blob: 88c6a99ce53cfb675c9fb1198ca7f5328be3577e [file] [log] [blame]
/*
* net/sched/sch_generic.c Generic packet scheduler routines.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
* Jamal Hadi Salim, <hadi@cyberus.ca> 990601
* - Ingress support
*/
#include <asm/uaccess.h>
#include <asm/system.h>
#include <linux/bitops.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/in.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <linux/init.h>
#include <linux/rcupdate.h>
#include <linux/list.h>
#include <net/sock.h>
#include <net/pkt_sched.h>
/* Main transmission queue. */
/* Main qdisc structure lock.
However, modifications
to data, participating in scheduling must be additionally
protected with dev->queue_lock spinlock.
The idea is the following:
- enqueue, dequeue are serialized via top level device
spinlock dev->queue_lock.
- tree walking is protected by read_lock(qdisc_tree_lock)
and this lock is used only in process context.
- updates to tree are made only under rtnl semaphore,
hence this lock may be made without local bh disabling.
qdisc_tree_lock must be grabbed BEFORE dev->queue_lock!
*/
DEFINE_RWLOCK(qdisc_tree_lock);
void qdisc_lock_tree(struct net_device *dev)
{
write_lock(&qdisc_tree_lock);
spin_lock_bh(&dev->queue_lock);
}
void qdisc_unlock_tree(struct net_device *dev)
{
spin_unlock_bh(&dev->queue_lock);
write_unlock(&qdisc_tree_lock);
}
/*
dev->queue_lock serializes queue accesses for this device
AND dev->qdisc pointer itself.
netif_tx_lock serializes accesses to device driver.
dev->queue_lock and netif_tx_lock are mutually exclusive,
if one is grabbed, another must be free.
*/
/* Kick device.
Note, that this procedure can be called by a watchdog timer, so that
we do not check dev->tbusy flag here.
Returns: 0 - queue is empty.
>0 - queue is not empty, but throttled.
<0 - queue is not empty. Device is throttled, if dev->tbusy != 0.
NOTE: Called under dev->queue_lock with locally disabled BH.
*/
static inline int qdisc_restart(struct net_device *dev)
{
struct Qdisc *q = dev->qdisc;
struct sk_buff *skb;
/* Dequeue packet */
if (((skb = dev->gso_skb)) || ((skb = q->dequeue(q)))) {
unsigned nolock = (dev->features & NETIF_F_LLTX);
dev->gso_skb = NULL;
/*
* When the driver has LLTX set it does its own locking
* in start_xmit. No need to add additional overhead by
* locking again. These checks are worth it because
* even uncongested locks can be quite expensive.
* The driver can do trylock like here too, in case
* of lock congestion it should return -1 and the packet
* will be requeued.
*/
if (!nolock) {
if (!netif_tx_trylock(dev)) {
collision:
/* So, someone grabbed the driver. */
/* It may be transient configuration error,
when hard_start_xmit() recurses. We detect
it by checking xmit owner and drop the
packet when deadloop is detected.
*/
if (dev->xmit_lock_owner == smp_processor_id()) {
kfree_skb(skb);
if (net_ratelimit())
printk(KERN_DEBUG "Dead loop on netdevice %s, fix it urgently!\n", dev->name);
return -1;
}
__get_cpu_var(netdev_rx_stat).cpu_collision++;
goto requeue;
}
}
{
/* And release queue */
spin_unlock(&dev->queue_lock);
if (!netif_queue_stopped(dev)) {
int ret;
ret = dev_hard_start_xmit(skb, dev);
if (ret == NETDEV_TX_OK) {
if (!nolock) {
netif_tx_unlock(dev);
}
spin_lock(&dev->queue_lock);
return -1;
}
if (ret == NETDEV_TX_LOCKED && nolock) {
spin_lock(&dev->queue_lock);
goto collision;
}
}
/* NETDEV_TX_BUSY - we need to requeue */
/* Release the driver */
if (!nolock) {
netif_tx_unlock(dev);
}
spin_lock(&dev->queue_lock);
q = dev->qdisc;
}
/* Device kicked us out :(
This is possible in three cases:
0. driver is locked
1. fastroute is enabled
2. device cannot determine busy state
before start of transmission (f.e. dialout)
3. device is buggy (ppp)
*/
requeue:
if (skb->next)
dev->gso_skb = skb;
else
q->ops->requeue(skb, q);
netif_schedule(dev);
return 1;
}
BUG_ON((int) q->q.qlen < 0);
return q->q.qlen;
}
void __qdisc_run(struct net_device *dev)
{
if (unlikely(dev->qdisc == &noop_qdisc))
goto out;
while (qdisc_restart(dev) < 0 && !netif_queue_stopped(dev))
/* NOTHING */;
out:
clear_bit(__LINK_STATE_QDISC_RUNNING, &dev->state);
}
static void dev_watchdog(unsigned long arg)
{
struct net_device *dev = (struct net_device *)arg;
netif_tx_lock(dev);
if (dev->qdisc != &noop_qdisc) {
if (netif_device_present(dev) &&
netif_running(dev) &&
netif_carrier_ok(dev)) {
if (netif_queue_stopped(dev) &&
time_after(jiffies, dev->trans_start + dev->watchdog_timeo)) {
printk(KERN_INFO "NETDEV WATCHDOG: %s: transmit timed out\n",
dev->name);
dev->tx_timeout(dev);
}
if (!mod_timer(&dev->watchdog_timer, jiffies + dev->watchdog_timeo))
dev_hold(dev);
}
}
netif_tx_unlock(dev);
dev_put(dev);
}
static void dev_watchdog_init(struct net_device *dev)
{
init_timer(&dev->watchdog_timer);
dev->watchdog_timer.data = (unsigned long)dev;
dev->watchdog_timer.function = dev_watchdog;
}
void __netdev_watchdog_up(struct net_device *dev)
{
if (dev->tx_timeout) {
if (dev->watchdog_timeo <= 0)
dev->watchdog_timeo = 5*HZ;
if (!mod_timer(&dev->watchdog_timer, jiffies + dev->watchdog_timeo))
dev_hold(dev);
}
}
static void dev_watchdog_up(struct net_device *dev)
{
__netdev_watchdog_up(dev);
}
static void dev_watchdog_down(struct net_device *dev)
{
netif_tx_lock_bh(dev);
if (del_timer(&dev->watchdog_timer))
dev_put(dev);
netif_tx_unlock_bh(dev);
}
void netif_carrier_on(struct net_device *dev)
{
if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state))
linkwatch_fire_event(dev);
if (netif_running(dev))
__netdev_watchdog_up(dev);
}
void netif_carrier_off(struct net_device *dev)
{
if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state))
linkwatch_fire_event(dev);
}
/* "NOOP" scheduler: the best scheduler, recommended for all interfaces
under all circumstances. It is difficult to invent anything faster or
cheaper.
*/
static int noop_enqueue(struct sk_buff *skb, struct Qdisc * qdisc)
{
kfree_skb(skb);
return NET_XMIT_CN;
}
static struct sk_buff *noop_dequeue(struct Qdisc * qdisc)
{
return NULL;
}
static int noop_requeue(struct sk_buff *skb, struct Qdisc* qdisc)
{
if (net_ratelimit())
printk(KERN_DEBUG "%s deferred output. It is buggy.\n",
skb->dev->name);
kfree_skb(skb);
return NET_XMIT_CN;
}
struct Qdisc_ops noop_qdisc_ops = {
.id = "noop",
.priv_size = 0,
.enqueue = noop_enqueue,
.dequeue = noop_dequeue,
.requeue = noop_requeue,
.owner = THIS_MODULE,
};
struct Qdisc noop_qdisc = {
.enqueue = noop_enqueue,
.dequeue = noop_dequeue,
.flags = TCQ_F_BUILTIN,
.ops = &noop_qdisc_ops,
.list = LIST_HEAD_INIT(noop_qdisc.list),
};
static struct Qdisc_ops noqueue_qdisc_ops = {
.id = "noqueue",
.priv_size = 0,
.enqueue = noop_enqueue,
.dequeue = noop_dequeue,
.requeue = noop_requeue,
.owner = THIS_MODULE,
};
static struct Qdisc noqueue_qdisc = {
.enqueue = NULL,
.dequeue = noop_dequeue,
.flags = TCQ_F_BUILTIN,
.ops = &noqueue_qdisc_ops,
.list = LIST_HEAD_INIT(noqueue_qdisc.list),
};
static const u8 prio2band[TC_PRIO_MAX+1] =
{ 1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1 };
/* 3-band FIFO queue: old style, but should be a bit faster than
generic prio+fifo combination.
*/
#define PFIFO_FAST_BANDS 3
static inline struct sk_buff_head *prio2list(struct sk_buff *skb,
struct Qdisc *qdisc)
{
struct sk_buff_head *list = qdisc_priv(qdisc);
return list + prio2band[skb->priority & TC_PRIO_MAX];
}
static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc* qdisc)
{
struct sk_buff_head *list = prio2list(skb, qdisc);
if (skb_queue_len(list) < qdisc->dev->tx_queue_len) {
qdisc->q.qlen++;
return __qdisc_enqueue_tail(skb, qdisc, list);
}
return qdisc_drop(skb, qdisc);
}
static struct sk_buff *pfifo_fast_dequeue(struct Qdisc* qdisc)
{
int prio;
struct sk_buff_head *list = qdisc_priv(qdisc);
for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
if (!skb_queue_empty(list + prio)) {
qdisc->q.qlen--;
return __qdisc_dequeue_head(qdisc, list + prio);
}
}
return NULL;
}
static int pfifo_fast_requeue(struct sk_buff *skb, struct Qdisc* qdisc)
{
qdisc->q.qlen++;
return __qdisc_requeue(skb, qdisc, prio2list(skb, qdisc));
}
static void pfifo_fast_reset(struct Qdisc* qdisc)
{
int prio;
struct sk_buff_head *list = qdisc_priv(qdisc);
for (prio = 0; prio < PFIFO_FAST_BANDS; prio++)
__qdisc_reset_queue(qdisc, list + prio);
qdisc->qstats.backlog = 0;
qdisc->q.qlen = 0;
}
static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb)
{
struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS };
memcpy(&opt.priomap, prio2band, TC_PRIO_MAX+1);
RTA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt);
return skb->len;
rtattr_failure:
return -1;
}
static int pfifo_fast_init(struct Qdisc *qdisc, struct rtattr *opt)
{
int prio;
struct sk_buff_head *list = qdisc_priv(qdisc);
for (prio = 0; prio < PFIFO_FAST_BANDS; prio++)
skb_queue_head_init(list + prio);
return 0;
}
static struct Qdisc_ops pfifo_fast_ops = {
.id = "pfifo_fast",
.priv_size = PFIFO_FAST_BANDS * sizeof(struct sk_buff_head),
.enqueue = pfifo_fast_enqueue,
.dequeue = pfifo_fast_dequeue,
.requeue = pfifo_fast_requeue,
.init = pfifo_fast_init,
.reset = pfifo_fast_reset,
.dump = pfifo_fast_dump,
.owner = THIS_MODULE,
};
struct Qdisc *qdisc_alloc(struct net_device *dev, struct Qdisc_ops *ops)
{
void *p;
struct Qdisc *sch;
unsigned int size;
int err = -ENOBUFS;
/* ensure that the Qdisc and the private data are 32-byte aligned */
size = QDISC_ALIGN(sizeof(*sch));
size += ops->priv_size + (QDISC_ALIGNTO - 1);
p = kzalloc(size, GFP_KERNEL);
if (!p)
goto errout;
sch = (struct Qdisc *) QDISC_ALIGN((unsigned long) p);
sch->padded = (char *) sch - (char *) p;
INIT_LIST_HEAD(&sch->list);
skb_queue_head_init(&sch->q);
sch->ops = ops;
sch->enqueue = ops->enqueue;
sch->dequeue = ops->dequeue;
sch->dev = dev;
dev_hold(dev);
sch->stats_lock = &dev->queue_lock;
atomic_set(&sch->refcnt, 1);
return sch;
errout:
return ERR_PTR(-err);
}
struct Qdisc * qdisc_create_dflt(struct net_device *dev, struct Qdisc_ops *ops)
{
struct Qdisc *sch;
sch = qdisc_alloc(dev, ops);
if (IS_ERR(sch))
goto errout;
if (!ops->init || ops->init(sch, NULL) == 0)
return sch;
qdisc_destroy(sch);
errout:
return NULL;
}
/* Under dev->queue_lock and BH! */
void qdisc_reset(struct Qdisc *qdisc)
{
struct Qdisc_ops *ops = qdisc->ops;
if (ops->reset)
ops->reset(qdisc);
}
/* this is the rcu callback function to clean up a qdisc when there
* are no further references to it */
static void __qdisc_destroy(struct rcu_head *head)
{
struct Qdisc *qdisc = container_of(head, struct Qdisc, q_rcu);
kfree((char *) qdisc - qdisc->padded);
}
/* Under dev->queue_lock and BH! */
void qdisc_destroy(struct Qdisc *qdisc)
{
struct Qdisc_ops *ops = qdisc->ops;
if (qdisc->flags & TCQ_F_BUILTIN ||
!atomic_dec_and_test(&qdisc->refcnt))
return;
list_del(&qdisc->list);
#ifdef CONFIG_NET_ESTIMATOR
gen_kill_estimator(&qdisc->bstats, &qdisc->rate_est);
#endif
if (ops->reset)
ops->reset(qdisc);
if (ops->destroy)
ops->destroy(qdisc);
module_put(ops->owner);
dev_put(qdisc->dev);
call_rcu(&qdisc->q_rcu, __qdisc_destroy);
}
void dev_activate(struct net_device *dev)
{
/* No queueing discipline is attached to device;
create default one i.e. pfifo_fast for devices,
which need queueing and noqueue_qdisc for
virtual interfaces
*/
if (dev->qdisc_sleeping == &noop_qdisc) {
struct Qdisc *qdisc;
if (dev->tx_queue_len) {
qdisc = qdisc_create_dflt(dev, &pfifo_fast_ops);
if (qdisc == NULL) {
printk(KERN_INFO "%s: activation failed\n", dev->name);
return;
}
write_lock(&qdisc_tree_lock);
list_add_tail(&qdisc->list, &dev->qdisc_list);
write_unlock(&qdisc_tree_lock);
} else {
qdisc = &noqueue_qdisc;
}
write_lock(&qdisc_tree_lock);
dev->qdisc_sleeping = qdisc;
write_unlock(&qdisc_tree_lock);
}
if (!netif_carrier_ok(dev))
/* Delay activation until next carrier-on event */
return;
spin_lock_bh(&dev->queue_lock);
rcu_assign_pointer(dev->qdisc, dev->qdisc_sleeping);
if (dev->qdisc != &noqueue_qdisc) {
dev->trans_start = jiffies;
dev_watchdog_up(dev);
}
spin_unlock_bh(&dev->queue_lock);
}
void dev_deactivate(struct net_device *dev)
{
struct Qdisc *qdisc;
spin_lock_bh(&dev->queue_lock);
qdisc = dev->qdisc;
dev->qdisc = &noop_qdisc;
qdisc_reset(qdisc);
spin_unlock_bh(&dev->queue_lock);
dev_watchdog_down(dev);
/* Wait for outstanding dev_queue_xmit calls. */
synchronize_rcu();
/* Wait for outstanding qdisc_run calls. */
while (test_bit(__LINK_STATE_QDISC_RUNNING, &dev->state))
yield();
if (dev->gso_skb) {
kfree_skb(dev->gso_skb);
dev->gso_skb = NULL;
}
}
void dev_init_scheduler(struct net_device *dev)
{
qdisc_lock_tree(dev);
dev->qdisc = &noop_qdisc;
dev->qdisc_sleeping = &noop_qdisc;
INIT_LIST_HEAD(&dev->qdisc_list);
qdisc_unlock_tree(dev);
dev_watchdog_init(dev);
}
void dev_shutdown(struct net_device *dev)
{
struct Qdisc *qdisc;
qdisc_lock_tree(dev);
qdisc = dev->qdisc_sleeping;
dev->qdisc = &noop_qdisc;
dev->qdisc_sleeping = &noop_qdisc;
qdisc_destroy(qdisc);
#if defined(CONFIG_NET_SCH_INGRESS) || defined(CONFIG_NET_SCH_INGRESS_MODULE)
if ((qdisc = dev->qdisc_ingress) != NULL) {
dev->qdisc_ingress = NULL;
qdisc_destroy(qdisc);
}
#endif
BUG_TRAP(!timer_pending(&dev->watchdog_timer));
qdisc_unlock_tree(dev);
}
EXPORT_SYMBOL(__netdev_watchdog_up);
EXPORT_SYMBOL(netif_carrier_on);
EXPORT_SYMBOL(netif_carrier_off);
EXPORT_SYMBOL(noop_qdisc);
EXPORT_SYMBOL(noop_qdisc_ops);
EXPORT_SYMBOL(qdisc_create_dflt);
EXPORT_SYMBOL(qdisc_alloc);
EXPORT_SYMBOL(qdisc_destroy);
EXPORT_SYMBOL(qdisc_reset);
EXPORT_SYMBOL(qdisc_lock_tree);
EXPORT_SYMBOL(qdisc_unlock_tree);