|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Interface for controlling IO bandwidth on a request queue | 
|  | * | 
|  | * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/blktrace_api.h> | 
|  | #include "blk.h" | 
|  | #include "blk-cgroup-rwstat.h" | 
|  | #include "blk-stat.h" | 
|  | #include "blk-throttle.h" | 
|  |  | 
|  | /* Max dispatch from a group in 1 round */ | 
|  | #define THROTL_GRP_QUANTUM 8 | 
|  |  | 
|  | /* Total max dispatch from all groups in one round */ | 
|  | #define THROTL_QUANTUM 32 | 
|  |  | 
|  | /* Throttling is performed over a slice and after that slice is renewed */ | 
|  | #define DFL_THROTL_SLICE_HD (HZ / 10) | 
|  | #define DFL_THROTL_SLICE_SSD (HZ / 50) | 
|  | #define MAX_THROTL_SLICE (HZ) | 
|  |  | 
|  | /* A workqueue to queue throttle related work */ | 
|  | static struct workqueue_struct *kthrotld_workqueue; | 
|  |  | 
|  | #define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node) | 
|  |  | 
|  | struct throtl_data | 
|  | { | 
|  | /* service tree for active throtl groups */ | 
|  | struct throtl_service_queue service_queue; | 
|  |  | 
|  | struct request_queue *queue; | 
|  |  | 
|  | /* Total Number of queued bios on READ and WRITE lists */ | 
|  | unsigned int nr_queued[2]; | 
|  |  | 
|  | unsigned int throtl_slice; | 
|  |  | 
|  | /* Work for dispatching throttled bios */ | 
|  | struct work_struct dispatch_work; | 
|  |  | 
|  | bool track_bio_latency; | 
|  | }; | 
|  |  | 
|  | static void throtl_pending_timer_fn(struct timer_list *t); | 
|  |  | 
|  | static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg) | 
|  | { | 
|  | return pd_to_blkg(&tg->pd); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sq_to_tg - return the throl_grp the specified service queue belongs to | 
|  | * @sq: the throtl_service_queue of interest | 
|  | * | 
|  | * Return the throtl_grp @sq belongs to.  If @sq is the top-level one | 
|  | * embedded in throtl_data, %NULL is returned. | 
|  | */ | 
|  | static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq) | 
|  | { | 
|  | if (sq && sq->parent_sq) | 
|  | return container_of(sq, struct throtl_grp, service_queue); | 
|  | else | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sq_to_td - return throtl_data the specified service queue belongs to | 
|  | * @sq: the throtl_service_queue of interest | 
|  | * | 
|  | * A service_queue can be embedded in either a throtl_grp or throtl_data. | 
|  | * Determine the associated throtl_data accordingly and return it. | 
|  | */ | 
|  | static struct throtl_data *sq_to_td(struct throtl_service_queue *sq) | 
|  | { | 
|  | struct throtl_grp *tg = sq_to_tg(sq); | 
|  |  | 
|  | if (tg) | 
|  | return tg->td; | 
|  | else | 
|  | return container_of(sq, struct throtl_data, service_queue); | 
|  | } | 
|  |  | 
|  | static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw) | 
|  | { | 
|  | struct blkcg_gq *blkg = tg_to_blkg(tg); | 
|  |  | 
|  | if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) | 
|  | return U64_MAX; | 
|  |  | 
|  | return tg->bps[rw]; | 
|  | } | 
|  |  | 
|  | static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw) | 
|  | { | 
|  | struct blkcg_gq *blkg = tg_to_blkg(tg); | 
|  |  | 
|  | if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent) | 
|  | return UINT_MAX; | 
|  |  | 
|  | return tg->iops[rw]; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * throtl_log - log debug message via blktrace | 
|  | * @sq: the service_queue being reported | 
|  | * @fmt: printf format string | 
|  | * @args: printf args | 
|  | * | 
|  | * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a | 
|  | * throtl_grp; otherwise, just "throtl". | 
|  | */ | 
|  | #define throtl_log(sq, fmt, args...)	do {				\ | 
|  | struct throtl_grp *__tg = sq_to_tg((sq));			\ | 
|  | struct throtl_data *__td = sq_to_td((sq));			\ | 
|  | \ | 
|  | (void)__td;							\ | 
|  | if (likely(!blk_trace_note_message_enabled(__td->queue)))	\ | 
|  | break;							\ | 
|  | if ((__tg)) {							\ | 
|  | blk_add_cgroup_trace_msg(__td->queue,			\ | 
|  | &tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\ | 
|  | } else {							\ | 
|  | blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\ | 
|  | }								\ | 
|  | } while (0) | 
|  |  | 
|  | static inline unsigned int throtl_bio_data_size(struct bio *bio) | 
|  | { | 
|  | /* assume it's one sector */ | 
|  | if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) | 
|  | return 512; | 
|  | return bio->bi_iter.bi_size; | 
|  | } | 
|  |  | 
|  | static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg) | 
|  | { | 
|  | INIT_LIST_HEAD(&qn->node); | 
|  | bio_list_init(&qn->bios_bps); | 
|  | bio_list_init(&qn->bios_iops); | 
|  | qn->tg = tg; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it | 
|  | * @bio: bio being added | 
|  | * @qn: qnode to add bio to | 
|  | * @sq: the service_queue @qn belongs to | 
|  | * | 
|  | * Add @bio to @qn and put @qn on @sq->queued if it's not already on. | 
|  | * @qn->tg's reference count is bumped when @qn is activated.  See the | 
|  | * comment on top of throtl_qnode definition for details. | 
|  | */ | 
|  | static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn, | 
|  | struct throtl_service_queue *sq) | 
|  | { | 
|  | bool rw = bio_data_dir(bio); | 
|  |  | 
|  | /* | 
|  | * Split bios have already been throttled by bps, so they are | 
|  | * directly queued into the iops path. | 
|  | */ | 
|  | if (bio_flagged(bio, BIO_TG_BPS_THROTTLED) || | 
|  | bio_flagged(bio, BIO_BPS_THROTTLED)) { | 
|  | bio_list_add(&qn->bios_iops, bio); | 
|  | sq->nr_queued_iops[rw]++; | 
|  | } else { | 
|  | bio_list_add(&qn->bios_bps, bio); | 
|  | sq->nr_queued_bps[rw]++; | 
|  | } | 
|  |  | 
|  | if (list_empty(&qn->node)) { | 
|  | list_add_tail(&qn->node, &sq->queued[rw]); | 
|  | blkg_get(tg_to_blkg(qn->tg)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * throtl_peek_queued - peek the first bio on a qnode list | 
|  | * @queued: the qnode list to peek | 
|  | * | 
|  | * Always take a bio from the head of the iops queue first. If the queue is | 
|  | * empty, we then take it from the bps queue to maintain the overall idea of | 
|  | * fetching bios from the head. | 
|  | */ | 
|  | static struct bio *throtl_peek_queued(struct list_head *queued) | 
|  | { | 
|  | struct throtl_qnode *qn; | 
|  | struct bio *bio; | 
|  |  | 
|  | if (list_empty(queued)) | 
|  | return NULL; | 
|  |  | 
|  | qn = list_first_entry(queued, struct throtl_qnode, node); | 
|  | bio = bio_list_peek(&qn->bios_iops); | 
|  | if (!bio) | 
|  | bio = bio_list_peek(&qn->bios_bps); | 
|  | WARN_ON_ONCE(!bio); | 
|  | return bio; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * throtl_pop_queued - pop the first bio form a qnode list | 
|  | * @sq: the service_queue to pop a bio from | 
|  | * @tg_to_put: optional out argument for throtl_grp to put | 
|  | * @rw: read/write | 
|  | * | 
|  | * Pop the first bio from the qnode list @sq->queued. Note that we firstly | 
|  | * focus on the iops list because bios are ultimately dispatched from it. | 
|  | * After popping, the first qnode is removed from @sq->queued if empty or moved | 
|  | * to the end of @sq->queued so that the popping order is round-robin. | 
|  | * | 
|  | * When the first qnode is removed, its associated throtl_grp should be put | 
|  | * too.  If @tg_to_put is NULL, this function automatically puts it; | 
|  | * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is | 
|  | * responsible for putting it. | 
|  | */ | 
|  | static struct bio *throtl_pop_queued(struct throtl_service_queue *sq, | 
|  | struct throtl_grp **tg_to_put, bool rw) | 
|  | { | 
|  | struct list_head *queued = &sq->queued[rw]; | 
|  | struct throtl_qnode *qn; | 
|  | struct bio *bio; | 
|  |  | 
|  | if (list_empty(queued)) | 
|  | return NULL; | 
|  |  | 
|  | qn = list_first_entry(queued, struct throtl_qnode, node); | 
|  | bio = bio_list_pop(&qn->bios_iops); | 
|  | if (bio) { | 
|  | sq->nr_queued_iops[rw]--; | 
|  | } else { | 
|  | bio = bio_list_pop(&qn->bios_bps); | 
|  | if (bio) | 
|  | sq->nr_queued_bps[rw]--; | 
|  | } | 
|  | WARN_ON_ONCE(!bio); | 
|  |  | 
|  | if (bio_list_empty(&qn->bios_bps) && bio_list_empty(&qn->bios_iops)) { | 
|  | list_del_init(&qn->node); | 
|  | if (tg_to_put) | 
|  | *tg_to_put = qn->tg; | 
|  | else | 
|  | blkg_put(tg_to_blkg(qn->tg)); | 
|  | } else { | 
|  | list_move_tail(&qn->node, queued); | 
|  | } | 
|  |  | 
|  | return bio; | 
|  | } | 
|  |  | 
|  | /* init a service_queue, assumes the caller zeroed it */ | 
|  | static void throtl_service_queue_init(struct throtl_service_queue *sq) | 
|  | { | 
|  | INIT_LIST_HEAD(&sq->queued[READ]); | 
|  | INIT_LIST_HEAD(&sq->queued[WRITE]); | 
|  | sq->pending_tree = RB_ROOT_CACHED; | 
|  | timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0); | 
|  | } | 
|  |  | 
|  | static struct blkg_policy_data *throtl_pd_alloc(struct gendisk *disk, | 
|  | struct blkcg *blkcg, gfp_t gfp) | 
|  | { | 
|  | struct throtl_grp *tg; | 
|  | int rw; | 
|  |  | 
|  | tg = kzalloc_node(sizeof(*tg), gfp, disk->node_id); | 
|  | if (!tg) | 
|  | return NULL; | 
|  |  | 
|  | if (blkg_rwstat_init(&tg->stat_bytes, gfp)) | 
|  | goto err_free_tg; | 
|  |  | 
|  | if (blkg_rwstat_init(&tg->stat_ios, gfp)) | 
|  | goto err_exit_stat_bytes; | 
|  |  | 
|  | throtl_service_queue_init(&tg->service_queue); | 
|  |  | 
|  | for (rw = READ; rw <= WRITE; rw++) { | 
|  | throtl_qnode_init(&tg->qnode_on_self[rw], tg); | 
|  | throtl_qnode_init(&tg->qnode_on_parent[rw], tg); | 
|  | } | 
|  |  | 
|  | RB_CLEAR_NODE(&tg->rb_node); | 
|  | tg->bps[READ] = U64_MAX; | 
|  | tg->bps[WRITE] = U64_MAX; | 
|  | tg->iops[READ] = UINT_MAX; | 
|  | tg->iops[WRITE] = UINT_MAX; | 
|  |  | 
|  | return &tg->pd; | 
|  |  | 
|  | err_exit_stat_bytes: | 
|  | blkg_rwstat_exit(&tg->stat_bytes); | 
|  | err_free_tg: | 
|  | kfree(tg); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void throtl_pd_init(struct blkg_policy_data *pd) | 
|  | { | 
|  | struct throtl_grp *tg = pd_to_tg(pd); | 
|  | struct blkcg_gq *blkg = tg_to_blkg(tg); | 
|  | struct throtl_data *td = blkg->q->td; | 
|  | struct throtl_service_queue *sq = &tg->service_queue; | 
|  |  | 
|  | /* | 
|  | * If on the default hierarchy, we switch to properly hierarchical | 
|  | * behavior where limits on a given throtl_grp are applied to the | 
|  | * whole subtree rather than just the group itself.  e.g. If 16M | 
|  | * read_bps limit is set on a parent group, summary bps of | 
|  | * parent group and its subtree groups can't exceed 16M for the | 
|  | * device. | 
|  | * | 
|  | * If not on the default hierarchy, the broken flat hierarchy | 
|  | * behavior is retained where all throtl_grps are treated as if | 
|  | * they're all separate root groups right below throtl_data. | 
|  | * Limits of a group don't interact with limits of other groups | 
|  | * regardless of the position of the group in the hierarchy. | 
|  | */ | 
|  | sq->parent_sq = &td->service_queue; | 
|  | if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent) | 
|  | sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue; | 
|  | tg->td = td; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set has_rules[] if @tg or any of its parents have limits configured. | 
|  | * This doesn't require walking up to the top of the hierarchy as the | 
|  | * parent's has_rules[] is guaranteed to be correct. | 
|  | */ | 
|  | static void tg_update_has_rules(struct throtl_grp *tg) | 
|  | { | 
|  | struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq); | 
|  | int rw; | 
|  |  | 
|  | for (rw = READ; rw <= WRITE; rw++) { | 
|  | tg->has_rules_iops[rw] = | 
|  | (parent_tg && parent_tg->has_rules_iops[rw]) || | 
|  | tg_iops_limit(tg, rw) != UINT_MAX; | 
|  | tg->has_rules_bps[rw] = | 
|  | (parent_tg && parent_tg->has_rules_bps[rw]) || | 
|  | tg_bps_limit(tg, rw) != U64_MAX; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void throtl_pd_online(struct blkg_policy_data *pd) | 
|  | { | 
|  | struct throtl_grp *tg = pd_to_tg(pd); | 
|  | /* | 
|  | * We don't want new groups to escape the limits of its ancestors. | 
|  | * Update has_rules[] after a new group is brought online. | 
|  | */ | 
|  | tg_update_has_rules(tg); | 
|  | } | 
|  |  | 
|  | static void throtl_pd_free(struct blkg_policy_data *pd) | 
|  | { | 
|  | struct throtl_grp *tg = pd_to_tg(pd); | 
|  |  | 
|  | timer_delete_sync(&tg->service_queue.pending_timer); | 
|  | blkg_rwstat_exit(&tg->stat_bytes); | 
|  | blkg_rwstat_exit(&tg->stat_ios); | 
|  | kfree(tg); | 
|  | } | 
|  |  | 
|  | static struct throtl_grp * | 
|  | throtl_rb_first(struct throtl_service_queue *parent_sq) | 
|  | { | 
|  | struct rb_node *n; | 
|  |  | 
|  | n = rb_first_cached(&parent_sq->pending_tree); | 
|  | WARN_ON_ONCE(!n); | 
|  | if (!n) | 
|  | return NULL; | 
|  | return rb_entry_tg(n); | 
|  | } | 
|  |  | 
|  | static void throtl_rb_erase(struct rb_node *n, | 
|  | struct throtl_service_queue *parent_sq) | 
|  | { | 
|  | rb_erase_cached(n, &parent_sq->pending_tree); | 
|  | RB_CLEAR_NODE(n); | 
|  | } | 
|  |  | 
|  | static void update_min_dispatch_time(struct throtl_service_queue *parent_sq) | 
|  | { | 
|  | struct throtl_grp *tg; | 
|  |  | 
|  | tg = throtl_rb_first(parent_sq); | 
|  | if (!tg) | 
|  | return; | 
|  |  | 
|  | parent_sq->first_pending_disptime = tg->disptime; | 
|  | } | 
|  |  | 
|  | static void tg_service_queue_add(struct throtl_grp *tg) | 
|  | { | 
|  | struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq; | 
|  | struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node; | 
|  | struct rb_node *parent = NULL; | 
|  | struct throtl_grp *__tg; | 
|  | unsigned long key = tg->disptime; | 
|  | bool leftmost = true; | 
|  |  | 
|  | while (*node != NULL) { | 
|  | parent = *node; | 
|  | __tg = rb_entry_tg(parent); | 
|  |  | 
|  | if (time_before(key, __tg->disptime)) | 
|  | node = &parent->rb_left; | 
|  | else { | 
|  | node = &parent->rb_right; | 
|  | leftmost = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | rb_link_node(&tg->rb_node, parent, node); | 
|  | rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree, | 
|  | leftmost); | 
|  | } | 
|  |  | 
|  | static void throtl_enqueue_tg(struct throtl_grp *tg) | 
|  | { | 
|  | if (!(tg->flags & THROTL_TG_PENDING)) { | 
|  | tg_service_queue_add(tg); | 
|  | tg->flags |= THROTL_TG_PENDING; | 
|  | tg->service_queue.parent_sq->nr_pending++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void throtl_dequeue_tg(struct throtl_grp *tg) | 
|  | { | 
|  | if (tg->flags & THROTL_TG_PENDING) { | 
|  | struct throtl_service_queue *parent_sq = | 
|  | tg->service_queue.parent_sq; | 
|  |  | 
|  | throtl_rb_erase(&tg->rb_node, parent_sq); | 
|  | --parent_sq->nr_pending; | 
|  | tg->flags &= ~THROTL_TG_PENDING; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Call with queue lock held */ | 
|  | static void throtl_schedule_pending_timer(struct throtl_service_queue *sq, | 
|  | unsigned long expires) | 
|  | { | 
|  | unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice; | 
|  |  | 
|  | /* | 
|  | * Since we are adjusting the throttle limit dynamically, the sleep | 
|  | * time calculated according to previous limit might be invalid. It's | 
|  | * possible the cgroup sleep time is very long and no other cgroups | 
|  | * have IO running so notify the limit changes. Make sure the cgroup | 
|  | * doesn't sleep too long to avoid the missed notification. | 
|  | */ | 
|  | if (time_after(expires, max_expire)) | 
|  | expires = max_expire; | 
|  | mod_timer(&sq->pending_timer, expires); | 
|  | throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu", | 
|  | expires - jiffies, jiffies); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * throtl_schedule_next_dispatch - schedule the next dispatch cycle | 
|  | * @sq: the service_queue to schedule dispatch for | 
|  | * @force: force scheduling | 
|  | * | 
|  | * Arm @sq->pending_timer so that the next dispatch cycle starts on the | 
|  | * dispatch time of the first pending child.  Returns %true if either timer | 
|  | * is armed or there's no pending child left.  %false if the current | 
|  | * dispatch window is still open and the caller should continue | 
|  | * dispatching. | 
|  | * | 
|  | * If @force is %true, the dispatch timer is always scheduled and this | 
|  | * function is guaranteed to return %true.  This is to be used when the | 
|  | * caller can't dispatch itself and needs to invoke pending_timer | 
|  | * unconditionally.  Note that forced scheduling is likely to induce short | 
|  | * delay before dispatch starts even if @sq->first_pending_disptime is not | 
|  | * in the future and thus shouldn't be used in hot paths. | 
|  | */ | 
|  | static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq, | 
|  | bool force) | 
|  | { | 
|  | /* any pending children left? */ | 
|  | if (!sq->nr_pending) | 
|  | return true; | 
|  |  | 
|  | update_min_dispatch_time(sq); | 
|  |  | 
|  | /* is the next dispatch time in the future? */ | 
|  | if (force || time_after(sq->first_pending_disptime, jiffies)) { | 
|  | throtl_schedule_pending_timer(sq, sq->first_pending_disptime); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* tell the caller to continue dispatching */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg, | 
|  | bool rw, unsigned long start) | 
|  | { | 
|  | tg->bytes_disp[rw] = 0; | 
|  | tg->io_disp[rw] = 0; | 
|  |  | 
|  | /* | 
|  | * Previous slice has expired. We must have trimmed it after last | 
|  | * bio dispatch. That means since start of last slice, we never used | 
|  | * that bandwidth. Do try to make use of that bandwidth while giving | 
|  | * credit. | 
|  | */ | 
|  | if (time_after(start, tg->slice_start[rw])) | 
|  | tg->slice_start[rw] = start; | 
|  |  | 
|  | tg->slice_end[rw] = jiffies + tg->td->throtl_slice; | 
|  | throtl_log(&tg->service_queue, | 
|  | "[%c] new slice with credit start=%lu end=%lu jiffies=%lu", | 
|  | rw == READ ? 'R' : 'W', tg->slice_start[rw], | 
|  | tg->slice_end[rw], jiffies); | 
|  | } | 
|  |  | 
|  | static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw, | 
|  | bool clear) | 
|  | { | 
|  | if (clear) { | 
|  | tg->bytes_disp[rw] = 0; | 
|  | tg->io_disp[rw] = 0; | 
|  | } | 
|  | tg->slice_start[rw] = jiffies; | 
|  | tg->slice_end[rw] = jiffies + tg->td->throtl_slice; | 
|  |  | 
|  | throtl_log(&tg->service_queue, | 
|  | "[%c] new slice start=%lu end=%lu jiffies=%lu", | 
|  | rw == READ ? 'R' : 'W', tg->slice_start[rw], | 
|  | tg->slice_end[rw], jiffies); | 
|  | } | 
|  |  | 
|  | static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw, | 
|  | unsigned long jiffy_end) | 
|  | { | 
|  | tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice); | 
|  | } | 
|  |  | 
|  | static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw, | 
|  | unsigned long jiffy_end) | 
|  | { | 
|  | if (!time_before(tg->slice_end[rw], jiffy_end)) | 
|  | return; | 
|  |  | 
|  | throtl_set_slice_end(tg, rw, jiffy_end); | 
|  | throtl_log(&tg->service_queue, | 
|  | "[%c] extend slice start=%lu end=%lu jiffies=%lu", | 
|  | rw == READ ? 'R' : 'W', tg->slice_start[rw], | 
|  | tg->slice_end[rw], jiffies); | 
|  | } | 
|  |  | 
|  | /* Determine if previously allocated or extended slice is complete or not */ | 
|  | static bool throtl_slice_used(struct throtl_grp *tg, bool rw) | 
|  | { | 
|  | if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw])) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static unsigned int sq_queued(struct throtl_service_queue *sq, int type) | 
|  | { | 
|  | return sq->nr_queued_bps[type] + sq->nr_queued_iops[type]; | 
|  | } | 
|  |  | 
|  | static unsigned int calculate_io_allowed(u32 iops_limit, | 
|  | unsigned long jiffy_elapsed) | 
|  | { | 
|  | unsigned int io_allowed; | 
|  | u64 tmp; | 
|  |  | 
|  | /* | 
|  | * jiffy_elapsed should not be a big value as minimum iops can be | 
|  | * 1 then at max jiffy elapsed should be equivalent of 1 second as we | 
|  | * will allow dispatch after 1 second and after that slice should | 
|  | * have been trimmed. | 
|  | */ | 
|  |  | 
|  | tmp = (u64)iops_limit * jiffy_elapsed; | 
|  | do_div(tmp, HZ); | 
|  |  | 
|  | if (tmp > UINT_MAX) | 
|  | io_allowed = UINT_MAX; | 
|  | else | 
|  | io_allowed = tmp; | 
|  |  | 
|  | return io_allowed; | 
|  | } | 
|  |  | 
|  | static u64 calculate_bytes_allowed(u64 bps_limit, unsigned long jiffy_elapsed) | 
|  | { | 
|  | /* | 
|  | * Can result be wider than 64 bits? | 
|  | * We check against 62, not 64, due to ilog2 truncation. | 
|  | */ | 
|  | if (ilog2(bps_limit) + ilog2(jiffy_elapsed) - ilog2(HZ) > 62) | 
|  | return U64_MAX; | 
|  | return mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed, (u64)HZ); | 
|  | } | 
|  |  | 
|  | static long long throtl_trim_bps(struct throtl_grp *tg, bool rw, | 
|  | unsigned long time_elapsed) | 
|  | { | 
|  | u64 bps_limit = tg_bps_limit(tg, rw); | 
|  | long long bytes_trim; | 
|  |  | 
|  | if (bps_limit == U64_MAX) | 
|  | return 0; | 
|  |  | 
|  | /* Need to consider the case of bytes_allowed overflow. */ | 
|  | bytes_trim = calculate_bytes_allowed(bps_limit, time_elapsed); | 
|  | if (bytes_trim <= 0 || tg->bytes_disp[rw] < bytes_trim) { | 
|  | bytes_trim = tg->bytes_disp[rw]; | 
|  | tg->bytes_disp[rw] = 0; | 
|  | } else { | 
|  | tg->bytes_disp[rw] -= bytes_trim; | 
|  | } | 
|  |  | 
|  | return bytes_trim; | 
|  | } | 
|  |  | 
|  | static int throtl_trim_iops(struct throtl_grp *tg, bool rw, | 
|  | unsigned long time_elapsed) | 
|  | { | 
|  | u32 iops_limit = tg_iops_limit(tg, rw); | 
|  | int io_trim; | 
|  |  | 
|  | if (iops_limit == UINT_MAX) | 
|  | return 0; | 
|  |  | 
|  | /* Need to consider the case of io_allowed overflow. */ | 
|  | io_trim = calculate_io_allowed(iops_limit, time_elapsed); | 
|  | if (io_trim <= 0 || tg->io_disp[rw] < io_trim) { | 
|  | io_trim = tg->io_disp[rw]; | 
|  | tg->io_disp[rw] = 0; | 
|  | } else { | 
|  | tg->io_disp[rw] -= io_trim; | 
|  | } | 
|  |  | 
|  | return io_trim; | 
|  | } | 
|  |  | 
|  | /* Trim the used slices and adjust slice start accordingly */ | 
|  | static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw) | 
|  | { | 
|  | unsigned long time_elapsed; | 
|  | long long bytes_trim; | 
|  | int io_trim; | 
|  |  | 
|  | BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw])); | 
|  |  | 
|  | /* | 
|  | * If bps are unlimited (-1), then time slice don't get | 
|  | * renewed. Don't try to trim the slice if slice is used. A new | 
|  | * slice will start when appropriate. | 
|  | */ | 
|  | if (throtl_slice_used(tg, rw)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * A bio has been dispatched. Also adjust slice_end. It might happen | 
|  | * that initially cgroup limit was very low resulting in high | 
|  | * slice_end, but later limit was bumped up and bio was dispatched | 
|  | * sooner, then we need to reduce slice_end. A high bogus slice_end | 
|  | * is bad because it does not allow new slice to start. | 
|  | */ | 
|  | throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice); | 
|  |  | 
|  | time_elapsed = rounddown(jiffies - tg->slice_start[rw], | 
|  | tg->td->throtl_slice); | 
|  | /* Don't trim slice until at least 2 slices are used */ | 
|  | if (time_elapsed < tg->td->throtl_slice * 2) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * The bio submission time may be a few jiffies more than the expected | 
|  | * waiting time, due to 'extra_bytes' can't be divided in | 
|  | * tg_within_bps_limit(), and also due to timer wakeup delay. In this | 
|  | * case, adjust slice_start will discard the extra wait time, causing | 
|  | * lower rate than expected. Therefore, other than the above rounddown, | 
|  | * one extra slice is preserved for deviation. | 
|  | */ | 
|  | time_elapsed -= tg->td->throtl_slice; | 
|  | bytes_trim = throtl_trim_bps(tg, rw, time_elapsed); | 
|  | io_trim = throtl_trim_iops(tg, rw, time_elapsed); | 
|  | if (!bytes_trim && !io_trim) | 
|  | return; | 
|  |  | 
|  | tg->slice_start[rw] += time_elapsed; | 
|  |  | 
|  | throtl_log(&tg->service_queue, | 
|  | "[%c] trim slice nr=%lu bytes=%lld io=%d start=%lu end=%lu jiffies=%lu", | 
|  | rw == READ ? 'R' : 'W', time_elapsed / tg->td->throtl_slice, | 
|  | bytes_trim, io_trim, tg->slice_start[rw], tg->slice_end[rw], | 
|  | jiffies); | 
|  | } | 
|  |  | 
|  | static void __tg_update_carryover(struct throtl_grp *tg, bool rw, | 
|  | long long *bytes, int *ios) | 
|  | { | 
|  | unsigned long jiffy_elapsed = jiffies - tg->slice_start[rw]; | 
|  | u64 bps_limit = tg_bps_limit(tg, rw); | 
|  | u32 iops_limit = tg_iops_limit(tg, rw); | 
|  | long long bytes_allowed; | 
|  | int io_allowed; | 
|  |  | 
|  | /* | 
|  | * If the queue is empty, carryover handling is not needed. In such cases, | 
|  | * tg->[bytes/io]_disp should be reset to 0 to avoid impacting the dispatch | 
|  | * of subsequent bios. The same handling applies when the previous BPS/IOPS | 
|  | * limit was set to max. | 
|  | */ | 
|  | if (sq_queued(&tg->service_queue, rw) == 0) { | 
|  | tg->bytes_disp[rw] = 0; | 
|  | tg->io_disp[rw] = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If config is updated while bios are still throttled, calculate and | 
|  | * accumulate how many bytes/ios are waited across changes. And use the | 
|  | * calculated carryover (@bytes/@ios) to update [bytes/io]_disp, which | 
|  | * will be used to calculate new wait time under new configuration. | 
|  | * And we need to consider the case of bytes/io_allowed overflow. | 
|  | */ | 
|  | if (bps_limit != U64_MAX) { | 
|  | bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed); | 
|  | if (bytes_allowed > 0) | 
|  | *bytes = bytes_allowed - tg->bytes_disp[rw]; | 
|  | } | 
|  | if (iops_limit != UINT_MAX) { | 
|  | io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed); | 
|  | if (io_allowed > 0) | 
|  | *ios = io_allowed - tg->io_disp[rw]; | 
|  | } | 
|  |  | 
|  | tg->bytes_disp[rw] = -*bytes; | 
|  | tg->io_disp[rw] = -*ios; | 
|  | } | 
|  |  | 
|  | static void tg_update_carryover(struct throtl_grp *tg) | 
|  | { | 
|  | long long bytes[2] = {0}; | 
|  | int ios[2] = {0}; | 
|  |  | 
|  | __tg_update_carryover(tg, READ, &bytes[READ], &ios[READ]); | 
|  | __tg_update_carryover(tg, WRITE, &bytes[WRITE], &ios[WRITE]); | 
|  |  | 
|  | /* see comments in struct throtl_grp for meaning of carryover. */ | 
|  | throtl_log(&tg->service_queue, "%s: %lld %lld %d %d\n", __func__, | 
|  | bytes[READ], bytes[WRITE], ios[READ], ios[WRITE]); | 
|  | } | 
|  |  | 
|  | static unsigned long tg_within_iops_limit(struct throtl_grp *tg, struct bio *bio, | 
|  | u32 iops_limit) | 
|  | { | 
|  | bool rw = bio_data_dir(bio); | 
|  | int io_allowed; | 
|  | unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; | 
|  |  | 
|  | jiffy_elapsed = jiffies - tg->slice_start[rw]; | 
|  |  | 
|  | /* Round up to the next throttle slice, wait time must be nonzero */ | 
|  | jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice); | 
|  | io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed_rnd); | 
|  | if (io_allowed > 0 && tg->io_disp[rw] + 1 <= io_allowed) | 
|  | return 0; | 
|  |  | 
|  | /* Calc approx time to dispatch */ | 
|  | jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed; | 
|  |  | 
|  | /* make sure at least one io can be dispatched after waiting */ | 
|  | jiffy_wait = max(jiffy_wait, HZ / iops_limit + 1); | 
|  | return jiffy_wait; | 
|  | } | 
|  |  | 
|  | static unsigned long tg_within_bps_limit(struct throtl_grp *tg, struct bio *bio, | 
|  | u64 bps_limit) | 
|  | { | 
|  | bool rw = bio_data_dir(bio); | 
|  | long long bytes_allowed; | 
|  | u64 extra_bytes; | 
|  | unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd; | 
|  | unsigned int bio_size = throtl_bio_data_size(bio); | 
|  |  | 
|  | jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw]; | 
|  |  | 
|  | /* Slice has just started. Consider one slice interval */ | 
|  | if (!jiffy_elapsed) | 
|  | jiffy_elapsed_rnd = tg->td->throtl_slice; | 
|  |  | 
|  | jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice); | 
|  | bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed_rnd); | 
|  | /* Need to consider the case of bytes_allowed overflow. */ | 
|  | if ((bytes_allowed > 0 && tg->bytes_disp[rw] + bio_size <= bytes_allowed) | 
|  | || bytes_allowed < 0) | 
|  | return 0; | 
|  |  | 
|  | /* Calc approx time to dispatch */ | 
|  | extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed; | 
|  | jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit); | 
|  |  | 
|  | if (!jiffy_wait) | 
|  | jiffy_wait = 1; | 
|  |  | 
|  | /* | 
|  | * This wait time is without taking into consideration the rounding | 
|  | * up we did. Add that time also. | 
|  | */ | 
|  | jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed); | 
|  | return jiffy_wait; | 
|  | } | 
|  |  | 
|  | static void throtl_charge_bps_bio(struct throtl_grp *tg, struct bio *bio) | 
|  | { | 
|  | unsigned int bio_size = throtl_bio_data_size(bio); | 
|  |  | 
|  | /* Charge the bio to the group */ | 
|  | if (!bio_flagged(bio, BIO_BPS_THROTTLED) && | 
|  | !bio_flagged(bio, BIO_TG_BPS_THROTTLED)) { | 
|  | bio_set_flag(bio, BIO_TG_BPS_THROTTLED); | 
|  | tg->bytes_disp[bio_data_dir(bio)] += bio_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void throtl_charge_iops_bio(struct throtl_grp *tg, struct bio *bio) | 
|  | { | 
|  | bio_clear_flag(bio, BIO_TG_BPS_THROTTLED); | 
|  | tg->io_disp[bio_data_dir(bio)]++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If previous slice expired, start a new one otherwise renew/extend existing | 
|  | * slice to make sure it is at least throtl_slice interval long since now. New | 
|  | * slice is started only for empty throttle group. If there is queued bio, that | 
|  | * means there should be an active slice and it should be extended instead. | 
|  | */ | 
|  | static void tg_update_slice(struct throtl_grp *tg, bool rw) | 
|  | { | 
|  | if (throtl_slice_used(tg, rw) && | 
|  | sq_queued(&tg->service_queue, rw) == 0) | 
|  | throtl_start_new_slice(tg, rw, true); | 
|  | else | 
|  | throtl_extend_slice(tg, rw, jiffies + tg->td->throtl_slice); | 
|  | } | 
|  |  | 
|  | static unsigned long tg_dispatch_bps_time(struct throtl_grp *tg, struct bio *bio) | 
|  | { | 
|  | bool rw = bio_data_dir(bio); | 
|  | u64 bps_limit = tg_bps_limit(tg, rw); | 
|  | unsigned long bps_wait; | 
|  |  | 
|  | /* no need to throttle if this bio's bytes have been accounted */ | 
|  | if (bps_limit == U64_MAX || tg->flags & THROTL_TG_CANCELING || | 
|  | bio_flagged(bio, BIO_BPS_THROTTLED) || | 
|  | bio_flagged(bio, BIO_TG_BPS_THROTTLED)) | 
|  | return 0; | 
|  |  | 
|  | tg_update_slice(tg, rw); | 
|  | bps_wait = tg_within_bps_limit(tg, bio, bps_limit); | 
|  | throtl_extend_slice(tg, rw, jiffies + bps_wait); | 
|  |  | 
|  | return bps_wait; | 
|  | } | 
|  |  | 
|  | static unsigned long tg_dispatch_iops_time(struct throtl_grp *tg, struct bio *bio) | 
|  | { | 
|  | bool rw = bio_data_dir(bio); | 
|  | u32 iops_limit = tg_iops_limit(tg, rw); | 
|  | unsigned long iops_wait; | 
|  |  | 
|  | if (iops_limit == UINT_MAX || tg->flags & THROTL_TG_CANCELING) | 
|  | return 0; | 
|  |  | 
|  | tg_update_slice(tg, rw); | 
|  | iops_wait = tg_within_iops_limit(tg, bio, iops_limit); | 
|  | throtl_extend_slice(tg, rw, jiffies + iops_wait); | 
|  |  | 
|  | return iops_wait; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns approx number of jiffies to wait before this bio is with-in IO rate | 
|  | * and can be moved to other queue or dispatched. | 
|  | */ | 
|  | static unsigned long tg_dispatch_time(struct throtl_grp *tg, struct bio *bio) | 
|  | { | 
|  | bool rw = bio_data_dir(bio); | 
|  | unsigned long wait; | 
|  |  | 
|  | /* | 
|  | * Currently whole state machine of group depends on first bio | 
|  | * queued in the group bio list. So one should not be calling | 
|  | * this function with a different bio if there are other bios | 
|  | * queued. | 
|  | */ | 
|  | BUG_ON(sq_queued(&tg->service_queue, rw) && | 
|  | bio != throtl_peek_queued(&tg->service_queue.queued[rw])); | 
|  |  | 
|  | wait = tg_dispatch_bps_time(tg, bio); | 
|  | if (wait != 0) | 
|  | return wait; | 
|  |  | 
|  | /* | 
|  | * Charge bps here because @bio will be directly placed into the | 
|  | * iops queue afterward. | 
|  | */ | 
|  | throtl_charge_bps_bio(tg, bio); | 
|  |  | 
|  | return tg_dispatch_iops_time(tg, bio); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * throtl_add_bio_tg - add a bio to the specified throtl_grp | 
|  | * @bio: bio to add | 
|  | * @qn: qnode to use | 
|  | * @tg: the target throtl_grp | 
|  | * | 
|  | * Add @bio to @tg's service_queue using @qn.  If @qn is not specified, | 
|  | * tg->qnode_on_self[] is used. | 
|  | */ | 
|  | static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn, | 
|  | struct throtl_grp *tg) | 
|  | { | 
|  | struct throtl_service_queue *sq = &tg->service_queue; | 
|  | bool rw = bio_data_dir(bio); | 
|  |  | 
|  | if (!qn) | 
|  | qn = &tg->qnode_on_self[rw]; | 
|  |  | 
|  | /* | 
|  | * If @tg doesn't currently have any bios queued in the same | 
|  | * direction, queueing @bio can change when @tg should be | 
|  | * dispatched.  Mark that @tg was empty.  This is automatically | 
|  | * cleared on the next tg_update_disptime(). | 
|  | */ | 
|  | if (sq_queued(sq, rw) == 0) | 
|  | tg->flags |= THROTL_TG_WAS_EMPTY; | 
|  |  | 
|  | throtl_qnode_add_bio(bio, qn, sq); | 
|  |  | 
|  | /* | 
|  | * Since we have split the queues, when the iops queue is | 
|  | * previously empty and a new @bio is added into the first @qn, | 
|  | * we also need to update the @tg->disptime. | 
|  | */ | 
|  | if (bio_flagged(bio, BIO_BPS_THROTTLED) && | 
|  | bio == throtl_peek_queued(&sq->queued[rw])) | 
|  | tg->flags |= THROTL_TG_IOPS_WAS_EMPTY; | 
|  |  | 
|  | throtl_enqueue_tg(tg); | 
|  | } | 
|  |  | 
|  | static void tg_update_disptime(struct throtl_grp *tg) | 
|  | { | 
|  | struct throtl_service_queue *sq = &tg->service_queue; | 
|  | unsigned long read_wait = -1, write_wait = -1, min_wait, disptime; | 
|  | struct bio *bio; | 
|  |  | 
|  | bio = throtl_peek_queued(&sq->queued[READ]); | 
|  | if (bio) | 
|  | read_wait = tg_dispatch_time(tg, bio); | 
|  |  | 
|  | bio = throtl_peek_queued(&sq->queued[WRITE]); | 
|  | if (bio) | 
|  | write_wait = tg_dispatch_time(tg, bio); | 
|  |  | 
|  | min_wait = min(read_wait, write_wait); | 
|  | disptime = jiffies + min_wait; | 
|  |  | 
|  | /* Update dispatch time */ | 
|  | throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq); | 
|  | tg->disptime = disptime; | 
|  | tg_service_queue_add(tg); | 
|  |  | 
|  | /* see throtl_add_bio_tg() */ | 
|  | tg->flags &= ~THROTL_TG_WAS_EMPTY; | 
|  | tg->flags &= ~THROTL_TG_IOPS_WAS_EMPTY; | 
|  | } | 
|  |  | 
|  | static void start_parent_slice_with_credit(struct throtl_grp *child_tg, | 
|  | struct throtl_grp *parent_tg, bool rw) | 
|  | { | 
|  | if (throtl_slice_used(parent_tg, rw)) { | 
|  | throtl_start_new_slice_with_credit(parent_tg, rw, | 
|  | child_tg->slice_start[rw]); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw) | 
|  | { | 
|  | struct throtl_service_queue *sq = &tg->service_queue; | 
|  | struct throtl_service_queue *parent_sq = sq->parent_sq; | 
|  | struct throtl_grp *parent_tg = sq_to_tg(parent_sq); | 
|  | struct throtl_grp *tg_to_put = NULL; | 
|  | struct bio *bio; | 
|  |  | 
|  | /* | 
|  | * @bio is being transferred from @tg to @parent_sq.  Popping a bio | 
|  | * from @tg may put its reference and @parent_sq might end up | 
|  | * getting released prematurely.  Remember the tg to put and put it | 
|  | * after @bio is transferred to @parent_sq. | 
|  | */ | 
|  | bio = throtl_pop_queued(sq, &tg_to_put, rw); | 
|  |  | 
|  | throtl_charge_iops_bio(tg, bio); | 
|  |  | 
|  | /* | 
|  | * If our parent is another tg, we just need to transfer @bio to | 
|  | * the parent using throtl_add_bio_tg().  If our parent is | 
|  | * @td->service_queue, @bio is ready to be issued.  Put it on its | 
|  | * bio_lists[] and decrease total number queued.  The caller is | 
|  | * responsible for issuing these bios. | 
|  | */ | 
|  | if (parent_tg) { | 
|  | throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg); | 
|  | start_parent_slice_with_credit(tg, parent_tg, rw); | 
|  | } else { | 
|  | bio_set_flag(bio, BIO_BPS_THROTTLED); | 
|  | throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw], | 
|  | parent_sq); | 
|  | BUG_ON(tg->td->nr_queued[rw] <= 0); | 
|  | tg->td->nr_queued[rw]--; | 
|  | } | 
|  |  | 
|  | throtl_trim_slice(tg, rw); | 
|  |  | 
|  | if (tg_to_put) | 
|  | blkg_put(tg_to_blkg(tg_to_put)); | 
|  | } | 
|  |  | 
|  | static int throtl_dispatch_tg(struct throtl_grp *tg) | 
|  | { | 
|  | struct throtl_service_queue *sq = &tg->service_queue; | 
|  | unsigned int nr_reads = 0, nr_writes = 0; | 
|  | unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4; | 
|  | unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads; | 
|  | struct bio *bio; | 
|  |  | 
|  | /* Try to dispatch 75% READS and 25% WRITES */ | 
|  |  | 
|  | while ((bio = throtl_peek_queued(&sq->queued[READ])) && | 
|  | tg_dispatch_time(tg, bio) == 0) { | 
|  |  | 
|  | tg_dispatch_one_bio(tg, READ); | 
|  | nr_reads++; | 
|  |  | 
|  | if (nr_reads >= max_nr_reads) | 
|  | break; | 
|  | } | 
|  |  | 
|  | while ((bio = throtl_peek_queued(&sq->queued[WRITE])) && | 
|  | tg_dispatch_time(tg, bio) == 0) { | 
|  |  | 
|  | tg_dispatch_one_bio(tg, WRITE); | 
|  | nr_writes++; | 
|  |  | 
|  | if (nr_writes >= max_nr_writes) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return nr_reads + nr_writes; | 
|  | } | 
|  |  | 
|  | static int throtl_select_dispatch(struct throtl_service_queue *parent_sq) | 
|  | { | 
|  | unsigned int nr_disp = 0; | 
|  |  | 
|  | while (1) { | 
|  | struct throtl_grp *tg; | 
|  | struct throtl_service_queue *sq; | 
|  |  | 
|  | if (!parent_sq->nr_pending) | 
|  | break; | 
|  |  | 
|  | tg = throtl_rb_first(parent_sq); | 
|  | if (!tg) | 
|  | break; | 
|  |  | 
|  | if (time_before(jiffies, tg->disptime)) | 
|  | break; | 
|  |  | 
|  | nr_disp += throtl_dispatch_tg(tg); | 
|  |  | 
|  | sq = &tg->service_queue; | 
|  | if (sq_queued(sq, READ) || sq_queued(sq, WRITE)) | 
|  | tg_update_disptime(tg); | 
|  | else | 
|  | throtl_dequeue_tg(tg); | 
|  |  | 
|  | if (nr_disp >= THROTL_QUANTUM) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return nr_disp; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * throtl_pending_timer_fn - timer function for service_queue->pending_timer | 
|  | * @t: the pending_timer member of the throtl_service_queue being serviced | 
|  | * | 
|  | * This timer is armed when a child throtl_grp with active bio's become | 
|  | * pending and queued on the service_queue's pending_tree and expires when | 
|  | * the first child throtl_grp should be dispatched.  This function | 
|  | * dispatches bio's from the children throtl_grps to the parent | 
|  | * service_queue. | 
|  | * | 
|  | * If the parent's parent is another throtl_grp, dispatching is propagated | 
|  | * by either arming its pending_timer or repeating dispatch directly.  If | 
|  | * the top-level service_tree is reached, throtl_data->dispatch_work is | 
|  | * kicked so that the ready bio's are issued. | 
|  | */ | 
|  | static void throtl_pending_timer_fn(struct timer_list *t) | 
|  | { | 
|  | struct throtl_service_queue *sq = timer_container_of(sq, t, | 
|  | pending_timer); | 
|  | struct throtl_grp *tg = sq_to_tg(sq); | 
|  | struct throtl_data *td = sq_to_td(sq); | 
|  | struct throtl_service_queue *parent_sq; | 
|  | struct request_queue *q; | 
|  | bool dispatched; | 
|  | int ret; | 
|  |  | 
|  | /* throtl_data may be gone, so figure out request queue by blkg */ | 
|  | if (tg) | 
|  | q = tg->pd.blkg->q; | 
|  | else | 
|  | q = td->queue; | 
|  |  | 
|  | spin_lock_irq(&q->queue_lock); | 
|  |  | 
|  | if (!q->root_blkg) | 
|  | goto out_unlock; | 
|  |  | 
|  | again: | 
|  | parent_sq = sq->parent_sq; | 
|  | dispatched = false; | 
|  |  | 
|  | while (true) { | 
|  | unsigned int __maybe_unused bio_cnt_r = sq_queued(sq, READ); | 
|  | unsigned int __maybe_unused bio_cnt_w = sq_queued(sq, WRITE); | 
|  |  | 
|  | throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u", | 
|  | bio_cnt_r + bio_cnt_w, bio_cnt_r, bio_cnt_w); | 
|  |  | 
|  | ret = throtl_select_dispatch(sq); | 
|  | if (ret) { | 
|  | throtl_log(sq, "bios disp=%u", ret); | 
|  | dispatched = true; | 
|  | } | 
|  |  | 
|  | if (throtl_schedule_next_dispatch(sq, false)) | 
|  | break; | 
|  |  | 
|  | /* this dispatch windows is still open, relax and repeat */ | 
|  | spin_unlock_irq(&q->queue_lock); | 
|  | cpu_relax(); | 
|  | spin_lock_irq(&q->queue_lock); | 
|  | } | 
|  |  | 
|  | if (!dispatched) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (parent_sq) { | 
|  | /* @parent_sq is another throl_grp, propagate dispatch */ | 
|  | if (tg->flags & THROTL_TG_WAS_EMPTY || | 
|  | tg->flags & THROTL_TG_IOPS_WAS_EMPTY) { | 
|  | tg_update_disptime(tg); | 
|  | if (!throtl_schedule_next_dispatch(parent_sq, false)) { | 
|  | /* window is already open, repeat dispatching */ | 
|  | sq = parent_sq; | 
|  | tg = sq_to_tg(sq); | 
|  | goto again; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | /* reached the top-level, queue issuing */ | 
|  | queue_work(kthrotld_workqueue, &td->dispatch_work); | 
|  | } | 
|  | out_unlock: | 
|  | spin_unlock_irq(&q->queue_lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work | 
|  | * @work: work item being executed | 
|  | * | 
|  | * This function is queued for execution when bios reach the bio_lists[] | 
|  | * of throtl_data->service_queue.  Those bios are ready and issued by this | 
|  | * function. | 
|  | */ | 
|  | static void blk_throtl_dispatch_work_fn(struct work_struct *work) | 
|  | { | 
|  | struct throtl_data *td = container_of(work, struct throtl_data, | 
|  | dispatch_work); | 
|  | struct throtl_service_queue *td_sq = &td->service_queue; | 
|  | struct request_queue *q = td->queue; | 
|  | struct bio_list bio_list_on_stack; | 
|  | struct bio *bio; | 
|  | struct blk_plug plug; | 
|  | int rw; | 
|  |  | 
|  | bio_list_init(&bio_list_on_stack); | 
|  |  | 
|  | spin_lock_irq(&q->queue_lock); | 
|  | for (rw = READ; rw <= WRITE; rw++) | 
|  | while ((bio = throtl_pop_queued(td_sq, NULL, rw))) | 
|  | bio_list_add(&bio_list_on_stack, bio); | 
|  | spin_unlock_irq(&q->queue_lock); | 
|  |  | 
|  | if (!bio_list_empty(&bio_list_on_stack)) { | 
|  | blk_start_plug(&plug); | 
|  | while ((bio = bio_list_pop(&bio_list_on_stack))) | 
|  | submit_bio_noacct_nocheck(bio, false); | 
|  | blk_finish_plug(&plug); | 
|  | } | 
|  | } | 
|  |  | 
|  | static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd, | 
|  | int off) | 
|  | { | 
|  | struct throtl_grp *tg = pd_to_tg(pd); | 
|  | u64 v = *(u64 *)((void *)tg + off); | 
|  |  | 
|  | if (v == U64_MAX) | 
|  | return 0; | 
|  | return __blkg_prfill_u64(sf, pd, v); | 
|  | } | 
|  |  | 
|  | static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd, | 
|  | int off) | 
|  | { | 
|  | struct throtl_grp *tg = pd_to_tg(pd); | 
|  | unsigned int v = *(unsigned int *)((void *)tg + off); | 
|  |  | 
|  | if (v == UINT_MAX) | 
|  | return 0; | 
|  | return __blkg_prfill_u64(sf, pd, v); | 
|  | } | 
|  |  | 
|  | static int tg_print_conf_u64(struct seq_file *sf, void *v) | 
|  | { | 
|  | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64, | 
|  | &blkcg_policy_throtl, seq_cft(sf)->private, false); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int tg_print_conf_uint(struct seq_file *sf, void *v) | 
|  | { | 
|  | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint, | 
|  | &blkcg_policy_throtl, seq_cft(sf)->private, false); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void tg_conf_updated(struct throtl_grp *tg, bool global) | 
|  | { | 
|  | struct throtl_service_queue *sq = &tg->service_queue; | 
|  | struct cgroup_subsys_state *pos_css; | 
|  | struct blkcg_gq *blkg; | 
|  |  | 
|  | throtl_log(&tg->service_queue, | 
|  | "limit change rbps=%llu wbps=%llu riops=%u wiops=%u", | 
|  | tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE), | 
|  | tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE)); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | /* | 
|  | * Update has_rules[] flags for the updated tg's subtree.  A tg is | 
|  | * considered to have rules if either the tg itself or any of its | 
|  | * ancestors has rules.  This identifies groups without any | 
|  | * restrictions in the whole hierarchy and allows them to bypass | 
|  | * blk-throttle. | 
|  | */ | 
|  | blkg_for_each_descendant_pre(blkg, pos_css, | 
|  | global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) { | 
|  | struct throtl_grp *this_tg = blkg_to_tg(blkg); | 
|  |  | 
|  | tg_update_has_rules(this_tg); | 
|  | /* ignore root/second level */ | 
|  | if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent || | 
|  | !blkg->parent->parent) | 
|  | continue; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* | 
|  | * We're already holding queue_lock and know @tg is valid.  Let's | 
|  | * apply the new config directly. | 
|  | * | 
|  | * Restart the slices for both READ and WRITES. It might happen | 
|  | * that a group's limit are dropped suddenly and we don't want to | 
|  | * account recently dispatched IO with new low rate. | 
|  | */ | 
|  | throtl_start_new_slice(tg, READ, false); | 
|  | throtl_start_new_slice(tg, WRITE, false); | 
|  |  | 
|  | if (tg->flags & THROTL_TG_PENDING) { | 
|  | tg_update_disptime(tg); | 
|  | throtl_schedule_next_dispatch(sq->parent_sq, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int blk_throtl_init(struct gendisk *disk) | 
|  | { | 
|  | struct request_queue *q = disk->queue; | 
|  | struct throtl_data *td; | 
|  | unsigned int memflags; | 
|  | int ret; | 
|  |  | 
|  | td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node); | 
|  | if (!td) | 
|  | return -ENOMEM; | 
|  |  | 
|  | INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn); | 
|  | throtl_service_queue_init(&td->service_queue); | 
|  |  | 
|  | memflags = blk_mq_freeze_queue(disk->queue); | 
|  | blk_mq_quiesce_queue(disk->queue); | 
|  |  | 
|  | q->td = td; | 
|  | td->queue = q; | 
|  |  | 
|  | /* activate policy, blk_throtl_activated() will return true */ | 
|  | ret = blkcg_activate_policy(disk, &blkcg_policy_throtl); | 
|  | if (ret) { | 
|  | q->td = NULL; | 
|  | kfree(td); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (blk_queue_nonrot(q)) | 
|  | td->throtl_slice = DFL_THROTL_SLICE_SSD; | 
|  | else | 
|  | td->throtl_slice = DFL_THROTL_SLICE_HD; | 
|  | td->track_bio_latency = !queue_is_mq(q); | 
|  | if (!td->track_bio_latency) | 
|  | blk_stat_enable_accounting(q); | 
|  |  | 
|  | out: | 
|  | blk_mq_unquiesce_queue(disk->queue); | 
|  | blk_mq_unfreeze_queue(disk->queue, memflags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | static ssize_t tg_set_conf(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off, bool is_u64) | 
|  | { | 
|  | struct blkcg *blkcg = css_to_blkcg(of_css(of)); | 
|  | struct blkg_conf_ctx ctx; | 
|  | struct throtl_grp *tg; | 
|  | int ret; | 
|  | u64 v; | 
|  |  | 
|  | blkg_conf_init(&ctx, buf); | 
|  |  | 
|  | ret = blkg_conf_open_bdev(&ctx); | 
|  | if (ret) | 
|  | goto out_finish; | 
|  |  | 
|  | if (!blk_throtl_activated(ctx.bdev->bd_queue)) { | 
|  | ret = blk_throtl_init(ctx.bdev->bd_disk); | 
|  | if (ret) | 
|  | goto out_finish; | 
|  | } | 
|  |  | 
|  | ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx); | 
|  | if (ret) | 
|  | goto out_finish; | 
|  |  | 
|  | ret = -EINVAL; | 
|  | if (sscanf(ctx.body, "%llu", &v) != 1) | 
|  | goto out_finish; | 
|  | if (!v) | 
|  | v = U64_MAX; | 
|  |  | 
|  | tg = blkg_to_tg(ctx.blkg); | 
|  | tg_update_carryover(tg); | 
|  |  | 
|  | if (is_u64) | 
|  | *(u64 *)((void *)tg + of_cft(of)->private) = v; | 
|  | else | 
|  | *(unsigned int *)((void *)tg + of_cft(of)->private) = v; | 
|  |  | 
|  | tg_conf_updated(tg, false); | 
|  | ret = 0; | 
|  | out_finish: | 
|  | blkg_conf_exit(&ctx); | 
|  | return ret ?: nbytes; | 
|  | } | 
|  |  | 
|  | static ssize_t tg_set_conf_u64(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | return tg_set_conf(of, buf, nbytes, off, true); | 
|  | } | 
|  |  | 
|  | static ssize_t tg_set_conf_uint(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | return tg_set_conf(of, buf, nbytes, off, false); | 
|  | } | 
|  |  | 
|  | static int tg_print_rwstat(struct seq_file *sf, void *v) | 
|  | { | 
|  | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), | 
|  | blkg_prfill_rwstat, &blkcg_policy_throtl, | 
|  | seq_cft(sf)->private, true); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 tg_prfill_rwstat_recursive(struct seq_file *sf, | 
|  | struct blkg_policy_data *pd, int off) | 
|  | { | 
|  | struct blkg_rwstat_sample sum; | 
|  |  | 
|  | blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off, | 
|  | &sum); | 
|  | return __blkg_prfill_rwstat(sf, pd, &sum); | 
|  | } | 
|  |  | 
|  | static int tg_print_rwstat_recursive(struct seq_file *sf, void *v) | 
|  | { | 
|  | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), | 
|  | tg_prfill_rwstat_recursive, &blkcg_policy_throtl, | 
|  | seq_cft(sf)->private, true); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct cftype throtl_legacy_files[] = { | 
|  | { | 
|  | .name = "throttle.read_bps_device", | 
|  | .private = offsetof(struct throtl_grp, bps[READ]), | 
|  | .seq_show = tg_print_conf_u64, | 
|  | .write = tg_set_conf_u64, | 
|  | }, | 
|  | { | 
|  | .name = "throttle.write_bps_device", | 
|  | .private = offsetof(struct throtl_grp, bps[WRITE]), | 
|  | .seq_show = tg_print_conf_u64, | 
|  | .write = tg_set_conf_u64, | 
|  | }, | 
|  | { | 
|  | .name = "throttle.read_iops_device", | 
|  | .private = offsetof(struct throtl_grp, iops[READ]), | 
|  | .seq_show = tg_print_conf_uint, | 
|  | .write = tg_set_conf_uint, | 
|  | }, | 
|  | { | 
|  | .name = "throttle.write_iops_device", | 
|  | .private = offsetof(struct throtl_grp, iops[WRITE]), | 
|  | .seq_show = tg_print_conf_uint, | 
|  | .write = tg_set_conf_uint, | 
|  | }, | 
|  | { | 
|  | .name = "throttle.io_service_bytes", | 
|  | .private = offsetof(struct throtl_grp, stat_bytes), | 
|  | .seq_show = tg_print_rwstat, | 
|  | }, | 
|  | { | 
|  | .name = "throttle.io_service_bytes_recursive", | 
|  | .private = offsetof(struct throtl_grp, stat_bytes), | 
|  | .seq_show = tg_print_rwstat_recursive, | 
|  | }, | 
|  | { | 
|  | .name = "throttle.io_serviced", | 
|  | .private = offsetof(struct throtl_grp, stat_ios), | 
|  | .seq_show = tg_print_rwstat, | 
|  | }, | 
|  | { | 
|  | .name = "throttle.io_serviced_recursive", | 
|  | .private = offsetof(struct throtl_grp, stat_ios), | 
|  | .seq_show = tg_print_rwstat_recursive, | 
|  | }, | 
|  | { }	/* terminate */ | 
|  | }; | 
|  |  | 
|  | static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd, | 
|  | int off) | 
|  | { | 
|  | struct throtl_grp *tg = pd_to_tg(pd); | 
|  | const char *dname = blkg_dev_name(pd->blkg); | 
|  | u64 bps_dft; | 
|  | unsigned int iops_dft; | 
|  |  | 
|  | if (!dname) | 
|  | return 0; | 
|  |  | 
|  | bps_dft = U64_MAX; | 
|  | iops_dft = UINT_MAX; | 
|  |  | 
|  | if (tg->bps[READ] == bps_dft && | 
|  | tg->bps[WRITE] == bps_dft && | 
|  | tg->iops[READ] == iops_dft && | 
|  | tg->iops[WRITE] == iops_dft) | 
|  | return 0; | 
|  |  | 
|  | seq_printf(sf, "%s", dname); | 
|  | if (tg->bps[READ] == U64_MAX) | 
|  | seq_printf(sf, " rbps=max"); | 
|  | else | 
|  | seq_printf(sf, " rbps=%llu", tg->bps[READ]); | 
|  |  | 
|  | if (tg->bps[WRITE] == U64_MAX) | 
|  | seq_printf(sf, " wbps=max"); | 
|  | else | 
|  | seq_printf(sf, " wbps=%llu", tg->bps[WRITE]); | 
|  |  | 
|  | if (tg->iops[READ] == UINT_MAX) | 
|  | seq_printf(sf, " riops=max"); | 
|  | else | 
|  | seq_printf(sf, " riops=%u", tg->iops[READ]); | 
|  |  | 
|  | if (tg->iops[WRITE] == UINT_MAX) | 
|  | seq_printf(sf, " wiops=max"); | 
|  | else | 
|  | seq_printf(sf, " wiops=%u", tg->iops[WRITE]); | 
|  |  | 
|  | seq_printf(sf, "\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int tg_print_limit(struct seq_file *sf, void *v) | 
|  | { | 
|  | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit, | 
|  | &blkcg_policy_throtl, seq_cft(sf)->private, false); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t tg_set_limit(struct kernfs_open_file *of, | 
|  | char *buf, size_t nbytes, loff_t off) | 
|  | { | 
|  | struct blkcg *blkcg = css_to_blkcg(of_css(of)); | 
|  | struct blkg_conf_ctx ctx; | 
|  | struct throtl_grp *tg; | 
|  | u64 v[4]; | 
|  | int ret; | 
|  |  | 
|  | blkg_conf_init(&ctx, buf); | 
|  |  | 
|  | ret = blkg_conf_open_bdev(&ctx); | 
|  | if (ret) | 
|  | goto out_finish; | 
|  |  | 
|  | if (!blk_throtl_activated(ctx.bdev->bd_queue)) { | 
|  | ret = blk_throtl_init(ctx.bdev->bd_disk); | 
|  | if (ret) | 
|  | goto out_finish; | 
|  | } | 
|  |  | 
|  | ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx); | 
|  | if (ret) | 
|  | goto out_finish; | 
|  |  | 
|  | tg = blkg_to_tg(ctx.blkg); | 
|  | tg_update_carryover(tg); | 
|  |  | 
|  | v[0] = tg->bps[READ]; | 
|  | v[1] = tg->bps[WRITE]; | 
|  | v[2] = tg->iops[READ]; | 
|  | v[3] = tg->iops[WRITE]; | 
|  |  | 
|  | while (true) { | 
|  | char tok[27];	/* wiops=18446744073709551616 */ | 
|  | char *p; | 
|  | u64 val = U64_MAX; | 
|  | int len; | 
|  |  | 
|  | if (sscanf(ctx.body, "%26s%n", tok, &len) != 1) | 
|  | break; | 
|  | if (tok[0] == '\0') | 
|  | break; | 
|  | ctx.body += len; | 
|  |  | 
|  | ret = -EINVAL; | 
|  | p = tok; | 
|  | strsep(&p, "="); | 
|  | if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max"))) | 
|  | goto out_finish; | 
|  |  | 
|  | ret = -ERANGE; | 
|  | if (!val) | 
|  | goto out_finish; | 
|  |  | 
|  | ret = -EINVAL; | 
|  | if (!strcmp(tok, "rbps")) | 
|  | v[0] = val; | 
|  | else if (!strcmp(tok, "wbps")) | 
|  | v[1] = val; | 
|  | else if (!strcmp(tok, "riops")) | 
|  | v[2] = min_t(u64, val, UINT_MAX); | 
|  | else if (!strcmp(tok, "wiops")) | 
|  | v[3] = min_t(u64, val, UINT_MAX); | 
|  | else | 
|  | goto out_finish; | 
|  | } | 
|  |  | 
|  | tg->bps[READ] = v[0]; | 
|  | tg->bps[WRITE] = v[1]; | 
|  | tg->iops[READ] = v[2]; | 
|  | tg->iops[WRITE] = v[3]; | 
|  |  | 
|  | tg_conf_updated(tg, false); | 
|  | ret = 0; | 
|  | out_finish: | 
|  | blkg_conf_exit(&ctx); | 
|  | return ret ?: nbytes; | 
|  | } | 
|  |  | 
|  | static struct cftype throtl_files[] = { | 
|  | { | 
|  | .name = "max", | 
|  | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | .seq_show = tg_print_limit, | 
|  | .write = tg_set_limit, | 
|  | }, | 
|  | { }	/* terminate */ | 
|  | }; | 
|  |  | 
|  | static void throtl_shutdown_wq(struct request_queue *q) | 
|  | { | 
|  | struct throtl_data *td = q->td; | 
|  |  | 
|  | cancel_work_sync(&td->dispatch_work); | 
|  | } | 
|  |  | 
|  | static void tg_flush_bios(struct throtl_grp *tg) | 
|  | { | 
|  | struct throtl_service_queue *sq = &tg->service_queue; | 
|  |  | 
|  | if (tg->flags & THROTL_TG_CANCELING) | 
|  | return; | 
|  | /* | 
|  | * Set the flag to make sure throtl_pending_timer_fn() won't | 
|  | * stop until all throttled bios are dispatched. | 
|  | */ | 
|  | tg->flags |= THROTL_TG_CANCELING; | 
|  |  | 
|  | /* | 
|  | * Do not dispatch cgroup without THROTL_TG_PENDING or cgroup | 
|  | * will be inserted to service queue without THROTL_TG_PENDING | 
|  | * set in tg_update_disptime below. Then IO dispatched from | 
|  | * child in tg_dispatch_one_bio will trigger double insertion | 
|  | * and corrupt the tree. | 
|  | */ | 
|  | if (!(tg->flags & THROTL_TG_PENDING)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Update disptime after setting the above flag to make sure | 
|  | * throtl_select_dispatch() won't exit without dispatching. | 
|  | */ | 
|  | tg_update_disptime(tg); | 
|  |  | 
|  | throtl_schedule_pending_timer(sq, jiffies + 1); | 
|  | } | 
|  |  | 
|  | static void throtl_pd_offline(struct blkg_policy_data *pd) | 
|  | { | 
|  | tg_flush_bios(pd_to_tg(pd)); | 
|  | } | 
|  |  | 
|  | struct blkcg_policy blkcg_policy_throtl = { | 
|  | .dfl_cftypes		= throtl_files, | 
|  | .legacy_cftypes		= throtl_legacy_files, | 
|  |  | 
|  | .pd_alloc_fn		= throtl_pd_alloc, | 
|  | .pd_init_fn		= throtl_pd_init, | 
|  | .pd_online_fn		= throtl_pd_online, | 
|  | .pd_offline_fn		= throtl_pd_offline, | 
|  | .pd_free_fn		= throtl_pd_free, | 
|  | }; | 
|  |  | 
|  | void blk_throtl_cancel_bios(struct gendisk *disk) | 
|  | { | 
|  | struct request_queue *q = disk->queue; | 
|  | struct cgroup_subsys_state *pos_css; | 
|  | struct blkcg_gq *blkg; | 
|  |  | 
|  | if (!blk_throtl_activated(q)) | 
|  | return; | 
|  |  | 
|  | spin_lock_irq(&q->queue_lock); | 
|  | /* | 
|  | * queue_lock is held, rcu lock is not needed here technically. | 
|  | * However, rcu lock is still held to emphasize that following | 
|  | * path need RCU protection and to prevent warning from lockdep. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) { | 
|  | /* | 
|  | * disk_release will call pd_offline_fn to cancel bios. | 
|  | * However, disk_release can't be called if someone get | 
|  | * the refcount of device and issued bios which are | 
|  | * inflight after del_gendisk. | 
|  | * Cancel bios here to ensure no bios are inflight after | 
|  | * del_gendisk. | 
|  | */ | 
|  | tg_flush_bios(blkg_to_tg(blkg)); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | spin_unlock_irq(&q->queue_lock); | 
|  | } | 
|  |  | 
|  | static bool tg_within_limit(struct throtl_grp *tg, struct bio *bio, bool rw) | 
|  | { | 
|  | struct throtl_service_queue *sq = &tg->service_queue; | 
|  |  | 
|  | /* | 
|  | * For a split bio, we need to specifically distinguish whether the | 
|  | * iops queue is empty. | 
|  | */ | 
|  | if (bio_flagged(bio, BIO_BPS_THROTTLED)) | 
|  | return sq->nr_queued_iops[rw] == 0 && | 
|  | tg_dispatch_iops_time(tg, bio) == 0; | 
|  |  | 
|  | /* | 
|  | * Throtl is FIFO - if bios are already queued, should queue. | 
|  | * If the bps queue is empty and @bio is within the bps limit, charge | 
|  | * bps here for direct placement into the iops queue. | 
|  | */ | 
|  | if (sq_queued(&tg->service_queue, rw)) { | 
|  | if (sq->nr_queued_bps[rw] == 0 && | 
|  | tg_dispatch_bps_time(tg, bio) == 0) | 
|  | throtl_charge_bps_bio(tg, bio); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return tg_dispatch_time(tg, bio) == 0; | 
|  | } | 
|  |  | 
|  | bool __blk_throtl_bio(struct bio *bio) | 
|  | { | 
|  | struct request_queue *q = bdev_get_queue(bio->bi_bdev); | 
|  | struct blkcg_gq *blkg = bio->bi_blkg; | 
|  | struct throtl_qnode *qn = NULL; | 
|  | struct throtl_grp *tg = blkg_to_tg(blkg); | 
|  | struct throtl_service_queue *sq; | 
|  | bool rw = bio_data_dir(bio); | 
|  | bool throttled = false; | 
|  | struct throtl_data *td = tg->td; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | spin_lock_irq(&q->queue_lock); | 
|  | sq = &tg->service_queue; | 
|  |  | 
|  | while (true) { | 
|  | if (tg_within_limit(tg, bio, rw)) { | 
|  | /* within limits, let's charge and dispatch directly */ | 
|  | throtl_charge_iops_bio(tg, bio); | 
|  |  | 
|  | /* | 
|  | * We need to trim slice even when bios are not being | 
|  | * queued otherwise it might happen that a bio is not | 
|  | * queued for a long time and slice keeps on extending | 
|  | * and trim is not called for a long time. Now if limits | 
|  | * are reduced suddenly we take into account all the IO | 
|  | * dispatched so far at new low rate and * newly queued | 
|  | * IO gets a really long dispatch time. | 
|  | * | 
|  | * So keep on trimming slice even if bio is not queued. | 
|  | */ | 
|  | throtl_trim_slice(tg, rw); | 
|  | } else if (bio_issue_as_root_blkg(bio)) { | 
|  | /* | 
|  | * IOs which may cause priority inversions are | 
|  | * dispatched directly, even if they're over limit. | 
|  | * | 
|  | * Charge and dispatch directly, and our throttle | 
|  | * control algorithm is adaptive, and extra IO bytes | 
|  | * will be throttled for paying the debt | 
|  | */ | 
|  | throtl_charge_bps_bio(tg, bio); | 
|  | throtl_charge_iops_bio(tg, bio); | 
|  | } else { | 
|  | /* if above limits, break to queue */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @bio passed through this layer without being throttled. | 
|  | * Climb up the ladder.  If we're already at the top, it | 
|  | * can be executed directly. | 
|  | */ | 
|  | qn = &tg->qnode_on_parent[rw]; | 
|  | sq = sq->parent_sq; | 
|  | tg = sq_to_tg(sq); | 
|  | if (!tg) { | 
|  | bio_set_flag(bio, BIO_BPS_THROTTLED); | 
|  | goto out_unlock; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* out-of-limit, queue to @tg */ | 
|  | throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d", | 
|  | rw == READ ? 'R' : 'W', | 
|  | tg->bytes_disp[rw], bio->bi_iter.bi_size, | 
|  | tg_bps_limit(tg, rw), | 
|  | tg->io_disp[rw], tg_iops_limit(tg, rw), | 
|  | sq_queued(sq, READ), sq_queued(sq, WRITE)); | 
|  |  | 
|  | td->nr_queued[rw]++; | 
|  | throtl_add_bio_tg(bio, qn, tg); | 
|  | throttled = true; | 
|  |  | 
|  | /* | 
|  | * Update @tg's dispatch time and force schedule dispatch if @tg | 
|  | * was empty before @bio, or the iops queue is empty and @bio will | 
|  | * add to.  The forced scheduling isn't likely to cause undue | 
|  | * delay as @bio is likely to be dispatched directly if its @tg's | 
|  | * disptime is not in the future. | 
|  | */ | 
|  | if (tg->flags & THROTL_TG_WAS_EMPTY || | 
|  | tg->flags & THROTL_TG_IOPS_WAS_EMPTY) { | 
|  | tg_update_disptime(tg); | 
|  | throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true); | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock_irq(&q->queue_lock); | 
|  |  | 
|  | rcu_read_unlock(); | 
|  | return throttled; | 
|  | } | 
|  |  | 
|  | void blk_throtl_exit(struct gendisk *disk) | 
|  | { | 
|  | struct request_queue *q = disk->queue; | 
|  |  | 
|  | /* | 
|  | * blkg_destroy_all() already deactivate throtl policy, just check and | 
|  | * free throtl data. | 
|  | */ | 
|  | if (!q->td) | 
|  | return; | 
|  |  | 
|  | timer_delete_sync(&q->td->service_queue.pending_timer); | 
|  | throtl_shutdown_wq(q); | 
|  | kfree(q->td); | 
|  | } | 
|  |  | 
|  | static int __init throtl_init(void) | 
|  | { | 
|  | kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0); | 
|  | if (!kthrotld_workqueue) | 
|  | panic("Failed to create kthrotld\n"); | 
|  |  | 
|  | return blkcg_policy_register(&blkcg_policy_throtl); | 
|  | } | 
|  |  | 
|  | module_init(throtl_init); |