|  | /* Low-level parallel port routines for built-in port on SGI IP32 | 
|  | * | 
|  | * Author: Arnaud Giersch <arnaud.giersch@free.fr> | 
|  | * | 
|  | * Based on parport_pc.c by | 
|  | *	Phil Blundell, Tim Waugh, Jose Renau, David Campbell, | 
|  | *	Andrea Arcangeli, et al. | 
|  | * | 
|  | * Thanks to Ilya A. Volynets-Evenbakh for his help. | 
|  | * | 
|  | * Copyright (C) 2005, 2006 Arnaud Giersch. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License as published by the Free | 
|  | * Software Foundation; either version 2 of the License, or (at your option) | 
|  | * any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but WITHOUT | 
|  | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | * more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License along | 
|  | * with this program; if not, write to the Free Software Foundation, Inc., 59 | 
|  | * Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|  | */ | 
|  |  | 
|  | /* Current status: | 
|  | * | 
|  | *	Basic SPP and PS2 modes are supported. | 
|  | *	Support for parallel port IRQ is present. | 
|  | *	Hardware SPP (a.k.a. compatibility), EPP, and ECP modes are | 
|  | *	supported. | 
|  | *	SPP/ECP FIFO can be driven in PIO or DMA mode.  PIO mode can work with | 
|  | *	or without interrupt support. | 
|  | * | 
|  | *	Hardware ECP mode is not fully implemented (ecp_read_data and | 
|  | *	ecp_write_addr are actually missing). | 
|  | * | 
|  | * To do: | 
|  | * | 
|  | *	Fully implement ECP mode. | 
|  | *	EPP and ECP mode need to be tested.  I currently do not own any | 
|  | *	peripheral supporting these extended mode, and cannot test them. | 
|  | *	If DMA mode works well, decide if support for PIO FIFO modes should be | 
|  | *	dropped. | 
|  | *	Use the io{read,write} family functions when they become available in | 
|  | *	the linux-mips.org tree.  Note: the MIPS specific functions readsb() | 
|  | *	and writesb() are to be translated by ioread8_rep() and iowrite8_rep() | 
|  | *	respectively. | 
|  | */ | 
|  |  | 
|  | /* The built-in parallel port on the SGI 02 workstation (a.k.a. IP32) is an | 
|  | * IEEE 1284 parallel port driven by a Texas Instrument TL16PIR552PH chip[1]. | 
|  | * This chip supports SPP, bidirectional, EPP and ECP modes.  It has a 16 byte | 
|  | * FIFO buffer and supports DMA transfers. | 
|  | * | 
|  | * [1] http://focus.ti.com/docs/prod/folders/print/tl16pir552.html | 
|  | * | 
|  | * Theoretically, we could simply use the parport_pc module.  It is however | 
|  | * not so simple.  The parport_pc code assumes that the parallel port | 
|  | * registers are port-mapped.  On the O2, they are memory-mapped. | 
|  | * Furthermore, each register is replicated on 256 consecutive addresses (as | 
|  | * it is for the built-in serial ports on the same chip). | 
|  | */ | 
|  |  | 
|  | /*--- Some configuration defines ---------------------------------------*/ | 
|  |  | 
|  | /* DEBUG_PARPORT_IP32 | 
|  | *	0	disable debug | 
|  | *	1	standard level: pr_debug1 is enabled | 
|  | *	2	parport_ip32_dump_state is enabled | 
|  | *	>=3	verbose level: pr_debug is enabled | 
|  | */ | 
|  | #if !defined(DEBUG_PARPORT_IP32) | 
|  | #	define DEBUG_PARPORT_IP32  0	/* 0 (disabled) for production */ | 
|  | #endif | 
|  |  | 
|  | /*----------------------------------------------------------------------*/ | 
|  |  | 
|  | /* Setup DEBUG macros.  This is done before any includes, just in case we | 
|  | * activate pr_debug() with DEBUG_PARPORT_IP32 >= 3. | 
|  | */ | 
|  | #if DEBUG_PARPORT_IP32 == 1 | 
|  | #	warning DEBUG_PARPORT_IP32 == 1 | 
|  | #elif DEBUG_PARPORT_IP32 == 2 | 
|  | #	warning DEBUG_PARPORT_IP32 == 2 | 
|  | #elif DEBUG_PARPORT_IP32 >= 3 | 
|  | #	warning DEBUG_PARPORT_IP32 >= 3 | 
|  | #	if !defined(DEBUG) | 
|  | #		define DEBUG /* enable pr_debug() in kernel.h */ | 
|  | #	endif | 
|  | #endif | 
|  |  | 
|  | #include <linux/completion.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/parport.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/stddef.h> | 
|  | #include <linux/types.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/ip32/ip32_ints.h> | 
|  | #include <asm/ip32/mace.h> | 
|  |  | 
|  | /*--- Global variables -------------------------------------------------*/ | 
|  |  | 
|  | /* Verbose probing on by default for debugging. */ | 
|  | #if DEBUG_PARPORT_IP32 >= 1 | 
|  | #	define DEFAULT_VERBOSE_PROBING	1 | 
|  | #else | 
|  | #	define DEFAULT_VERBOSE_PROBING	0 | 
|  | #endif | 
|  |  | 
|  | /* Default prefix for printk */ | 
|  | #define PPIP32 "parport_ip32: " | 
|  |  | 
|  | /* | 
|  | * These are the module parameters: | 
|  | * @features:		bit mask of features to enable/disable | 
|  | *			(all enabled by default) | 
|  | * @verbose_probing:	log chit-chat during initialization | 
|  | */ | 
|  | #define PARPORT_IP32_ENABLE_IRQ	(1U << 0) | 
|  | #define PARPORT_IP32_ENABLE_DMA	(1U << 1) | 
|  | #define PARPORT_IP32_ENABLE_SPP	(1U << 2) | 
|  | #define PARPORT_IP32_ENABLE_EPP	(1U << 3) | 
|  | #define PARPORT_IP32_ENABLE_ECP	(1U << 4) | 
|  | static unsigned int features =	~0U; | 
|  | static int verbose_probing =	DEFAULT_VERBOSE_PROBING; | 
|  |  | 
|  | /* We do not support more than one port. */ | 
|  | static struct parport *this_port = NULL; | 
|  |  | 
|  | /* Timing constants for FIFO modes.  */ | 
|  | #define FIFO_NFAULT_TIMEOUT	100	/* milliseconds */ | 
|  | #define FIFO_POLLING_INTERVAL	50	/* microseconds */ | 
|  |  | 
|  | /*--- I/O register definitions -----------------------------------------*/ | 
|  |  | 
|  | /** | 
|  | * struct parport_ip32_regs - virtual addresses of parallel port registers | 
|  | * @data:	Data Register | 
|  | * @dsr:	Device Status Register | 
|  | * @dcr:	Device Control Register | 
|  | * @eppAddr:	EPP Address Register | 
|  | * @eppData0:	EPP Data Register 0 | 
|  | * @eppData1:	EPP Data Register 1 | 
|  | * @eppData2:	EPP Data Register 2 | 
|  | * @eppData3:	EPP Data Register 3 | 
|  | * @ecpAFifo:	ECP Address FIFO | 
|  | * @fifo:	General FIFO register.  The same address is used for: | 
|  | *		- cFifo, the Parallel Port DATA FIFO | 
|  | *		- ecpDFifo, the ECP Data FIFO | 
|  | *		- tFifo, the ECP Test FIFO | 
|  | * @cnfgA:	Configuration Register A | 
|  | * @cnfgB:	Configuration Register B | 
|  | * @ecr:	Extended Control Register | 
|  | */ | 
|  | struct parport_ip32_regs { | 
|  | void __iomem *data; | 
|  | void __iomem *dsr; | 
|  | void __iomem *dcr; | 
|  | void __iomem *eppAddr; | 
|  | void __iomem *eppData0; | 
|  | void __iomem *eppData1; | 
|  | void __iomem *eppData2; | 
|  | void __iomem *eppData3; | 
|  | void __iomem *ecpAFifo; | 
|  | void __iomem *fifo; | 
|  | void __iomem *cnfgA; | 
|  | void __iomem *cnfgB; | 
|  | void __iomem *ecr; | 
|  | }; | 
|  |  | 
|  | /* Device Status Register */ | 
|  | #define DSR_nBUSY		(1U << 7)	/* PARPORT_STATUS_BUSY */ | 
|  | #define DSR_nACK		(1U << 6)	/* PARPORT_STATUS_ACK */ | 
|  | #define DSR_PERROR		(1U << 5)	/* PARPORT_STATUS_PAPEROUT */ | 
|  | #define DSR_SELECT		(1U << 4)	/* PARPORT_STATUS_SELECT */ | 
|  | #define DSR_nFAULT		(1U << 3)	/* PARPORT_STATUS_ERROR */ | 
|  | #define DSR_nPRINT		(1U << 2)	/* specific to TL16PIR552 */ | 
|  | /* #define DSR_reserved		(1U << 1) */ | 
|  | #define DSR_TIMEOUT		(1U << 0)	/* EPP timeout */ | 
|  |  | 
|  | /* Device Control Register */ | 
|  | /* #define DCR_reserved		(1U << 7) | (1U <<  6) */ | 
|  | #define DCR_DIR			(1U << 5)	/* direction */ | 
|  | #define DCR_IRQ			(1U << 4)	/* interrupt on nAck */ | 
|  | #define DCR_SELECT		(1U << 3)	/* PARPORT_CONTROL_SELECT */ | 
|  | #define DCR_nINIT		(1U << 2)	/* PARPORT_CONTROL_INIT */ | 
|  | #define DCR_AUTOFD		(1U << 1)	/* PARPORT_CONTROL_AUTOFD */ | 
|  | #define DCR_STROBE		(1U << 0)	/* PARPORT_CONTROL_STROBE */ | 
|  |  | 
|  | /* ECP Configuration Register A */ | 
|  | #define CNFGA_IRQ		(1U << 7) | 
|  | #define CNFGA_ID_MASK		((1U << 6) | (1U << 5) | (1U << 4)) | 
|  | #define CNFGA_ID_SHIFT		4 | 
|  | #define CNFGA_ID_16		(00U << CNFGA_ID_SHIFT) | 
|  | #define CNFGA_ID_8		(01U << CNFGA_ID_SHIFT) | 
|  | #define CNFGA_ID_32		(02U << CNFGA_ID_SHIFT) | 
|  | /* #define CNFGA_reserved	(1U << 3) */ | 
|  | #define CNFGA_nBYTEINTRANS	(1U << 2) | 
|  | #define CNFGA_PWORDLEFT		((1U << 1) | (1U << 0)) | 
|  |  | 
|  | /* ECP Configuration Register B */ | 
|  | #define CNFGB_COMPRESS		(1U << 7) | 
|  | #define CNFGB_INTRVAL		(1U << 6) | 
|  | #define CNFGB_IRQ_MASK		((1U << 5) | (1U << 4) | (1U << 3)) | 
|  | #define CNFGB_IRQ_SHIFT		3 | 
|  | #define CNFGB_DMA_MASK		((1U << 2) | (1U << 1) | (1U << 0)) | 
|  | #define CNFGB_DMA_SHIFT		0 | 
|  |  | 
|  | /* Extended Control Register */ | 
|  | #define ECR_MODE_MASK		((1U << 7) | (1U << 6) | (1U << 5)) | 
|  | #define ECR_MODE_SHIFT		5 | 
|  | #define ECR_MODE_SPP		(00U << ECR_MODE_SHIFT) | 
|  | #define ECR_MODE_PS2		(01U << ECR_MODE_SHIFT) | 
|  | #define ECR_MODE_PPF		(02U << ECR_MODE_SHIFT) | 
|  | #define ECR_MODE_ECP		(03U << ECR_MODE_SHIFT) | 
|  | #define ECR_MODE_EPP		(04U << ECR_MODE_SHIFT) | 
|  | /* #define ECR_MODE_reserved	(05U << ECR_MODE_SHIFT) */ | 
|  | #define ECR_MODE_TST		(06U << ECR_MODE_SHIFT) | 
|  | #define ECR_MODE_CFG		(07U << ECR_MODE_SHIFT) | 
|  | #define ECR_nERRINTR		(1U << 4) | 
|  | #define ECR_DMAEN		(1U << 3) | 
|  | #define ECR_SERVINTR		(1U << 2) | 
|  | #define ECR_F_FULL		(1U << 1) | 
|  | #define ECR_F_EMPTY		(1U << 0) | 
|  |  | 
|  | /*--- Private data -----------------------------------------------------*/ | 
|  |  | 
|  | /** | 
|  | * enum parport_ip32_irq_mode - operation mode of interrupt handler | 
|  | * @PARPORT_IP32_IRQ_FWD:	forward interrupt to the upper parport layer | 
|  | * @PARPORT_IP32_IRQ_HERE:	interrupt is handled locally | 
|  | */ | 
|  | enum parport_ip32_irq_mode { PARPORT_IP32_IRQ_FWD, PARPORT_IP32_IRQ_HERE }; | 
|  |  | 
|  | /** | 
|  | * struct parport_ip32_private - private stuff for &struct parport | 
|  | * @regs:		register addresses | 
|  | * @dcr_cache:		cached contents of DCR | 
|  | * @dcr_writable:	bit mask of writable DCR bits | 
|  | * @pword:		number of bytes per PWord | 
|  | * @fifo_depth:		number of PWords that FIFO will hold | 
|  | * @readIntrThreshold:	minimum number of PWords we can read | 
|  | *			if we get an interrupt | 
|  | * @writeIntrThreshold:	minimum number of PWords we can write | 
|  | *			if we get an interrupt | 
|  | * @irq_mode:		operation mode of interrupt handler for this port | 
|  | * @irq_complete:	mutex used to wait for an interrupt to occur | 
|  | */ | 
|  | struct parport_ip32_private { | 
|  | struct parport_ip32_regs	regs; | 
|  | unsigned int			dcr_cache; | 
|  | unsigned int			dcr_writable; | 
|  | unsigned int			pword; | 
|  | unsigned int			fifo_depth; | 
|  | unsigned int			readIntrThreshold; | 
|  | unsigned int			writeIntrThreshold; | 
|  | enum parport_ip32_irq_mode	irq_mode; | 
|  | struct completion		irq_complete; | 
|  | }; | 
|  |  | 
|  | /*--- Debug code -------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * pr_debug1 - print debug messages | 
|  | * | 
|  | * This is like pr_debug(), but is defined for %DEBUG_PARPORT_IP32 >= 1 | 
|  | */ | 
|  | #if DEBUG_PARPORT_IP32 >= 1 | 
|  | #	define pr_debug1(...)	printk(KERN_DEBUG __VA_ARGS__) | 
|  | #else /* DEBUG_PARPORT_IP32 < 1 */ | 
|  | #	define pr_debug1(...)	do { } while (0) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * pr_trace, pr_trace1 - trace function calls | 
|  | * @p:		pointer to &struct parport | 
|  | * @fmt:	printk format string | 
|  | * @...:	parameters for format string | 
|  | * | 
|  | * Macros used to trace function calls.  The given string is formatted after | 
|  | * function name.  pr_trace() uses pr_debug(), and pr_trace1() uses | 
|  | * pr_debug1().  __pr_trace() is the low-level macro and is not to be used | 
|  | * directly. | 
|  | */ | 
|  | #define __pr_trace(pr, p, fmt, ...)					\ | 
|  | pr("%s: %s" fmt "\n",						\ | 
|  | ({ const struct parport *__p = (p);				\ | 
|  | __p ? __p->name : "parport_ip32"; }),		\ | 
|  | __func__ , ##__VA_ARGS__) | 
|  | #define pr_trace(p, fmt, ...)	__pr_trace(pr_debug, p, fmt , ##__VA_ARGS__) | 
|  | #define pr_trace1(p, fmt, ...)	__pr_trace(pr_debug1, p, fmt , ##__VA_ARGS__) | 
|  |  | 
|  | /* | 
|  | * __pr_probe, pr_probe - print message if @verbose_probing is true | 
|  | * @p:		pointer to &struct parport | 
|  | * @fmt:	printk format string | 
|  | * @...:	parameters for format string | 
|  | * | 
|  | * For new lines, use pr_probe().  Use __pr_probe() for continued lines. | 
|  | */ | 
|  | #define __pr_probe(...)							\ | 
|  | do { if (verbose_probing) printk(__VA_ARGS__); } while (0) | 
|  | #define pr_probe(p, fmt, ...)						\ | 
|  | __pr_probe(KERN_INFO PPIP32 "0x%lx: " fmt, (p)->base , ##__VA_ARGS__) | 
|  |  | 
|  | /* | 
|  | * parport_ip32_dump_state - print register status of parport | 
|  | * @p:		pointer to &struct parport | 
|  | * @str:	string to add in message | 
|  | * @show_ecp_config:	shall we dump ECP configuration registers too? | 
|  | * | 
|  | * This function is only here for debugging purpose, and should be used with | 
|  | * care.  Reading the parallel port registers may have undesired side effects. | 
|  | * Especially if @show_ecp_config is true, the parallel port is resetted. | 
|  | * This function is only defined if %DEBUG_PARPORT_IP32 >= 2. | 
|  | */ | 
|  | #if DEBUG_PARPORT_IP32 >= 2 | 
|  | static void parport_ip32_dump_state(struct parport *p, char *str, | 
|  | unsigned int show_ecp_config) | 
|  | { | 
|  | struct parport_ip32_private * const priv = p->physport->private_data; | 
|  | unsigned int i; | 
|  |  | 
|  | printk(KERN_DEBUG PPIP32 "%s: state (%s):\n", p->name, str); | 
|  | { | 
|  | static const char ecr_modes[8][4] = {"SPP", "PS2", "PPF", | 
|  | "ECP", "EPP", "???", | 
|  | "TST", "CFG"}; | 
|  | unsigned int ecr = readb(priv->regs.ecr); | 
|  | printk(KERN_DEBUG PPIP32 "    ecr=0x%02x", ecr); | 
|  | printk(" %s", | 
|  | ecr_modes[(ecr & ECR_MODE_MASK) >> ECR_MODE_SHIFT]); | 
|  | if (ecr & ECR_nERRINTR) | 
|  | printk(",nErrIntrEn"); | 
|  | if (ecr & ECR_DMAEN) | 
|  | printk(",dmaEn"); | 
|  | if (ecr & ECR_SERVINTR) | 
|  | printk(",serviceIntr"); | 
|  | if (ecr & ECR_F_FULL) | 
|  | printk(",f_full"); | 
|  | if (ecr & ECR_F_EMPTY) | 
|  | printk(",f_empty"); | 
|  | printk("\n"); | 
|  | } | 
|  | if (show_ecp_config) { | 
|  | unsigned int oecr, cnfgA, cnfgB; | 
|  | oecr = readb(priv->regs.ecr); | 
|  | writeb(ECR_MODE_PS2, priv->regs.ecr); | 
|  | writeb(ECR_MODE_CFG, priv->regs.ecr); | 
|  | cnfgA = readb(priv->regs.cnfgA); | 
|  | cnfgB = readb(priv->regs.cnfgB); | 
|  | writeb(ECR_MODE_PS2, priv->regs.ecr); | 
|  | writeb(oecr, priv->regs.ecr); | 
|  | printk(KERN_DEBUG PPIP32 "    cnfgA=0x%02x", cnfgA); | 
|  | printk(" ISA-%s", (cnfgA & CNFGA_IRQ) ? "Level" : "Pulses"); | 
|  | switch (cnfgA & CNFGA_ID_MASK) { | 
|  | case CNFGA_ID_8: | 
|  | printk(",8 bits"); | 
|  | break; | 
|  | case CNFGA_ID_16: | 
|  | printk(",16 bits"); | 
|  | break; | 
|  | case CNFGA_ID_32: | 
|  | printk(",32 bits"); | 
|  | break; | 
|  | default: | 
|  | printk(",unknown ID"); | 
|  | break; | 
|  | } | 
|  | if (!(cnfgA & CNFGA_nBYTEINTRANS)) | 
|  | printk(",ByteInTrans"); | 
|  | if ((cnfgA & CNFGA_ID_MASK) != CNFGA_ID_8) | 
|  | printk(",%d byte%s left", cnfgA & CNFGA_PWORDLEFT, | 
|  | ((cnfgA & CNFGA_PWORDLEFT) > 1) ? "s" : ""); | 
|  | printk("\n"); | 
|  | printk(KERN_DEBUG PPIP32 "    cnfgB=0x%02x", cnfgB); | 
|  | printk(" irq=%u,dma=%u", | 
|  | (cnfgB & CNFGB_IRQ_MASK) >> CNFGB_IRQ_SHIFT, | 
|  | (cnfgB & CNFGB_DMA_MASK) >> CNFGB_DMA_SHIFT); | 
|  | printk(",intrValue=%d", !!(cnfgB & CNFGB_INTRVAL)); | 
|  | if (cnfgB & CNFGB_COMPRESS) | 
|  | printk(",compress"); | 
|  | printk("\n"); | 
|  | } | 
|  | for (i = 0; i < 2; i++) { | 
|  | unsigned int dcr = i ? priv->dcr_cache : readb(priv->regs.dcr); | 
|  | printk(KERN_DEBUG PPIP32 "    dcr(%s)=0x%02x", | 
|  | i ? "soft" : "hard", dcr); | 
|  | printk(" %s", (dcr & DCR_DIR) ? "rev" : "fwd"); | 
|  | if (dcr & DCR_IRQ) | 
|  | printk(",ackIntEn"); | 
|  | if (!(dcr & DCR_SELECT)) | 
|  | printk(",nSelectIn"); | 
|  | if (dcr & DCR_nINIT) | 
|  | printk(",nInit"); | 
|  | if (!(dcr & DCR_AUTOFD)) | 
|  | printk(",nAutoFD"); | 
|  | if (!(dcr & DCR_STROBE)) | 
|  | printk(",nStrobe"); | 
|  | printk("\n"); | 
|  | } | 
|  | #define sep (f++ ? ',' : ' ') | 
|  | { | 
|  | unsigned int f = 0; | 
|  | unsigned int dsr = readb(priv->regs.dsr); | 
|  | printk(KERN_DEBUG PPIP32 "    dsr=0x%02x", dsr); | 
|  | if (!(dsr & DSR_nBUSY)) | 
|  | printk("%cBusy", sep); | 
|  | if (dsr & DSR_nACK) | 
|  | printk("%cnAck", sep); | 
|  | if (dsr & DSR_PERROR) | 
|  | printk("%cPError", sep); | 
|  | if (dsr & DSR_SELECT) | 
|  | printk("%cSelect", sep); | 
|  | if (dsr & DSR_nFAULT) | 
|  | printk("%cnFault", sep); | 
|  | if (!(dsr & DSR_nPRINT)) | 
|  | printk("%c(Print)", sep); | 
|  | if (dsr & DSR_TIMEOUT) | 
|  | printk("%cTimeout", sep); | 
|  | printk("\n"); | 
|  | } | 
|  | #undef sep | 
|  | } | 
|  | #else /* DEBUG_PARPORT_IP32 < 2 */ | 
|  | #define parport_ip32_dump_state(...)	do { } while (0) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * CHECK_EXTRA_BITS - track and log extra bits | 
|  | * @p:		pointer to &struct parport | 
|  | * @b:		byte to inspect | 
|  | * @m:		bit mask of authorized bits | 
|  | * | 
|  | * This is used to track and log extra bits that should not be there in | 
|  | * parport_ip32_write_control() and parport_ip32_frob_control().  It is only | 
|  | * defined if %DEBUG_PARPORT_IP32 >= 1. | 
|  | */ | 
|  | #if DEBUG_PARPORT_IP32 >= 1 | 
|  | #define CHECK_EXTRA_BITS(p, b, m)					\ | 
|  | do {								\ | 
|  | unsigned int __b = (b), __m = (m);			\ | 
|  | if (__b & ~__m)						\ | 
|  | pr_debug1(PPIP32 "%s: extra bits in %s(%s): "	\ | 
|  | "0x%02x/0x%02x\n",			\ | 
|  | (p)->name, __func__, #b, __b, __m);	\ | 
|  | } while (0) | 
|  | #else /* DEBUG_PARPORT_IP32 < 1 */ | 
|  | #define CHECK_EXTRA_BITS(...)	do { } while (0) | 
|  | #endif | 
|  |  | 
|  | /*--- IP32 parallel port DMA operations --------------------------------*/ | 
|  |  | 
|  | /** | 
|  | * struct parport_ip32_dma_data - private data needed for DMA operation | 
|  | * @dir:	DMA direction (from or to device) | 
|  | * @buf:	buffer physical address | 
|  | * @len:	buffer length | 
|  | * @next:	address of next bytes to DMA transfer | 
|  | * @left:	number of bytes remaining | 
|  | * @ctx:	next context to write (0: context_a; 1: context_b) | 
|  | * @irq_on:	are the DMA IRQs currently enabled? | 
|  | * @lock:	spinlock to protect access to the structure | 
|  | */ | 
|  | struct parport_ip32_dma_data { | 
|  | enum dma_data_direction		dir; | 
|  | dma_addr_t			buf; | 
|  | dma_addr_t			next; | 
|  | size_t				len; | 
|  | size_t				left; | 
|  | unsigned int			ctx; | 
|  | unsigned int			irq_on; | 
|  | spinlock_t			lock; | 
|  | }; | 
|  | static struct parport_ip32_dma_data parport_ip32_dma; | 
|  |  | 
|  | /** | 
|  | * parport_ip32_dma_setup_context - setup next DMA context | 
|  | * @limit:	maximum data size for the context | 
|  | * | 
|  | * The alignment constraints must be verified in caller function, and the | 
|  | * parameter @limit must be set accordingly. | 
|  | */ | 
|  | static void parport_ip32_dma_setup_context(unsigned int limit) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&parport_ip32_dma.lock, flags); | 
|  | if (parport_ip32_dma.left > 0) { | 
|  | /* Note: ctxreg is "volatile" here only because | 
|  | * mace->perif.ctrl.parport.context_a and context_b are | 
|  | * "volatile".  */ | 
|  | volatile u64 __iomem *ctxreg = (parport_ip32_dma.ctx == 0) ? | 
|  | &mace->perif.ctrl.parport.context_a : | 
|  | &mace->perif.ctrl.parport.context_b; | 
|  | u64 count; | 
|  | u64 ctxval; | 
|  | if (parport_ip32_dma.left <= limit) { | 
|  | count = parport_ip32_dma.left; | 
|  | ctxval = MACEPAR_CONTEXT_LASTFLAG; | 
|  | } else { | 
|  | count = limit; | 
|  | ctxval = 0; | 
|  | } | 
|  |  | 
|  | pr_trace(NULL, | 
|  | "(%u): 0x%04x:0x%04x, %u -> %u%s", | 
|  | limit, | 
|  | (unsigned int)parport_ip32_dma.buf, | 
|  | (unsigned int)parport_ip32_dma.next, | 
|  | (unsigned int)count, | 
|  | parport_ip32_dma.ctx, ctxval ? "*" : ""); | 
|  |  | 
|  | ctxval |= parport_ip32_dma.next & | 
|  | MACEPAR_CONTEXT_BASEADDR_MASK; | 
|  | ctxval |= ((count - 1) << MACEPAR_CONTEXT_DATALEN_SHIFT) & | 
|  | MACEPAR_CONTEXT_DATALEN_MASK; | 
|  | writeq(ctxval, ctxreg); | 
|  | parport_ip32_dma.next += count; | 
|  | parport_ip32_dma.left -= count; | 
|  | parport_ip32_dma.ctx ^= 1U; | 
|  | } | 
|  | /* If there is nothing more to send, disable IRQs to avoid to | 
|  | * face an IRQ storm which can lock the machine.  Disable them | 
|  | * only once. */ | 
|  | if (parport_ip32_dma.left == 0 && parport_ip32_dma.irq_on) { | 
|  | pr_debug(PPIP32 "IRQ off (ctx)\n"); | 
|  | disable_irq_nosync(MACEISA_PAR_CTXA_IRQ); | 
|  | disable_irq_nosync(MACEISA_PAR_CTXB_IRQ); | 
|  | parport_ip32_dma.irq_on = 0; | 
|  | } | 
|  | spin_unlock_irqrestore(&parport_ip32_dma.lock, flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_dma_interrupt - DMA interrupt handler | 
|  | * @irq:	interrupt number | 
|  | * @dev_id:	unused | 
|  | */ | 
|  | static irqreturn_t parport_ip32_dma_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | if (parport_ip32_dma.left) | 
|  | pr_trace(NULL, "(%d): ctx=%d", irq, parport_ip32_dma.ctx); | 
|  | parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | #if DEBUG_PARPORT_IP32 | 
|  | static irqreturn_t parport_ip32_merr_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | pr_trace1(NULL, "(%d)", irq); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * parport_ip32_dma_start - begins a DMA transfer | 
|  | * @dir:	DMA direction: DMA_TO_DEVICE or DMA_FROM_DEVICE | 
|  | * @addr:	pointer to data buffer | 
|  | * @count:	buffer size | 
|  | * | 
|  | * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be | 
|  | * correctly balanced. | 
|  | */ | 
|  | static int parport_ip32_dma_start(enum dma_data_direction dir, | 
|  | void *addr, size_t count) | 
|  | { | 
|  | unsigned int limit; | 
|  | u64 ctrl; | 
|  |  | 
|  | pr_trace(NULL, "(%d, %lu)", dir, (unsigned long)count); | 
|  |  | 
|  | /* FIXME - add support for DMA_FROM_DEVICE.  In this case, buffer must | 
|  | * be 64 bytes aligned. */ | 
|  | BUG_ON(dir != DMA_TO_DEVICE); | 
|  |  | 
|  | /* Reset DMA controller */ | 
|  | ctrl = MACEPAR_CTLSTAT_RESET; | 
|  | writeq(ctrl, &mace->perif.ctrl.parport.cntlstat); | 
|  |  | 
|  | /* DMA IRQs should normally be enabled */ | 
|  | if (!parport_ip32_dma.irq_on) { | 
|  | WARN_ON(1); | 
|  | enable_irq(MACEISA_PAR_CTXA_IRQ); | 
|  | enable_irq(MACEISA_PAR_CTXB_IRQ); | 
|  | parport_ip32_dma.irq_on = 1; | 
|  | } | 
|  |  | 
|  | /* Prepare DMA pointers */ | 
|  | parport_ip32_dma.dir = dir; | 
|  | parport_ip32_dma.buf = dma_map_single(NULL, addr, count, dir); | 
|  | parport_ip32_dma.len = count; | 
|  | parport_ip32_dma.next = parport_ip32_dma.buf; | 
|  | parport_ip32_dma.left = parport_ip32_dma.len; | 
|  | parport_ip32_dma.ctx = 0; | 
|  |  | 
|  | /* Setup DMA direction and first two contexts */ | 
|  | ctrl = (dir == DMA_TO_DEVICE) ? 0 : MACEPAR_CTLSTAT_DIRECTION; | 
|  | writeq(ctrl, &mace->perif.ctrl.parport.cntlstat); | 
|  | /* Single transfer should not cross a 4K page boundary */ | 
|  | limit = MACEPAR_CONTEXT_DATA_BOUND - | 
|  | (parport_ip32_dma.next & (MACEPAR_CONTEXT_DATA_BOUND - 1)); | 
|  | parport_ip32_dma_setup_context(limit); | 
|  | parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND); | 
|  |  | 
|  | /* Real start of DMA transfer */ | 
|  | ctrl |= MACEPAR_CTLSTAT_ENABLE; | 
|  | writeq(ctrl, &mace->perif.ctrl.parport.cntlstat); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_dma_stop - ends a running DMA transfer | 
|  | * | 
|  | * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be | 
|  | * correctly balanced. | 
|  | */ | 
|  | static void parport_ip32_dma_stop(void) | 
|  | { | 
|  | u64 ctx_a; | 
|  | u64 ctx_b; | 
|  | u64 ctrl; | 
|  | u64 diag; | 
|  | size_t res[2];	/* {[0] = res_a, [1] = res_b} */ | 
|  |  | 
|  | pr_trace(NULL, "()"); | 
|  |  | 
|  | /* Disable IRQs */ | 
|  | spin_lock_irq(&parport_ip32_dma.lock); | 
|  | if (parport_ip32_dma.irq_on) { | 
|  | pr_debug(PPIP32 "IRQ off (stop)\n"); | 
|  | disable_irq_nosync(MACEISA_PAR_CTXA_IRQ); | 
|  | disable_irq_nosync(MACEISA_PAR_CTXB_IRQ); | 
|  | parport_ip32_dma.irq_on = 0; | 
|  | } | 
|  | spin_unlock_irq(&parport_ip32_dma.lock); | 
|  | /* Force IRQ synchronization, even if the IRQs were disabled | 
|  | * elsewhere. */ | 
|  | synchronize_irq(MACEISA_PAR_CTXA_IRQ); | 
|  | synchronize_irq(MACEISA_PAR_CTXB_IRQ); | 
|  |  | 
|  | /* Stop DMA transfer */ | 
|  | ctrl = readq(&mace->perif.ctrl.parport.cntlstat); | 
|  | ctrl &= ~MACEPAR_CTLSTAT_ENABLE; | 
|  | writeq(ctrl, &mace->perif.ctrl.parport.cntlstat); | 
|  |  | 
|  | /* Adjust residue (parport_ip32_dma.left) */ | 
|  | ctx_a = readq(&mace->perif.ctrl.parport.context_a); | 
|  | ctx_b = readq(&mace->perif.ctrl.parport.context_b); | 
|  | ctrl = readq(&mace->perif.ctrl.parport.cntlstat); | 
|  | diag = readq(&mace->perif.ctrl.parport.diagnostic); | 
|  | res[0] = (ctrl & MACEPAR_CTLSTAT_CTXA_VALID) ? | 
|  | 1 + ((ctx_a & MACEPAR_CONTEXT_DATALEN_MASK) >> | 
|  | MACEPAR_CONTEXT_DATALEN_SHIFT) : | 
|  | 0; | 
|  | res[1] = (ctrl & MACEPAR_CTLSTAT_CTXB_VALID) ? | 
|  | 1 + ((ctx_b & MACEPAR_CONTEXT_DATALEN_MASK) >> | 
|  | MACEPAR_CONTEXT_DATALEN_SHIFT) : | 
|  | 0; | 
|  | if (diag & MACEPAR_DIAG_DMACTIVE) | 
|  | res[(diag & MACEPAR_DIAG_CTXINUSE) != 0] = | 
|  | 1 + ((diag & MACEPAR_DIAG_CTRMASK) >> | 
|  | MACEPAR_DIAG_CTRSHIFT); | 
|  | parport_ip32_dma.left += res[0] + res[1]; | 
|  |  | 
|  | /* Reset DMA controller, and re-enable IRQs */ | 
|  | ctrl = MACEPAR_CTLSTAT_RESET; | 
|  | writeq(ctrl, &mace->perif.ctrl.parport.cntlstat); | 
|  | pr_debug(PPIP32 "IRQ on (stop)\n"); | 
|  | enable_irq(MACEISA_PAR_CTXA_IRQ); | 
|  | enable_irq(MACEISA_PAR_CTXB_IRQ); | 
|  | parport_ip32_dma.irq_on = 1; | 
|  |  | 
|  | dma_unmap_single(NULL, parport_ip32_dma.buf, parport_ip32_dma.len, | 
|  | parport_ip32_dma.dir); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_dma_get_residue - get residue from last DMA transfer | 
|  | * | 
|  | * Returns the number of bytes remaining from last DMA transfer. | 
|  | */ | 
|  | static inline size_t parport_ip32_dma_get_residue(void) | 
|  | { | 
|  | return parport_ip32_dma.left; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_dma_register - initialize DMA engine | 
|  | * | 
|  | * Returns zero for success. | 
|  | */ | 
|  | static int parport_ip32_dma_register(void) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | spin_lock_init(&parport_ip32_dma.lock); | 
|  | parport_ip32_dma.irq_on = 1; | 
|  |  | 
|  | /* Reset DMA controller */ | 
|  | writeq(MACEPAR_CTLSTAT_RESET, &mace->perif.ctrl.parport.cntlstat); | 
|  |  | 
|  | /* Request IRQs */ | 
|  | err = request_irq(MACEISA_PAR_CTXA_IRQ, parport_ip32_dma_interrupt, | 
|  | 0, "parport_ip32", NULL); | 
|  | if (err) | 
|  | goto fail_a; | 
|  | err = request_irq(MACEISA_PAR_CTXB_IRQ, parport_ip32_dma_interrupt, | 
|  | 0, "parport_ip32", NULL); | 
|  | if (err) | 
|  | goto fail_b; | 
|  | #if DEBUG_PARPORT_IP32 | 
|  | /* FIXME - what is this IRQ for? */ | 
|  | err = request_irq(MACEISA_PAR_MERR_IRQ, parport_ip32_merr_interrupt, | 
|  | 0, "parport_ip32", NULL); | 
|  | if (err) | 
|  | goto fail_merr; | 
|  | #endif | 
|  | return 0; | 
|  |  | 
|  | #if DEBUG_PARPORT_IP32 | 
|  | fail_merr: | 
|  | free_irq(MACEISA_PAR_CTXB_IRQ, NULL); | 
|  | #endif | 
|  | fail_b: | 
|  | free_irq(MACEISA_PAR_CTXA_IRQ, NULL); | 
|  | fail_a: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_dma_unregister - release and free resources for DMA engine | 
|  | */ | 
|  | static void parport_ip32_dma_unregister(void) | 
|  | { | 
|  | #if DEBUG_PARPORT_IP32 | 
|  | free_irq(MACEISA_PAR_MERR_IRQ, NULL); | 
|  | #endif | 
|  | free_irq(MACEISA_PAR_CTXB_IRQ, NULL); | 
|  | free_irq(MACEISA_PAR_CTXA_IRQ, NULL); | 
|  | } | 
|  |  | 
|  | /*--- Interrupt handlers and associates --------------------------------*/ | 
|  |  | 
|  | /** | 
|  | * parport_ip32_wakeup - wakes up code waiting for an interrupt | 
|  | * @p:		pointer to &struct parport | 
|  | */ | 
|  | static inline void parport_ip32_wakeup(struct parport *p) | 
|  | { | 
|  | struct parport_ip32_private * const priv = p->physport->private_data; | 
|  | complete(&priv->irq_complete); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_interrupt - interrupt handler | 
|  | * @irq:	interrupt number | 
|  | * @dev_id:	pointer to &struct parport | 
|  | * | 
|  | * Caught interrupts are forwarded to the upper parport layer if IRQ_mode is | 
|  | * %PARPORT_IP32_IRQ_FWD. | 
|  | */ | 
|  | static irqreturn_t parport_ip32_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | struct parport * const p = dev_id; | 
|  | struct parport_ip32_private * const priv = p->physport->private_data; | 
|  | enum parport_ip32_irq_mode irq_mode = priv->irq_mode; | 
|  |  | 
|  | switch (irq_mode) { | 
|  | case PARPORT_IP32_IRQ_FWD: | 
|  | return parport_irq_handler(irq, dev_id); | 
|  |  | 
|  | case PARPORT_IP32_IRQ_HERE: | 
|  | parport_ip32_wakeup(p); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /*--- Some utility function to manipulate ECR register -----------------*/ | 
|  |  | 
|  | /** | 
|  | * parport_ip32_read_econtrol - read contents of the ECR register | 
|  | * @p:		pointer to &struct parport | 
|  | */ | 
|  | static inline unsigned int parport_ip32_read_econtrol(struct parport *p) | 
|  | { | 
|  | struct parport_ip32_private * const priv = p->physport->private_data; | 
|  | return readb(priv->regs.ecr); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_write_econtrol - write new contents to the ECR register | 
|  | * @p:		pointer to &struct parport | 
|  | * @c:		new value to write | 
|  | */ | 
|  | static inline void parport_ip32_write_econtrol(struct parport *p, | 
|  | unsigned int c) | 
|  | { | 
|  | struct parport_ip32_private * const priv = p->physport->private_data; | 
|  | writeb(c, priv->regs.ecr); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_frob_econtrol - change bits from the ECR register | 
|  | * @p:		pointer to &struct parport | 
|  | * @mask:	bit mask of bits to change | 
|  | * @val:	new value for changed bits | 
|  | * | 
|  | * Read from the ECR, mask out the bits in @mask, exclusive-or with the bits | 
|  | * in @val, and write the result to the ECR. | 
|  | */ | 
|  | static inline void parport_ip32_frob_econtrol(struct parport *p, | 
|  | unsigned int mask, | 
|  | unsigned int val) | 
|  | { | 
|  | unsigned int c; | 
|  | c = (parport_ip32_read_econtrol(p) & ~mask) ^ val; | 
|  | parport_ip32_write_econtrol(p, c); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_set_mode - change mode of ECP port | 
|  | * @p:		pointer to &struct parport | 
|  | * @mode:	new mode to write in ECR | 
|  | * | 
|  | * ECR is reset in a sane state (interrupts and DMA disabled), and placed in | 
|  | * mode @mode.  Go through PS2 mode if needed. | 
|  | */ | 
|  | static void parport_ip32_set_mode(struct parport *p, unsigned int mode) | 
|  | { | 
|  | unsigned int omode; | 
|  |  | 
|  | mode &= ECR_MODE_MASK; | 
|  | omode = parport_ip32_read_econtrol(p) & ECR_MODE_MASK; | 
|  |  | 
|  | if (!(mode == ECR_MODE_SPP || mode == ECR_MODE_PS2 | 
|  | || omode == ECR_MODE_SPP || omode == ECR_MODE_PS2)) { | 
|  | /* We have to go through PS2 mode */ | 
|  | unsigned int ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR; | 
|  | parport_ip32_write_econtrol(p, ecr); | 
|  | } | 
|  | parport_ip32_write_econtrol(p, mode | ECR_nERRINTR | ECR_SERVINTR); | 
|  | } | 
|  |  | 
|  | /*--- Basic functions needed for parport -------------------------------*/ | 
|  |  | 
|  | /** | 
|  | * parport_ip32_read_data - return current contents of the DATA register | 
|  | * @p:		pointer to &struct parport | 
|  | */ | 
|  | static inline unsigned char parport_ip32_read_data(struct parport *p) | 
|  | { | 
|  | struct parport_ip32_private * const priv = p->physport->private_data; | 
|  | return readb(priv->regs.data); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_write_data - set new contents for the DATA register | 
|  | * @p:		pointer to &struct parport | 
|  | * @d:		new value to write | 
|  | */ | 
|  | static inline void parport_ip32_write_data(struct parport *p, unsigned char d) | 
|  | { | 
|  | struct parport_ip32_private * const priv = p->physport->private_data; | 
|  | writeb(d, priv->regs.data); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_read_status - return current contents of the DSR register | 
|  | * @p:		pointer to &struct parport | 
|  | */ | 
|  | static inline unsigned char parport_ip32_read_status(struct parport *p) | 
|  | { | 
|  | struct parport_ip32_private * const priv = p->physport->private_data; | 
|  | return readb(priv->regs.dsr); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __parport_ip32_read_control - return cached contents of the DCR register | 
|  | * @p:		pointer to &struct parport | 
|  | */ | 
|  | static inline unsigned int __parport_ip32_read_control(struct parport *p) | 
|  | { | 
|  | struct parport_ip32_private * const priv = p->physport->private_data; | 
|  | return priv->dcr_cache; /* use soft copy */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __parport_ip32_write_control - set new contents for the DCR register | 
|  | * @p:		pointer to &struct parport | 
|  | * @c:		new value to write | 
|  | */ | 
|  | static inline void __parport_ip32_write_control(struct parport *p, | 
|  | unsigned int c) | 
|  | { | 
|  | struct parport_ip32_private * const priv = p->physport->private_data; | 
|  | CHECK_EXTRA_BITS(p, c, priv->dcr_writable); | 
|  | c &= priv->dcr_writable; /* only writable bits */ | 
|  | writeb(c, priv->regs.dcr); | 
|  | priv->dcr_cache = c;		/* update soft copy */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __parport_ip32_frob_control - change bits from the DCR register | 
|  | * @p:		pointer to &struct parport | 
|  | * @mask:	bit mask of bits to change | 
|  | * @val:	new value for changed bits | 
|  | * | 
|  | * This is equivalent to read from the DCR, mask out the bits in @mask, | 
|  | * exclusive-or with the bits in @val, and write the result to the DCR. | 
|  | * Actually, the cached contents of the DCR is used. | 
|  | */ | 
|  | static inline void __parport_ip32_frob_control(struct parport *p, | 
|  | unsigned int mask, | 
|  | unsigned int val) | 
|  | { | 
|  | unsigned int c; | 
|  | c = (__parport_ip32_read_control(p) & ~mask) ^ val; | 
|  | __parport_ip32_write_control(p, c); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_read_control - return cached contents of the DCR register | 
|  | * @p:		pointer to &struct parport | 
|  | * | 
|  | * The return value is masked so as to only return the value of %DCR_STROBE, | 
|  | * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT. | 
|  | */ | 
|  | static inline unsigned char parport_ip32_read_control(struct parport *p) | 
|  | { | 
|  | const unsigned int rm = | 
|  | DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT; | 
|  | return __parport_ip32_read_control(p) & rm; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_write_control - set new contents for the DCR register | 
|  | * @p:		pointer to &struct parport | 
|  | * @c:		new value to write | 
|  | * | 
|  | * The value is masked so as to only change the value of %DCR_STROBE, | 
|  | * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT. | 
|  | */ | 
|  | static inline void parport_ip32_write_control(struct parport *p, | 
|  | unsigned char c) | 
|  | { | 
|  | const unsigned int wm = | 
|  | DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT; | 
|  | CHECK_EXTRA_BITS(p, c, wm); | 
|  | __parport_ip32_frob_control(p, wm, c & wm); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_frob_control - change bits from the DCR register | 
|  | * @p:		pointer to &struct parport | 
|  | * @mask:	bit mask of bits to change | 
|  | * @val:	new value for changed bits | 
|  | * | 
|  | * This differs from __parport_ip32_frob_control() in that it only allows to | 
|  | * change the value of %DCR_STROBE, %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT. | 
|  | */ | 
|  | static inline unsigned char parport_ip32_frob_control(struct parport *p, | 
|  | unsigned char mask, | 
|  | unsigned char val) | 
|  | { | 
|  | const unsigned int wm = | 
|  | DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT; | 
|  | CHECK_EXTRA_BITS(p, mask, wm); | 
|  | CHECK_EXTRA_BITS(p, val, wm); | 
|  | __parport_ip32_frob_control(p, mask & wm, val & wm); | 
|  | return parport_ip32_read_control(p); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_disable_irq - disable interrupts on the rising edge of nACK | 
|  | * @p:		pointer to &struct parport | 
|  | */ | 
|  | static inline void parport_ip32_disable_irq(struct parport *p) | 
|  | { | 
|  | __parport_ip32_frob_control(p, DCR_IRQ, 0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_enable_irq - enable interrupts on the rising edge of nACK | 
|  | * @p:		pointer to &struct parport | 
|  | */ | 
|  | static inline void parport_ip32_enable_irq(struct parport *p) | 
|  | { | 
|  | __parport_ip32_frob_control(p, DCR_IRQ, DCR_IRQ); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_data_forward - enable host-to-peripheral communications | 
|  | * @p:		pointer to &struct parport | 
|  | * | 
|  | * Enable the data line drivers, for 8-bit host-to-peripheral communications. | 
|  | */ | 
|  | static inline void parport_ip32_data_forward(struct parport *p) | 
|  | { | 
|  | __parport_ip32_frob_control(p, DCR_DIR, 0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_data_reverse - enable peripheral-to-host communications | 
|  | * @p:		pointer to &struct parport | 
|  | * | 
|  | * Place the data bus in a high impedance state, if @p->modes has the | 
|  | * PARPORT_MODE_TRISTATE bit set. | 
|  | */ | 
|  | static inline void parport_ip32_data_reverse(struct parport *p) | 
|  | { | 
|  | __parport_ip32_frob_control(p, DCR_DIR, DCR_DIR); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_init_state - for core parport code | 
|  | * @dev:	pointer to &struct pardevice | 
|  | * @s:		pointer to &struct parport_state to initialize | 
|  | */ | 
|  | static void parport_ip32_init_state(struct pardevice *dev, | 
|  | struct parport_state *s) | 
|  | { | 
|  | s->u.ip32.dcr = DCR_SELECT | DCR_nINIT; | 
|  | s->u.ip32.ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_save_state - for core parport code | 
|  | * @p:		pointer to &struct parport | 
|  | * @s:		pointer to &struct parport_state to save state to | 
|  | */ | 
|  | static void parport_ip32_save_state(struct parport *p, | 
|  | struct parport_state *s) | 
|  | { | 
|  | s->u.ip32.dcr = __parport_ip32_read_control(p); | 
|  | s->u.ip32.ecr = parport_ip32_read_econtrol(p); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_restore_state - for core parport code | 
|  | * @p:		pointer to &struct parport | 
|  | * @s:		pointer to &struct parport_state to restore state from | 
|  | */ | 
|  | static void parport_ip32_restore_state(struct parport *p, | 
|  | struct parport_state *s) | 
|  | { | 
|  | parport_ip32_set_mode(p, s->u.ip32.ecr & ECR_MODE_MASK); | 
|  | parport_ip32_write_econtrol(p, s->u.ip32.ecr); | 
|  | __parport_ip32_write_control(p, s->u.ip32.dcr); | 
|  | } | 
|  |  | 
|  | /*--- EPP mode functions -----------------------------------------------*/ | 
|  |  | 
|  | /** | 
|  | * parport_ip32_clear_epp_timeout - clear Timeout bit in EPP mode | 
|  | * @p:		pointer to &struct parport | 
|  | * | 
|  | * Returns 1 if the Timeout bit is clear, and 0 otherwise. | 
|  | */ | 
|  | static unsigned int parport_ip32_clear_epp_timeout(struct parport *p) | 
|  | { | 
|  | struct parport_ip32_private * const priv = p->physport->private_data; | 
|  | unsigned int cleared; | 
|  |  | 
|  | if (!(parport_ip32_read_status(p) & DSR_TIMEOUT)) | 
|  | cleared = 1; | 
|  | else { | 
|  | unsigned int r; | 
|  | /* To clear timeout some chips require double read */ | 
|  | parport_ip32_read_status(p); | 
|  | r = parport_ip32_read_status(p); | 
|  | /* Some reset by writing 1 */ | 
|  | writeb(r | DSR_TIMEOUT, priv->regs.dsr); | 
|  | /* Others by writing 0 */ | 
|  | writeb(r & ~DSR_TIMEOUT, priv->regs.dsr); | 
|  |  | 
|  | r = parport_ip32_read_status(p); | 
|  | cleared = !(r & DSR_TIMEOUT); | 
|  | } | 
|  |  | 
|  | pr_trace(p, "(): %s", cleared ? "cleared" : "failed"); | 
|  | return cleared; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_epp_read - generic EPP read function | 
|  | * @eppreg:	I/O register to read from | 
|  | * @p:		pointer to &struct parport | 
|  | * @buf:	buffer to store read data | 
|  | * @len:	length of buffer @buf | 
|  | * @flags:	may be PARPORT_EPP_FAST | 
|  | */ | 
|  | static size_t parport_ip32_epp_read(void __iomem *eppreg, | 
|  | struct parport *p, void *buf, | 
|  | size_t len, int flags) | 
|  | { | 
|  | struct parport_ip32_private * const priv = p->physport->private_data; | 
|  | size_t got; | 
|  | parport_ip32_set_mode(p, ECR_MODE_EPP); | 
|  | parport_ip32_data_reverse(p); | 
|  | parport_ip32_write_control(p, DCR_nINIT); | 
|  | if ((flags & PARPORT_EPP_FAST) && (len > 1)) { | 
|  | readsb(eppreg, buf, len); | 
|  | if (readb(priv->regs.dsr) & DSR_TIMEOUT) { | 
|  | parport_ip32_clear_epp_timeout(p); | 
|  | return -EIO; | 
|  | } | 
|  | got = len; | 
|  | } else { | 
|  | u8 *bufp = buf; | 
|  | for (got = 0; got < len; got++) { | 
|  | *bufp++ = readb(eppreg); | 
|  | if (readb(priv->regs.dsr) & DSR_TIMEOUT) { | 
|  | parport_ip32_clear_epp_timeout(p); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | parport_ip32_data_forward(p); | 
|  | parport_ip32_set_mode(p, ECR_MODE_PS2); | 
|  | return got; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_epp_write - generic EPP write function | 
|  | * @eppreg:	I/O register to write to | 
|  | * @p:		pointer to &struct parport | 
|  | * @buf:	buffer of data to write | 
|  | * @len:	length of buffer @buf | 
|  | * @flags:	may be PARPORT_EPP_FAST | 
|  | */ | 
|  | static size_t parport_ip32_epp_write(void __iomem *eppreg, | 
|  | struct parport *p, const void *buf, | 
|  | size_t len, int flags) | 
|  | { | 
|  | struct parport_ip32_private * const priv = p->physport->private_data; | 
|  | size_t written; | 
|  | parport_ip32_set_mode(p, ECR_MODE_EPP); | 
|  | parport_ip32_data_forward(p); | 
|  | parport_ip32_write_control(p, DCR_nINIT); | 
|  | if ((flags & PARPORT_EPP_FAST) && (len > 1)) { | 
|  | writesb(eppreg, buf, len); | 
|  | if (readb(priv->regs.dsr) & DSR_TIMEOUT) { | 
|  | parport_ip32_clear_epp_timeout(p); | 
|  | return -EIO; | 
|  | } | 
|  | written = len; | 
|  | } else { | 
|  | const u8 *bufp = buf; | 
|  | for (written = 0; written < len; written++) { | 
|  | writeb(*bufp++, eppreg); | 
|  | if (readb(priv->regs.dsr) & DSR_TIMEOUT) { | 
|  | parport_ip32_clear_epp_timeout(p); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | parport_ip32_set_mode(p, ECR_MODE_PS2); | 
|  | return written; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_epp_read_data - read a block of data in EPP mode | 
|  | * @p:		pointer to &struct parport | 
|  | * @buf:	buffer to store read data | 
|  | * @len:	length of buffer @buf | 
|  | * @flags:	may be PARPORT_EPP_FAST | 
|  | */ | 
|  | static size_t parport_ip32_epp_read_data(struct parport *p, void *buf, | 
|  | size_t len, int flags) | 
|  | { | 
|  | struct parport_ip32_private * const priv = p->physport->private_data; | 
|  | return parport_ip32_epp_read(priv->regs.eppData0, p, buf, len, flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_epp_write_data - write a block of data in EPP mode | 
|  | * @p:		pointer to &struct parport | 
|  | * @buf:	buffer of data to write | 
|  | * @len:	length of buffer @buf | 
|  | * @flags:	may be PARPORT_EPP_FAST | 
|  | */ | 
|  | static size_t parport_ip32_epp_write_data(struct parport *p, const void *buf, | 
|  | size_t len, int flags) | 
|  | { | 
|  | struct parport_ip32_private * const priv = p->physport->private_data; | 
|  | return parport_ip32_epp_write(priv->regs.eppData0, p, buf, len, flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_epp_read_addr - read a block of addresses in EPP mode | 
|  | * @p:		pointer to &struct parport | 
|  | * @buf:	buffer to store read data | 
|  | * @len:	length of buffer @buf | 
|  | * @flags:	may be PARPORT_EPP_FAST | 
|  | */ | 
|  | static size_t parport_ip32_epp_read_addr(struct parport *p, void *buf, | 
|  | size_t len, int flags) | 
|  | { | 
|  | struct parport_ip32_private * const priv = p->physport->private_data; | 
|  | return parport_ip32_epp_read(priv->regs.eppAddr, p, buf, len, flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_epp_write_addr - write a block of addresses in EPP mode | 
|  | * @p:		pointer to &struct parport | 
|  | * @buf:	buffer of data to write | 
|  | * @len:	length of buffer @buf | 
|  | * @flags:	may be PARPORT_EPP_FAST | 
|  | */ | 
|  | static size_t parport_ip32_epp_write_addr(struct parport *p, const void *buf, | 
|  | size_t len, int flags) | 
|  | { | 
|  | struct parport_ip32_private * const priv = p->physport->private_data; | 
|  | return parport_ip32_epp_write(priv->regs.eppAddr, p, buf, len, flags); | 
|  | } | 
|  |  | 
|  | /*--- ECP mode functions (FIFO) ----------------------------------------*/ | 
|  |  | 
|  | /** | 
|  | * parport_ip32_fifo_wait_break - check if the waiting function should return | 
|  | * @p:		pointer to &struct parport | 
|  | * @expire:	timeout expiring date, in jiffies | 
|  | * | 
|  | * parport_ip32_fifo_wait_break() checks if the waiting function should return | 
|  | * immediately or not.  The break conditions are: | 
|  | *	- expired timeout; | 
|  | *	- a pending signal; | 
|  | *	- nFault asserted low. | 
|  | * This function also calls cond_resched(). | 
|  | */ | 
|  | static unsigned int parport_ip32_fifo_wait_break(struct parport *p, | 
|  | unsigned long expire) | 
|  | { | 
|  | cond_resched(); | 
|  | if (time_after(jiffies, expire)) { | 
|  | pr_debug1(PPIP32 "%s: FIFO write timed out\n", p->name); | 
|  | return 1; | 
|  | } | 
|  | if (signal_pending(current)) { | 
|  | pr_debug1(PPIP32 "%s: Signal pending\n", p->name); | 
|  | return 1; | 
|  | } | 
|  | if (!(parport_ip32_read_status(p) & DSR_nFAULT)) { | 
|  | pr_debug1(PPIP32 "%s: nFault asserted low\n", p->name); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_fwp_wait_polling - wait for FIFO to empty (polling) | 
|  | * @p:		pointer to &struct parport | 
|  | * | 
|  | * Returns the number of bytes that can safely be written in the FIFO.  A | 
|  | * return value of zero means that the calling function should terminate as | 
|  | * fast as possible. | 
|  | */ | 
|  | static unsigned int parport_ip32_fwp_wait_polling(struct parport *p) | 
|  | { | 
|  | struct parport_ip32_private * const priv = p->physport->private_data; | 
|  | struct parport * const physport = p->physport; | 
|  | unsigned long expire; | 
|  | unsigned int count; | 
|  | unsigned int ecr; | 
|  |  | 
|  | expire = jiffies + physport->cad->timeout; | 
|  | count = 0; | 
|  | while (1) { | 
|  | if (parport_ip32_fifo_wait_break(p, expire)) | 
|  | break; | 
|  |  | 
|  | /* Check FIFO state.  We do nothing when the FIFO is nor full, | 
|  | * nor empty.  It appears that the FIFO full bit is not always | 
|  | * reliable, the FIFO state is sometimes wrongly reported, and | 
|  | * the chip gets confused if we give it another byte. */ | 
|  | ecr = parport_ip32_read_econtrol(p); | 
|  | if (ecr & ECR_F_EMPTY) { | 
|  | /* FIFO is empty, fill it up */ | 
|  | count = priv->fifo_depth; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Wait a moment... */ | 
|  | udelay(FIFO_POLLING_INTERVAL); | 
|  | } /* while (1) */ | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_fwp_wait_interrupt - wait for FIFO to empty (interrupt-driven) | 
|  | * @p:		pointer to &struct parport | 
|  | * | 
|  | * Returns the number of bytes that can safely be written in the FIFO.  A | 
|  | * return value of zero means that the calling function should terminate as | 
|  | * fast as possible. | 
|  | */ | 
|  | static unsigned int parport_ip32_fwp_wait_interrupt(struct parport *p) | 
|  | { | 
|  | static unsigned int lost_interrupt = 0; | 
|  | struct parport_ip32_private * const priv = p->physport->private_data; | 
|  | struct parport * const physport = p->physport; | 
|  | unsigned long nfault_timeout; | 
|  | unsigned long expire; | 
|  | unsigned int count; | 
|  | unsigned int ecr; | 
|  |  | 
|  | nfault_timeout = min((unsigned long)physport->cad->timeout, | 
|  | msecs_to_jiffies(FIFO_NFAULT_TIMEOUT)); | 
|  | expire = jiffies + physport->cad->timeout; | 
|  | count = 0; | 
|  | while (1) { | 
|  | if (parport_ip32_fifo_wait_break(p, expire)) | 
|  | break; | 
|  |  | 
|  | /* Initialize mutex used to take interrupts into account */ | 
|  | INIT_COMPLETION(priv->irq_complete); | 
|  |  | 
|  | /* Enable serviceIntr */ | 
|  | parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0); | 
|  |  | 
|  | /* Enabling serviceIntr while the FIFO is empty does not | 
|  | * always generate an interrupt, so check for emptiness | 
|  | * now. */ | 
|  | ecr = parport_ip32_read_econtrol(p); | 
|  | if (!(ecr & ECR_F_EMPTY)) { | 
|  | /* FIFO is not empty: wait for an interrupt or a | 
|  | * timeout to occur */ | 
|  | wait_for_completion_interruptible_timeout( | 
|  | &priv->irq_complete, nfault_timeout); | 
|  | ecr = parport_ip32_read_econtrol(p); | 
|  | if ((ecr & ECR_F_EMPTY) && !(ecr & ECR_SERVINTR) | 
|  | && !lost_interrupt) { | 
|  | printk(KERN_WARNING PPIP32 | 
|  | "%s: lost interrupt in %s\n", | 
|  | p->name, __func__); | 
|  | lost_interrupt = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Disable serviceIntr */ | 
|  | parport_ip32_frob_econtrol(p, ECR_SERVINTR, ECR_SERVINTR); | 
|  |  | 
|  | /* Check FIFO state */ | 
|  | if (ecr & ECR_F_EMPTY) { | 
|  | /* FIFO is empty, fill it up */ | 
|  | count = priv->fifo_depth; | 
|  | break; | 
|  | } else if (ecr & ECR_SERVINTR) { | 
|  | /* FIFO is not empty, but we know that can safely push | 
|  | * writeIntrThreshold bytes into it */ | 
|  | count = priv->writeIntrThreshold; | 
|  | break; | 
|  | } | 
|  | /* FIFO is not empty, and we did not get any interrupt. | 
|  | * Either it's time to check for nFault, or a signal is | 
|  | * pending.  This is verified in | 
|  | * parport_ip32_fifo_wait_break(), so we continue the loop. */ | 
|  | } /* while (1) */ | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_fifo_write_block_pio - write a block of data (PIO mode) | 
|  | * @p:		pointer to &struct parport | 
|  | * @buf:	buffer of data to write | 
|  | * @len:	length of buffer @buf | 
|  | * | 
|  | * Uses PIO to write the contents of the buffer @buf into the parallel port | 
|  | * FIFO.  Returns the number of bytes that were actually written.  It can work | 
|  | * with or without the help of interrupts.  The parallel port must be | 
|  | * correctly initialized before calling parport_ip32_fifo_write_block_pio(). | 
|  | */ | 
|  | static size_t parport_ip32_fifo_write_block_pio(struct parport *p, | 
|  | const void *buf, size_t len) | 
|  | { | 
|  | struct parport_ip32_private * const priv = p->physport->private_data; | 
|  | const u8 *bufp = buf; | 
|  | size_t left = len; | 
|  |  | 
|  | priv->irq_mode = PARPORT_IP32_IRQ_HERE; | 
|  |  | 
|  | while (left > 0) { | 
|  | unsigned int count; | 
|  |  | 
|  | count = (p->irq == PARPORT_IRQ_NONE) ? | 
|  | parport_ip32_fwp_wait_polling(p) : | 
|  | parport_ip32_fwp_wait_interrupt(p); | 
|  | if (count == 0) | 
|  | break;	/* Transmission should be stopped */ | 
|  | if (count > left) | 
|  | count = left; | 
|  | if (count == 1) { | 
|  | writeb(*bufp, priv->regs.fifo); | 
|  | bufp++, left--; | 
|  | } else { | 
|  | writesb(priv->regs.fifo, bufp, count); | 
|  | bufp += count, left -= count; | 
|  | } | 
|  | } | 
|  |  | 
|  | priv->irq_mode = PARPORT_IP32_IRQ_FWD; | 
|  |  | 
|  | return len - left; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_fifo_write_block_dma - write a block of data (DMA mode) | 
|  | * @p:		pointer to &struct parport | 
|  | * @buf:	buffer of data to write | 
|  | * @len:	length of buffer @buf | 
|  | * | 
|  | * Uses DMA to write the contents of the buffer @buf into the parallel port | 
|  | * FIFO.  Returns the number of bytes that were actually written.  The | 
|  | * parallel port must be correctly initialized before calling | 
|  | * parport_ip32_fifo_write_block_dma(). | 
|  | */ | 
|  | static size_t parport_ip32_fifo_write_block_dma(struct parport *p, | 
|  | const void *buf, size_t len) | 
|  | { | 
|  | struct parport_ip32_private * const priv = p->physport->private_data; | 
|  | struct parport * const physport = p->physport; | 
|  | unsigned long nfault_timeout; | 
|  | unsigned long expire; | 
|  | size_t written; | 
|  | unsigned int ecr; | 
|  |  | 
|  | priv->irq_mode = PARPORT_IP32_IRQ_HERE; | 
|  |  | 
|  | parport_ip32_dma_start(DMA_TO_DEVICE, (void *)buf, len); | 
|  | INIT_COMPLETION(priv->irq_complete); | 
|  | parport_ip32_frob_econtrol(p, ECR_DMAEN | ECR_SERVINTR, ECR_DMAEN); | 
|  |  | 
|  | nfault_timeout = min((unsigned long)physport->cad->timeout, | 
|  | msecs_to_jiffies(FIFO_NFAULT_TIMEOUT)); | 
|  | expire = jiffies + physport->cad->timeout; | 
|  | while (1) { | 
|  | if (parport_ip32_fifo_wait_break(p, expire)) | 
|  | break; | 
|  | wait_for_completion_interruptible_timeout(&priv->irq_complete, | 
|  | nfault_timeout); | 
|  | ecr = parport_ip32_read_econtrol(p); | 
|  | if (ecr & ECR_SERVINTR) | 
|  | break;	/* DMA transfer just finished */ | 
|  | } | 
|  | parport_ip32_dma_stop(); | 
|  | written = len - parport_ip32_dma_get_residue(); | 
|  |  | 
|  | priv->irq_mode = PARPORT_IP32_IRQ_FWD; | 
|  |  | 
|  | return written; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_fifo_write_block - write a block of data | 
|  | * @p:		pointer to &struct parport | 
|  | * @buf:	buffer of data to write | 
|  | * @len:	length of buffer @buf | 
|  | * | 
|  | * Uses PIO or DMA to write the contents of the buffer @buf into the parallel | 
|  | * p FIFO.  Returns the number of bytes that were actually written. | 
|  | */ | 
|  | static size_t parport_ip32_fifo_write_block(struct parport *p, | 
|  | const void *buf, size_t len) | 
|  | { | 
|  | size_t written = 0; | 
|  | if (len) | 
|  | /* FIXME - Maybe some threshold value should be set for @len | 
|  | * under which we revert to PIO mode? */ | 
|  | written = (p->modes & PARPORT_MODE_DMA) ? | 
|  | parport_ip32_fifo_write_block_dma(p, buf, len) : | 
|  | parport_ip32_fifo_write_block_pio(p, buf, len); | 
|  | return written; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_drain_fifo - wait for FIFO to empty | 
|  | * @p:		pointer to &struct parport | 
|  | * @timeout:	timeout, in jiffies | 
|  | * | 
|  | * This function waits for FIFO to empty.  It returns 1 when FIFO is empty, or | 
|  | * 0 if the timeout @timeout is reached before, or if a signal is pending. | 
|  | */ | 
|  | static unsigned int parport_ip32_drain_fifo(struct parport *p, | 
|  | unsigned long timeout) | 
|  | { | 
|  | unsigned long expire = jiffies + timeout; | 
|  | unsigned int polling_interval; | 
|  | unsigned int counter; | 
|  |  | 
|  | /* Busy wait for approx. 200us */ | 
|  | for (counter = 0; counter < 40; counter++) { | 
|  | if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY) | 
|  | break; | 
|  | if (time_after(jiffies, expire)) | 
|  | break; | 
|  | if (signal_pending(current)) | 
|  | break; | 
|  | udelay(5); | 
|  | } | 
|  | /* Poll slowly.  Polling interval starts with 1 millisecond, and is | 
|  | * increased exponentially until 128.  */ | 
|  | polling_interval = 1; /* msecs */ | 
|  | while (!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY)) { | 
|  | if (time_after_eq(jiffies, expire)) | 
|  | break; | 
|  | msleep_interruptible(polling_interval); | 
|  | if (signal_pending(current)) | 
|  | break; | 
|  | if (polling_interval < 128) | 
|  | polling_interval *= 2; | 
|  | } | 
|  |  | 
|  | return !!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_get_fifo_residue - reset FIFO | 
|  | * @p:		pointer to &struct parport | 
|  | * @mode:	current operation mode (ECR_MODE_PPF or ECR_MODE_ECP) | 
|  | * | 
|  | * This function resets FIFO, and returns the number of bytes remaining in it. | 
|  | */ | 
|  | static unsigned int parport_ip32_get_fifo_residue(struct parport *p, | 
|  | unsigned int mode) | 
|  | { | 
|  | struct parport_ip32_private * const priv = p->physport->private_data; | 
|  | unsigned int residue; | 
|  | unsigned int cnfga; | 
|  |  | 
|  | /* FIXME - We are missing one byte if the printer is off-line.  I | 
|  | * don't know how to detect this.  It looks that the full bit is not | 
|  | * always reliable.  For the moment, the problem is avoided in most | 
|  | * cases by testing for BUSY in parport_ip32_compat_write_data(). | 
|  | */ | 
|  | if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY) | 
|  | residue = 0; | 
|  | else { | 
|  | pr_debug1(PPIP32 "%s: FIFO is stuck\n", p->name); | 
|  |  | 
|  | /* Stop all transfers. | 
|  | * | 
|  | * Microsoft's document instructs to drive DCR_STROBE to 0, | 
|  | * but it doesn't work (at least in Compatibility mode, not | 
|  | * tested in ECP mode).  Switching directly to Test mode (as | 
|  | * in parport_pc) is not an option: it does confuse the port, | 
|  | * ECP service interrupts are no more working after that.  A | 
|  | * hard reset is then needed to revert to a sane state. | 
|  | * | 
|  | * Let's hope that the FIFO is really stuck and that the | 
|  | * peripheral doesn't wake up now. | 
|  | */ | 
|  | parport_ip32_frob_control(p, DCR_STROBE, 0); | 
|  |  | 
|  | /* Fill up FIFO */ | 
|  | for (residue = priv->fifo_depth; residue > 0; residue--) { | 
|  | if (parport_ip32_read_econtrol(p) & ECR_F_FULL) | 
|  | break; | 
|  | writeb(0x00, priv->regs.fifo); | 
|  | } | 
|  | } | 
|  | if (residue) | 
|  | pr_debug1(PPIP32 "%s: %d PWord%s left in FIFO\n", | 
|  | p->name, residue, | 
|  | (residue == 1) ? " was" : "s were"); | 
|  |  | 
|  | /* Now reset the FIFO */ | 
|  | parport_ip32_set_mode(p, ECR_MODE_PS2); | 
|  |  | 
|  | /* Host recovery for ECP mode */ | 
|  | if (mode == ECR_MODE_ECP) { | 
|  | parport_ip32_data_reverse(p); | 
|  | parport_ip32_frob_control(p, DCR_nINIT, 0); | 
|  | if (parport_wait_peripheral(p, DSR_PERROR, 0)) | 
|  | pr_debug1(PPIP32 "%s: PEerror timeout 1 in %s\n", | 
|  | p->name, __func__); | 
|  | parport_ip32_frob_control(p, DCR_STROBE, DCR_STROBE); | 
|  | parport_ip32_frob_control(p, DCR_nINIT, DCR_nINIT); | 
|  | if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR)) | 
|  | pr_debug1(PPIP32 "%s: PEerror timeout 2 in %s\n", | 
|  | p->name, __func__); | 
|  | } | 
|  |  | 
|  | /* Adjust residue if needed */ | 
|  | parport_ip32_set_mode(p, ECR_MODE_CFG); | 
|  | cnfga = readb(priv->regs.cnfgA); | 
|  | if (!(cnfga & CNFGA_nBYTEINTRANS)) { | 
|  | pr_debug1(PPIP32 "%s: cnfgA contains 0x%02x\n", | 
|  | p->name, cnfga); | 
|  | pr_debug1(PPIP32 "%s: Accounting for extra byte\n", | 
|  | p->name); | 
|  | residue++; | 
|  | } | 
|  |  | 
|  | /* Don't care about partial PWords since we do not support | 
|  | * PWord != 1 byte. */ | 
|  |  | 
|  | /* Back to forward PS2 mode. */ | 
|  | parport_ip32_set_mode(p, ECR_MODE_PS2); | 
|  | parport_ip32_data_forward(p); | 
|  |  | 
|  | return residue; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_compat_write_data - write a block of data in SPP mode | 
|  | * @p:		pointer to &struct parport | 
|  | * @buf:	buffer of data to write | 
|  | * @len:	length of buffer @buf | 
|  | * @flags:	ignored | 
|  | */ | 
|  | static size_t parport_ip32_compat_write_data(struct parport *p, | 
|  | const void *buf, size_t len, | 
|  | int flags) | 
|  | { | 
|  | static unsigned int ready_before = 1; | 
|  | struct parport_ip32_private * const priv = p->physport->private_data; | 
|  | struct parport * const physport = p->physport; | 
|  | size_t written = 0; | 
|  |  | 
|  | /* Special case: a timeout of zero means we cannot call schedule(). | 
|  | * Also if O_NONBLOCK is set then use the default implementation. */ | 
|  | if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK) | 
|  | return parport_ieee1284_write_compat(p, buf, len, flags); | 
|  |  | 
|  | /* Reset FIFO, go in forward mode, and disable ackIntEn */ | 
|  | parport_ip32_set_mode(p, ECR_MODE_PS2); | 
|  | parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT); | 
|  | parport_ip32_data_forward(p); | 
|  | parport_ip32_disable_irq(p); | 
|  | parport_ip32_set_mode(p, ECR_MODE_PPF); | 
|  | physport->ieee1284.phase = IEEE1284_PH_FWD_DATA; | 
|  |  | 
|  | /* Wait for peripheral to become ready */ | 
|  | if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT, | 
|  | DSR_nBUSY | DSR_nFAULT)) { | 
|  | /* Avoid to flood the logs */ | 
|  | if (ready_before) | 
|  | printk(KERN_INFO PPIP32 "%s: not ready in %s\n", | 
|  | p->name, __func__); | 
|  | ready_before = 0; | 
|  | goto stop; | 
|  | } | 
|  | ready_before = 1; | 
|  |  | 
|  | written = parport_ip32_fifo_write_block(p, buf, len); | 
|  |  | 
|  | /* Wait FIFO to empty.  Timeout is proportional to FIFO_depth.  */ | 
|  | parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth); | 
|  |  | 
|  | /* Check for a potential residue */ | 
|  | written -= parport_ip32_get_fifo_residue(p, ECR_MODE_PPF); | 
|  |  | 
|  | /* Then, wait for BUSY to get low. */ | 
|  | if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY)) | 
|  | printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n", | 
|  | p->name, __func__); | 
|  |  | 
|  | stop: | 
|  | /* Reset FIFO */ | 
|  | parport_ip32_set_mode(p, ECR_MODE_PS2); | 
|  | physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE; | 
|  |  | 
|  | return written; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * FIXME - Insert here parport_ip32_ecp_read_data(). | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * parport_ip32_ecp_write_data - write a block of data in ECP mode | 
|  | * @p:		pointer to &struct parport | 
|  | * @buf:	buffer of data to write | 
|  | * @len:	length of buffer @buf | 
|  | * @flags:	ignored | 
|  | */ | 
|  | static size_t parport_ip32_ecp_write_data(struct parport *p, | 
|  | const void *buf, size_t len, | 
|  | int flags) | 
|  | { | 
|  | static unsigned int ready_before = 1; | 
|  | struct parport_ip32_private * const priv = p->physport->private_data; | 
|  | struct parport * const physport = p->physport; | 
|  | size_t written = 0; | 
|  |  | 
|  | /* Special case: a timeout of zero means we cannot call schedule(). | 
|  | * Also if O_NONBLOCK is set then use the default implementation. */ | 
|  | if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK) | 
|  | return parport_ieee1284_ecp_write_data(p, buf, len, flags); | 
|  |  | 
|  | /* Negotiate to forward mode if necessary. */ | 
|  | if (physport->ieee1284.phase != IEEE1284_PH_FWD_IDLE) { | 
|  | /* Event 47: Set nInit high. */ | 
|  | parport_ip32_frob_control(p, DCR_nINIT | DCR_AUTOFD, | 
|  | DCR_nINIT | DCR_AUTOFD); | 
|  |  | 
|  | /* Event 49: PError goes high. */ | 
|  | if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR)) { | 
|  | printk(KERN_DEBUG PPIP32 "%s: PError timeout in %s", | 
|  | p->name, __func__); | 
|  | physport->ieee1284.phase = IEEE1284_PH_ECP_DIR_UNKNOWN; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Reset FIFO, go in forward mode, and disable ackIntEn */ | 
|  | parport_ip32_set_mode(p, ECR_MODE_PS2); | 
|  | parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT); | 
|  | parport_ip32_data_forward(p); | 
|  | parport_ip32_disable_irq(p); | 
|  | parport_ip32_set_mode(p, ECR_MODE_ECP); | 
|  | physport->ieee1284.phase = IEEE1284_PH_FWD_DATA; | 
|  |  | 
|  | /* Wait for peripheral to become ready */ | 
|  | if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT, | 
|  | DSR_nBUSY | DSR_nFAULT)) { | 
|  | /* Avoid to flood the logs */ | 
|  | if (ready_before) | 
|  | printk(KERN_INFO PPIP32 "%s: not ready in %s\n", | 
|  | p->name, __func__); | 
|  | ready_before = 0; | 
|  | goto stop; | 
|  | } | 
|  | ready_before = 1; | 
|  |  | 
|  | written = parport_ip32_fifo_write_block(p, buf, len); | 
|  |  | 
|  | /* Wait FIFO to empty.  Timeout is proportional to FIFO_depth.  */ | 
|  | parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth); | 
|  |  | 
|  | /* Check for a potential residue */ | 
|  | written -= parport_ip32_get_fifo_residue(p, ECR_MODE_ECP); | 
|  |  | 
|  | /* Then, wait for BUSY to get low. */ | 
|  | if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY)) | 
|  | printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n", | 
|  | p->name, __func__); | 
|  |  | 
|  | stop: | 
|  | /* Reset FIFO */ | 
|  | parport_ip32_set_mode(p, ECR_MODE_PS2); | 
|  | physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE; | 
|  |  | 
|  | return written; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * FIXME - Insert here parport_ip32_ecp_write_addr(). | 
|  | */ | 
|  |  | 
|  | /*--- Default parport operations ---------------------------------------*/ | 
|  |  | 
|  | static __initdata struct parport_operations parport_ip32_ops = { | 
|  | .write_data		= parport_ip32_write_data, | 
|  | .read_data		= parport_ip32_read_data, | 
|  |  | 
|  | .write_control		= parport_ip32_write_control, | 
|  | .read_control		= parport_ip32_read_control, | 
|  | .frob_control		= parport_ip32_frob_control, | 
|  |  | 
|  | .read_status		= parport_ip32_read_status, | 
|  |  | 
|  | .enable_irq		= parport_ip32_enable_irq, | 
|  | .disable_irq		= parport_ip32_disable_irq, | 
|  |  | 
|  | .data_forward		= parport_ip32_data_forward, | 
|  | .data_reverse		= parport_ip32_data_reverse, | 
|  |  | 
|  | .init_state		= parport_ip32_init_state, | 
|  | .save_state		= parport_ip32_save_state, | 
|  | .restore_state		= parport_ip32_restore_state, | 
|  |  | 
|  | .epp_write_data		= parport_ieee1284_epp_write_data, | 
|  | .epp_read_data		= parport_ieee1284_epp_read_data, | 
|  | .epp_write_addr		= parport_ieee1284_epp_write_addr, | 
|  | .epp_read_addr		= parport_ieee1284_epp_read_addr, | 
|  |  | 
|  | .ecp_write_data		= parport_ieee1284_ecp_write_data, | 
|  | .ecp_read_data		= parport_ieee1284_ecp_read_data, | 
|  | .ecp_write_addr		= parport_ieee1284_ecp_write_addr, | 
|  |  | 
|  | .compat_write_data	= parport_ieee1284_write_compat, | 
|  | .nibble_read_data	= parport_ieee1284_read_nibble, | 
|  | .byte_read_data		= parport_ieee1284_read_byte, | 
|  |  | 
|  | .owner			= THIS_MODULE, | 
|  | }; | 
|  |  | 
|  | /*--- Device detection -------------------------------------------------*/ | 
|  |  | 
|  | /** | 
|  | * parport_ip32_ecp_supported - check for an ECP port | 
|  | * @p:		pointer to the &parport structure | 
|  | * | 
|  | * Returns 1 if an ECP port is found, and 0 otherwise.  This function actually | 
|  | * checks if an Extended Control Register seems to be present.  On successful | 
|  | * return, the port is placed in SPP mode. | 
|  | */ | 
|  | static __init unsigned int parport_ip32_ecp_supported(struct parport *p) | 
|  | { | 
|  | struct parport_ip32_private * const priv = p->physport->private_data; | 
|  | unsigned int ecr; | 
|  |  | 
|  | ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR; | 
|  | writeb(ecr, priv->regs.ecr); | 
|  | if (readb(priv->regs.ecr) != (ecr | ECR_F_EMPTY)) | 
|  | goto fail; | 
|  |  | 
|  | pr_probe(p, "Found working ECR register\n"); | 
|  | parport_ip32_set_mode(p, ECR_MODE_SPP); | 
|  | parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT); | 
|  | return 1; | 
|  |  | 
|  | fail: | 
|  | pr_probe(p, "ECR register not found\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_fifo_supported - check for FIFO parameters | 
|  | * @p:		pointer to the &parport structure | 
|  | * | 
|  | * Check for FIFO parameters of an Extended Capabilities Port.  Returns 1 on | 
|  | * success, and 0 otherwise.  Adjust FIFO parameters in the parport structure. | 
|  | * On return, the port is placed in SPP mode. | 
|  | */ | 
|  | static __init unsigned int parport_ip32_fifo_supported(struct parport *p) | 
|  | { | 
|  | struct parport_ip32_private * const priv = p->physport->private_data; | 
|  | unsigned int configa, configb; | 
|  | unsigned int pword; | 
|  | unsigned int i; | 
|  |  | 
|  | /* Configuration mode */ | 
|  | parport_ip32_set_mode(p, ECR_MODE_CFG); | 
|  | configa = readb(priv->regs.cnfgA); | 
|  | configb = readb(priv->regs.cnfgB); | 
|  |  | 
|  | /* Find out PWord size */ | 
|  | switch (configa & CNFGA_ID_MASK) { | 
|  | case CNFGA_ID_8: | 
|  | pword = 1; | 
|  | break; | 
|  | case CNFGA_ID_16: | 
|  | pword = 2; | 
|  | break; | 
|  | case CNFGA_ID_32: | 
|  | pword = 4; | 
|  | break; | 
|  | default: | 
|  | pr_probe(p, "Unknown implementation ID: 0x%0x\n", | 
|  | (configa & CNFGA_ID_MASK) >> CNFGA_ID_SHIFT); | 
|  | goto fail; | 
|  | break; | 
|  | } | 
|  | if (pword != 1) { | 
|  | pr_probe(p, "Unsupported PWord size: %u\n", pword); | 
|  | goto fail; | 
|  | } | 
|  | priv->pword = pword; | 
|  | pr_probe(p, "PWord is %u bits\n", 8 * priv->pword); | 
|  |  | 
|  | /* Check for compression support */ | 
|  | writeb(configb | CNFGB_COMPRESS, priv->regs.cnfgB); | 
|  | if (readb(priv->regs.cnfgB) & CNFGB_COMPRESS) | 
|  | pr_probe(p, "Hardware compression detected (unsupported)\n"); | 
|  | writeb(configb & ~CNFGB_COMPRESS, priv->regs.cnfgB); | 
|  |  | 
|  | /* Reset FIFO and go in test mode (no interrupt, no DMA) */ | 
|  | parport_ip32_set_mode(p, ECR_MODE_TST); | 
|  |  | 
|  | /* FIFO must be empty now */ | 
|  | if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) { | 
|  | pr_probe(p, "FIFO not reset\n"); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* Find out FIFO depth. */ | 
|  | priv->fifo_depth = 0; | 
|  | for (i = 0; i < 1024; i++) { | 
|  | if (readb(priv->regs.ecr) & ECR_F_FULL) { | 
|  | /* FIFO full */ | 
|  | priv->fifo_depth = i; | 
|  | break; | 
|  | } | 
|  | writeb((u8)i, priv->regs.fifo); | 
|  | } | 
|  | if (i >= 1024) { | 
|  | pr_probe(p, "Can't fill FIFO\n"); | 
|  | goto fail; | 
|  | } | 
|  | if (!priv->fifo_depth) { | 
|  | pr_probe(p, "Can't get FIFO depth\n"); | 
|  | goto fail; | 
|  | } | 
|  | pr_probe(p, "FIFO is %u PWords deep\n", priv->fifo_depth); | 
|  |  | 
|  | /* Enable interrupts */ | 
|  | parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0); | 
|  |  | 
|  | /* Find out writeIntrThreshold: number of PWords we know we can write | 
|  | * if we get an interrupt. */ | 
|  | priv->writeIntrThreshold = 0; | 
|  | for (i = 0; i < priv->fifo_depth; i++) { | 
|  | if (readb(priv->regs.fifo) != (u8)i) { | 
|  | pr_probe(p, "Invalid data in FIFO\n"); | 
|  | goto fail; | 
|  | } | 
|  | if (!priv->writeIntrThreshold | 
|  | && readb(priv->regs.ecr) & ECR_SERVINTR) | 
|  | /* writeIntrThreshold reached */ | 
|  | priv->writeIntrThreshold = i + 1; | 
|  | if (i + 1 < priv->fifo_depth | 
|  | && readb(priv->regs.ecr) & ECR_F_EMPTY) { | 
|  | /* FIFO empty before the last byte? */ | 
|  | pr_probe(p, "Data lost in FIFO\n"); | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  | if (!priv->writeIntrThreshold) { | 
|  | pr_probe(p, "Can't get writeIntrThreshold\n"); | 
|  | goto fail; | 
|  | } | 
|  | pr_probe(p, "writeIntrThreshold is %u\n", priv->writeIntrThreshold); | 
|  |  | 
|  | /* FIFO must be empty now */ | 
|  | if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) { | 
|  | pr_probe(p, "Can't empty FIFO\n"); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* Reset FIFO */ | 
|  | parport_ip32_set_mode(p, ECR_MODE_PS2); | 
|  | /* Set reverse direction (must be in PS2 mode) */ | 
|  | parport_ip32_data_reverse(p); | 
|  | /* Test FIFO, no interrupt, no DMA */ | 
|  | parport_ip32_set_mode(p, ECR_MODE_TST); | 
|  | /* Enable interrupts */ | 
|  | parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0); | 
|  |  | 
|  | /* Find out readIntrThreshold: number of PWords we can read if we get | 
|  | * an interrupt. */ | 
|  | priv->readIntrThreshold = 0; | 
|  | for (i = 0; i < priv->fifo_depth; i++) { | 
|  | writeb(0xaa, priv->regs.fifo); | 
|  | if (readb(priv->regs.ecr) & ECR_SERVINTR) { | 
|  | /* readIntrThreshold reached */ | 
|  | priv->readIntrThreshold = i + 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!priv->readIntrThreshold) { | 
|  | pr_probe(p, "Can't get readIntrThreshold\n"); | 
|  | goto fail; | 
|  | } | 
|  | pr_probe(p, "readIntrThreshold is %u\n", priv->readIntrThreshold); | 
|  |  | 
|  | /* Reset ECR */ | 
|  | parport_ip32_set_mode(p, ECR_MODE_PS2); | 
|  | parport_ip32_data_forward(p); | 
|  | parport_ip32_set_mode(p, ECR_MODE_SPP); | 
|  | return 1; | 
|  |  | 
|  | fail: | 
|  | priv->fifo_depth = 0; | 
|  | parport_ip32_set_mode(p, ECR_MODE_SPP); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*--- Initialization code ----------------------------------------------*/ | 
|  |  | 
|  | /** | 
|  | * parport_ip32_make_isa_registers - compute (ISA) register addresses | 
|  | * @regs:	pointer to &struct parport_ip32_regs to fill | 
|  | * @base:	base address of standard and EPP registers | 
|  | * @base_hi:	base address of ECP registers | 
|  | * @regshift:	how much to shift register offset by | 
|  | * | 
|  | * Compute register addresses, according to the ISA standard.  The addresses | 
|  | * of the standard and EPP registers are computed from address @base.  The | 
|  | * addresses of the ECP registers are computed from address @base_hi. | 
|  | */ | 
|  | static void __init | 
|  | parport_ip32_make_isa_registers(struct parport_ip32_regs *regs, | 
|  | void __iomem *base, void __iomem *base_hi, | 
|  | unsigned int regshift) | 
|  | { | 
|  | #define r_base(offset)    ((u8 __iomem *)base    + ((offset) << regshift)) | 
|  | #define r_base_hi(offset) ((u8 __iomem *)base_hi + ((offset) << regshift)) | 
|  | *regs = (struct parport_ip32_regs){ | 
|  | .data		= r_base(0), | 
|  | .dsr		= r_base(1), | 
|  | .dcr		= r_base(2), | 
|  | .eppAddr	= r_base(3), | 
|  | .eppData0	= r_base(4), | 
|  | .eppData1	= r_base(5), | 
|  | .eppData2	= r_base(6), | 
|  | .eppData3	= r_base(7), | 
|  | .ecpAFifo	= r_base(0), | 
|  | .fifo		= r_base_hi(0), | 
|  | .cnfgA		= r_base_hi(0), | 
|  | .cnfgB		= r_base_hi(1), | 
|  | .ecr		= r_base_hi(2) | 
|  | }; | 
|  | #undef r_base_hi | 
|  | #undef r_base | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_probe_port - probe and register IP32 built-in parallel port | 
|  | * | 
|  | * Returns the new allocated &parport structure.  On error, an error code is | 
|  | * encoded in return value with the ERR_PTR function. | 
|  | */ | 
|  | static __init struct parport *parport_ip32_probe_port(void) | 
|  | { | 
|  | struct parport_ip32_regs regs; | 
|  | struct parport_ip32_private *priv = NULL; | 
|  | struct parport_operations *ops = NULL; | 
|  | struct parport *p = NULL; | 
|  | int err; | 
|  |  | 
|  | parport_ip32_make_isa_registers(®s, &mace->isa.parallel, | 
|  | &mace->isa.ecp1284, 8 /* regshift */); | 
|  |  | 
|  | ops = kmalloc(sizeof(struct parport_operations), GFP_KERNEL); | 
|  | priv = kmalloc(sizeof(struct parport_ip32_private), GFP_KERNEL); | 
|  | p = parport_register_port(0, PARPORT_IRQ_NONE, PARPORT_DMA_NONE, ops); | 
|  | if (ops == NULL || priv == NULL || p == NULL) { | 
|  | err = -ENOMEM; | 
|  | goto fail; | 
|  | } | 
|  | p->base = MACE_BASE + offsetof(struct sgi_mace, isa.parallel); | 
|  | p->base_hi = MACE_BASE + offsetof(struct sgi_mace, isa.ecp1284); | 
|  | p->private_data = priv; | 
|  |  | 
|  | *ops = parport_ip32_ops; | 
|  | *priv = (struct parport_ip32_private){ | 
|  | .regs			= regs, | 
|  | .dcr_writable		= DCR_DIR | DCR_SELECT | DCR_nINIT | | 
|  | DCR_AUTOFD | DCR_STROBE, | 
|  | .irq_mode		= PARPORT_IP32_IRQ_FWD, | 
|  | }; | 
|  | init_completion(&priv->irq_complete); | 
|  |  | 
|  | /* Probe port. */ | 
|  | if (!parport_ip32_ecp_supported(p)) { | 
|  | err = -ENODEV; | 
|  | goto fail; | 
|  | } | 
|  | parport_ip32_dump_state(p, "begin init", 0); | 
|  |  | 
|  | /* We found what looks like a working ECR register.  Simply assume | 
|  | * that all modes are correctly supported.  Enable basic modes. */ | 
|  | p->modes = PARPORT_MODE_PCSPP | PARPORT_MODE_SAFEININT; | 
|  | p->modes |= PARPORT_MODE_TRISTATE; | 
|  |  | 
|  | if (!parport_ip32_fifo_supported(p)) { | 
|  | printk(KERN_WARNING PPIP32 | 
|  | "%s: error: FIFO disabled\n", p->name); | 
|  | /* Disable hardware modes depending on a working FIFO. */ | 
|  | features &= ~PARPORT_IP32_ENABLE_SPP; | 
|  | features &= ~PARPORT_IP32_ENABLE_ECP; | 
|  | /* DMA is not needed if FIFO is not supported.  */ | 
|  | features &= ~PARPORT_IP32_ENABLE_DMA; | 
|  | } | 
|  |  | 
|  | /* Request IRQ */ | 
|  | if (features & PARPORT_IP32_ENABLE_IRQ) { | 
|  | int irq = MACEISA_PARALLEL_IRQ; | 
|  | if (request_irq(irq, parport_ip32_interrupt, 0, p->name, p)) { | 
|  | printk(KERN_WARNING PPIP32 | 
|  | "%s: error: IRQ disabled\n", p->name); | 
|  | /* DMA cannot work without interrupts. */ | 
|  | features &= ~PARPORT_IP32_ENABLE_DMA; | 
|  | } else { | 
|  | pr_probe(p, "Interrupt support enabled\n"); | 
|  | p->irq = irq; | 
|  | priv->dcr_writable |= DCR_IRQ; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Allocate DMA resources */ | 
|  | if (features & PARPORT_IP32_ENABLE_DMA) { | 
|  | if (parport_ip32_dma_register()) | 
|  | printk(KERN_WARNING PPIP32 | 
|  | "%s: error: DMA disabled\n", p->name); | 
|  | else { | 
|  | pr_probe(p, "DMA support enabled\n"); | 
|  | p->dma = 0; /* arbitrary value != PARPORT_DMA_NONE */ | 
|  | p->modes |= PARPORT_MODE_DMA; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (features & PARPORT_IP32_ENABLE_SPP) { | 
|  | /* Enable compatibility FIFO mode */ | 
|  | p->ops->compat_write_data = parport_ip32_compat_write_data; | 
|  | p->modes |= PARPORT_MODE_COMPAT; | 
|  | pr_probe(p, "Hardware support for SPP mode enabled\n"); | 
|  | } | 
|  | if (features & PARPORT_IP32_ENABLE_EPP) { | 
|  | /* Set up access functions to use EPP hardware. */ | 
|  | p->ops->epp_read_data = parport_ip32_epp_read_data; | 
|  | p->ops->epp_write_data = parport_ip32_epp_write_data; | 
|  | p->ops->epp_read_addr = parport_ip32_epp_read_addr; | 
|  | p->ops->epp_write_addr = parport_ip32_epp_write_addr; | 
|  | p->modes |= PARPORT_MODE_EPP; | 
|  | pr_probe(p, "Hardware support for EPP mode enabled\n"); | 
|  | } | 
|  | if (features & PARPORT_IP32_ENABLE_ECP) { | 
|  | /* Enable ECP FIFO mode */ | 
|  | p->ops->ecp_write_data = parport_ip32_ecp_write_data; | 
|  | /* FIXME - not implemented */ | 
|  | /*		p->ops->ecp_read_data  = parport_ip32_ecp_read_data; */ | 
|  | /*		p->ops->ecp_write_addr = parport_ip32_ecp_write_addr; */ | 
|  | p->modes |= PARPORT_MODE_ECP; | 
|  | pr_probe(p, "Hardware support for ECP mode enabled\n"); | 
|  | } | 
|  |  | 
|  | /* Initialize the port with sensible values */ | 
|  | parport_ip32_set_mode(p, ECR_MODE_PS2); | 
|  | parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT); | 
|  | parport_ip32_data_forward(p); | 
|  | parport_ip32_disable_irq(p); | 
|  | parport_ip32_write_data(p, 0x00); | 
|  | parport_ip32_dump_state(p, "end init", 0); | 
|  |  | 
|  | /* Print out what we found */ | 
|  | printk(KERN_INFO "%s: SGI IP32 at 0x%lx (0x%lx)", | 
|  | p->name, p->base, p->base_hi); | 
|  | if (p->irq != PARPORT_IRQ_NONE) | 
|  | printk(", irq %d", p->irq); | 
|  | printk(" ["); | 
|  | #define printmode(x)	if (p->modes & PARPORT_MODE_##x)		\ | 
|  | printk("%s%s", f++ ? "," : "", #x) | 
|  | { | 
|  | unsigned int f = 0; | 
|  | printmode(PCSPP); | 
|  | printmode(TRISTATE); | 
|  | printmode(COMPAT); | 
|  | printmode(EPP); | 
|  | printmode(ECP); | 
|  | printmode(DMA); | 
|  | } | 
|  | #undef printmode | 
|  | printk("]\n"); | 
|  |  | 
|  | parport_announce_port(p); | 
|  | return p; | 
|  |  | 
|  | fail: | 
|  | if (p) | 
|  | parport_put_port(p); | 
|  | kfree(priv); | 
|  | kfree(ops); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_unregister_port - unregister a parallel port | 
|  | * @p:		pointer to the &struct parport | 
|  | * | 
|  | * Unregisters a parallel port and free previously allocated resources | 
|  | * (memory, IRQ, ...). | 
|  | */ | 
|  | static __exit void parport_ip32_unregister_port(struct parport *p) | 
|  | { | 
|  | struct parport_ip32_private * const priv = p->physport->private_data; | 
|  | struct parport_operations *ops = p->ops; | 
|  |  | 
|  | parport_remove_port(p); | 
|  | if (p->modes & PARPORT_MODE_DMA) | 
|  | parport_ip32_dma_unregister(); | 
|  | if (p->irq != PARPORT_IRQ_NONE) | 
|  | free_irq(p->irq, p); | 
|  | parport_put_port(p); | 
|  | kfree(priv); | 
|  | kfree(ops); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_init - module initialization function | 
|  | */ | 
|  | static int __init parport_ip32_init(void) | 
|  | { | 
|  | pr_info(PPIP32 "SGI IP32 built-in parallel port driver v0.6\n"); | 
|  | pr_debug1(PPIP32 "Compiled on %s, %s\n", __DATE__, __TIME__); | 
|  | this_port = parport_ip32_probe_port(); | 
|  | return IS_ERR(this_port) ? PTR_ERR(this_port) : 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * parport_ip32_exit - module termination function | 
|  | */ | 
|  | static void __exit parport_ip32_exit(void) | 
|  | { | 
|  | parport_ip32_unregister_port(this_port); | 
|  | } | 
|  |  | 
|  | /*--- Module stuff -----------------------------------------------------*/ | 
|  |  | 
|  | MODULE_AUTHOR("Arnaud Giersch <arnaud.giersch@free.fr>"); | 
|  | MODULE_DESCRIPTION("SGI IP32 built-in parallel port driver"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_VERSION("0.6");		/* update in parport_ip32_init() too */ | 
|  |  | 
|  | module_init(parport_ip32_init); | 
|  | module_exit(parport_ip32_exit); | 
|  |  | 
|  | module_param(verbose_probing, bool, S_IRUGO); | 
|  | MODULE_PARM_DESC(verbose_probing, "Log chit-chat during initialization"); | 
|  |  | 
|  | module_param(features, uint, S_IRUGO); | 
|  | MODULE_PARM_DESC(features, | 
|  | "Bit mask of features to enable" | 
|  | ", bit 0: IRQ support" | 
|  | ", bit 1: DMA support" | 
|  | ", bit 2: hardware SPP mode" | 
|  | ", bit 3: hardware EPP mode" | 
|  | ", bit 4: hardware ECP mode"); | 
|  |  | 
|  | /*--- Inform (X)Emacs about preferred coding style ---------------------*/ | 
|  | /* | 
|  | * Local Variables: | 
|  | * mode: c | 
|  | * c-file-style: "linux" | 
|  | * indent-tabs-mode: t | 
|  | * tab-width: 8 | 
|  | * fill-column: 78 | 
|  | * ispell-local-dictionary: "american" | 
|  | * End: | 
|  | */ |