|  | /* | 
|  | * mm/rmap.c - physical to virtual reverse mappings | 
|  | * | 
|  | * Copyright 2001, Rik van Riel <riel@conectiva.com.br> | 
|  | * Released under the General Public License (GPL). | 
|  | * | 
|  | * Simple, low overhead reverse mapping scheme. | 
|  | * Please try to keep this thing as modular as possible. | 
|  | * | 
|  | * Provides methods for unmapping each kind of mapped page: | 
|  | * the anon methods track anonymous pages, and | 
|  | * the file methods track pages belonging to an inode. | 
|  | * | 
|  | * Original design by Rik van Riel <riel@conectiva.com.br> 2001 | 
|  | * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 | 
|  | * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 | 
|  | * Contributions by Hugh Dickins 2003, 2004 | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Lock ordering in mm: | 
|  | * | 
|  | * inode->i_mutex	(while writing or truncating, not reading or faulting) | 
|  | *   inode->i_alloc_sem (vmtruncate_range) | 
|  | *   mm->mmap_sem | 
|  | *     page->flags PG_locked (lock_page) | 
|  | *       mapping->i_mmap_lock | 
|  | *         anon_vma->lock | 
|  | *           mm->page_table_lock or pte_lock | 
|  | *             zone->lru_lock (in mark_page_accessed, isolate_lru_page) | 
|  | *             swap_lock (in swap_duplicate, swap_info_get) | 
|  | *               mmlist_lock (in mmput, drain_mmlist and others) | 
|  | *               mapping->private_lock (in __set_page_dirty_buffers) | 
|  | *               inode_lock (in set_page_dirty's __mark_inode_dirty) | 
|  | *                 sb_lock (within inode_lock in fs/fs-writeback.c) | 
|  | *                 mapping->tree_lock (widely used, in set_page_dirty, | 
|  | *                           in arch-dependent flush_dcache_mmap_lock, | 
|  | *                           within inode_lock in __sync_single_inode) | 
|  | * | 
|  | * (code doesn't rely on that order so it could be switched around) | 
|  | * ->tasklist_lock | 
|  | *   anon_vma->lock      (memory_failure, collect_procs_anon) | 
|  | *     pte map lock | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/ksm.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/memcontrol.h> | 
|  | #include <linux/mmu_notifier.h> | 
|  | #include <linux/migrate.h> | 
|  |  | 
|  | #include <asm/tlbflush.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | static struct kmem_cache *anon_vma_cachep; | 
|  | static struct kmem_cache *anon_vma_chain_cachep; | 
|  |  | 
|  | static inline struct anon_vma *anon_vma_alloc(void) | 
|  | { | 
|  | return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); | 
|  | } | 
|  |  | 
|  | void anon_vma_free(struct anon_vma *anon_vma) | 
|  | { | 
|  | kmem_cache_free(anon_vma_cachep, anon_vma); | 
|  | } | 
|  |  | 
|  | static inline struct anon_vma_chain *anon_vma_chain_alloc(void) | 
|  | { | 
|  | return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL); | 
|  | } | 
|  |  | 
|  | void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) | 
|  | { | 
|  | kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * anon_vma_prepare - attach an anon_vma to a memory region | 
|  | * @vma: the memory region in question | 
|  | * | 
|  | * This makes sure the memory mapping described by 'vma' has | 
|  | * an 'anon_vma' attached to it, so that we can associate the | 
|  | * anonymous pages mapped into it with that anon_vma. | 
|  | * | 
|  | * The common case will be that we already have one, but if | 
|  | * if not we either need to find an adjacent mapping that we | 
|  | * can re-use the anon_vma from (very common when the only | 
|  | * reason for splitting a vma has been mprotect()), or we | 
|  | * allocate a new one. | 
|  | * | 
|  | * Anon-vma allocations are very subtle, because we may have | 
|  | * optimistically looked up an anon_vma in page_lock_anon_vma() | 
|  | * and that may actually touch the spinlock even in the newly | 
|  | * allocated vma (it depends on RCU to make sure that the | 
|  | * anon_vma isn't actually destroyed). | 
|  | * | 
|  | * As a result, we need to do proper anon_vma locking even | 
|  | * for the new allocation. At the same time, we do not want | 
|  | * to do any locking for the common case of already having | 
|  | * an anon_vma. | 
|  | * | 
|  | * This must be called with the mmap_sem held for reading. | 
|  | */ | 
|  | int anon_vma_prepare(struct vm_area_struct *vma) | 
|  | { | 
|  | struct anon_vma *anon_vma = vma->anon_vma; | 
|  | struct anon_vma_chain *avc; | 
|  |  | 
|  | might_sleep(); | 
|  | if (unlikely(!anon_vma)) { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | struct anon_vma *allocated; | 
|  |  | 
|  | avc = anon_vma_chain_alloc(); | 
|  | if (!avc) | 
|  | goto out_enomem; | 
|  |  | 
|  | anon_vma = find_mergeable_anon_vma(vma); | 
|  | allocated = NULL; | 
|  | if (!anon_vma) { | 
|  | anon_vma = anon_vma_alloc(); | 
|  | if (unlikely(!anon_vma)) | 
|  | goto out_enomem_free_avc; | 
|  | allocated = anon_vma; | 
|  | } | 
|  |  | 
|  | spin_lock(&anon_vma->lock); | 
|  | /* page_table_lock to protect against threads */ | 
|  | spin_lock(&mm->page_table_lock); | 
|  | if (likely(!vma->anon_vma)) { | 
|  | vma->anon_vma = anon_vma; | 
|  | avc->anon_vma = anon_vma; | 
|  | avc->vma = vma; | 
|  | list_add(&avc->same_vma, &vma->anon_vma_chain); | 
|  | list_add(&avc->same_anon_vma, &anon_vma->head); | 
|  | allocated = NULL; | 
|  | avc = NULL; | 
|  | } | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | spin_unlock(&anon_vma->lock); | 
|  |  | 
|  | if (unlikely(allocated)) | 
|  | anon_vma_free(allocated); | 
|  | if (unlikely(avc)) | 
|  | anon_vma_chain_free(avc); | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | out_enomem_free_avc: | 
|  | anon_vma_chain_free(avc); | 
|  | out_enomem: | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static void anon_vma_chain_link(struct vm_area_struct *vma, | 
|  | struct anon_vma_chain *avc, | 
|  | struct anon_vma *anon_vma) | 
|  | { | 
|  | avc->vma = vma; | 
|  | avc->anon_vma = anon_vma; | 
|  | list_add(&avc->same_vma, &vma->anon_vma_chain); | 
|  |  | 
|  | spin_lock(&anon_vma->lock); | 
|  | list_add_tail(&avc->same_anon_vma, &anon_vma->head); | 
|  | spin_unlock(&anon_vma->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attach the anon_vmas from src to dst. | 
|  | * Returns 0 on success, -ENOMEM on failure. | 
|  | */ | 
|  | int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) | 
|  | { | 
|  | struct anon_vma_chain *avc, *pavc; | 
|  |  | 
|  | list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { | 
|  | avc = anon_vma_chain_alloc(); | 
|  | if (!avc) | 
|  | goto enomem_failure; | 
|  | anon_vma_chain_link(dst, avc, pavc->anon_vma); | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | enomem_failure: | 
|  | unlink_anon_vmas(dst); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attach vma to its own anon_vma, as well as to the anon_vmas that | 
|  | * the corresponding VMA in the parent process is attached to. | 
|  | * Returns 0 on success, non-zero on failure. | 
|  | */ | 
|  | int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) | 
|  | { | 
|  | struct anon_vma_chain *avc; | 
|  | struct anon_vma *anon_vma; | 
|  |  | 
|  | /* Don't bother if the parent process has no anon_vma here. */ | 
|  | if (!pvma->anon_vma) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * First, attach the new VMA to the parent VMA's anon_vmas, | 
|  | * so rmap can find non-COWed pages in child processes. | 
|  | */ | 
|  | if (anon_vma_clone(vma, pvma)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Then add our own anon_vma. */ | 
|  | anon_vma = anon_vma_alloc(); | 
|  | if (!anon_vma) | 
|  | goto out_error; | 
|  | avc = anon_vma_chain_alloc(); | 
|  | if (!avc) | 
|  | goto out_error_free_anon_vma; | 
|  | anon_vma_chain_link(vma, avc, anon_vma); | 
|  | /* Mark this anon_vma as the one where our new (COWed) pages go. */ | 
|  | vma->anon_vma = anon_vma; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_error_free_anon_vma: | 
|  | anon_vma_free(anon_vma); | 
|  | out_error: | 
|  | unlink_anon_vmas(vma); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain) | 
|  | { | 
|  | struct anon_vma *anon_vma = anon_vma_chain->anon_vma; | 
|  | int empty; | 
|  |  | 
|  | /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */ | 
|  | if (!anon_vma) | 
|  | return; | 
|  |  | 
|  | spin_lock(&anon_vma->lock); | 
|  | list_del(&anon_vma_chain->same_anon_vma); | 
|  |  | 
|  | /* We must garbage collect the anon_vma if it's empty */ | 
|  | empty = list_empty(&anon_vma->head) && !ksm_refcount(anon_vma); | 
|  | spin_unlock(&anon_vma->lock); | 
|  |  | 
|  | if (empty) | 
|  | anon_vma_free(anon_vma); | 
|  | } | 
|  |  | 
|  | void unlink_anon_vmas(struct vm_area_struct *vma) | 
|  | { | 
|  | struct anon_vma_chain *avc, *next; | 
|  |  | 
|  | /* Unlink each anon_vma chained to the VMA. */ | 
|  | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { | 
|  | anon_vma_unlink(avc); | 
|  | list_del(&avc->same_vma); | 
|  | anon_vma_chain_free(avc); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void anon_vma_ctor(void *data) | 
|  | { | 
|  | struct anon_vma *anon_vma = data; | 
|  |  | 
|  | spin_lock_init(&anon_vma->lock); | 
|  | ksm_refcount_init(anon_vma); | 
|  | INIT_LIST_HEAD(&anon_vma->head); | 
|  | } | 
|  |  | 
|  | void __init anon_vma_init(void) | 
|  | { | 
|  | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | 
|  | 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); | 
|  | anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Getting a lock on a stable anon_vma from a page off the LRU is | 
|  | * tricky: page_lock_anon_vma rely on RCU to guard against the races. | 
|  | */ | 
|  | struct anon_vma *page_lock_anon_vma(struct page *page) | 
|  | { | 
|  | struct anon_vma *anon_vma; | 
|  | unsigned long anon_mapping; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); | 
|  | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) | 
|  | goto out; | 
|  | if (!page_mapped(page)) | 
|  | goto out; | 
|  |  | 
|  | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | 
|  | spin_lock(&anon_vma->lock); | 
|  | return anon_vma; | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void page_unlock_anon_vma(struct anon_vma *anon_vma) | 
|  | { | 
|  | spin_unlock(&anon_vma->lock); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * At what user virtual address is page expected in @vma? | 
|  | * Returns virtual address or -EFAULT if page's index/offset is not | 
|  | * within the range mapped the @vma. | 
|  | */ | 
|  | static inline unsigned long | 
|  | vma_address(struct page *page, struct vm_area_struct *vma) | 
|  | { | 
|  | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | 
|  | unsigned long address; | 
|  |  | 
|  | address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); | 
|  | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { | 
|  | /* page should be within @vma mapping range */ | 
|  | return -EFAULT; | 
|  | } | 
|  | return address; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * At what user virtual address is page expected in vma? | 
|  | * checking that the page matches the vma. | 
|  | */ | 
|  | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | 
|  | { | 
|  | if (PageAnon(page)) { | 
|  | if (vma->anon_vma != page_anon_vma(page)) | 
|  | return -EFAULT; | 
|  | } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { | 
|  | if (!vma->vm_file || | 
|  | vma->vm_file->f_mapping != page->mapping) | 
|  | return -EFAULT; | 
|  | } else | 
|  | return -EFAULT; | 
|  | return vma_address(page, vma); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check that @page is mapped at @address into @mm. | 
|  | * | 
|  | * If @sync is false, page_check_address may perform a racy check to avoid | 
|  | * the page table lock when the pte is not present (helpful when reclaiming | 
|  | * highly shared pages). | 
|  | * | 
|  | * On success returns with pte mapped and locked. | 
|  | */ | 
|  | pte_t *page_check_address(struct page *page, struct mm_struct *mm, | 
|  | unsigned long address, spinlock_t **ptlp, int sync) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | pgd = pgd_offset(mm, address); | 
|  | if (!pgd_present(*pgd)) | 
|  | return NULL; | 
|  |  | 
|  | pud = pud_offset(pgd, address); | 
|  | if (!pud_present(*pud)) | 
|  | return NULL; | 
|  |  | 
|  | pmd = pmd_offset(pud, address); | 
|  | if (!pmd_present(*pmd)) | 
|  | return NULL; | 
|  |  | 
|  | pte = pte_offset_map(pmd, address); | 
|  | /* Make a quick check before getting the lock */ | 
|  | if (!sync && !pte_present(*pte)) { | 
|  | pte_unmap(pte); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | ptl = pte_lockptr(mm, pmd); | 
|  | spin_lock(ptl); | 
|  | if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { | 
|  | *ptlp = ptl; | 
|  | return pte; | 
|  | } | 
|  | pte_unmap_unlock(pte, ptl); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * page_mapped_in_vma - check whether a page is really mapped in a VMA | 
|  | * @page: the page to test | 
|  | * @vma: the VMA to test | 
|  | * | 
|  | * Returns 1 if the page is mapped into the page tables of the VMA, 0 | 
|  | * if the page is not mapped into the page tables of this VMA.  Only | 
|  | * valid for normal file or anonymous VMAs. | 
|  | */ | 
|  | int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) | 
|  | { | 
|  | unsigned long address; | 
|  | pte_t *pte; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | address = vma_address(page, vma); | 
|  | if (address == -EFAULT)		/* out of vma range */ | 
|  | return 0; | 
|  | pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); | 
|  | if (!pte)			/* the page is not in this mm */ | 
|  | return 0; | 
|  | pte_unmap_unlock(pte, ptl); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Subfunctions of page_referenced: page_referenced_one called | 
|  | * repeatedly from either page_referenced_anon or page_referenced_file. | 
|  | */ | 
|  | int page_referenced_one(struct page *page, struct vm_area_struct *vma, | 
|  | unsigned long address, unsigned int *mapcount, | 
|  | unsigned long *vm_flags) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | pte_t *pte; | 
|  | spinlock_t *ptl; | 
|  | int referenced = 0; | 
|  |  | 
|  | pte = page_check_address(page, mm, address, &ptl, 0); | 
|  | if (!pte) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Don't want to elevate referenced for mlocked page that gets this far, | 
|  | * in order that it progresses to try_to_unmap and is moved to the | 
|  | * unevictable list. | 
|  | */ | 
|  | if (vma->vm_flags & VM_LOCKED) { | 
|  | *mapcount = 1;	/* break early from loop */ | 
|  | *vm_flags |= VM_LOCKED; | 
|  | goto out_unmap; | 
|  | } | 
|  |  | 
|  | if (ptep_clear_flush_young_notify(vma, address, pte)) { | 
|  | /* | 
|  | * Don't treat a reference through a sequentially read | 
|  | * mapping as such.  If the page has been used in | 
|  | * another mapping, we will catch it; if this other | 
|  | * mapping is already gone, the unmap path will have | 
|  | * set PG_referenced or activated the page. | 
|  | */ | 
|  | if (likely(!VM_SequentialReadHint(vma))) | 
|  | referenced++; | 
|  | } | 
|  |  | 
|  | /* Pretend the page is referenced if the task has the | 
|  | swap token and is in the middle of a page fault. */ | 
|  | if (mm != current->mm && has_swap_token(mm) && | 
|  | rwsem_is_locked(&mm->mmap_sem)) | 
|  | referenced++; | 
|  |  | 
|  | out_unmap: | 
|  | (*mapcount)--; | 
|  | pte_unmap_unlock(pte, ptl); | 
|  |  | 
|  | if (referenced) | 
|  | *vm_flags |= vma->vm_flags; | 
|  | out: | 
|  | return referenced; | 
|  | } | 
|  |  | 
|  | static int page_referenced_anon(struct page *page, | 
|  | struct mem_cgroup *mem_cont, | 
|  | unsigned long *vm_flags) | 
|  | { | 
|  | unsigned int mapcount; | 
|  | struct anon_vma *anon_vma; | 
|  | struct anon_vma_chain *avc; | 
|  | int referenced = 0; | 
|  |  | 
|  | anon_vma = page_lock_anon_vma(page); | 
|  | if (!anon_vma) | 
|  | return referenced; | 
|  |  | 
|  | mapcount = page_mapcount(page); | 
|  | list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { | 
|  | struct vm_area_struct *vma = avc->vma; | 
|  | unsigned long address = vma_address(page, vma); | 
|  | if (address == -EFAULT) | 
|  | continue; | 
|  | /* | 
|  | * If we are reclaiming on behalf of a cgroup, skip | 
|  | * counting on behalf of references from different | 
|  | * cgroups | 
|  | */ | 
|  | if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) | 
|  | continue; | 
|  | referenced += page_referenced_one(page, vma, address, | 
|  | &mapcount, vm_flags); | 
|  | if (!mapcount) | 
|  | break; | 
|  | } | 
|  |  | 
|  | page_unlock_anon_vma(anon_vma); | 
|  | return referenced; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * page_referenced_file - referenced check for object-based rmap | 
|  | * @page: the page we're checking references on. | 
|  | * @mem_cont: target memory controller | 
|  | * @vm_flags: collect encountered vma->vm_flags who actually referenced the page | 
|  | * | 
|  | * For an object-based mapped page, find all the places it is mapped and | 
|  | * check/clear the referenced flag.  This is done by following the page->mapping | 
|  | * pointer, then walking the chain of vmas it holds.  It returns the number | 
|  | * of references it found. | 
|  | * | 
|  | * This function is only called from page_referenced for object-based pages. | 
|  | */ | 
|  | static int page_referenced_file(struct page *page, | 
|  | struct mem_cgroup *mem_cont, | 
|  | unsigned long *vm_flags) | 
|  | { | 
|  | unsigned int mapcount; | 
|  | struct address_space *mapping = page->mapping; | 
|  | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | 
|  | struct vm_area_struct *vma; | 
|  | struct prio_tree_iter iter; | 
|  | int referenced = 0; | 
|  |  | 
|  | /* | 
|  | * The caller's checks on page->mapping and !PageAnon have made | 
|  | * sure that this is a file page: the check for page->mapping | 
|  | * excludes the case just before it gets set on an anon page. | 
|  | */ | 
|  | BUG_ON(PageAnon(page)); | 
|  |  | 
|  | /* | 
|  | * The page lock not only makes sure that page->mapping cannot | 
|  | * suddenly be NULLified by truncation, it makes sure that the | 
|  | * structure at mapping cannot be freed and reused yet, | 
|  | * so we can safely take mapping->i_mmap_lock. | 
|  | */ | 
|  | BUG_ON(!PageLocked(page)); | 
|  |  | 
|  | spin_lock(&mapping->i_mmap_lock); | 
|  |  | 
|  | /* | 
|  | * i_mmap_lock does not stabilize mapcount at all, but mapcount | 
|  | * is more likely to be accurate if we note it after spinning. | 
|  | */ | 
|  | mapcount = page_mapcount(page); | 
|  |  | 
|  | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | 
|  | unsigned long address = vma_address(page, vma); | 
|  | if (address == -EFAULT) | 
|  | continue; | 
|  | /* | 
|  | * If we are reclaiming on behalf of a cgroup, skip | 
|  | * counting on behalf of references from different | 
|  | * cgroups | 
|  | */ | 
|  | if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) | 
|  | continue; | 
|  | referenced += page_referenced_one(page, vma, address, | 
|  | &mapcount, vm_flags); | 
|  | if (!mapcount) | 
|  | break; | 
|  | } | 
|  |  | 
|  | spin_unlock(&mapping->i_mmap_lock); | 
|  | return referenced; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * page_referenced - test if the page was referenced | 
|  | * @page: the page to test | 
|  | * @is_locked: caller holds lock on the page | 
|  | * @mem_cont: target memory controller | 
|  | * @vm_flags: collect encountered vma->vm_flags who actually referenced the page | 
|  | * | 
|  | * Quick test_and_clear_referenced for all mappings to a page, | 
|  | * returns the number of ptes which referenced the page. | 
|  | */ | 
|  | int page_referenced(struct page *page, | 
|  | int is_locked, | 
|  | struct mem_cgroup *mem_cont, | 
|  | unsigned long *vm_flags) | 
|  | { | 
|  | int referenced = 0; | 
|  | int we_locked = 0; | 
|  |  | 
|  | *vm_flags = 0; | 
|  | if (page_mapped(page) && page_rmapping(page)) { | 
|  | if (!is_locked && (!PageAnon(page) || PageKsm(page))) { | 
|  | we_locked = trylock_page(page); | 
|  | if (!we_locked) { | 
|  | referenced++; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | if (unlikely(PageKsm(page))) | 
|  | referenced += page_referenced_ksm(page, mem_cont, | 
|  | vm_flags); | 
|  | else if (PageAnon(page)) | 
|  | referenced += page_referenced_anon(page, mem_cont, | 
|  | vm_flags); | 
|  | else if (page->mapping) | 
|  | referenced += page_referenced_file(page, mem_cont, | 
|  | vm_flags); | 
|  | if (we_locked) | 
|  | unlock_page(page); | 
|  | } | 
|  | out: | 
|  | if (page_test_and_clear_young(page)) | 
|  | referenced++; | 
|  |  | 
|  | return referenced; | 
|  | } | 
|  |  | 
|  | static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, | 
|  | unsigned long address) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | pte_t *pte; | 
|  | spinlock_t *ptl; | 
|  | int ret = 0; | 
|  |  | 
|  | pte = page_check_address(page, mm, address, &ptl, 1); | 
|  | if (!pte) | 
|  | goto out; | 
|  |  | 
|  | if (pte_dirty(*pte) || pte_write(*pte)) { | 
|  | pte_t entry; | 
|  |  | 
|  | flush_cache_page(vma, address, pte_pfn(*pte)); | 
|  | entry = ptep_clear_flush_notify(vma, address, pte); | 
|  | entry = pte_wrprotect(entry); | 
|  | entry = pte_mkclean(entry); | 
|  | set_pte_at(mm, address, pte, entry); | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | pte_unmap_unlock(pte, ptl); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int page_mkclean_file(struct address_space *mapping, struct page *page) | 
|  | { | 
|  | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | 
|  | struct vm_area_struct *vma; | 
|  | struct prio_tree_iter iter; | 
|  | int ret = 0; | 
|  |  | 
|  | BUG_ON(PageAnon(page)); | 
|  |  | 
|  | spin_lock(&mapping->i_mmap_lock); | 
|  | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | 
|  | if (vma->vm_flags & VM_SHARED) { | 
|  | unsigned long address = vma_address(page, vma); | 
|  | if (address == -EFAULT) | 
|  | continue; | 
|  | ret += page_mkclean_one(page, vma, address); | 
|  | } | 
|  | } | 
|  | spin_unlock(&mapping->i_mmap_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int page_mkclean(struct page *page) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | BUG_ON(!PageLocked(page)); | 
|  |  | 
|  | if (page_mapped(page)) { | 
|  | struct address_space *mapping = page_mapping(page); | 
|  | if (mapping) { | 
|  | ret = page_mkclean_file(mapping, page); | 
|  | if (page_test_dirty(page)) { | 
|  | page_clear_dirty(page); | 
|  | ret = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(page_mkclean); | 
|  |  | 
|  | /** | 
|  | * page_move_anon_rmap - move a page to our anon_vma | 
|  | * @page:	the page to move to our anon_vma | 
|  | * @vma:	the vma the page belongs to | 
|  | * @address:	the user virtual address mapped | 
|  | * | 
|  | * When a page belongs exclusively to one process after a COW event, | 
|  | * that page can be moved into the anon_vma that belongs to just that | 
|  | * process, so the rmap code will not search the parent or sibling | 
|  | * processes. | 
|  | */ | 
|  | void page_move_anon_rmap(struct page *page, | 
|  | struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | struct anon_vma *anon_vma = vma->anon_vma; | 
|  |  | 
|  | VM_BUG_ON(!PageLocked(page)); | 
|  | VM_BUG_ON(!anon_vma); | 
|  | VM_BUG_ON(page->index != linear_page_index(vma, address)); | 
|  |  | 
|  | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | 
|  | page->mapping = (struct address_space *) anon_vma; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __page_set_anon_rmap - setup new anonymous rmap | 
|  | * @page:	the page to add the mapping to | 
|  | * @vma:	the vm area in which the mapping is added | 
|  | * @address:	the user virtual address mapped | 
|  | * @exclusive:	the page is exclusively owned by the current process | 
|  | */ | 
|  | static void __page_set_anon_rmap(struct page *page, | 
|  | struct vm_area_struct *vma, unsigned long address, int exclusive) | 
|  | { | 
|  | struct anon_vma *anon_vma = vma->anon_vma; | 
|  |  | 
|  | BUG_ON(!anon_vma); | 
|  |  | 
|  | /* | 
|  | * If the page isn't exclusively mapped into this vma, | 
|  | * we must use the _oldest_ possible anon_vma for the | 
|  | * page mapping! | 
|  | * | 
|  | * So take the last AVC chain entry in the vma, which is | 
|  | * the deepest ancestor, and use the anon_vma from that. | 
|  | */ | 
|  | if (!exclusive) { | 
|  | struct anon_vma_chain *avc; | 
|  | avc = list_entry(vma->anon_vma_chain.prev, struct anon_vma_chain, same_vma); | 
|  | anon_vma = avc->anon_vma; | 
|  | } | 
|  |  | 
|  | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | 
|  | page->mapping = (struct address_space *) anon_vma; | 
|  | page->index = linear_page_index(vma, address); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __page_check_anon_rmap - sanity check anonymous rmap addition | 
|  | * @page:	the page to add the mapping to | 
|  | * @vma:	the vm area in which the mapping is added | 
|  | * @address:	the user virtual address mapped | 
|  | */ | 
|  | static void __page_check_anon_rmap(struct page *page, | 
|  | struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | /* | 
|  | * The page's anon-rmap details (mapping and index) are guaranteed to | 
|  | * be set up correctly at this point. | 
|  | * | 
|  | * We have exclusion against page_add_anon_rmap because the caller | 
|  | * always holds the page locked, except if called from page_dup_rmap, | 
|  | * in which case the page is already known to be setup. | 
|  | * | 
|  | * We have exclusion against page_add_new_anon_rmap because those pages | 
|  | * are initially only visible via the pagetables, and the pte is locked | 
|  | * over the call to page_add_new_anon_rmap. | 
|  | */ | 
|  | BUG_ON(page->index != linear_page_index(vma, address)); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** | 
|  | * page_add_anon_rmap - add pte mapping to an anonymous page | 
|  | * @page:	the page to add the mapping to | 
|  | * @vma:	the vm area in which the mapping is added | 
|  | * @address:	the user virtual address mapped | 
|  | * | 
|  | * The caller needs to hold the pte lock, and the page must be locked in | 
|  | * the anon_vma case: to serialize mapping,index checking after setting, | 
|  | * and to ensure that PageAnon is not being upgraded racily to PageKsm | 
|  | * (but PageKsm is never downgraded to PageAnon). | 
|  | */ | 
|  | void page_add_anon_rmap(struct page *page, | 
|  | struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | int first = atomic_inc_and_test(&page->_mapcount); | 
|  | if (first) | 
|  | __inc_zone_page_state(page, NR_ANON_PAGES); | 
|  | if (unlikely(PageKsm(page))) | 
|  | return; | 
|  |  | 
|  | VM_BUG_ON(!PageLocked(page)); | 
|  | VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); | 
|  | if (first) | 
|  | __page_set_anon_rmap(page, vma, address, 0); | 
|  | else | 
|  | __page_check_anon_rmap(page, vma, address); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * page_add_new_anon_rmap - add pte mapping to a new anonymous page | 
|  | * @page:	the page to add the mapping to | 
|  | * @vma:	the vm area in which the mapping is added | 
|  | * @address:	the user virtual address mapped | 
|  | * | 
|  | * Same as page_add_anon_rmap but must only be called on *new* pages. | 
|  | * This means the inc-and-test can be bypassed. | 
|  | * Page does not have to be locked. | 
|  | */ | 
|  | void page_add_new_anon_rmap(struct page *page, | 
|  | struct vm_area_struct *vma, unsigned long address) | 
|  | { | 
|  | VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); | 
|  | SetPageSwapBacked(page); | 
|  | atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ | 
|  | __inc_zone_page_state(page, NR_ANON_PAGES); | 
|  | __page_set_anon_rmap(page, vma, address, 1); | 
|  | if (page_evictable(page, vma)) | 
|  | lru_cache_add_lru(page, LRU_ACTIVE_ANON); | 
|  | else | 
|  | add_page_to_unevictable_list(page); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * page_add_file_rmap - add pte mapping to a file page | 
|  | * @page: the page to add the mapping to | 
|  | * | 
|  | * The caller needs to hold the pte lock. | 
|  | */ | 
|  | void page_add_file_rmap(struct page *page) | 
|  | { | 
|  | if (atomic_inc_and_test(&page->_mapcount)) { | 
|  | __inc_zone_page_state(page, NR_FILE_MAPPED); | 
|  | mem_cgroup_update_file_mapped(page, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * page_remove_rmap - take down pte mapping from a page | 
|  | * @page: page to remove mapping from | 
|  | * | 
|  | * The caller needs to hold the pte lock. | 
|  | */ | 
|  | void page_remove_rmap(struct page *page) | 
|  | { | 
|  | /* page still mapped by someone else? */ | 
|  | if (!atomic_add_negative(-1, &page->_mapcount)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Now that the last pte has gone, s390 must transfer dirty | 
|  | * flag from storage key to struct page.  We can usually skip | 
|  | * this if the page is anon, so about to be freed; but perhaps | 
|  | * not if it's in swapcache - there might be another pte slot | 
|  | * containing the swap entry, but page not yet written to swap. | 
|  | */ | 
|  | if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) { | 
|  | page_clear_dirty(page); | 
|  | set_page_dirty(page); | 
|  | } | 
|  | if (PageAnon(page)) { | 
|  | mem_cgroup_uncharge_page(page); | 
|  | __dec_zone_page_state(page, NR_ANON_PAGES); | 
|  | } else { | 
|  | __dec_zone_page_state(page, NR_FILE_MAPPED); | 
|  | mem_cgroup_update_file_mapped(page, -1); | 
|  | } | 
|  | /* | 
|  | * It would be tidy to reset the PageAnon mapping here, | 
|  | * but that might overwrite a racing page_add_anon_rmap | 
|  | * which increments mapcount after us but sets mapping | 
|  | * before us: so leave the reset to free_hot_cold_page, | 
|  | * and remember that it's only reliable while mapped. | 
|  | * Leaving it set also helps swapoff to reinstate ptes | 
|  | * faster for those pages still in swapcache. | 
|  | */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Subfunctions of try_to_unmap: try_to_unmap_one called | 
|  | * repeatedly from either try_to_unmap_anon or try_to_unmap_file. | 
|  | */ | 
|  | int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, | 
|  | unsigned long address, enum ttu_flags flags) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | pte_t *pte; | 
|  | pte_t pteval; | 
|  | spinlock_t *ptl; | 
|  | int ret = SWAP_AGAIN; | 
|  |  | 
|  | pte = page_check_address(page, mm, address, &ptl, 0); | 
|  | if (!pte) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * If the page is mlock()d, we cannot swap it out. | 
|  | * If it's recently referenced (perhaps page_referenced | 
|  | * skipped over this mm) then we should reactivate it. | 
|  | */ | 
|  | if (!(flags & TTU_IGNORE_MLOCK)) { | 
|  | if (vma->vm_flags & VM_LOCKED) | 
|  | goto out_mlock; | 
|  |  | 
|  | if (TTU_ACTION(flags) == TTU_MUNLOCK) | 
|  | goto out_unmap; | 
|  | } | 
|  | if (!(flags & TTU_IGNORE_ACCESS)) { | 
|  | if (ptep_clear_flush_young_notify(vma, address, pte)) { | 
|  | ret = SWAP_FAIL; | 
|  | goto out_unmap; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Nuke the page table entry. */ | 
|  | flush_cache_page(vma, address, page_to_pfn(page)); | 
|  | pteval = ptep_clear_flush_notify(vma, address, pte); | 
|  |  | 
|  | /* Move the dirty bit to the physical page now the pte is gone. */ | 
|  | if (pte_dirty(pteval)) | 
|  | set_page_dirty(page); | 
|  |  | 
|  | /* Update high watermark before we lower rss */ | 
|  | update_hiwater_rss(mm); | 
|  |  | 
|  | if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { | 
|  | if (PageAnon(page)) | 
|  | dec_mm_counter(mm, MM_ANONPAGES); | 
|  | else | 
|  | dec_mm_counter(mm, MM_FILEPAGES); | 
|  | set_pte_at(mm, address, pte, | 
|  | swp_entry_to_pte(make_hwpoison_entry(page))); | 
|  | } else if (PageAnon(page)) { | 
|  | swp_entry_t entry = { .val = page_private(page) }; | 
|  |  | 
|  | if (PageSwapCache(page)) { | 
|  | /* | 
|  | * Store the swap location in the pte. | 
|  | * See handle_pte_fault() ... | 
|  | */ | 
|  | if (swap_duplicate(entry) < 0) { | 
|  | set_pte_at(mm, address, pte, pteval); | 
|  | ret = SWAP_FAIL; | 
|  | goto out_unmap; | 
|  | } | 
|  | if (list_empty(&mm->mmlist)) { | 
|  | spin_lock(&mmlist_lock); | 
|  | if (list_empty(&mm->mmlist)) | 
|  | list_add(&mm->mmlist, &init_mm.mmlist); | 
|  | spin_unlock(&mmlist_lock); | 
|  | } | 
|  | dec_mm_counter(mm, MM_ANONPAGES); | 
|  | inc_mm_counter(mm, MM_SWAPENTS); | 
|  | } else if (PAGE_MIGRATION) { | 
|  | /* | 
|  | * Store the pfn of the page in a special migration | 
|  | * pte. do_swap_page() will wait until the migration | 
|  | * pte is removed and then restart fault handling. | 
|  | */ | 
|  | BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION); | 
|  | entry = make_migration_entry(page, pte_write(pteval)); | 
|  | } | 
|  | set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); | 
|  | BUG_ON(pte_file(*pte)); | 
|  | } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) { | 
|  | /* Establish migration entry for a file page */ | 
|  | swp_entry_t entry; | 
|  | entry = make_migration_entry(page, pte_write(pteval)); | 
|  | set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); | 
|  | } else | 
|  | dec_mm_counter(mm, MM_FILEPAGES); | 
|  |  | 
|  | page_remove_rmap(page); | 
|  | page_cache_release(page); | 
|  |  | 
|  | out_unmap: | 
|  | pte_unmap_unlock(pte, ptl); | 
|  | out: | 
|  | return ret; | 
|  |  | 
|  | out_mlock: | 
|  | pte_unmap_unlock(pte, ptl); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * We need mmap_sem locking, Otherwise VM_LOCKED check makes | 
|  | * unstable result and race. Plus, We can't wait here because | 
|  | * we now hold anon_vma->lock or mapping->i_mmap_lock. | 
|  | * if trylock failed, the page remain in evictable lru and later | 
|  | * vmscan could retry to move the page to unevictable lru if the | 
|  | * page is actually mlocked. | 
|  | */ | 
|  | if (down_read_trylock(&vma->vm_mm->mmap_sem)) { | 
|  | if (vma->vm_flags & VM_LOCKED) { | 
|  | mlock_vma_page(page); | 
|  | ret = SWAP_MLOCK; | 
|  | } | 
|  | up_read(&vma->vm_mm->mmap_sem); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * objrmap doesn't work for nonlinear VMAs because the assumption that | 
|  | * offset-into-file correlates with offset-into-virtual-addresses does not hold. | 
|  | * Consequently, given a particular page and its ->index, we cannot locate the | 
|  | * ptes which are mapping that page without an exhaustive linear search. | 
|  | * | 
|  | * So what this code does is a mini "virtual scan" of each nonlinear VMA which | 
|  | * maps the file to which the target page belongs.  The ->vm_private_data field | 
|  | * holds the current cursor into that scan.  Successive searches will circulate | 
|  | * around the vma's virtual address space. | 
|  | * | 
|  | * So as more replacement pressure is applied to the pages in a nonlinear VMA, | 
|  | * more scanning pressure is placed against them as well.   Eventually pages | 
|  | * will become fully unmapped and are eligible for eviction. | 
|  | * | 
|  | * For very sparsely populated VMAs this is a little inefficient - chances are | 
|  | * there there won't be many ptes located within the scan cluster.  In this case | 
|  | * maybe we could scan further - to the end of the pte page, perhaps. | 
|  | * | 
|  | * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can | 
|  | * acquire it without blocking.  If vma locked, mlock the pages in the cluster, | 
|  | * rather than unmapping them.  If we encounter the "check_page" that vmscan is | 
|  | * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. | 
|  | */ | 
|  | #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE) | 
|  | #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1)) | 
|  |  | 
|  | static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, | 
|  | struct vm_area_struct *vma, struct page *check_page) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  | pte_t pteval; | 
|  | spinlock_t *ptl; | 
|  | struct page *page; | 
|  | unsigned long address; | 
|  | unsigned long end; | 
|  | int ret = SWAP_AGAIN; | 
|  | int locked_vma = 0; | 
|  |  | 
|  | address = (vma->vm_start + cursor) & CLUSTER_MASK; | 
|  | end = address + CLUSTER_SIZE; | 
|  | if (address < vma->vm_start) | 
|  | address = vma->vm_start; | 
|  | if (end > vma->vm_end) | 
|  | end = vma->vm_end; | 
|  |  | 
|  | pgd = pgd_offset(mm, address); | 
|  | if (!pgd_present(*pgd)) | 
|  | return ret; | 
|  |  | 
|  | pud = pud_offset(pgd, address); | 
|  | if (!pud_present(*pud)) | 
|  | return ret; | 
|  |  | 
|  | pmd = pmd_offset(pud, address); | 
|  | if (!pmd_present(*pmd)) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * If we can acquire the mmap_sem for read, and vma is VM_LOCKED, | 
|  | * keep the sem while scanning the cluster for mlocking pages. | 
|  | */ | 
|  | if (down_read_trylock(&vma->vm_mm->mmap_sem)) { | 
|  | locked_vma = (vma->vm_flags & VM_LOCKED); | 
|  | if (!locked_vma) | 
|  | up_read(&vma->vm_mm->mmap_sem); /* don't need it */ | 
|  | } | 
|  |  | 
|  | pte = pte_offset_map_lock(mm, pmd, address, &ptl); | 
|  |  | 
|  | /* Update high watermark before we lower rss */ | 
|  | update_hiwater_rss(mm); | 
|  |  | 
|  | for (; address < end; pte++, address += PAGE_SIZE) { | 
|  | if (!pte_present(*pte)) | 
|  | continue; | 
|  | page = vm_normal_page(vma, address, *pte); | 
|  | BUG_ON(!page || PageAnon(page)); | 
|  |  | 
|  | if (locked_vma) { | 
|  | mlock_vma_page(page);   /* no-op if already mlocked */ | 
|  | if (page == check_page) | 
|  | ret = SWAP_MLOCK; | 
|  | continue;	/* don't unmap */ | 
|  | } | 
|  |  | 
|  | if (ptep_clear_flush_young_notify(vma, address, pte)) | 
|  | continue; | 
|  |  | 
|  | /* Nuke the page table entry. */ | 
|  | flush_cache_page(vma, address, pte_pfn(*pte)); | 
|  | pteval = ptep_clear_flush_notify(vma, address, pte); | 
|  |  | 
|  | /* If nonlinear, store the file page offset in the pte. */ | 
|  | if (page->index != linear_page_index(vma, address)) | 
|  | set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); | 
|  |  | 
|  | /* Move the dirty bit to the physical page now the pte is gone. */ | 
|  | if (pte_dirty(pteval)) | 
|  | set_page_dirty(page); | 
|  |  | 
|  | page_remove_rmap(page); | 
|  | page_cache_release(page); | 
|  | dec_mm_counter(mm, MM_FILEPAGES); | 
|  | (*mapcount)--; | 
|  | } | 
|  | pte_unmap_unlock(pte - 1, ptl); | 
|  | if (locked_vma) | 
|  | up_read(&vma->vm_mm->mmap_sem); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * try_to_unmap_anon - unmap or unlock anonymous page using the object-based | 
|  | * rmap method | 
|  | * @page: the page to unmap/unlock | 
|  | * @flags: action and flags | 
|  | * | 
|  | * Find all the mappings of a page using the mapping pointer and the vma chains | 
|  | * contained in the anon_vma struct it points to. | 
|  | * | 
|  | * This function is only called from try_to_unmap/try_to_munlock for | 
|  | * anonymous pages. | 
|  | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | 
|  | * where the page was found will be held for write.  So, we won't recheck | 
|  | * vm_flags for that VMA.  That should be OK, because that vma shouldn't be | 
|  | * 'LOCKED. | 
|  | */ | 
|  | static int try_to_unmap_anon(struct page *page, enum ttu_flags flags) | 
|  | { | 
|  | struct anon_vma *anon_vma; | 
|  | struct anon_vma_chain *avc; | 
|  | int ret = SWAP_AGAIN; | 
|  |  | 
|  | anon_vma = page_lock_anon_vma(page); | 
|  | if (!anon_vma) | 
|  | return ret; | 
|  |  | 
|  | list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { | 
|  | struct vm_area_struct *vma = avc->vma; | 
|  | unsigned long address = vma_address(page, vma); | 
|  | if (address == -EFAULT) | 
|  | continue; | 
|  | ret = try_to_unmap_one(page, vma, address, flags); | 
|  | if (ret != SWAP_AGAIN || !page_mapped(page)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | page_unlock_anon_vma(anon_vma); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * try_to_unmap_file - unmap/unlock file page using the object-based rmap method | 
|  | * @page: the page to unmap/unlock | 
|  | * @flags: action and flags | 
|  | * | 
|  | * Find all the mappings of a page using the mapping pointer and the vma chains | 
|  | * contained in the address_space struct it points to. | 
|  | * | 
|  | * This function is only called from try_to_unmap/try_to_munlock for | 
|  | * object-based pages. | 
|  | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | 
|  | * where the page was found will be held for write.  So, we won't recheck | 
|  | * vm_flags for that VMA.  That should be OK, because that vma shouldn't be | 
|  | * 'LOCKED. | 
|  | */ | 
|  | static int try_to_unmap_file(struct page *page, enum ttu_flags flags) | 
|  | { | 
|  | struct address_space *mapping = page->mapping; | 
|  | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | 
|  | struct vm_area_struct *vma; | 
|  | struct prio_tree_iter iter; | 
|  | int ret = SWAP_AGAIN; | 
|  | unsigned long cursor; | 
|  | unsigned long max_nl_cursor = 0; | 
|  | unsigned long max_nl_size = 0; | 
|  | unsigned int mapcount; | 
|  |  | 
|  | spin_lock(&mapping->i_mmap_lock); | 
|  | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | 
|  | unsigned long address = vma_address(page, vma); | 
|  | if (address == -EFAULT) | 
|  | continue; | 
|  | ret = try_to_unmap_one(page, vma, address, flags); | 
|  | if (ret != SWAP_AGAIN || !page_mapped(page)) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (list_empty(&mapping->i_mmap_nonlinear)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * We don't bother to try to find the munlocked page in nonlinears. | 
|  | * It's costly. Instead, later, page reclaim logic may call | 
|  | * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily. | 
|  | */ | 
|  | if (TTU_ACTION(flags) == TTU_MUNLOCK) | 
|  | goto out; | 
|  |  | 
|  | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, | 
|  | shared.vm_set.list) { | 
|  | cursor = (unsigned long) vma->vm_private_data; | 
|  | if (cursor > max_nl_cursor) | 
|  | max_nl_cursor = cursor; | 
|  | cursor = vma->vm_end - vma->vm_start; | 
|  | if (cursor > max_nl_size) | 
|  | max_nl_size = cursor; | 
|  | } | 
|  |  | 
|  | if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */ | 
|  | ret = SWAP_FAIL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We don't try to search for this page in the nonlinear vmas, | 
|  | * and page_referenced wouldn't have found it anyway.  Instead | 
|  | * just walk the nonlinear vmas trying to age and unmap some. | 
|  | * The mapcount of the page we came in with is irrelevant, | 
|  | * but even so use it as a guide to how hard we should try? | 
|  | */ | 
|  | mapcount = page_mapcount(page); | 
|  | if (!mapcount) | 
|  | goto out; | 
|  | cond_resched_lock(&mapping->i_mmap_lock); | 
|  |  | 
|  | max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; | 
|  | if (max_nl_cursor == 0) | 
|  | max_nl_cursor = CLUSTER_SIZE; | 
|  |  | 
|  | do { | 
|  | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, | 
|  | shared.vm_set.list) { | 
|  | cursor = (unsigned long) vma->vm_private_data; | 
|  | while ( cursor < max_nl_cursor && | 
|  | cursor < vma->vm_end - vma->vm_start) { | 
|  | if (try_to_unmap_cluster(cursor, &mapcount, | 
|  | vma, page) == SWAP_MLOCK) | 
|  | ret = SWAP_MLOCK; | 
|  | cursor += CLUSTER_SIZE; | 
|  | vma->vm_private_data = (void *) cursor; | 
|  | if ((int)mapcount <= 0) | 
|  | goto out; | 
|  | } | 
|  | vma->vm_private_data = (void *) max_nl_cursor; | 
|  | } | 
|  | cond_resched_lock(&mapping->i_mmap_lock); | 
|  | max_nl_cursor += CLUSTER_SIZE; | 
|  | } while (max_nl_cursor <= max_nl_size); | 
|  |  | 
|  | /* | 
|  | * Don't loop forever (perhaps all the remaining pages are | 
|  | * in locked vmas).  Reset cursor on all unreserved nonlinear | 
|  | * vmas, now forgetting on which ones it had fallen behind. | 
|  | */ | 
|  | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) | 
|  | vma->vm_private_data = NULL; | 
|  | out: | 
|  | spin_unlock(&mapping->i_mmap_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * try_to_unmap - try to remove all page table mappings to a page | 
|  | * @page: the page to get unmapped | 
|  | * @flags: action and flags | 
|  | * | 
|  | * Tries to remove all the page table entries which are mapping this | 
|  | * page, used in the pageout path.  Caller must hold the page lock. | 
|  | * Return values are: | 
|  | * | 
|  | * SWAP_SUCCESS	- we succeeded in removing all mappings | 
|  | * SWAP_AGAIN	- we missed a mapping, try again later | 
|  | * SWAP_FAIL	- the page is unswappable | 
|  | * SWAP_MLOCK	- page is mlocked. | 
|  | */ | 
|  | int try_to_unmap(struct page *page, enum ttu_flags flags) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | BUG_ON(!PageLocked(page)); | 
|  |  | 
|  | if (unlikely(PageKsm(page))) | 
|  | ret = try_to_unmap_ksm(page, flags); | 
|  | else if (PageAnon(page)) | 
|  | ret = try_to_unmap_anon(page, flags); | 
|  | else | 
|  | ret = try_to_unmap_file(page, flags); | 
|  | if (ret != SWAP_MLOCK && !page_mapped(page)) | 
|  | ret = SWAP_SUCCESS; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * try_to_munlock - try to munlock a page | 
|  | * @page: the page to be munlocked | 
|  | * | 
|  | * Called from munlock code.  Checks all of the VMAs mapping the page | 
|  | * to make sure nobody else has this page mlocked. The page will be | 
|  | * returned with PG_mlocked cleared if no other vmas have it mlocked. | 
|  | * | 
|  | * Return values are: | 
|  | * | 
|  | * SWAP_AGAIN	- no vma is holding page mlocked, or, | 
|  | * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem | 
|  | * SWAP_FAIL	- page cannot be located at present | 
|  | * SWAP_MLOCK	- page is now mlocked. | 
|  | */ | 
|  | int try_to_munlock(struct page *page) | 
|  | { | 
|  | VM_BUG_ON(!PageLocked(page) || PageLRU(page)); | 
|  |  | 
|  | if (unlikely(PageKsm(page))) | 
|  | return try_to_unmap_ksm(page, TTU_MUNLOCK); | 
|  | else if (PageAnon(page)) | 
|  | return try_to_unmap_anon(page, TTU_MUNLOCK); | 
|  | else | 
|  | return try_to_unmap_file(page, TTU_MUNLOCK); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MIGRATION | 
|  | /* | 
|  | * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file(): | 
|  | * Called by migrate.c to remove migration ptes, but might be used more later. | 
|  | */ | 
|  | static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, | 
|  | struct vm_area_struct *, unsigned long, void *), void *arg) | 
|  | { | 
|  | struct anon_vma *anon_vma; | 
|  | struct anon_vma_chain *avc; | 
|  | int ret = SWAP_AGAIN; | 
|  |  | 
|  | /* | 
|  | * Note: remove_migration_ptes() cannot use page_lock_anon_vma() | 
|  | * because that depends on page_mapped(); but not all its usages | 
|  | * are holding mmap_sem, which also gave the necessary guarantee | 
|  | * (that this anon_vma's slab has not already been destroyed). | 
|  | * This needs to be reviewed later: avoiding page_lock_anon_vma() | 
|  | * is risky, and currently limits the usefulness of rmap_walk(). | 
|  | */ | 
|  | anon_vma = page_anon_vma(page); | 
|  | if (!anon_vma) | 
|  | return ret; | 
|  | spin_lock(&anon_vma->lock); | 
|  | list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { | 
|  | struct vm_area_struct *vma = avc->vma; | 
|  | unsigned long address = vma_address(page, vma); | 
|  | if (address == -EFAULT) | 
|  | continue; | 
|  | ret = rmap_one(page, vma, address, arg); | 
|  | if (ret != SWAP_AGAIN) | 
|  | break; | 
|  | } | 
|  | spin_unlock(&anon_vma->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *, | 
|  | struct vm_area_struct *, unsigned long, void *), void *arg) | 
|  | { | 
|  | struct address_space *mapping = page->mapping; | 
|  | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | 
|  | struct vm_area_struct *vma; | 
|  | struct prio_tree_iter iter; | 
|  | int ret = SWAP_AGAIN; | 
|  |  | 
|  | if (!mapping) | 
|  | return ret; | 
|  | spin_lock(&mapping->i_mmap_lock); | 
|  | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | 
|  | unsigned long address = vma_address(page, vma); | 
|  | if (address == -EFAULT) | 
|  | continue; | 
|  | ret = rmap_one(page, vma, address, arg); | 
|  | if (ret != SWAP_AGAIN) | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * No nonlinear handling: being always shared, nonlinear vmas | 
|  | * never contain migration ptes.  Decide what to do about this | 
|  | * limitation to linear when we need rmap_walk() on nonlinear. | 
|  | */ | 
|  | spin_unlock(&mapping->i_mmap_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int rmap_walk(struct page *page, int (*rmap_one)(struct page *, | 
|  | struct vm_area_struct *, unsigned long, void *), void *arg) | 
|  | { | 
|  | VM_BUG_ON(!PageLocked(page)); | 
|  |  | 
|  | if (unlikely(PageKsm(page))) | 
|  | return rmap_walk_ksm(page, rmap_one, arg); | 
|  | else if (PageAnon(page)) | 
|  | return rmap_walk_anon(page, rmap_one, arg); | 
|  | else | 
|  | return rmap_walk_file(page, rmap_one, arg); | 
|  | } | 
|  | #endif /* CONFIG_MIGRATION */ |