 0; i < bio_slab_nr; i++) { | 
|  | if (bs->bio_slab == bio_slabs[i].slab) { | 
|  | bslab = &bio_slabs[i]; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) | 
|  | goto out; | 
|  |  | 
|  | WARN_ON(!bslab->slab_ref); | 
|  |  | 
|  | if (--bslab->slab_ref) | 
|  | goto out; | 
|  |  | 
|  | kmem_cache_destroy(bslab->slab); | 
|  | bslab->slab = NULL; | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&bio_slab_lock); | 
|  | } | 
|  |  | 
|  | unsigned int bvec_nr_vecs(unsigned short idx) | 
|  | { | 
|  | return bvec_slabs[idx].nr_vecs; | 
|  | } | 
|  |  | 
|  | void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) | 
|  | { | 
|  | BIO_BUG_ON(idx >= BIOVEC_NR_POOLS); | 
|  |  | 
|  | if (idx == BIOVEC_MAX_IDX) | 
|  | mempool_free(bv, pool); | 
|  | else { | 
|  | struct biovec_slab *bvs = bvec_slabs + idx; | 
|  |  | 
|  | kmem_cache_free(bvs->slab, bv); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, | 
|  | mempool_t *pool) | 
|  | { | 
|  | struct bio_vec *bvl; | 
|  |  | 
|  | /* | 
|  | * see comment near bvec_array define! | 
|  | */ | 
|  | switch (nr) { | 
|  | case 1: | 
|  | *idx = 0; | 
|  | break; | 
|  | case 2 ... 4: | 
|  | *idx = 1; | 
|  | break; | 
|  | case 5 ... 16: | 
|  | *idx = 2; | 
|  | break; | 
|  | case 17 ... 64: | 
|  | *idx = 3; | 
|  | break; | 
|  | case 65 ... 128: | 
|  | *idx = 4; | 
|  | break; | 
|  | case 129 ... BIO_MAX_PAGES: | 
|  | *idx = 5; | 
|  | break; | 
|  | default: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * idx now points to the pool we want to allocate from. only the | 
|  | * 1-vec entry pool is mempool backed. | 
|  | */ | 
|  | if (*idx == BIOVEC_MAX_IDX) { | 
|  | fallback: | 
|  | bvl = mempool_alloc(pool, gfp_mask); | 
|  | } else { | 
|  | struct biovec_slab *bvs = bvec_slabs + *idx; | 
|  | gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO); | 
|  |  | 
|  | /* | 
|  | * Make this allocation restricted and don't dump info on | 
|  | * allocation failures, since we'll fallback to the mempool | 
|  | * in case of failure. | 
|  | */ | 
|  | __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; | 
|  |  | 
|  | /* | 
|  | * Try a slab allocation. If this fails and __GFP_WAIT | 
|  | * is set, retry with the 1-entry mempool | 
|  | */ | 
|  | bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); | 
|  | if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) { | 
|  | *idx = BIOVEC_MAX_IDX; | 
|  | goto fallback; | 
|  | } | 
|  | } | 
|  |  | 
|  | return bvl; | 
|  | } | 
|  |  | 
|  | static void __bio_free(struct bio *bio) | 
|  | { | 
|  | bio_disassociate_task(bio); | 
|  |  | 
|  | if (bio_integrity(bio)) | 
|  | bio_integrity_free(bio); | 
|  | } | 
|  |  | 
|  | static void bio_free(struct bio *bio) | 
|  | { | 
|  | struct bio_set *bs = bio->bi_pool; | 
|  | void *p; | 
|  |  | 
|  | __bio_free(bio); | 
|  |  | 
|  | if (bs) { | 
|  | if (bio_flagged(bio, BIO_OWNS_VEC)) | 
|  | bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio)); | 
|  |  | 
|  | /* | 
|  | * If we have front padding, adjust the bio pointer before freeing | 
|  | */ | 
|  | p = bio; | 
|  | p -= bs->front_pad; | 
|  |  | 
|  | mempool_free(p, bs->bio_pool); | 
|  | } else { | 
|  | /* Bio was allocated by bio_kmalloc() */ | 
|  | kfree(bio); | 
|  | } | 
|  | } | 
|  |  | 
|  | void bio_init(struct bio *bio) | 
|  | { | 
|  | memset(bio, 0, sizeof(*bio)); | 
|  | bio->bi_flags = 1 << BIO_UPTODATE; | 
|  | atomic_set(&bio->bi_remaining, 1); | 
|  | atomic_set(&bio->bi_cnt, 1); | 
|  | } | 
|  | EXPORT_SYMBOL(bio_init); | 
|  |  | 
|  | /** | 
|  | * bio_reset - reinitialize a bio | 
|  | * @bio:	bio to reset | 
|  | * | 
|  | * Description: | 
|  | *   After calling bio_reset(), @bio will be in the same state as a freshly | 
|  | *   allocated bio returned bio bio_alloc_bioset() - the only fields that are | 
|  | *   preserved are the ones that are initialized by bio_alloc_bioset(). See | 
|  | *   comment in struct bio. | 
|  | */ | 
|  | void bio_reset(struct bio *bio) | 
|  | { | 
|  | unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); | 
|  |  | 
|  | __bio_free(bio); | 
|  |  | 
|  | memset(bio, 0, BIO_RESET_BYTES); | 
|  | bio->bi_flags = flags|(1 << BIO_UPTODATE); | 
|  | atomic_set(&bio->bi_remaining, 1); | 
|  | } | 
|  | EXPORT_SYMBOL(bio_reset); | 
|  |  | 
|  | static void bio_chain_endio(struct bio *bio, int error) | 
|  | { | 
|  | bio_endio(bio->bi_private, error); | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bio_chain - chain bio completions | 
|  | * @bio: the target bio | 
|  | * @parent: the @bio's parent bio | 
|  | * | 
|  | * The caller won't have a bi_end_io called when @bio completes - instead, | 
|  | * @parent's bi_end_io won't be called until both @parent and @bio have | 
|  | * completed; the chained bio will also be freed when it completes. | 
|  | * | 
|  | * The caller must not set bi_private or bi_end_io in @bio. | 
|  | */ | 
|  | void bio_chain(struct bio *bio, struct bio *parent) | 
|  | { | 
|  | BUG_ON(bio->bi_private || bio->bi_end_io); | 
|  |  | 
|  | bio->bi_private = parent; | 
|  | bio->bi_end_io	= bio_chain_endio; | 
|  | atomic_inc(&parent->bi_remaining); | 
|  | } | 
|  | EXPORT_SYMBOL(bio_chain); | 
|  |  | 
|  | static void bio_alloc_rescue(struct work_struct *work) | 
|  | { | 
|  | struct bio_set *bs = container_of(work, struct bio_set, rescue_work); | 
|  | struct bio *bio; | 
|  |  | 
|  | while (1) { | 
|  | spin_lock(&bs->rescue_lock); | 
|  | bio = bio_list_pop(&bs->rescue_list); | 
|  | spin_unlock(&bs->rescue_lock); | 
|  |  | 
|  | if (!bio) | 
|  | break; | 
|  |  | 
|  | generic_make_request(bio); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void punt_bios_to_rescuer(struct bio_set *bs) | 
|  | { | 
|  | struct bio_list punt, nopunt; | 
|  | struct bio *bio; | 
|  |  | 
|  | /* | 
|  | * In order to guarantee forward progress we must punt only bios that | 
|  | * were allocated from this bio_set; otherwise, if there was a bio on | 
|  | * there for a stacking driver higher up in the stack, processing it | 
|  | * could require allocating bios from this bio_set, and doing that from | 
|  | * our own rescuer would be bad. | 
|  | * | 
|  | * Since bio lists are singly linked, pop them all instead of trying to | 
|  | * remove from the middle of the list: | 
|  | */ | 
|  |  | 
|  | bio_list_init(&punt); | 
|  | bio_list_init(&nopunt); | 
|  |  | 
|  | while ((bio = bio_list_pop(current->bio_list))) | 
|  | bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); | 
|  |  | 
|  | *current->bio_list = nopunt; | 
|  |  | 
|  | spin_lock(&bs->rescue_lock); | 
|  | bio_list_merge(&bs->rescue_list, &punt); | 
|  | spin_unlock(&bs->rescue_lock); | 
|  |  | 
|  | queue_work(bs->rescue_workqueue, &bs->rescue_work); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bio_alloc_bioset - allocate a bio for I/O | 
|  | * @gfp_mask:   the GFP_ mask given to the slab allocator | 
|  | * @nr_iovecs:	number of iovecs to pre-allocate | 
|  | * @bs:		the bio_set to allocate from. | 
|  | * | 
|  | * Description: | 
|  | *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is | 
|  | *   backed by the @bs's mempool. | 
|  | * | 
|  | *   When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be | 
|  | *   able to allocate a bio. This is due to the mempool guarantees. To make this | 
|  | *   work, callers must never allocate more than 1 bio at a time from this pool. | 
|  | *   Callers that need to allocate more than 1 bio must always submit the | 
|  | *   previously allocated bio for IO before attempting to allocate a new one. | 
|  | *   Failure to do so can cause deadlocks under memory pressure. | 
|  | * | 
|  | *   Note that when running under generic_make_request() (i.e. any block | 
|  | *   driver), bios are not submitted until after you return - see the code in | 
|  | *   generic_make_request() that converts recursion into iteration, to prevent | 
|  | *   stack overflows. | 
|  | * | 
|  | *   This would normally mean allocating multiple bios under | 
|  | *   generic_make_request() would be susceptible to deadlocks, but we have | 
|  | *   deadlock avoidance code that resubmits any blocked bios from a rescuer | 
|  | *   thread. | 
|  | * | 
|  | *   However, we do not guarantee forward progress for allocations from other | 
|  | *   mempools. Doing multiple allocations from the same mempool under | 
|  | *   generic_make_request() should be avoided - instead, use bio_set's front_pad | 
|  | *   for per bio allocations. | 
|  | * | 
|  | *   RETURNS: | 
|  | *   Pointer to new bio on success, NULL on failure. | 
|  | */ | 
|  | struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs) | 
|  | { | 
|  | gfp_t saved_gfp = gfp_mask; | 
|  | unsigned front_pad; | 
|  | unsigned inline_vecs; | 
|  | unsigned long idx = BIO_POOL_NONE; | 
|  | struct bio_vec *bvl = NULL; | 
|  | struct bio *bio; | 
|  | void *p; | 
|  |  | 
|  | if (!bs) { | 
|  | if (nr_iovecs > UIO_MAXIOV) | 
|  | return NULL; | 
|  |  | 
|  | p = kmalloc(sizeof(struct bio) + | 
|  | nr_iovecs * sizeof(struct bio_vec), | 
|  | gfp_mask); | 
|  | front_pad = 0; | 
|  | inline_vecs = nr_iovecs; | 
|  | } else { | 
|  | /* | 
|  | * generic_make_request() converts recursion to iteration; this | 
|  | * means if we're running beneath it, any bios we allocate and | 
|  | * submit will not be submitted (and thus freed) until after we | 
|  | * return. | 
|  | * | 
|  | * This exposes us to a potential deadlock if we allocate | 
|  | * multiple bios from the same bio_set() while running | 
|  | * underneath generic_make_request(). If we were to allocate | 
|  | * multiple bios (say a stacking block driver that was splitting | 
|  | * bios), we would deadlock if we exhausted the mempool's | 
|  | * reserve. | 
|  | * | 
|  | * We solve this, and guarantee forward progress, with a rescuer | 
|  | * workqueue per bio_set. If we go to allocate and there are | 
|  | * bios on current->bio_list, we first try the allocation | 
|  | * without __GFP_WAIT; if that fails, we punt those bios we | 
|  | * would be blocking to the rescuer workqueue before we retry | 
|  | * with the original gfp_flags. | 
|  | */ | 
|  |  | 
|  | if (current->bio_list && !bio_list_empty(current->bio_list)) | 
|  | gfp_mask &= ~__GFP_WAIT; | 
|  |  | 
|  | p = mempool_alloc(bs->bio_pool, gfp_mask); | 
|  | if (!p && gfp_mask != saved_gfp) { | 
|  | punt_bios_to_rescuer(bs); | 
|  | gfp_mask = saved_gfp; | 
|  | p = mempool_alloc(bs->bio_pool, gfp_mask); | 
|  | } | 
|  |  | 
|  | front_pad = bs->front_pad; | 
|  | inline_vecs = BIO_INLINE_VECS; | 
|  | } | 
|  |  | 
|  | if (unlikely(!p)) | 
|  | return NULL; | 
|  |  | 
|  | bio = p + front_pad; | 
|  | bio_init(bio); | 
|  |  | 
|  | if (nr_iovecs > inline_vecs) { | 
|  | bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); | 
|  | if (!bvl && gfp_mask != saved_gfp) { | 
|  | punt_bios_to_rescuer(bs); | 
|  | gfp_mask = saved_gfp; | 
|  | bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); | 
|  | } | 
|  |  | 
|  | if (unlikely(!bvl)) | 
|  | goto err_free; | 
|  |  | 
|  | bio->bi_flags |= 1 << BIO_OWNS_VEC; | 
|  | } else if (nr_iovecs) { | 
|  | bvl = bio->bi_inline_vecs; | 
|  | } | 
|  |  | 
|  | bio->bi_pool = bs; | 
|  | bio->bi_flags |= idx << BIO_POOL_OFFSET; | 
|  | bio->bi_max_vecs = nr_iovecs; | 
|  | bio->bi_io_vec = bvl; | 
|  | return bio; | 
|  |  | 
|  | err_free: | 
|  | mempool_free(p, bs->bio_pool); | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(bio_alloc_bioset); | 
|  |  | 
|  | void zero_fill_bio(struct bio *bio) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct bio_vec bv; | 
|  | struct bvec_iter iter; | 
|  |  | 
|  | bio_for_each_segment(bv, bio, iter) { | 
|  | char *data = bvec_kmap_irq(&bv, &flags); | 
|  | memset(data, 0, bv.bv_len); | 
|  | flush_dcache_page(bv.bv_page); | 
|  | bvec_kunmap_irq(data, &flags); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(zero_fill_bio); | 
|  |  | 
|  | /** | 
|  | * bio_put - release a reference to a bio | 
|  | * @bio:   bio to release reference to | 
|  | * | 
|  | * Description: | 
|  | *   Put a reference to a &struct bio, either one you have gotten with | 
|  | *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it. | 
|  | **/ | 
|  | void bio_put(struct bio *bio) | 
|  | { | 
|  | BIO_BUG_ON(!atomic_read(&bio->bi_cnt)); | 
|  |  | 
|  | /* | 
|  | * last put frees it | 
|  | */ | 
|  | if (atomic_dec_and_test(&bio->bi_cnt)) | 
|  | bio_free(bio); | 
|  | } | 
|  | EXPORT_SYMBOL(bio_put); | 
|  |  | 
|  | inline int bio_phys_segments(struct request_queue *q, struct bio *bio) | 
|  | { | 
|  | if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) | 
|  | blk_recount_segments(q, bio); | 
|  |  | 
|  | return bio->bi_phys_segments; | 
|  | } | 
|  | EXPORT_SYMBOL(bio_phys_segments); | 
|  |  | 
|  | /** | 
|  | * 	__bio_clone_fast - clone a bio that shares the original bio's biovec | 
|  | * 	@bio: destination bio | 
|  | * 	@bio_src: bio to clone | 
|  | * | 
|  | *	Clone a &bio. Caller will own the returned bio, but not | 
|  | *	the actual data it points to. Reference count of returned | 
|  | * 	bio will be one. | 
|  | * | 
|  | * 	Caller must ensure that @bio_src is not freed before @bio. | 
|  | */ | 
|  | void __bio_clone_fast(struct bio *bio, struct bio *bio_src) | 
|  | { | 
|  | BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE); | 
|  |  | 
|  | /* | 
|  | * most users will be overriding ->bi_bdev with a new target, | 
|  | * so we don't set nor calculate new physical/hw segment counts here | 
|  | */ | 
|  | bio->bi_bdev = bio_src->bi_bdev; | 
|  | bio->bi_flags |= 1 << BIO_CLONED; | 
|  | bio->bi_rw = bio_src->bi_rw; | 
|  | bio->bi_iter = bio_src->bi_iter; | 
|  | bio->bi_io_vec = bio_src->bi_io_vec; | 
|  | } | 
|  | EXPORT_SYMBOL(__bio_clone_fast); | 
|  |  | 
|  | /** | 
|  | *	bio_clone_fast - clone a bio that shares the original bio's biovec | 
|  | *	@bio: bio to clone | 
|  | *	@gfp_mask: allocation priority | 
|  | *	@bs: bio_set to allocate from | 
|  | * | 
|  | * 	Like __bio_clone_fast, only also allocates the returned bio | 
|  | */ | 
|  | struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) | 
|  | { | 
|  | struct bio *b; | 
|  |  | 
|  | b = bio_alloc_bioset(gfp_mask, 0, bs); | 
|  | if (!b) | 
|  | return NULL; | 
|  |  | 
|  | __bio_clone_fast(b, bio); | 
|  |  | 
|  | if (bio_integrity(bio)) { | 
|  | int ret; | 
|  |  | 
|  | ret = bio_integrity_clone(b, bio, gfp_mask); | 
|  |  | 
|  | if (ret < 0) { | 
|  | bio_put(b); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | return b; | 
|  | } | 
|  | EXPORT_SYMBOL(bio_clone_fast); | 
|  |  | 
|  | /** | 
|  | * 	bio_clone_bioset - clone a bio | 
|  | * 	@bio_src: bio to clone | 
|  | *	@gfp_mask: allocation priority | 
|  | *	@bs: bio_set to allocate from | 
|  | * | 
|  | *	Clone bio. Caller will own the returned bio, but not the actual data it | 
|  | *	points to. Reference count of returned bio will be one. | 
|  | */ | 
|  | struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask, | 
|  | struct bio_set *bs) | 
|  | { | 
|  | struct bvec_iter iter; | 
|  | struct bio_vec bv; | 
|  | struct bio *bio; | 
|  |  | 
|  | /* | 
|  | * Pre immutable biovecs, __bio_clone() used to just do a memcpy from | 
|  | * bio_src->bi_io_vec to bio->bi_io_vec. | 
|  | * | 
|  | * We can't do that anymore, because: | 
|  | * | 
|  | *  - The point of cloning the biovec is to produce a bio with a biovec | 
|  | *    the caller can modify: bi_idx and bi_bvec_done should be 0. | 
|  | * | 
|  | *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if | 
|  | *    we tried to clone the whole thing bio_alloc_bioset() would fail. | 
|  | *    But the clone should succeed as long as the number of biovecs we | 
|  | *    actually need to allocate is fewer than BIO_MAX_PAGES. | 
|  | * | 
|  | *  - Lastly, bi_vcnt should not be looked at or relied upon by code | 
|  | *    that does not own the bio - reason being drivers don't use it for | 
|  | *    iterating over the biovec anymore, so expecting it to be kept up | 
|  | *    to date (i.e. for clones that share the parent biovec) is just | 
|  | *    asking for trouble and would force extra work on | 
|  | *    __bio_clone_fast() anyways. | 
|  | */ | 
|  |  | 
|  | bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs); | 
|  | if (!bio) | 
|  | return NULL; | 
|  |  | 
|  | bio->bi_bdev		= bio_src->bi_bdev; | 
|  | bio->bi_rw		= bio_src->bi_rw; | 
|  | bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector; | 
|  | bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size; | 
|  |  | 
|  | if (bio->bi_rw & REQ_DISCARD) | 
|  | goto integrity_clone; | 
|  |  | 
|  | if (bio->bi_rw & REQ_WRITE_SAME) { | 
|  | bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0]; | 
|  | goto integrity_clone; | 
|  | } | 
|  |  | 
|  | bio_for_each_segment(bv, bio_src, iter) | 
|  | bio->bi_io_vec[bio->bi_vcnt++] = bv; | 
|  |  | 
|  | integrity_clone: | 
|  | if (bio_integrity(bio_src)) { | 
|  | int ret; | 
|  |  | 
|  | ret = bio_integrity_clone(bio, bio_src, gfp_mask); | 
|  | if (ret < 0) { | 
|  | bio_put(bio); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | return bio; | 
|  | } | 
|  | EXPORT_SYMBOL(bio_clone_bioset); | 
|  |  | 
|  | /** | 
|  | *	bio_get_nr_vecs		- return approx number of vecs | 
|  | *	@bdev:  I/O target | 
|  | * | 
|  | *	Return the approximate number of pages we can send to this target. | 
|  | *	There's no guarantee that you will be able to fit this number of pages | 
|  | *	into a bio, it does not account for dynamic restrictions that vary | 
|  | *	on offset. | 
|  | */ | 
|  | int bio_get_nr_vecs(struct block_device *bdev) | 
|  | { | 
|  | struct request_queue *q = bdev_get_queue(bdev); | 
|  | int nr_pages; | 
|  |  | 
|  | nr_pages = min_t(unsigned, | 
|  | queue_max_segments(q), | 
|  | queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1); | 
|  |  | 
|  | return min_t(unsigned, nr_pages, BIO_MAX_PAGES); | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL(bio_get_nr_vecs); | 
|  |  | 
|  | static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page | 
|  | *page, unsigned int len, unsigned int offset, | 
|  | unsigned int max_sectors) | 
|  | { | 
|  | int retried_segments = 0; | 
|  | struct bio_vec *bvec; | 
|  |  | 
|  | /* | 
|  | * cloned bio must not modify vec list | 
|  | */ | 
|  | if (unlikely(bio_flagged(bio, BIO_CLONED))) | 
|  | return 0; | 
|  |  | 
|  | if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * For filesystems with a blocksize smaller than the pagesize | 
|  | * we will often be called with the same page as last time and | 
|  | * a consecutive offset.  Optimize this special case. | 
|  | */ | 
|  | if (bio->bi_vcnt > 0) { | 
|  | struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; | 
|  |  | 
|  | if (page == prev->bv_page && | 
|  | offset == prev->bv_offset + prev->bv_len) { | 
|  | unsigned int prev_bv_len = prev->bv_len; | 
|  | prev->bv_len += len; | 
|  |  | 
|  | if (q->merge_bvec_fn) { | 
|  | struct bvec_merge_data bvm = { | 
|  | /* prev_bvec is already charged in | 
|  | bi_size, discharge it in order to | 
|  | simulate merging updated prev_bvec | 
|  | as new bvec. */ | 
|  | .bi_bdev = bio->bi_bdev, | 
|  | .bi_sector = bio->bi_iter.bi_sector, | 
|  | .bi_size = bio->bi_iter.bi_size - | 
|  | prev_bv_len, | 
|  | .bi_rw = bio->bi_rw, | 
|  | }; | 
|  |  | 
|  | if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) { | 
|  | prev->bv_len -= len; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the queue doesn't support SG gaps and adding this | 
|  | * offset would create a gap, disallow it. | 
|  | */ | 
|  | if (q->queue_flags & (1 << QUEUE_FLAG_SG_GAPS) && | 
|  | bvec_gap_to_prev(prev, offset)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (bio->bi_vcnt >= bio->bi_max_vecs) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * we might lose a segment or two here, but rather that than | 
|  | * make this too complex. | 
|  | */ | 
|  |  | 
|  | while (bio->bi_phys_segments >= queue_max_segments(q)) { | 
|  |  | 
|  | if (retried_segments) | 
|  | return 0; | 
|  |  | 
|  | retried_segments = 1; | 
|  | blk_recount_segments(q, bio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * setup the new entry, we might clear it again later if we | 
|  | * cannot add the page | 
|  | */ | 
|  | bvec = &bio->bi_io_vec[bio->bi_vcnt]; | 
|  | bvec->bv_page = page; | 
|  | bvec->bv_len = len; | 
|  | bvec->bv_offset = offset; | 
|  |  | 
|  | /* | 
|  | * if queue has other restrictions (eg varying max sector size | 
|  | * depending on offset), it can specify a merge_bvec_fn in the | 
|  | * queue to get further control | 
|  | */ | 
|  | if (q->merge_bvec_fn) { | 
|  | struct bvec_merge_data bvm = { | 
|  | .bi_bdev = bio->bi_bdev, | 
|  | .bi_sector = bio->bi_iter.bi_sector, | 
|  | .bi_size = bio->bi_iter.bi_size, | 
|  | .bi_rw = bio->bi_rw, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * merge_bvec_fn() returns number of bytes it can accept | 
|  | * at this offset | 
|  | */ | 
|  | if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) { | 
|  | bvec->bv_page = NULL; | 
|  | bvec->bv_len = 0; | 
|  | bvec->bv_offset = 0; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If we may be able to merge these biovecs, force a recount */ | 
|  | if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec))) | 
|  | bio->bi_flags &= ~(1 << BIO_SEG_VALID); | 
|  |  | 
|  | bio->bi_vcnt++; | 
|  | bio->bi_phys_segments++; | 
|  | done: | 
|  | bio->bi_iter.bi_size += len; | 
|  | return len; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	bio_add_pc_page	-	attempt to add page to bio | 
|  | *	@q: the target queue | 
|  | *	@bio: destination bio | 
|  | *	@page: page to add | 
|  | *	@len: vec entry length | 
|  | *	@offset: vec entry offset | 
|  | * | 
|  | *	Attempt to add a page to the bio_vec maplist. This can fail for a | 
|  | *	number of reasons, such as the bio being full or target block device | 
|  | *	limitations. The target block device must allow bio's up to PAGE_SIZE, | 
|  | *	so it is always possible to add a single page to an empty bio. | 
|  | * | 
|  | *	This should only be used by REQ_PC bios. | 
|  | */ | 
|  | int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page, | 
|  | unsigned int len, unsigned int offset) | 
|  | { | 
|  | return __bio_add_page(q, bio, page, len, offset, | 
|  | queue_max_hw_sectors(q)); | 
|  | } | 
|  | EXPORT_SYMBOL(bio_add_pc_page); | 
|  |  | 
|  | /** | 
|  | *	bio_add_page	-	attempt to add page to bio | 
|  | *	@bio: destination bio | 
|  | *	@page: page to add | 
|  | *	@len: vec entry length | 
|  | *	@offset: vec entry offset | 
|  | * | 
|  | *	Attempt to add a page to the bio_vec maplist. This can fail for a | 
|  | *	number of reasons, such as the bio being full or target block device | 
|  | *	limitations. The target block device must allow bio's up to PAGE_SIZE, | 
|  | *	so it is always possible to add a single page to an empty bio. | 
|  | */ | 
|  | int bio_add_page(struct bio *bio, struct page *page, unsigned int len, | 
|  | unsigned int offset) | 
|  | { | 
|  | struct request_queue *q = bdev_get_queue(bio->bi_bdev); | 
|  | unsigned int max_sectors; | 
|  |  | 
|  | max_sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector); | 
|  | if ((max_sectors < (len >> 9)) && !bio->bi_iter.bi_size) | 
|  | max_sectors = len >> 9; | 
|  |  | 
|  | return __bio_add_page(q, bio, page, len, offset, max_sectors); | 
|  | } | 
|  | EXPORT_SYMBOL(bio_add_page); | 
|  |  | 
|  | struct submit_bio_ret { | 
|  | struct completion event; | 
|  | int error; | 
|  | }; | 
|  |  | 
|  | static void submit_bio_wait_endio(struct bio *bio, int error) | 
|  | { | 
|  | struct submit_bio_ret *ret = bio->bi_private; | 
|  |  | 
|  | ret->error = error; | 
|  | complete(&ret->event); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * submit_bio_wait - submit a bio, and wait until it completes | 
|  | * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) | 
|  | * @bio: The &struct bio which describes the I/O | 
|  | * | 
|  | * Simple wrapper around submit_bio(). Returns 0 on success, or the error from | 
|  | * bio_endio() on failure. | 
|  | */ | 
|  | int submit_bio_wait(int rw, struct bio *bio) | 
|  | { | 
|  | struct submit_bio_ret ret; | 
|  |  | 
|  | rw |= REQ_SYNC; | 
|  | init_completion(&ret.event); | 
|  | bio->bi_private = &ret; | 
|  | bio->bi_end_io = submit_bio_wait_endio; | 
|  | submit_bio(rw, bio); | 
|  | wait_for_completion(&ret.event); | 
|  |  | 
|  | return ret.error; | 
|  | } | 
|  | EXPORT_SYMBOL(submit_bio_wait); | 
|  |  | 
|  | /** | 
|  | * bio_advance - increment/complete a bio by some number of bytes | 
|  | * @bio:	bio to advance | 
|  | * @bytes:	number of bytes to complete | 
|  | * | 
|  | * This updates bi_sector, bi_size and bi_idx; if the number of bytes to | 
|  | * complete doesn't align with a bvec boundary, then bv_len and bv_offset will | 
|  | * be updated on the last bvec as well. | 
|  | * | 
|  | * @bio will then represent the remaining, uncompleted portion of the io. | 
|  | */ | 
|  | void bio_advance(struct bio *bio, unsigned bytes) | 
|  | { | 
|  | if (bio_integrity(bio)) | 
|  | bio_integrity_advance(bio, bytes); | 
|  |  | 
|  | bio_advance_iter(bio, &bio->bi_iter, bytes); | 
|  | } | 
|  | EXPORT_SYMBOL(bio_advance); | 
|  |  | 
|  | /** | 
|  | * bio_alloc_pages - allocates a single page for each bvec in a bio | 
|  | * @bio: bio to allocate pages for | 
|  | * @gfp_mask: flags for allocation | 
|  | * | 
|  | * Allocates pages up to @bio->bi_vcnt. | 
|  | * | 
|  | * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are | 
|  | * freed. | 
|  | */ | 
|  | int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask) | 
|  | { | 
|  | int i; | 
|  | struct bio_vec *bv; | 
|  |  | 
|  | bio_for_each_segment_all(bv, bio, i) { | 
|  | bv->bv_page = alloc_page(gfp_mask); | 
|  | if (!bv->bv_page) { | 
|  | while (--bv >= bio->bi_io_vec) | 
|  | __free_page(bv->bv_page); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(bio_alloc_pages); | 
|  |  | 
|  | /** | 
|  | * bio_copy_data - copy contents of data buffers from one chain of bios to | 
|  | * another | 
|  | * @src: source bio list | 
|  | * @dst: destination bio list | 
|  | * | 
|  | * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats | 
|  | * @src and @dst as linked lists of bios. | 
|  | * | 
|  | * Stops when it reaches the end of either @src or @dst - that is, copies | 
|  | * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). | 
|  | */ | 
|  | void bio_copy_data(struct bio *dst, struct bio *src) | 
|  | { | 
|  | struct bvec_iter src_iter, dst_iter; | 
|  | struct bio_vec src_bv, dst_bv; | 
|  | void *src_p, *dst_p; | 
|  | unsigned bytes; | 
|  |  | 
|  | src_iter = src->bi_iter; | 
|  | dst_iter = dst->bi_iter; | 
|  |  | 
|  | while (1) { | 
|  | if (!src_iter.bi_size) { | 
|  | src = src->bi_next; | 
|  | if (!src) | 
|  | break; | 
|  |  | 
|  | src_iter = src->bi_iter; | 
|  | } | 
|  |  | 
|  | if (!dst_iter.bi_size) { | 
|  | dst = dst->bi_next; | 
|  | if (!dst) | 
|  | break; | 
|  |  | 
|  | dst_iter = dst->bi_iter; | 
|  | } | 
|  |  | 
|  | src_bv = bio_iter_iovec(src, src_iter); | 
|  | dst_bv = bio_iter_iovec(dst, dst_iter); | 
|  |  | 
|  | bytes = min(src_bv.bv_len, dst_bv.bv_len); | 
|  |  | 
|  | src_p = kmap_atomic(src_bv.bv_page); | 
|  | dst_p = kmap_atomic(dst_bv.bv_page); | 
|  |  | 
|  | memcpy(dst_p + dst_bv.bv_offset, | 
|  | src_p + src_bv.bv_offset, | 
|  | bytes); | 
|  |  | 
|  | kunmap_atomic(dst_p); | 
|  | kunmap_atomic(src_p); | 
|  |  | 
|  | bio_advance_iter(src, &src_iter, bytes); | 
|  | bio_advance_iter(dst, &dst_iter, bytes); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(bio_copy_data); | 
|  |  | 
|  | struct bio_map_data { | 
|  | int nr_sgvecs; | 
|  | int is_our_pages; | 
|  | struct sg_iovec sgvecs[]; | 
|  | }; | 
|  |  | 
|  | static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio, | 
|  | const struct sg_iovec *iov, int iov_count, | 
|  | int is_our_pages) | 
|  | { | 
|  | memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count); | 
|  | bmd->nr_sgvecs = iov_count; | 
|  | bmd->is_our_pages = is_our_pages; | 
|  | bio->bi_private = bmd; | 
|  | } | 
|  |  | 
|  | static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | if (iov_count > UIO_MAXIOV) | 
|  | return NULL; | 
|  |  | 
|  | return kmalloc(sizeof(struct bio_map_data) + | 
|  | sizeof(struct sg_iovec) * iov_count, gfp_mask); | 
|  | } | 
|  |  | 
|  | static int __bio_copy_iov(struct bio *bio, const struct sg_iovec *iov, int iov_count, | 
|  | int to_user, int from_user, int do_free_page) | 
|  | { | 
|  | int ret = 0, i; | 
|  | struct bio_vec *bvec; | 
|  | int iov_idx = 0; | 
|  | unsigned int iov_off = 0; | 
|  |  | 
|  | bio_for_each_segment_all(bvec, bio, i) { | 
|  | char *bv_addr = page_address(bvec->bv_page); | 
|  | unsigned int bv_len = bvec->bv_len; | 
|  |  | 
|  | while (bv_len && iov_idx < iov_count) { | 
|  | unsigned int bytes; | 
|  | char __user *iov_addr; | 
|  |  | 
|  | bytes = min_t(unsigned int, | 
|  | iov[iov_idx].iov_len - iov_off, bv_len); | 
|  | iov_addr = iov[iov_idx].iov_base + iov_off; | 
|  |  | 
|  | if (!ret) { | 
|  | if (to_user) | 
|  | ret = copy_to_user(iov_addr, bv_addr, | 
|  | bytes); | 
|  |  | 
|  | if (from_user) | 
|  | ret = copy_from_user(bv_addr, iov_addr, | 
|  | bytes); | 
|  |  | 
|  | if (ret) | 
|  | ret = -EFAULT; | 
|  | } | 
|  |  | 
|  | bv_len -= bytes; | 
|  | bv_addr += bytes; | 
|  | iov_addr += bytes; | 
|  | iov_off += bytes; | 
|  |  | 
|  | if (iov[iov_idx].iov_len == iov_off) { | 
|  | iov_idx++; | 
|  | iov_off = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (do_free_page) | 
|  | __free_page(bvec->bv_page); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	bio_uncopy_user	-	finish previously mapped bio | 
|  | *	@bio: bio being terminated | 
|  | * | 
|  | *	Free pages allocated from bio_copy_user() and write back data | 
|  | *	to user space in case of a read. | 
|  | */ | 
|  | int bio_uncopy_user(struct bio *bio) | 
|  | { | 
|  | struct bio_map_data *bmd = bio->bi_private; | 
|  | struct bio_vec *bvec; | 
|  | int ret = 0, i; | 
|  |  | 
|  | if (!bio_flagged(bio, BIO_NULL_MAPPED)) { | 
|  | /* | 
|  | * if we're in a workqueue, the request is orphaned, so | 
|  | * don't copy into a random user address space, just free. | 
|  | */ | 
|  | if (current->mm) | 
|  | ret = __bio_copy_iov(bio, bmd->sgvecs, bmd->nr_sgvecs, | 
|  | bio_data_dir(bio) == READ, | 
|  | 0, bmd->is_our_pages); | 
|  | else if (bmd->is_our_pages) | 
|  | bio_for_each_segment_all(bvec, bio, i) | 
|  | __free_page(bvec->bv_page); | 
|  | } | 
|  | kfree(bmd); | 
|  | bio_put(bio); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(bio_uncopy_user); | 
|  |  | 
|  | /** | 
|  | *	bio_copy_user_iov	-	copy user data to bio | 
|  | *	@q: destination block queue | 
|  | *	@map_data: pointer to the rq_map_data holding pages (if necessary) | 
|  | *	@iov:	the iovec. | 
|  | *	@iov_count: number of elements in the iovec | 
|  | *	@write_to_vm: bool indicating writing to pages or not | 
|  | *	@gfp_mask: memory allocation flags | 
|  | * | 
|  | *	Prepares and returns a bio for indirect user io, bouncing data | 
|  | *	to/from kernel pages as necessary. Must be paired with | 
|  | *	call bio_uncopy_user() on io completion. | 
|  | */ | 
|  | struct bio *bio_copy_user_iov(struct request_queue *q, | 
|  | struct rq_map_data *map_data, | 
|  | const struct sg_iovec *iov, int iov_count, | 
|  | int write_to_vm, gfp_t gfp_mask) | 
|  | { | 
|  | struct bio_map_data *bmd; | 
|  | struct bio_vec *bvec; | 
|  | struct page *page; | 
|  | struct bio *bio; | 
|  | int i, ret; | 
|  | int nr_pages = 0; | 
|  | unsigned int len = 0; | 
|  | unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0; | 
|  |  | 
|  | for (i = 0; i < iov_count; i++) { | 
|  | unsigned long uaddr; | 
|  | unsigned long end; | 
|  | unsigned long start; | 
|  |  | 
|  | uaddr = (unsigned long)iov[i].iov_base; | 
|  | end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | start = uaddr >> PAGE_SHIFT; | 
|  |  | 
|  | /* | 
|  | * Overflow, abort | 
|  | */ | 
|  | if (end < start) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | nr_pages += end - start; | 
|  | len += iov[i].iov_len; | 
|  | } | 
|  |  | 
|  | if (offset) | 
|  | nr_pages++; | 
|  |  | 
|  | bmd = bio_alloc_map_data(iov_count, gfp_mask); | 
|  | if (!bmd) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | bio = bio_kmalloc(gfp_mask, nr_pages); | 
|  | if (!bio) | 
|  | goto out_bmd; | 
|  |  | 
|  | if (!write_to_vm) | 
|  | bio->bi_rw |= REQ_WRITE; | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | if (map_data) { | 
|  | nr_pages = 1 << map_data->page_order; | 
|  | i = map_data->offset / PAGE_SIZE; | 
|  | } | 
|  | while (len) { | 
|  | unsigned int bytes = PAGE_SIZE; | 
|  |  | 
|  | bytes -= offset; | 
|  |  | 
|  | if (bytes > len) | 
|  | bytes = len; | 
|  |  | 
|  | if (map_data) { | 
|  | if (i == map_data->nr_entries * nr_pages) { | 
|  | ret = -ENOMEM; | 
|  | break; | 
|  | } | 
|  |  | 
|  | page = map_data->pages[i / nr_pages]; | 
|  | page += (i % nr_pages); | 
|  |  | 
|  | i++; | 
|  | } else { | 
|  | page = alloc_page(q->bounce_gfp | gfp_mask); | 
|  | if (!page) { | 
|  | ret = -ENOMEM; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) | 
|  | break; | 
|  |  | 
|  | len -= bytes; | 
|  | offset = 0; | 
|  | } | 
|  |  | 
|  | if (ret) | 
|  | goto cleanup; | 
|  |  | 
|  | /* | 
|  | * success | 
|  | */ | 
|  | if ((!write_to_vm && (!map_data || !map_data->null_mapped)) || | 
|  | (map_data && map_data->from_user)) { | 
|  | ret = __bio_copy_iov(bio, iov, iov_count, 0, 1, 0); | 
|  | if (ret) | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1); | 
|  | return bio; | 
|  | cleanup: | 
|  | if (!map_data) | 
|  | bio_for_each_segment_all(bvec, bio, i) | 
|  | __free_page(bvec->bv_page); | 
|  |  | 
|  | bio_put(bio); | 
|  | out_bmd: | 
|  | kfree(bmd); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	bio_copy_user	-	copy user data to bio | 
|  | *	@q: destination block queue | 
|  | *	@map_data: pointer to the rq_map_data holding pages (if necessary) | 
|  | *	@uaddr: start of user address | 
|  | *	@len: length in bytes | 
|  | *	@write_to_vm: bool indicating writing to pages or not | 
|  | *	@gfp_mask: memory allocation flags | 
|  | * | 
|  | *	Prepares and returns a bio for indirect user io, bouncing data | 
|  | *	to/from kernel pages as necessary. Must be paired with | 
|  | *	call bio_uncopy_user() on io completion. | 
|  | */ | 
|  | struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data, | 
|  | unsigned long uaddr, unsigned int len, | 
|  | int write_to_vm, gfp_t gfp_mask) | 
|  | { | 
|  | struct sg_iovec iov; | 
|  |  | 
|  | iov.iov_base = (void __user *)uaddr; | 
|  | iov.iov_len = len; | 
|  |  | 
|  | return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask); | 
|  | } | 
|  | EXPORT_SYMBOL(bio_copy_user); | 
|  |  | 
|  | static struct bio *__bio_map_user_iov(struct request_queue *q, | 
|  | struct block_device *bdev, | 
|  | const struct sg_iovec *iov, int iov_count, | 
|  | int write_to_vm, gfp_t gfp_mask) | 
|  | { | 
|  | int i, j; | 
|  | int nr_pages = 0; | 
|  | struct page **pages; | 
|  | struct bio *bio; | 
|  | int cur_page = 0; | 
|  | int ret, offset; | 
|  |  | 
|  | for (i = 0; i < iov_count; i++) { | 
|  | unsigned long uaddr = (unsigned long)iov[i].iov_base; | 
|  | unsigned long len = iov[i].iov_len; | 
|  | unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | unsigned long start = uaddr >> PAGE_SHIFT; | 
|  |  | 
|  | /* | 
|  | * Overflow, abort | 
|  | */ | 
|  | if (end < start) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | nr_pages += end - start; | 
|  | /* | 
|  | * buffer must be aligned to at least hardsector size for now | 
|  | */ | 
|  | if (uaddr & queue_dma_alignment(q)) | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | if (!nr_pages) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | bio = bio_kmalloc(gfp_mask, nr_pages); | 
|  | if (!bio) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask); | 
|  | if (!pages) | 
|  | goto out; | 
|  |  | 
|  | for (i = 0; i < iov_count; i++) { | 
|  | unsigned long uaddr = (unsigned long)iov[i].iov_base; | 
|  | unsigned long len = iov[i].iov_len; | 
|  | unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | unsigned long start = uaddr >> PAGE_SHIFT; | 
|  | const int local_nr_pages = end - start; | 
|  | const int page_limit = cur_page + local_nr_pages; | 
|  |  | 
|  | ret = get_user_pages_fast(uaddr, local_nr_pages, | 
|  | write_to_vm, &pages[cur_page]); | 
|  | if (ret < local_nr_pages) { | 
|  | ret = -EFAULT; | 
|  | goto out_unmap; | 
|  | } | 
|  |  | 
|  | offset = uaddr & ~PAGE_MASK; | 
|  | for (j = cur_page; j < page_limit; j++) { | 
|  | unsigned int bytes = PAGE_SIZE - offset; | 
|  |  | 
|  | if (len <= 0) | 
|  | break; | 
|  |  | 
|  | if (bytes > len) | 
|  | bytes = len; | 
|  |  | 
|  | /* | 
|  | * sorry... | 
|  | */ | 
|  | if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < | 
|  | bytes) | 
|  | break; | 
|  |  | 
|  | len -= bytes; | 
|  | offset = 0; | 
|  | } | 
|  |  | 
|  | cur_page = j; | 
|  | /* | 
|  | * release the pages we didn't map into the bio, if any | 
|  | */ | 
|  | while (j < page_limit) | 
|  | page_cache_release(pages[j++]); | 
|  | } | 
|  |  | 
|  | kfree(pages); | 
|  |  | 
|  | /* | 
|  | * set data direction, and check if mapped pages need bouncing | 
|  | */ | 
|  | if (!write_to_vm) | 
|  | bio->bi_rw |= REQ_WRITE; | 
|  |  | 
|  | bio->bi_bdev = bdev; | 
|  | bio->bi_flags |= (1 << BIO_USER_MAPPED); | 
|  | return bio; | 
|  |  | 
|  | out_unmap: | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | if(!pages[i]) | 
|  | break; | 
|  | page_cache_release(pages[i]); | 
|  | } | 
|  | out: | 
|  | kfree(pages); | 
|  | bio_put(bio); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	bio_map_user	-	map user address into bio | 
|  | *	@q: the struct request_queue for the bio | 
|  | *	@bdev: destination block device | 
|  | *	@uaddr: start of user address | 
|  | *	@len: length in bytes | 
|  | *	@write_to_vm: bool indicating writing to pages or not | 
|  | *	@gfp_mask: memory allocation flags | 
|  | * | 
|  | *	Map the user space address into a bio suitable for io to a block | 
|  | *	device. Returns an error pointer in case of error. | 
|  | */ | 
|  | struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev, | 
|  | unsigned long uaddr, unsigned int len, int write_to_vm, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | struct sg_iovec iov; | 
|  |  | 
|  | iov.iov_base = (void __user *)uaddr; | 
|  | iov.iov_len = len; | 
|  |  | 
|  | return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask); | 
|  | } | 
|  | EXPORT_SYMBOL(bio_map_user); | 
|  |  | 
|  | /** | 
|  | *	bio_map_user_iov - map user sg_iovec table into bio | 
|  | *	@q: the struct request_queue for the bio | 
|  | *	@bdev: destination block device | 
|  | *	@iov:	the iovec. | 
|  | *	@iov_count: number of elements in the iovec | 
|  | *	@write_to_vm: bool indicating writing to pages or not | 
|  | *	@gfp_mask: memory allocation flags | 
|  | * | 
|  | *	Map the user space address into a bio suitable for io to a block | 
|  | *	device. Returns an error pointer in case of error. | 
|  | */ | 
|  | struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev, | 
|  | const struct sg_iovec *iov, int iov_count, | 
|  | int write_to_vm, gfp_t gfp_mask) | 
|  | { | 
|  | struct bio *bio; | 
|  |  | 
|  | bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm, | 
|  | gfp_mask); | 
|  | if (IS_ERR(bio)) | 
|  | return bio; | 
|  |  | 
|  | /* | 
|  | * subtle -- if __bio_map_user() ended up bouncing a bio, | 
|  | * it would normally disappear when its bi_end_io is run. | 
|  | * however, we need it for the unmap, so grab an extra | 
|  | * reference to it | 
|  | */ | 
|  | bio_get(bio); | 
|  |  | 
|  | return bio; | 
|  | } | 
|  |  | 
|  | static void __bio_unmap_user(struct bio *bio) | 
|  | { | 
|  | struct bio_vec *bvec; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * make sure we dirty pages we wrote to | 
|  | */ | 
|  | bio_for_each_segment_all(bvec, bio, i) { | 
|  | if (bio_data_dir(bio) == READ) | 
|  | set_page_dirty_lock(bvec->bv_page); | 
|  |  | 
|  | page_cache_release(bvec->bv_page); | 
|  | } | 
|  |  | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	bio_unmap_user	-	unmap a bio | 
|  | *	@bio:		the bio being unmapped | 
|  | * | 
|  | *	Unmap a bio previously mapped by bio_map_user(). Must be called with | 
|  | *	a process context. | 
|  | * | 
|  | *	bio_unmap_user() may sleep. | 
|  | */ | 
|  | void bio_unmap_user(struct bio *bio) | 
|  | { | 
|  | __bio_unmap_user(bio); | 
|  | bio_put(bio); | 
|  | } | 
|  | EXPORT_SYMBOL(bio_unmap_user); | 
|  |  | 
|  | static void bio_map_kern_endio(struct bio *bio, int err) | 
|  | { | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | static struct bio *__bio_map_kern(struct request_queue *q, void *data, | 
|  | unsigned int len, gfp_t gfp_mask) | 
|  | { | 
|  | unsigned long kaddr = (unsigned long)data; | 
|  | unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | unsigned long start = kaddr >> PAGE_SHIFT; | 
|  | const int nr_pages = end - start; | 
|  | int offset, i; | 
|  | struct bio *bio; | 
|  |  | 
|  | bio = bio_kmalloc(gfp_mask, nr_pages); | 
|  | if (!bio) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | offset = offset_in_page(kaddr); | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | unsigned int bytes = PAGE_SIZE - offset; | 
|  |  | 
|  | if (len <= 0) | 
|  | break; | 
|  |  | 
|  | if (bytes > len) | 
|  | bytes = len; | 
|  |  | 
|  | if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, | 
|  | offset) < bytes) | 
|  | break; | 
|  |  | 
|  | data += bytes; | 
|  | len -= bytes; | 
|  | offset = 0; | 
|  | } | 
|  |  | 
|  | bio->bi_end_io = bio_map_kern_endio; | 
|  | return bio; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	bio_map_kern	-	map kernel address into bio | 
|  | *	@q: the struct request_queue for the bio | 
|  | *	@data: pointer to buffer to map | 
|  | *	@len: length in bytes | 
|  | *	@gfp_mask: allocation flags for bio allocation | 
|  | * | 
|  | *	Map the kernel address into a bio suitable for io to a block | 
|  | *	device. Returns an error pointer in case of error. | 
|  | */ | 
|  | struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | struct bio *bio; | 
|  |  | 
|  | bio = __bio_map_kern(q, data, len, gfp_mask); | 
|  | if (IS_ERR(bio)) | 
|  | return bio; | 
|  |  | 
|  | if (bio->bi_iter.bi_size == len) | 
|  | return bio; | 
|  |  | 
|  | /* | 
|  | * Don't support partial mappings. | 
|  | */ | 
|  | bio_put(bio); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  | EXPORT_SYMBOL(bio_map_kern); | 
|  |  | 
|  | static void bio_copy_kern_endio(struct bio *bio, int err) | 
|  | { | 
|  | struct bio_vec *bvec; | 
|  | const int read = bio_data_dir(bio) == READ; | 
|  | struct bio_map_data *bmd = bio->bi_private; | 
|  | int i; | 
|  | char *p = bmd->sgvecs[0].iov_base; | 
|  |  | 
|  | bio_for_each_segment_all(bvec, bio, i) { | 
|  | char *addr = page_address(bvec->bv_page); | 
|  |  | 
|  | if (read) | 
|  | memcpy(p, addr, bvec->bv_len); | 
|  |  | 
|  | __free_page(bvec->bv_page); | 
|  | p += bvec->bv_len; | 
|  | } | 
|  |  | 
|  | kfree(bmd); | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	bio_copy_kern	-	copy kernel address into bio | 
|  | *	@q: the struct request_queue for the bio | 
|  | *	@data: pointer to buffer to copy | 
|  | *	@len: length in bytes | 
|  | *	@gfp_mask: allocation flags for bio and page allocation | 
|  | *	@reading: data direction is READ | 
|  | * | 
|  | *	copy the kernel address into a bio suitable for io to a block | 
|  | *	device. Returns an error pointer in case of error. | 
|  | */ | 
|  | struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, | 
|  | gfp_t gfp_mask, int reading) | 
|  | { | 
|  | struct bio *bio; | 
|  | struct bio_vec *bvec; | 
|  | int i; | 
|  |  | 
|  | bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask); | 
|  | if (IS_ERR(bio)) | 
|  | return bio; | 
|  |  | 
|  | if (!reading) { | 
|  | void *p = data; | 
|  |  | 
|  | bio_for_each_segment_all(bvec, bio, i) { | 
|  | char *addr = page_address(bvec->bv_page); | 
|  |  | 
|  | memcpy(addr, p, bvec->bv_len); | 
|  | p += bvec->bv_len; | 
|  | } | 
|  | } | 
|  |  | 
|  | bio->bi_end_io = bio_copy_kern_endio; | 
|  |  | 
|  | return bio; | 
|  | } | 
|  | EXPORT_SYMBOL(bio_copy_kern); | 
|  |  | 
|  | /* | 
|  | * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions | 
|  | * for performing direct-IO in BIOs. | 
|  | * | 
|  | * The problem is that we cannot run set_page_dirty() from interrupt context | 
|  | * because the required locks are not interrupt-safe.  So what we can do is to | 
|  | * mark the pages dirty _before_ performing IO.  And in interrupt context, | 
|  | * check that the pages are still dirty.   If so, fine.  If not, redirty them | 
|  | * in process context. | 
|  | * | 
|  | * We special-case compound pages here: normally this means reads into hugetlb | 
|  | * pages.  The logic in here doesn't really work right for compound pages | 
|  | * because the VM does not uniformly chase down the head page in all cases. | 
|  | * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't | 
|  | * handle them at all.  So we skip compound pages here at an early stage. | 
|  | * | 
|  | * Note that this code is very hard to test under normal circumstances because | 
|  | * direct-io pins the pages with get_user_pages().  This makes | 
|  | * is_page_cache_freeable return false, and the VM will not clean the pages. | 
|  | * But other code (eg, flusher threads) could clean the pages if they are mapped | 
|  | * pagecache. | 
|  | * | 
|  | * Simply disabling the call to bio_set_pages_dirty() is a good way to test the | 
|  | * deferred bio dirtying paths. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * bio_set_pages_dirty() will mark all the bio's pages as dirty. | 
|  | */ | 
|  | void bio_set_pages_dirty(struct bio *bio) | 
|  | { | 
|  | struct bio_vec *bvec; | 
|  | int i; | 
|  |  | 
|  | bio_for_each_segment_all(bvec, bio, i) { | 
|  | struct page *page = bvec->bv_page; | 
|  |  | 
|  | if (page && !PageCompound(page)) | 
|  | set_page_dirty_lock(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bio_release_pages(struct bio *bio) | 
|  | { | 
|  | struct bio_vec *bvec; | 
|  | int i; | 
|  |  | 
|  | bio_for_each_segment_all(bvec, bio, i) { | 
|  | struct page *page = bvec->bv_page; | 
|  |  | 
|  | if (page) | 
|  | put_page(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. | 
|  | * If they are, then fine.  If, however, some pages are clean then they must | 
|  | * have been written out during the direct-IO read.  So we take another ref on | 
|  | * the BIO and the offending pages and re-dirty the pages in process context. | 
|  | * | 
|  | * It is expected that bio_check_pages_dirty() will wholly own the BIO from | 
|  | * here on.  It will run one page_cache_release() against each page and will | 
|  | * run one bio_put() against the BIO. | 
|  | */ | 
|  |  | 
|  | static void bio_dirty_fn(struct work_struct *work); | 
|  |  | 
|  | static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); | 
|  | static DEFINE_SPINLOCK(bio_dirty_lock); | 
|  | static struct bio *bio_dirty_list; | 
|  |  | 
|  | /* | 
|  | * This runs in process context | 
|  | */ | 
|  | static void bio_dirty_fn(struct work_struct *work) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct bio *bio; | 
|  |  | 
|  | spin_lock_irqsave(&bio_dirty_lock, flags); | 
|  | bio = bio_dirty_list; | 
|  | bio_dirty_list = NULL; | 
|  | spin_unlock_irqrestore(&bio_dirty_lock, flags); | 
|  |  | 
|  | while (bio) { | 
|  | struct bio *next = bio->bi_private; | 
|  |  | 
|  | bio_set_pages_dirty(bio); | 
|  | bio_release_pages(bio); | 
|  | bio_put(bio); | 
|  | bio = next; | 
|  | } | 
|  | } | 
|  |  | 
|  | void bio_check_pages_dirty(struct bio *bio) | 
|  | { | 
|  | struct bio_vec *bvec; | 
|  | int nr_clean_pages = 0; | 
|  | int i; | 
|  |  | 
|  | bio_for_each_segment_all(bvec, bio, i) { | 
|  | struct page *page = bvec->bv_page; | 
|  |  | 
|  | if (PageDirty(page) || PageCompound(page)) { | 
|  | page_cache_release(page); | 
|  | bvec->bv_page = NULL; | 
|  | } else { | 
|  | nr_clean_pages++; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (nr_clean_pages) { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&bio_dirty_lock, flags); | 
|  | bio->bi_private = bio_dirty_list; | 
|  | bio_dirty_list = bio; | 
|  | spin_unlock_irqrestore(&bio_dirty_lock, flags); | 
|  | schedule_work(&bio_dirty_work); | 
|  | } else { | 
|  | bio_put(bio); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE | 
|  | void bio_flush_dcache_pages(struct bio *bi) | 
|  | { | 
|  | struct bio_vec bvec; | 
|  | struct bvec_iter iter; | 
|  |  | 
|  | bio_for_each_segment(bvec, bi, iter) | 
|  | flush_dcache_page(bvec.bv_page); | 
|  | } | 
|  | EXPORT_SYMBOL(bio_flush_dcache_pages); | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * bio_endio - end I/O on a bio | 
|  | * @bio:	bio | 
|  | * @error:	error, if any | 
|  | * | 
|  | * Description: | 
|  | *   bio_endio() will end I/O on the whole bio. bio_endio() is the | 
|  | *   preferred way to end I/O on a bio, it takes care of clearing | 
|  | *   BIO_UPTODATE on error. @error is 0 on success, and and one of the | 
|  | *   established -Exxxx (-EIO, for instance) error values in case | 
|  | *   something went wrong. No one should call bi_end_io() directly on a | 
|  | *   bio unless they own it and thus know that it has an end_io | 
|  | *   function. | 
|  | **/ | 
|  | void bio_endio(struct bio *bio, int error) | 
|  | { | 
|  | while (bio) { | 
|  | BUG_ON(atomic_read(&bio->bi_remaining) <= 0); | 
|  |  | 
|  | if (error) | 
|  | clear_bit(BIO_UPTODATE, &bio->bi_flags); | 
|  | else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) | 
|  | error = -EIO; | 
|  |  | 
|  | if (!atomic_dec_and_test(&bio->bi_remaining)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Need to have a real endio function for chained bios, | 
|  | * otherwise various corner cases will break (like stacking | 
|  | * block devices that save/restore bi_end_io) - however, we want | 
|  | * to avoid unbounded recursion and blowing the stack. Tail call | 
|  | * optimization would handle this, but compiling with frame | 
|  | * pointers also disables gcc's sibling call optimization. | 
|  | */ | 
|  | if (bio->bi_end_io == bio_chain_endio) { | 
|  | struct bio *parent = bio->bi_private; | 
|  | bio_put(bio); | 
|  | bio = parent; | 
|  | } else { | 
|  | if (bio->bi_end_io) | 
|  | bio->bi_end_io(bio, error); | 
|  | bio = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(bio_endio); | 
|  |  | 
|  | /** | 
|  | * bio_endio_nodec - end I/O on a bio, without decrementing bi_remaining | 
|  | * @bio:	bio | 
|  | * @error:	error, if any | 
|  | * | 
|  | * For code that has saved and restored bi_end_io; thing hard before using this | 
|  | * function, probably you should've cloned the entire bio. | 
|  | **/ | 
|  | void bio_endio_nodec(struct bio *bio, int error) | 
|  | { | 
|  | atomic_inc(&bio->bi_remaining); | 
|  | bio_endio(bio, error); | 
|  | } | 
|  | EXPORT_SYMBOL(bio_endio_nodec); | 
|  |  | 
|  | /** | 
|  | * bio_split - split a bio | 
|  | * @bio:	bio to split | 
|  | * @sectors:	number of sectors to split from the front of @bio | 
|  | * @gfp:	gfp mask | 
|  | * @bs:		bio set to allocate from | 
|  | * | 
|  | * Allocates and returns a new bio which represents @sectors from the start of | 
|  | * @bio, and updates @bio to represent the remaining sectors. | 
|  | * | 
|  | * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's | 
|  | * responsibility to ensure that @bio is not freed before the split. | 
|  | */ | 
|  | struct bio *bio_split(struct bio *bio, int sectors, | 
|  | gfp_t gfp, struct bio_set *bs) | 
|  | { | 
|  | struct bio *split = NULL; | 
|  |  | 
|  | BUG_ON(sectors <= 0); | 
|  | BUG_ON(sectors >= bio_sectors(bio)); | 
|  |  | 
|  | split = bio_clone_fast(bio, gfp, bs); | 
|  | if (!split) | 
|  | return NULL; | 
|  |  | 
|  | split->bi_iter.bi_size = sectors << 9; | 
|  |  | 
|  | if (bio_integrity(split)) | 
|  | bio_integrity_trim(split, 0, sectors); | 
|  |  | 
|  | bio_advance(bio, split->bi_iter.bi_size); | 
|  |  | 
|  | return split; | 
|  | } | 
|  | EXPORT_SYMBOL(bio_split); | 
|  |  | 
|  | /** | 
|  | * bio_trim - trim a bio | 
|  | * @bio:	bio to trim | 
|  | * @offset:	number of sectors to trim from the front of @bio | 
|  | * @size:	size we want to trim @bio to, in sectors | 
|  | */ | 
|  | void bio_trim(struct bio *bio, int offset, int size) | 
|  | { | 
|  | /* 'bio' is a cloned bio which we need to trim to match | 
|  | * the given offset and size. | 
|  | */ | 
|  |  | 
|  | size <<= 9; | 
|  | if (offset == 0 && size == bio->bi_iter.bi_size) | 
|  | return; | 
|  |  | 
|  | clear_bit(BIO_SEG_VALID, &bio->bi_flags); | 
|  |  | 
|  | bio_advance(bio, offset << 9); | 
|  |  | 
|  | bio->bi_iter.bi_size = size; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(bio_trim); | 
|  |  | 
|  | /* | 
|  | * create memory pools for biovec's in a bio_set. | 
|  | * use the global biovec slabs created for general use. | 
|  | */ | 
|  | mempool_t *biovec_create_pool(int pool_entries) | 
|  | { | 
|  | struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX; | 
|  |  | 
|  | return mempool_create_slab_pool(pool_entries, bp->slab); | 
|  | } | 
|  |  | 
|  | void bioset_free(struct bio_set *bs) | 
|  | { | 
|  | if (bs->rescue_workqueue) | 
|  | destroy_workqueue(bs->rescue_workqueue); | 
|  |  | 
|  | if (bs->bio_pool) | 
|  | mempool_destroy(bs->bio_pool); | 
|  |  | 
|  | if (bs->bvec_pool) | 
|  | mempool_destroy(bs->bvec_pool); | 
|  |  | 
|  | bioset_integrity_free(bs); | 
|  | bio_put_slab(bs); | 
|  |  | 
|  | kfree(bs); | 
|  | } | 
|  | EXPORT_SYMBOL(bioset_free); | 
|  |  | 
|  | /** | 
|  | * bioset_create  - Create a bio_set | 
|  | * @pool_size:	Number of bio and bio_vecs to cache in the mempool | 
|  | * @front_pad:	Number of bytes to allocate in front of the returned bio | 
|  | * | 
|  | * Description: | 
|  | *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller | 
|  | *    to ask for a number of bytes to be allocated in front of the bio. | 
|  | *    Front pad allocation is useful for embedding the bio inside | 
|  | *    another structure, to avoid allocating extra data to go with the bio. | 
|  | *    Note that the bio must be embedded at the END of that structure always, | 
|  | *    or things will break badly. | 
|  | */ | 
|  | struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad) | 
|  | { | 
|  | unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); | 
|  | struct bio_set *bs; | 
|  |  | 
|  | bs = kzalloc(sizeof(*bs), GFP_KERNEL); | 
|  | if (!bs) | 
|  | return NULL; | 
|  |  | 
|  | bs->front_pad = front_pad; | 
|  |  | 
|  | spin_lock_init(&bs->rescue_lock); | 
|  | bio_list_init(&bs->rescue_list); | 
|  | INIT_WORK(&bs->rescue_work, bio_alloc_rescue); | 
|  |  | 
|  | bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); | 
|  | if (!bs->bio_slab) { | 
|  | kfree(bs); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab); | 
|  | if (!bs->bio_pool) | 
|  | goto bad; | 
|  |  | 
|  | bs->bvec_pool = biovec_create_pool(pool_size); | 
|  | if (!bs->bvec_pool) | 
|  | goto bad; | 
|  |  | 
|  | bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); | 
|  | if (!bs->rescue_workqueue) | 
|  | goto bad; | 
|  |  | 
|  | return bs; | 
|  | bad: | 
|  | bioset_free(bs); | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(bioset_create); | 
|  |  | 
|  | #ifdef CONFIG_BLK_CGROUP | 
|  | /** | 
|  | * bio_associate_current - associate a bio with %current | 
|  | * @bio: target bio | 
|  | * | 
|  | * Associate @bio with %current if it hasn't been associated yet.  Block | 
|  | * layer will treat @bio as if it were issued by %current no matter which | 
|  | * task actually issues it. | 
|  | * | 
|  | * This function takes an extra reference of @task's io_context and blkcg | 
|  | * which will be put when @bio is released.  The caller must own @bio, | 
|  | * ensure %current->io_context exists, and is responsible for synchronizing | 
|  | * calls to this function. | 
|  | */ | 
|  | int bio_associate_current(struct bio *bio) | 
|  | { | 
|  | struct io_context *ioc; | 
|  | struct cgroup_subsys_state *css; | 
|  |  | 
|  | if (bio->bi_ioc) | 
|  | return -EBUSY; | 
|  |  | 
|  | ioc = current->io_context; | 
|  | if (!ioc) | 
|  | return -ENOENT; | 
|  |  | 
|  | /* acquire active ref on @ioc and associate */ | 
|  | get_io_context_active(ioc); | 
|  | bio->bi_ioc = ioc; | 
|  |  | 
|  | /* associate blkcg if exists */ | 
|  | rcu_read_lock(); | 
|  | css = task_css(current, blkio_cgrp_id); | 
|  | if (css && css_tryget_online(css)) | 
|  | bio->bi_css = css; | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bio_disassociate_task - undo bio_associate_current() | 
|  | * @bio: target bio | 
|  | */ | 
|  | void bio_disassociate_task(struct bio *bio) | 
|  | { | 
|  | if (bio->bi_ioc) { | 
|  | put_io_context(bio->bi_ioc); | 
|  | bio->bi_ioc = NULL; | 
|  | } | 
|  | if (bio->bi_css) { | 
|  | css_put(bio->bi_css); | 
|  | bio->bi_css = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_BLK_CGROUP */ | 
|  |  | 
|  | static void __init biovec_init_slabs(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < BIOVEC_NR_POOLS; i++) { | 
|  | int size; | 
|  | struct biovec_slab *bvs = bvec_slabs + i; | 
|  |  | 
|  | if (bvs->nr_vecs <= BIO_INLINE_VECS) { | 
|  | bvs->slab = NULL; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | size = bvs->nr_vecs * sizeof(struct bio_vec); | 
|  | bvs->slab = kmem_cache_create(bvs->name, size, 0, | 
|  | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __init init_bio(void) | 
|  | { | 
|  | bio_slab_max = 2; | 
|  | bio_slab_nr = 0; | 
|  | bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL); | 
|  | if (!bio_slabs) | 
|  | panic("bio: can't allocate bios\n"); | 
|  |  | 
|  | bio_integrity_init(); | 
|  | biovec_init_slabs(); | 
|  |  | 
|  | fs_bio_set = bioset_create(BIO_POOL_SIZE, 0); | 
|  | if (!fs_bio_set) | 
|  | panic("bio: can't allocate bios\n"); | 
|  |  | 
|  | if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE)) | 
|  | panic("bio: can't create integrity pool\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | subsys_initcall(init_bio); |