| /* |
| * linux/kernel/time.c |
| * |
| * Copyright (C) 1991, 1992 Linus Torvalds |
| * |
| * This file contains the interface functions for the various |
| * time related system calls: time, stime, gettimeofday, settimeofday, |
| * adjtime |
| */ |
| /* |
| * Modification history kernel/time.c |
| * |
| * 1993-09-02 Philip Gladstone |
| * Created file with time related functions from sched.c and adjtimex() |
| * 1993-10-08 Torsten Duwe |
| * adjtime interface update and CMOS clock write code |
| * 1995-08-13 Torsten Duwe |
| * kernel PLL updated to 1994-12-13 specs (rfc-1589) |
| * 1999-01-16 Ulrich Windl |
| * Introduced error checking for many cases in adjtimex(). |
| * Updated NTP code according to technical memorandum Jan '96 |
| * "A Kernel Model for Precision Timekeeping" by Dave Mills |
| * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10) |
| * (Even though the technical memorandum forbids it) |
| * 2004-07-14 Christoph Lameter |
| * Added getnstimeofday to allow the posix timer functions to return |
| * with nanosecond accuracy |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/timex.h> |
| #include <linux/errno.h> |
| #include <linux/smp_lock.h> |
| #include <linux/syscalls.h> |
| #include <linux/security.h> |
| #include <linux/fs.h> |
| #include <linux/module.h> |
| |
| #include <asm/uaccess.h> |
| #include <asm/unistd.h> |
| |
| /* |
| * The timezone where the local system is located. Used as a default by some |
| * programs who obtain this value by using gettimeofday. |
| */ |
| struct timezone sys_tz; |
| |
| EXPORT_SYMBOL(sys_tz); |
| |
| #ifdef __ARCH_WANT_SYS_TIME |
| |
| /* |
| * sys_time() can be implemented in user-level using |
| * sys_gettimeofday(). Is this for backwards compatibility? If so, |
| * why not move it into the appropriate arch directory (for those |
| * architectures that need it). |
| */ |
| asmlinkage long sys_time(time_t __user * tloc) |
| { |
| time_t i; |
| struct timeval tv; |
| |
| do_gettimeofday(&tv); |
| i = tv.tv_sec; |
| |
| if (tloc) { |
| if (put_user(i,tloc)) |
| i = -EFAULT; |
| } |
| return i; |
| } |
| |
| /* |
| * sys_stime() can be implemented in user-level using |
| * sys_settimeofday(). Is this for backwards compatibility? If so, |
| * why not move it into the appropriate arch directory (for those |
| * architectures that need it). |
| */ |
| |
| asmlinkage long sys_stime(time_t __user *tptr) |
| { |
| struct timespec tv; |
| int err; |
| |
| if (get_user(tv.tv_sec, tptr)) |
| return -EFAULT; |
| |
| tv.tv_nsec = 0; |
| |
| err = security_settime(&tv, NULL); |
| if (err) |
| return err; |
| |
| do_settimeofday(&tv); |
| return 0; |
| } |
| |
| #endif /* __ARCH_WANT_SYS_TIME */ |
| |
| asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz) |
| { |
| if (likely(tv != NULL)) { |
| struct timeval ktv; |
| do_gettimeofday(&ktv); |
| if (copy_to_user(tv, &ktv, sizeof(ktv))) |
| return -EFAULT; |
| } |
| if (unlikely(tz != NULL)) { |
| if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) |
| return -EFAULT; |
| } |
| return 0; |
| } |
| |
| /* |
| * Adjust the time obtained from the CMOS to be UTC time instead of |
| * local time. |
| * |
| * This is ugly, but preferable to the alternatives. Otherwise we |
| * would either need to write a program to do it in /etc/rc (and risk |
| * confusion if the program gets run more than once; it would also be |
| * hard to make the program warp the clock precisely n hours) or |
| * compile in the timezone information into the kernel. Bad, bad.... |
| * |
| * - TYT, 1992-01-01 |
| * |
| * The best thing to do is to keep the CMOS clock in universal time (UTC) |
| * as real UNIX machines always do it. This avoids all headaches about |
| * daylight saving times and warping kernel clocks. |
| */ |
| inline static void warp_clock(void) |
| { |
| write_seqlock_irq(&xtime_lock); |
| wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60; |
| xtime.tv_sec += sys_tz.tz_minuteswest * 60; |
| time_interpolator_reset(); |
| write_sequnlock_irq(&xtime_lock); |
| clock_was_set(); |
| } |
| |
| /* |
| * In case for some reason the CMOS clock has not already been running |
| * in UTC, but in some local time: The first time we set the timezone, |
| * we will warp the clock so that it is ticking UTC time instead of |
| * local time. Presumably, if someone is setting the timezone then we |
| * are running in an environment where the programs understand about |
| * timezones. This should be done at boot time in the /etc/rc script, |
| * as soon as possible, so that the clock can be set right. Otherwise, |
| * various programs will get confused when the clock gets warped. |
| */ |
| |
| int do_sys_settimeofday(struct timespec *tv, struct timezone *tz) |
| { |
| static int firsttime = 1; |
| int error = 0; |
| |
| error = security_settime(tv, tz); |
| if (error) |
| return error; |
| |
| if (tz) { |
| /* SMP safe, global irq locking makes it work. */ |
| sys_tz = *tz; |
| if (firsttime) { |
| firsttime = 0; |
| if (!tv) |
| warp_clock(); |
| } |
| } |
| if (tv) |
| { |
| /* SMP safe, again the code in arch/foo/time.c should |
| * globally block out interrupts when it runs. |
| */ |
| return do_settimeofday(tv); |
| } |
| return 0; |
| } |
| |
| asmlinkage long sys_settimeofday(struct timeval __user *tv, |
| struct timezone __user *tz) |
| { |
| struct timeval user_tv; |
| struct timespec new_ts; |
| struct timezone new_tz; |
| |
| if (tv) { |
| if (copy_from_user(&user_tv, tv, sizeof(*tv))) |
| return -EFAULT; |
| new_ts.tv_sec = user_tv.tv_sec; |
| new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC; |
| } |
| if (tz) { |
| if (copy_from_user(&new_tz, tz, sizeof(*tz))) |
| return -EFAULT; |
| } |
| |
| return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL); |
| } |
| |
| long pps_offset; /* pps time offset (us) */ |
| long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ |
| |
| long pps_freq; /* frequency offset (scaled ppm) */ |
| long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ |
| |
| long pps_valid = PPS_VALID; /* pps signal watchdog counter */ |
| |
| int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ |
| |
| long pps_jitcnt; /* jitter limit exceeded */ |
| long pps_calcnt; /* calibration intervals */ |
| long pps_errcnt; /* calibration errors */ |
| long pps_stbcnt; /* stability limit exceeded */ |
| |
| /* hook for a loadable hardpps kernel module */ |
| void (*hardpps_ptr)(struct timeval *); |
| |
| /* we call this to notify the arch when the clock is being |
| * controlled. If no such arch routine, do nothing. |
| */ |
| void __attribute__ ((weak)) notify_arch_cmos_timer(void) |
| { |
| return; |
| } |
| |
| /* adjtimex mainly allows reading (and writing, if superuser) of |
| * kernel time-keeping variables. used by xntpd. |
| */ |
| int do_adjtimex(struct timex *txc) |
| { |
| long ltemp, mtemp, save_adjust; |
| int result; |
| |
| /* In order to modify anything, you gotta be super-user! */ |
| if (txc->modes && !capable(CAP_SYS_TIME)) |
| return -EPERM; |
| |
| /* Now we validate the data before disabling interrupts */ |
| |
| if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) |
| /* singleshot must not be used with any other mode bits */ |
| if (txc->modes != ADJ_OFFSET_SINGLESHOT) |
| return -EINVAL; |
| |
| if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET)) |
| /* adjustment Offset limited to +- .512 seconds */ |
| if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE ) |
| return -EINVAL; |
| |
| /* if the quartz is off by more than 10% something is VERY wrong ! */ |
| if (txc->modes & ADJ_TICK) |
| if (txc->tick < 900000/USER_HZ || |
| txc->tick > 1100000/USER_HZ) |
| return -EINVAL; |
| |
| write_seqlock_irq(&xtime_lock); |
| result = time_state; /* mostly `TIME_OK' */ |
| |
| /* Save for later - semantics of adjtime is to return old value */ |
| save_adjust = time_next_adjust ? time_next_adjust : time_adjust; |
| |
| #if 0 /* STA_CLOCKERR is never set yet */ |
| time_status &= ~STA_CLOCKERR; /* reset STA_CLOCKERR */ |
| #endif |
| /* If there are input parameters, then process them */ |
| if (txc->modes) |
| { |
| if (txc->modes & ADJ_STATUS) /* only set allowed bits */ |
| time_status = (txc->status & ~STA_RONLY) | |
| (time_status & STA_RONLY); |
| |
| if (txc->modes & ADJ_FREQUENCY) { /* p. 22 */ |
| if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) { |
| result = -EINVAL; |
| goto leave; |
| } |
| time_freq = txc->freq - pps_freq; |
| } |
| |
| if (txc->modes & ADJ_MAXERROR) { |
| if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) { |
| result = -EINVAL; |
| goto leave; |
| } |
| time_maxerror = txc->maxerror; |
| } |
| |
| if (txc->modes & ADJ_ESTERROR) { |
| if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) { |
| result = -EINVAL; |
| goto leave; |
| } |
| time_esterror = txc->esterror; |
| } |
| |
| if (txc->modes & ADJ_TIMECONST) { /* p. 24 */ |
| if (txc->constant < 0) { /* NTP v4 uses values > 6 */ |
| result = -EINVAL; |
| goto leave; |
| } |
| time_constant = txc->constant; |
| } |
| |
| if (txc->modes & ADJ_OFFSET) { /* values checked earlier */ |
| if (txc->modes == ADJ_OFFSET_SINGLESHOT) { |
| /* adjtime() is independent from ntp_adjtime() */ |
| if ((time_next_adjust = txc->offset) == 0) |
| time_adjust = 0; |
| } |
| else if ( time_status & (STA_PLL | STA_PPSTIME) ) { |
| ltemp = (time_status & (STA_PPSTIME | STA_PPSSIGNAL)) == |
| (STA_PPSTIME | STA_PPSSIGNAL) ? |
| pps_offset : txc->offset; |
| |
| /* |
| * Scale the phase adjustment and |
| * clamp to the operating range. |
| */ |
| if (ltemp > MAXPHASE) |
| time_offset = MAXPHASE << SHIFT_UPDATE; |
| else if (ltemp < -MAXPHASE) |
| time_offset = -(MAXPHASE << SHIFT_UPDATE); |
| else |
| time_offset = ltemp << SHIFT_UPDATE; |
| |
| /* |
| * Select whether the frequency is to be controlled |
| * and in which mode (PLL or FLL). Clamp to the operating |
| * range. Ugly multiply/divide should be replaced someday. |
| */ |
| |
| if (time_status & STA_FREQHOLD || time_reftime == 0) |
| time_reftime = xtime.tv_sec; |
| mtemp = xtime.tv_sec - time_reftime; |
| time_reftime = xtime.tv_sec; |
| if (time_status & STA_FLL) { |
| if (mtemp >= MINSEC) { |
| ltemp = (time_offset / mtemp) << (SHIFT_USEC - |
| SHIFT_UPDATE); |
| if (ltemp < 0) |
| time_freq -= -ltemp >> SHIFT_KH; |
| else |
| time_freq += ltemp >> SHIFT_KH; |
| } else /* calibration interval too short (p. 12) */ |
| result = TIME_ERROR; |
| } else { /* PLL mode */ |
| if (mtemp < MAXSEC) { |
| ltemp *= mtemp; |
| if (ltemp < 0) |
| time_freq -= -ltemp >> (time_constant + |
| time_constant + |
| SHIFT_KF - SHIFT_USEC); |
| else |
| time_freq += ltemp >> (time_constant + |
| time_constant + |
| SHIFT_KF - SHIFT_USEC); |
| } else /* calibration interval too long (p. 12) */ |
| result = TIME_ERROR; |
| } |
| if (time_freq > time_tolerance) |
| time_freq = time_tolerance; |
| else if (time_freq < -time_tolerance) |
| time_freq = -time_tolerance; |
| } /* STA_PLL || STA_PPSTIME */ |
| } /* txc->modes & ADJ_OFFSET */ |
| if (txc->modes & ADJ_TICK) { |
| tick_usec = txc->tick; |
| tick_nsec = TICK_USEC_TO_NSEC(tick_usec); |
| } |
| } /* txc->modes */ |
| leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0 |
| || ((time_status & (STA_PPSFREQ|STA_PPSTIME)) != 0 |
| && (time_status & STA_PPSSIGNAL) == 0) |
| /* p. 24, (b) */ |
| || ((time_status & (STA_PPSTIME|STA_PPSJITTER)) |
| == (STA_PPSTIME|STA_PPSJITTER)) |
| /* p. 24, (c) */ |
| || ((time_status & STA_PPSFREQ) != 0 |
| && (time_status & (STA_PPSWANDER|STA_PPSERROR)) != 0)) |
| /* p. 24, (d) */ |
| result = TIME_ERROR; |
| |
| if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) |
| txc->offset = save_adjust; |
| else { |
| if (time_offset < 0) |
| txc->offset = -(-time_offset >> SHIFT_UPDATE); |
| else |
| txc->offset = time_offset >> SHIFT_UPDATE; |
| } |
| txc->freq = time_freq + pps_freq; |
| txc->maxerror = time_maxerror; |
| txc->esterror = time_esterror; |
| txc->status = time_status; |
| txc->constant = time_constant; |
| txc->precision = time_precision; |
| txc->tolerance = time_tolerance; |
| txc->tick = tick_usec; |
| txc->ppsfreq = pps_freq; |
| txc->jitter = pps_jitter >> PPS_AVG; |
| txc->shift = pps_shift; |
| txc->stabil = pps_stabil; |
| txc->jitcnt = pps_jitcnt; |
| txc->calcnt = pps_calcnt; |
| txc->errcnt = pps_errcnt; |
| txc->stbcnt = pps_stbcnt; |
| write_sequnlock_irq(&xtime_lock); |
| do_gettimeofday(&txc->time); |
| notify_arch_cmos_timer(); |
| return(result); |
| } |
| |
| asmlinkage long sys_adjtimex(struct timex __user *txc_p) |
| { |
| struct timex txc; /* Local copy of parameter */ |
| int ret; |
| |
| /* Copy the user data space into the kernel copy |
| * structure. But bear in mind that the structures |
| * may change |
| */ |
| if(copy_from_user(&txc, txc_p, sizeof(struct timex))) |
| return -EFAULT; |
| ret = do_adjtimex(&txc); |
| return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret; |
| } |
| |
| inline struct timespec current_kernel_time(void) |
| { |
| struct timespec now; |
| unsigned long seq; |
| |
| do { |
| seq = read_seqbegin(&xtime_lock); |
| |
| now = xtime; |
| } while (read_seqretry(&xtime_lock, seq)); |
| |
| return now; |
| } |
| |
| EXPORT_SYMBOL(current_kernel_time); |
| |
| /** |
| * current_fs_time - Return FS time |
| * @sb: Superblock. |
| * |
| * Return the current time truncated to the time granuality supported by |
| * the fs. |
| */ |
| struct timespec current_fs_time(struct super_block *sb) |
| { |
| struct timespec now = current_kernel_time(); |
| return timespec_trunc(now, sb->s_time_gran); |
| } |
| EXPORT_SYMBOL(current_fs_time); |
| |
| /** |
| * timespec_trunc - Truncate timespec to a granuality |
| * @t: Timespec |
| * @gran: Granuality in ns. |
| * |
| * Truncate a timespec to a granuality. gran must be smaller than a second. |
| * Always rounds down. |
| * |
| * This function should be only used for timestamps returned by |
| * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because |
| * it doesn't handle the better resolution of the later. |
| */ |
| struct timespec timespec_trunc(struct timespec t, unsigned gran) |
| { |
| /* |
| * Division is pretty slow so avoid it for common cases. |
| * Currently current_kernel_time() never returns better than |
| * jiffies resolution. Exploit that. |
| */ |
| if (gran <= jiffies_to_usecs(1) * 1000) { |
| /* nothing */ |
| } else if (gran == 1000000000) { |
| t.tv_nsec = 0; |
| } else { |
| t.tv_nsec -= t.tv_nsec % gran; |
| } |
| return t; |
| } |
| EXPORT_SYMBOL(timespec_trunc); |
| |
| #ifdef CONFIG_TIME_INTERPOLATION |
| void getnstimeofday (struct timespec *tv) |
| { |
| unsigned long seq,sec,nsec; |
| |
| do { |
| seq = read_seqbegin(&xtime_lock); |
| sec = xtime.tv_sec; |
| nsec = xtime.tv_nsec+time_interpolator_get_offset(); |
| } while (unlikely(read_seqretry(&xtime_lock, seq))); |
| |
| while (unlikely(nsec >= NSEC_PER_SEC)) { |
| nsec -= NSEC_PER_SEC; |
| ++sec; |
| } |
| tv->tv_sec = sec; |
| tv->tv_nsec = nsec; |
| } |
| EXPORT_SYMBOL_GPL(getnstimeofday); |
| |
| int do_settimeofday (struct timespec *tv) |
| { |
| time_t wtm_sec, sec = tv->tv_sec; |
| long wtm_nsec, nsec = tv->tv_nsec; |
| |
| if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) |
| return -EINVAL; |
| |
| write_seqlock_irq(&xtime_lock); |
| { |
| /* |
| * This is revolting. We need to set "xtime" correctly. However, the value |
| * in this location is the value at the most recent update of wall time. |
| * Discover what correction gettimeofday would have done, and then undo |
| * it! |
| */ |
| nsec -= time_interpolator_get_offset(); |
| |
| wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); |
| wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); |
| |
| set_normalized_timespec(&xtime, sec, nsec); |
| set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); |
| |
| time_adjust = 0; /* stop active adjtime() */ |
| time_status |= STA_UNSYNC; |
| time_maxerror = NTP_PHASE_LIMIT; |
| time_esterror = NTP_PHASE_LIMIT; |
| time_interpolator_reset(); |
| } |
| write_sequnlock_irq(&xtime_lock); |
| clock_was_set(); |
| return 0; |
| } |
| |
| void do_gettimeofday (struct timeval *tv) |
| { |
| unsigned long seq, nsec, usec, sec, offset; |
| do { |
| seq = read_seqbegin(&xtime_lock); |
| offset = time_interpolator_get_offset(); |
| sec = xtime.tv_sec; |
| nsec = xtime.tv_nsec; |
| } while (unlikely(read_seqretry(&xtime_lock, seq))); |
| |
| usec = (nsec + offset) / 1000; |
| |
| while (unlikely(usec >= USEC_PER_SEC)) { |
| usec -= USEC_PER_SEC; |
| ++sec; |
| } |
| |
| tv->tv_sec = sec; |
| tv->tv_usec = usec; |
| } |
| |
| EXPORT_SYMBOL(do_gettimeofday); |
| |
| |
| #else |
| /* |
| * Simulate gettimeofday using do_gettimeofday which only allows a timeval |
| * and therefore only yields usec accuracy |
| */ |
| void getnstimeofday(struct timespec *tv) |
| { |
| struct timeval x; |
| |
| do_gettimeofday(&x); |
| tv->tv_sec = x.tv_sec; |
| tv->tv_nsec = x.tv_usec * NSEC_PER_USEC; |
| } |
| #endif |
| |
| #if (BITS_PER_LONG < 64) |
| u64 get_jiffies_64(void) |
| { |
| unsigned long seq; |
| u64 ret; |
| |
| do { |
| seq = read_seqbegin(&xtime_lock); |
| ret = jiffies_64; |
| } while (read_seqretry(&xtime_lock, seq)); |
| return ret; |
| } |
| |
| EXPORT_SYMBOL(get_jiffies_64); |
| #endif |
| |
| EXPORT_SYMBOL(jiffies); |