blob: ff639d47d07bf6b12b0cefe98b92139a2d7cceaf [file] [log] [blame]
/*
* ***************************************************************************
* FILE: unifi_sme.c
*
* PURPOSE: SME related functions.
*
* Copyright (C) 2007-2009 by Cambridge Silicon Radio Ltd.
*
* Refer to LICENSE.txt included with this source code for details on
* the license terms.
*
* ***************************************************************************
*/
#include "unifi_priv.h"
#include "csr_wifi_hip_unifi.h"
#include "csr_wifi_hip_conversions.h"
int
convert_sme_error(CsrResult error)
{
switch (error) {
case CSR_RESULT_SUCCESS:
return 0;
case CSR_RESULT_FAILURE:
case CSR_WIFI_RESULT_NOT_FOUND:
case CSR_WIFI_RESULT_TIMED_OUT:
case CSR_WIFI_RESULT_CANCELLED:
case CSR_WIFI_RESULT_UNAVAILABLE:
return -EIO;
case CSR_WIFI_RESULT_NO_ROOM:
return -EBUSY;
case CSR_WIFI_RESULT_INVALID_PARAMETER:
return -EINVAL;
case CSR_WIFI_RESULT_UNSUPPORTED:
return -EOPNOTSUPP;
default:
return -EIO;
}
}
/*
* ---------------------------------------------------------------------------
* sme_log_event
*
* Callback function to be registered as the SME event callback.
* Copies the signal content into a new udi_log_t struct and adds
* it to the read queue for the SME client.
*
* Arguments:
* arg This is the value given to unifi_add_udi_hook, in
* this case a pointer to the client instance.
* signal Pointer to the received signal.
* signal_len Size of the signal structure in bytes.
* bulkdata Pointers to any associated bulk data.
* dir Direction of the signal. Zero means from host,
* non-zero means to host.
*
* Returns:
* None.
* ---------------------------------------------------------------------------
*/
void
sme_log_event(ul_client_t *pcli,
const u8 *signal, int signal_len,
const bulk_data_param_t *bulkdata,
int dir)
{
unifi_priv_t *priv;
CSR_SIGNAL unpacked_signal;
CsrWifiSmeDataBlock mlmeCommand;
CsrWifiSmeDataBlock dataref1;
CsrWifiSmeDataBlock dataref2;
CsrResult result = CSR_RESULT_SUCCESS;
int r;
func_enter();
/* Just a sanity check */
if ((signal == NULL) || (signal_len <= 0)) {
func_exit();
return;
}
priv = uf_find_instance(pcli->instance);
if (!priv) {
unifi_error(priv, "sme_log_event: invalid priv\n");
func_exit();
return;
}
if (priv->smepriv == NULL) {
unifi_error(priv, "sme_log_event: invalid smepriv\n");
func_exit();
return;
}
unifi_trace(priv, UDBG3,
"sme_log_event: Process signal 0x%.4X\n",
CSR_GET_UINT16_FROM_LITTLE_ENDIAN(signal));
/* If the signal is known, then do any filtering required, otherwise it pass it to the SME. */
r = read_unpack_signal(signal, &unpacked_signal);
if (r == CSR_RESULT_SUCCESS) {
if ((unpacked_signal.SignalPrimitiveHeader.SignalId == CSR_DEBUG_STRING_INDICATION_ID) ||
(unpacked_signal.SignalPrimitiveHeader.SignalId == CSR_DEBUG_WORD16_INDICATION_ID))
{
func_exit();
return;
}
if (unpacked_signal.SignalPrimitiveHeader.SignalId == CSR_MA_PACKET_INDICATION_ID)
{
u16 frmCtrl;
u8 unicastPdu = TRUE;
u8 *macHdrLocation;
u8 *raddr = NULL, *taddr = NULL;
CsrWifiMacAddress peerMacAddress;
/* Check if we need to send CsrWifiRouterCtrlMicFailureInd*/
CSR_MA_PACKET_INDICATION *ind = &unpacked_signal.u.MaPacketIndication;
macHdrLocation = (u8 *) bulkdata->d[0].os_data_ptr;
/* Fetch the frame control value from mac header */
frmCtrl = CSR_GET_UINT16_FROM_LITTLE_ENDIAN(macHdrLocation);
/* Point to the addresses */
raddr = macHdrLocation + MAC_HEADER_ADDR1_OFFSET;
taddr = macHdrLocation + MAC_HEADER_ADDR2_OFFSET;
memcpy(peerMacAddress.a, taddr, ETH_ALEN);
if(ind->ReceptionStatus == CSR_MICHAEL_MIC_ERROR)
{
if (*raddr & 0x1)
unicastPdu = FALSE;
CsrWifiRouterCtrlMicFailureIndSend (priv->CSR_WIFI_SME_IFACEQUEUE, 0,
(ind->VirtualInterfaceIdentifier & 0xff),peerMacAddress,
unicastPdu);
return;
}
else
{
if(ind->ReceptionStatus == CSR_RX_SUCCESS)
{
u8 pmBit = (frmCtrl & 0x1000)?0x01:0x00;
u16 interfaceTag = (ind->VirtualInterfaceIdentifier & 0xff);
CsrWifiRouterCtrlStaInfo_t *srcStaInfo = CsrWifiRouterCtrlGetStationRecordFromPeerMacAddress(priv,taddr,interfaceTag);
if((srcStaInfo != NULL) && (uf_check_broadcast_bssid(priv, bulkdata)== FALSE))
{
uf_process_pm_bit_for_peer(priv,srcStaInfo,pmBit,interfaceTag);
/* Update station last activity flag */
srcStaInfo->activity_flag = TRUE;
}
}
}
}
if (unpacked_signal.SignalPrimitiveHeader.SignalId == CSR_MA_PACKET_CONFIRM_ID)
{
CSR_MA_PACKET_CONFIRM *cfm = &unpacked_signal.u.MaPacketConfirm;
u16 interfaceTag = (cfm->VirtualInterfaceIdentifier & 0xff);
netInterface_priv_t *interfacePriv;
CSR_MA_PACKET_REQUEST *req;
CsrWifiMacAddress peerMacAddress;
if (interfaceTag >= CSR_WIFI_NUM_INTERFACES)
{
unifi_error(priv, "Bad MA_PACKET_CONFIRM interfaceTag %d\n", interfaceTag);
func_exit();
return;
}
unifi_trace(priv,UDBG1,"MA-PACKET Confirm (%x, %x)\n", cfm->HostTag, cfm->TransmissionStatus);
interfacePriv = priv->interfacePriv[interfaceTag];
#ifdef CSR_SUPPORT_SME
if(interfacePriv->interfaceMode == CSR_WIFI_ROUTER_CTRL_MODE_AP ||
interfacePriv->interfaceMode == CSR_WIFI_ROUTER_CTRL_MODE_P2PGO) {
if(cfm->HostTag == interfacePriv->multicastPduHostTag){
uf_process_ma_pkt_cfm_for_ap(priv ,interfaceTag, cfm);
}
}
#endif
req = &interfacePriv->m4_signal.u.MaPacketRequest;
if(cfm->HostTag & 0x80000000)
{
if (cfm->TransmissionStatus != CSR_TX_SUCCESSFUL)
{
result = CSR_RESULT_FAILURE;
}
#ifdef CSR_SUPPORT_SME
memcpy(peerMacAddress.a, req->Ra.x, ETH_ALEN);
/* Check if this is a confirm for EAPOL M4 frame and we need to send transmistted ind*/
if (interfacePriv->m4_sent && (cfm->HostTag == interfacePriv->m4_hostTag))
{
unifi_trace(priv, UDBG1, "%s: Sending M4 Transmit CFM\n", __FUNCTION__);
CsrWifiRouterCtrlM4TransmittedIndSend(priv->CSR_WIFI_SME_IFACEQUEUE, 0,
interfaceTag,
peerMacAddress,
result);
interfacePriv->m4_sent = FALSE;
interfacePriv->m4_hostTag = 0xffffffff;
}
#endif
/* If EAPOL was requested via router APIs then send cfm else ignore*/
if((cfm->HostTag & 0x80000000) != CSR_WIFI_EAPOL_M4_HOST_TAG) {
CsrWifiRouterMaPacketCfmSend((u16)signal[2],
cfm->VirtualInterfaceIdentifier,
result,
(cfm->HostTag & 0x3fffffff), cfm->Rate);
} else {
unifi_trace(priv, UDBG1, "%s: M4 received from netdevice\n", __FUNCTION__);
}
func_exit();
return;
}
}
}
mlmeCommand.length = signal_len;
mlmeCommand.data = (u8*)signal;
dataref1.length = bulkdata->d[0].data_length;
if (dataref1.length > 0) {
dataref1.data = (u8 *) bulkdata->d[0].os_data_ptr;
} else
{
dataref1.data = NULL;
}
dataref2.length = bulkdata->d[1].data_length;
if (dataref2.length > 0) {
dataref2.data = (u8 *) bulkdata->d[1].os_data_ptr;
} else
{
dataref2.data = NULL;
}
CsrWifiRouterCtrlHipIndSend(priv->CSR_WIFI_SME_IFACEQUEUE, mlmeCommand.length, mlmeCommand.data,
dataref1.length, dataref1.data,
dataref2.length, dataref2.data);
func_exit();
} /* sme_log_event() */
/*
* ---------------------------------------------------------------------------
* uf_sme_port_state
*
* Return the state of the controlled port.
*
* Arguments:
* priv Pointer to device private context struct
* address Pointer to the destination for tx or sender for rx address
* queue Controlled or uncontrolled queue
*
* Returns:
* An unifi_ControlledPortAction value.
* ---------------------------------------------------------------------------
*/
CsrWifiRouterCtrlPortAction
uf_sme_port_state(unifi_priv_t *priv, unsigned char *address, int queue, u16 interfaceTag)
{
int i;
unifi_port_config_t *port;
netInterface_priv_t *interfacePriv;
if (interfaceTag >= CSR_WIFI_NUM_INTERFACES) {
unifi_error(priv, "uf_sme_port_state: bad interfaceTag\n");
return CSR_WIFI_ROUTER_CTRL_PORT_ACTION_8021X_PORT_CLOSED_DISCARD;
}
interfacePriv = priv->interfacePriv[interfaceTag];
if (queue == UF_CONTROLLED_PORT_Q) {
port = &interfacePriv->controlled_data_port;
} else {
port = &interfacePriv->uncontrolled_data_port;
}
if (!port->entries_in_use) {
unifi_trace(priv, UDBG5, "No port configurations, return Discard.\n");
return CSR_WIFI_ROUTER_CTRL_PORT_ACTION_8021X_PORT_CLOSED_DISCARD;
}
/* If the port configuration is common for all destinations, return it. */
if (port->overide_action == UF_DATA_PORT_OVERIDE) {
unifi_trace(priv, UDBG5, "Single port configuration (%d).\n",
port->port_cfg[0].port_action);
return port->port_cfg[0].port_action;
}
unifi_trace(priv, UDBG5, "Multiple (%d) port configurations.\n", port->entries_in_use);
/* If multiple configurations exist.. */
for (i = 0; i < UNIFI_MAX_CONNECTIONS; i++) {
/* .. go through the list and match the destination address. */
if (port->port_cfg[i].in_use &&
memcmp(address, port->port_cfg[i].mac_address.a, ETH_ALEN) == 0) {
/* Return the desired action. */
return port->port_cfg[i].port_action;
}
}
/* Could not find any information, return Open. */
unifi_trace(priv, UDBG5, "port configuration not found, return Open.\n");
return CSR_WIFI_ROUTER_CTRL_PORT_ACTION_8021X_PORT_OPEN;
} /* uf_sme_port_state() */
/*
* ---------------------------------------------------------------------------
* uf_sme_port_config_handle
*
* Return the port config handle of the controlled/uncontrolled port.
*
* Arguments:
* priv Pointer to device private context struct
* address Pointer to the destination for tx or sender for rx address
* queue Controlled or uncontrolled queue
*
* Returns:
* An unifi_port_cfg_t* .
* ---------------------------------------------------------------------------
*/
unifi_port_cfg_t*
uf_sme_port_config_handle(unifi_priv_t *priv, unsigned char *address, int queue, u16 interfaceTag)
{
int i;
unifi_port_config_t *port;
netInterface_priv_t *interfacePriv = priv->interfacePriv[interfaceTag];
if (interfaceTag >= CSR_WIFI_NUM_INTERFACES) {
unifi_error(priv, "uf_sme_port_config_handle: bad interfaceTag\n");
return NULL;
}
if (queue == UF_CONTROLLED_PORT_Q) {
port = &interfacePriv->controlled_data_port;
} else {
port = &interfacePriv->uncontrolled_data_port;
}
if (!port->entries_in_use) {
unifi_trace(priv, UDBG5, "No port configurations, return Discard.\n");
return NULL;
}
/* If the port configuration is common for all destinations, return it. */
if (port->overide_action == UF_DATA_PORT_OVERIDE) {
unifi_trace(priv, UDBG5, "Single port configuration (%d).\n",
port->port_cfg[0].port_action);
if (address) {
unifi_trace(priv, UDBG5, "addr[0] = %x, addr[1] = %x, addr[2] = %x, addr[3] = %x\n", address[0], address[1], address[2], address[3]);
}
return &port->port_cfg[0];
}
unifi_trace(priv, UDBG5, "Multiple port configurations.\n");
/* If multiple configurations exist.. */
for (i = 0; i < UNIFI_MAX_CONNECTIONS; i++) {
/* .. go through the list and match the destination address. */
if (port->port_cfg[i].in_use &&
memcmp(address, port->port_cfg[i].mac_address.a, ETH_ALEN) == 0) {
/* Return the desired action. */
return &port->port_cfg[i];
}
}
/* Could not find any information, return Open. */
unifi_trace(priv, UDBG5, "port configuration not found, returning NULL (debug).\n");
return NULL;
} /* uf_sme_port_config_handle */
void
uf_multicast_list_wq(struct work_struct *work)
{
unifi_priv_t *priv = container_of(work, unifi_priv_t,
multicast_list_task);
int i;
u16 interfaceTag = 0;
CsrWifiMacAddress* multicast_address_list = NULL;
int mc_count;
u8 *mc_list;
netInterface_priv_t *interfacePriv = priv->interfacePriv[interfaceTag];
if (interfaceTag >= CSR_WIFI_NUM_INTERFACES) {
unifi_error(priv, "uf_multicast_list_wq: bad interfaceTag\n");
return;
}
unifi_trace(priv, UDBG5,
"uf_multicast_list_wq: list count = %d\n",
interfacePriv->mc_list_count);
/* Flush the current list */
CsrWifiRouterCtrlMulticastAddressIndSend(priv->CSR_WIFI_SME_IFACEQUEUE,0, interfaceTag, CSR_WIFI_SME_LIST_ACTION_FLUSH, 0, NULL);
mc_count = interfacePriv->mc_list_count;
mc_list = interfacePriv->mc_list;
/*
* Allocate a new list, need to free it later
* in unifi_mgt_multicast_address_cfm().
*/
multicast_address_list = kmalloc(mc_count * sizeof(CsrWifiMacAddress), GFP_KERNEL);
if (multicast_address_list == NULL) {
return;
}
for (i = 0; i < mc_count; i++) {
memcpy(multicast_address_list[i].a, mc_list, ETH_ALEN);
mc_list += ETH_ALEN;
}
if (priv->smepriv == NULL) {
kfree(multicast_address_list);
return;
}
CsrWifiRouterCtrlMulticastAddressIndSend(priv->CSR_WIFI_SME_IFACEQUEUE,0,
interfaceTag,
CSR_WIFI_SME_LIST_ACTION_ADD,
mc_count, multicast_address_list);
/* The SME will take a copy of the addreses*/
kfree(multicast_address_list);
}
int unifi_cfg_power(unifi_priv_t *priv, unsigned char *arg)
{
unifi_cfg_power_t cfg_power;
int rc;
int wol;
if (get_user(cfg_power, (unifi_cfg_power_t*)(((unifi_cfg_command_t*)arg) + 1))) {
unifi_error(priv, "UNIFI_CFG: Failed to get the argument\n");
return -EFAULT;
}
switch (cfg_power) {
case UNIFI_CFG_POWER_OFF:
priv->wol_suspend = (enable_wol == UNIFI_WOL_OFF) ? FALSE : TRUE;
rc = sme_sys_suspend(priv);
if (rc) {
return rc;
}
break;
case UNIFI_CFG_POWER_ON:
wol = priv->wol_suspend;
rc = sme_sys_resume(priv);
if (rc) {
return rc;
}
if (wol) {
/* Kick the BH to ensure pending transfers are handled when
* a suspend happened with card powered.
*/
unifi_send_signal(priv->card, NULL, 0, NULL);
}
break;
default:
unifi_error(priv, "WIFI POWER: Unknown value.\n");
return -EINVAL;
}
return 0;
}
int unifi_cfg_power_save(unifi_priv_t *priv, unsigned char *arg)
{
unifi_cfg_powersave_t cfg_power_save;
CsrWifiSmePowerConfig powerConfig;
int rc;
if (get_user(cfg_power_save, (unifi_cfg_powersave_t*)(((unifi_cfg_command_t*)arg) + 1))) {
unifi_error(priv, "UNIFI_CFG: Failed to get the argument\n");
return -EFAULT;
}
/* Get the coex info from the SME */
rc = sme_mgt_power_config_get(priv, &powerConfig);
if (rc) {
unifi_error(priv, "UNIFI_CFG: Get unifi_PowerConfigValue failed.\n");
return rc;
}
switch (cfg_power_save) {
case UNIFI_CFG_POWERSAVE_NONE:
powerConfig.powerSaveLevel = CSR_WIFI_SME_POWER_SAVE_LEVEL_LOW;
break;
case UNIFI_CFG_POWERSAVE_FAST:
powerConfig.powerSaveLevel = CSR_WIFI_SME_POWER_SAVE_LEVEL_MED;
break;
case UNIFI_CFG_POWERSAVE_FULL:
powerConfig.powerSaveLevel = CSR_WIFI_SME_POWER_SAVE_LEVEL_HIGH;
break;
case UNIFI_CFG_POWERSAVE_AUTO:
powerConfig.powerSaveLevel = CSR_WIFI_SME_POWER_SAVE_LEVEL_AUTO;
break;
default:
unifi_error(priv, "POWERSAVE: Unknown value.\n");
return -EINVAL;
}
rc = sme_mgt_power_config_set(priv, &powerConfig);
if (rc) {
unifi_error(priv, "UNIFI_CFG: Set unifi_PowerConfigValue failed.\n");
}
return rc;
}
int unifi_cfg_power_supply(unifi_priv_t *priv, unsigned char *arg)
{
unifi_cfg_powersupply_t cfg_power_supply;
CsrWifiSmeHostConfig hostConfig;
int rc;
if (get_user(cfg_power_supply, (unifi_cfg_powersupply_t*)(((unifi_cfg_command_t*)arg) + 1))) {
unifi_error(priv, "UNIFI_CFG: Failed to get the argument\n");
return -EFAULT;
}
/* Get the coex info from the SME */
rc = sme_mgt_host_config_get(priv, &hostConfig);
if (rc) {
unifi_error(priv, "UNIFI_CFG: Get unifi_HostConfigValue failed.\n");
return rc;
}
switch (cfg_power_supply) {
case UNIFI_CFG_POWERSUPPLY_MAINS:
hostConfig.powerMode = CSR_WIFI_SME_HOST_POWER_MODE_ACTIVE;
break;
case UNIFI_CFG_POWERSUPPLY_BATTERIES:
hostConfig.powerMode = CSR_WIFI_SME_HOST_POWER_MODE_POWER_SAVE;
break;
default:
unifi_error(priv, "POWERSUPPLY: Unknown value.\n");
return -EINVAL;
}
rc = sme_mgt_host_config_set(priv, &hostConfig);
if (rc) {
unifi_error(priv, "UNIFI_CFG: Set unifi_HostConfigValue failed.\n");
}
return rc;
}
int unifi_cfg_packet_filters(unifi_priv_t *priv, unsigned char *arg)
{
unsigned char *tclas_buffer;
unsigned int tclas_buffer_length;
tclas_t *dhcp_tclas;
int rc;
/* Free any TCLASs previously allocated */
if (priv->packet_filters.tclas_ies_length) {
kfree(priv->filter_tclas_ies);
priv->filter_tclas_ies = NULL;
}
tclas_buffer = ((unsigned char*)arg) + sizeof(unifi_cfg_command_t) + sizeof(unsigned int);
if (copy_from_user(&priv->packet_filters, (void*)tclas_buffer,
sizeof(uf_cfg_bcast_packet_filter_t))) {
unifi_error(priv, "UNIFI_CFG: Failed to get the filter struct\n");
return -EFAULT;
}
tclas_buffer_length = priv->packet_filters.tclas_ies_length;
/* Allocate TCLASs if necessary */
if (priv->packet_filters.dhcp_filter) {
priv->packet_filters.tclas_ies_length += sizeof(tclas_t);
}
if (priv->packet_filters.tclas_ies_length > 0) {
priv->filter_tclas_ies = kmalloc(priv->packet_filters.tclas_ies_length, GFP_KERNEL);
if (priv->filter_tclas_ies == NULL) {
return -ENOMEM;
}
if (tclas_buffer_length) {
tclas_buffer += sizeof(uf_cfg_bcast_packet_filter_t) - sizeof(unsigned char*);
if (copy_from_user(priv->filter_tclas_ies,
tclas_buffer,
tclas_buffer_length)) {
unifi_error(priv, "UNIFI_CFG: Failed to get the TCLAS buffer\n");
return -EFAULT;
}
}
}
if(priv->packet_filters.dhcp_filter)
{
/* Append the DHCP tclas IE */
dhcp_tclas = (tclas_t*)(priv->filter_tclas_ies + tclas_buffer_length);
memset(dhcp_tclas, 0, sizeof(tclas_t));
dhcp_tclas->element_id = 14;
dhcp_tclas->length = sizeof(tcpip_clsfr_t) + 1;
dhcp_tclas->user_priority = 0;
dhcp_tclas->tcp_ip_cls_fr.cls_fr_type = 1;
dhcp_tclas->tcp_ip_cls_fr.version = 4;
((u8*)(&dhcp_tclas->tcp_ip_cls_fr.source_port))[0] = 0x00;
((u8*)(&dhcp_tclas->tcp_ip_cls_fr.source_port))[1] = 0x44;
((u8*)(&dhcp_tclas->tcp_ip_cls_fr.dest_port))[0] = 0x00;
((u8*)(&dhcp_tclas->tcp_ip_cls_fr.dest_port))[1] = 0x43;
dhcp_tclas->tcp_ip_cls_fr.protocol = 0x11;
dhcp_tclas->tcp_ip_cls_fr.cls_fr_mask = 0x58; //bits: 3,4,6
}
rc = sme_mgt_packet_filter_set(priv);
return rc;
}
int unifi_cfg_wmm_qos_info(unifi_priv_t *priv, unsigned char *arg)
{
u8 wmm_qos_info;
int rc = 0;
if (get_user(wmm_qos_info, (u8*)(((unifi_cfg_command_t*)arg) + 1))) {
unifi_error(priv, "UNIFI_CFG: Failed to get the argument\n");
return -EFAULT;
}
/* Store the value in the connection info */
priv->connection_config.wmmQosInfo = wmm_qos_info;
return rc;
}
int unifi_cfg_wmm_addts(unifi_priv_t *priv, unsigned char *arg)
{
u32 addts_tid;
u8 addts_ie_length;
u8 *addts_ie;
u8 *addts_params;
CsrWifiSmeDataBlock tspec;
CsrWifiSmeDataBlock tclas;
int rc;
addts_params = (u8*)(((unifi_cfg_command_t*)arg) + 1);
if (get_user(addts_tid, (u32*)addts_params)) {
unifi_error(priv, "unifi_cfg_wmm_addts: Failed to get the argument\n");
return -EFAULT;
}
addts_params += sizeof(u32);
if (get_user(addts_ie_length, (u8*)addts_params)) {
unifi_error(priv, "unifi_cfg_wmm_addts: Failed to get the argument\n");
return -EFAULT;
}
unifi_trace(priv, UDBG4, "addts: tid = 0x%x ie_length = %d\n",
addts_tid, addts_ie_length);
addts_ie = kmalloc(addts_ie_length, GFP_KERNEL);
if (addts_ie == NULL) {
unifi_error(priv,
"unifi_cfg_wmm_addts: Failed to malloc %d bytes for addts_ie buffer\n",
addts_ie_length);
return -ENOMEM;
}
addts_params += sizeof(u8);
rc = copy_from_user(addts_ie, addts_params, addts_ie_length);
if (rc) {
unifi_error(priv, "unifi_cfg_wmm_addts: Failed to get the addts buffer\n");
kfree(addts_ie);
return -EFAULT;
}
tspec.data = addts_ie;
tspec.length = addts_ie_length;
tclas.data = NULL;
tclas.length = 0;
rc = sme_mgt_tspec(priv, CSR_WIFI_SME_LIST_ACTION_ADD, addts_tid,
&tspec, &tclas);
kfree(addts_ie);
return rc;
}
int unifi_cfg_wmm_delts(unifi_priv_t *priv, unsigned char *arg)
{
u32 delts_tid;
u8 *delts_params;
CsrWifiSmeDataBlock tspec;
CsrWifiSmeDataBlock tclas;
int rc;
delts_params = (u8*)(((unifi_cfg_command_t*)arg) + 1);
if (get_user(delts_tid, (u32*)delts_params)) {
unifi_error(priv, "unifi_cfg_wmm_delts: Failed to get the argument\n");
return -EFAULT;
}
unifi_trace(priv, UDBG4, "delts: tid = 0x%x\n", delts_tid);
tspec.data = tclas.data = NULL;
tspec.length = tclas.length = 0;
rc = sme_mgt_tspec(priv, CSR_WIFI_SME_LIST_ACTION_REMOVE, delts_tid,
&tspec, &tclas);
return rc;
}
int unifi_cfg_strict_draft_n(unifi_priv_t *priv, unsigned char *arg)
{
u8 strict_draft_n;
u8 *strict_draft_n_params;
int rc;
CsrWifiSmeStaConfig staConfig;
CsrWifiSmeDeviceConfig deviceConfig;
strict_draft_n_params = (u8*)(((unifi_cfg_command_t*)arg) + 1);
if (get_user(strict_draft_n, (u8*)strict_draft_n_params)) {
unifi_error(priv, "unifi_cfg_strict_draft_n: Failed to get the argument\n");
return -EFAULT;
}
unifi_trace(priv, UDBG4, "strict_draft_n: = %s\n", ((strict_draft_n) ? "yes":"no"));
rc = sme_mgt_sme_config_get(priv, &staConfig, &deviceConfig);
if (rc) {
unifi_warning(priv, "unifi_cfg_strict_draft_n: Get unifi_SMEConfigValue failed.\n");
return -EFAULT;
}
deviceConfig.enableStrictDraftN = strict_draft_n;
rc = sme_mgt_sme_config_set(priv, &staConfig, &deviceConfig);
if (rc) {
unifi_warning(priv, "unifi_cfg_strict_draft_n: Set unifi_SMEConfigValue failed.\n");
rc = -EFAULT;
}
return rc;
}
int unifi_cfg_enable_okc(unifi_priv_t *priv, unsigned char *arg)
{
u8 enable_okc;
u8 *enable_okc_params;
int rc;
CsrWifiSmeStaConfig staConfig;
CsrWifiSmeDeviceConfig deviceConfig;
enable_okc_params = (u8*)(((unifi_cfg_command_t*)arg) + 1);
if (get_user(enable_okc, (u8*)enable_okc_params)) {
unifi_error(priv, "unifi_cfg_enable_okc: Failed to get the argument\n");
return -EFAULT;
}
unifi_trace(priv, UDBG4, "enable_okc: = %s\n", ((enable_okc) ? "yes":"no"));
rc = sme_mgt_sme_config_get(priv, &staConfig, &deviceConfig);
if (rc) {
unifi_warning(priv, "unifi_cfg_enable_okc: Get unifi_SMEConfigValue failed.\n");
return -EFAULT;
}
staConfig.enableOpportunisticKeyCaching = enable_okc;
rc = sme_mgt_sme_config_set(priv, &staConfig, &deviceConfig);
if (rc) {
unifi_warning(priv, "unifi_cfg_enable_okc: Set unifi_SMEConfigValue failed.\n");
rc = -EFAULT;
}
return rc;
}
int unifi_cfg_get_info(unifi_priv_t *priv, unsigned char *arg)
{
unifi_cfg_get_t get_cmd;
char inst_name[IFNAMSIZ];
int rc;
if (get_user(get_cmd, (unifi_cfg_get_t*)(((unifi_cfg_command_t*)arg) + 1))) {
unifi_error(priv, "UNIFI_CFG: Failed to get the argument\n");
return -EFAULT;
}
switch (get_cmd) {
case UNIFI_CFG_GET_COEX:
{
CsrWifiSmeCoexInfo coexInfo;
/* Get the coex info from the SME */
rc = sme_mgt_coex_info_get(priv, &coexInfo);
if (rc) {
unifi_error(priv, "UNIFI_CFG: Get unifi_CoexInfoValue failed.\n");
return rc;
}
/* Copy the info to the out buffer */
if (copy_to_user((void*)arg,
&coexInfo,
sizeof(CsrWifiSmeCoexInfo))) {
unifi_error(priv, "UNIFI_CFG: Failed to copy the coex info\n");
return -EFAULT;
}
break;
}
case UNIFI_CFG_GET_POWER_MODE:
{
CsrWifiSmePowerConfig powerConfig;
rc = sme_mgt_power_config_get(priv, &powerConfig);
if (rc) {
unifi_error(priv, "UNIFI_CFG: Get unifi_PowerConfigValue failed.\n");
return rc;
}
/* Copy the info to the out buffer */
if (copy_to_user((void*)arg,
&powerConfig.powerSaveLevel,
sizeof(CsrWifiSmePowerSaveLevel))) {
unifi_error(priv, "UNIFI_CFG: Failed to copy the power save info\n");
return -EFAULT;
}
break;
}
case UNIFI_CFG_GET_POWER_SUPPLY:
{
CsrWifiSmeHostConfig hostConfig;
rc = sme_mgt_host_config_get(priv, &hostConfig);
if (rc) {
unifi_error(priv, "UNIFI_CFG: Get unifi_HostConfigValue failed.\n");
return rc;
}
/* Copy the info to the out buffer */
if (copy_to_user((void*)arg,
&hostConfig.powerMode,
sizeof(CsrWifiSmeHostPowerMode))) {
unifi_error(priv, "UNIFI_CFG: Failed to copy the host power mode\n");
return -EFAULT;
}
break;
}
case UNIFI_CFG_GET_VERSIONS:
break;
case UNIFI_CFG_GET_INSTANCE:
{
u16 InterfaceId=0;
uf_net_get_name(priv->netdev[InterfaceId], &inst_name[0], sizeof(inst_name));
/* Copy the info to the out buffer */
if (copy_to_user((void*)arg,
&inst_name[0],
sizeof(inst_name))) {
unifi_error(priv, "UNIFI_CFG: Failed to copy the instance name\n");
return -EFAULT;
}
}
break;
case UNIFI_CFG_GET_AP_CONFIG:
{
#ifdef CSR_SUPPORT_WEXT_AP
uf_cfg_ap_config_t cfg_ap_config;
cfg_ap_config.channel = priv->ap_config.channel;
cfg_ap_config.beaconInterval = priv->ap_mac_config.beaconInterval;
cfg_ap_config.wmmEnabled = priv->ap_mac_config.wmmEnabled;
cfg_ap_config.dtimPeriod = priv->ap_mac_config.dtimPeriod;
cfg_ap_config.phySupportedBitmap = priv->ap_mac_config.phySupportedBitmap;
if (copy_to_user((void*)arg,
&cfg_ap_config,
sizeof(uf_cfg_ap_config_t))) {
unifi_error(priv, "UNIFI_CFG: Failed to copy the AP configuration\n");
return -EFAULT;
}
#else
return -EPERM;
#endif
}
break;
default:
unifi_error(priv, "unifi_cfg_get_info: Unknown value.\n");
return -EINVAL;
}
return 0;
}
#ifdef CSR_SUPPORT_WEXT_AP
int
uf_configure_supported_rates(u8 * supportedRates, u8 phySupportedBitmap)
{
int i=0;
u8 b=FALSE, g = FALSE, n = FALSE;
b = phySupportedBitmap & CSR_WIFI_SME_AP_PHY_SUPPORT_B;
n = phySupportedBitmap & CSR_WIFI_SME_AP_PHY_SUPPORT_N;
g = phySupportedBitmap & CSR_WIFI_SME_AP_PHY_SUPPORT_G;
if(b || g) {
supportedRates[i++]=0x82;
supportedRates[i++]=0x84;
supportedRates[i++]=0x8b;
supportedRates[i++]=0x96;
} else if(n) {
/* For some strange reasons WiFi stack needs both b and g rates*/
supportedRates[i++]=0x02;
supportedRates[i++]=0x04;
supportedRates[i++]=0x0b;
supportedRates[i++]=0x16;
supportedRates[i++]=0x0c;
supportedRates[i++]=0x12;
supportedRates[i++]=0x18;
supportedRates[i++]=0x24;
supportedRates[i++]=0x30;
supportedRates[i++]=0x48;
supportedRates[i++]=0x60;
supportedRates[i++]=0x6c;
}
if(g) {
if(!b) {
supportedRates[i++]=0x8c;
supportedRates[i++]=0x98;
supportedRates[i++]=0xb0;
} else {
supportedRates[i++]=0x0c;
supportedRates[i++]=0x18;
supportedRates[i++]=0x30;
}
supportedRates[i++]=0x48;
supportedRates[i++]=0x12;
supportedRates[i++]=0x24;
supportedRates[i++]=0x60;
supportedRates[i++]=0x6c;
}
return i;
}
int unifi_cfg_set_ap_config(unifi_priv_t * priv,unsigned char* arg)
{
uf_cfg_ap_config_t cfg_ap_config;
char *buffer;
buffer = ((unsigned char*)arg) + sizeof(unifi_cfg_command_t) + sizeof(unsigned int);
if (copy_from_user(&cfg_ap_config, (void*)buffer,
sizeof(uf_cfg_ap_config_t))) {
unifi_error(priv, "UNIFI_CFG: Failed to get the ap config struct\n");
return -EFAULT;
}
priv->ap_config.channel = cfg_ap_config.channel;
priv->ap_mac_config.dtimPeriod = cfg_ap_config.dtimPeriod;
priv->ap_mac_config.beaconInterval = cfg_ap_config.beaconInterval;
priv->group_sec_config.apGroupkeyTimeout = cfg_ap_config.groupkeyTimeout;
priv->group_sec_config.apStrictGtkRekey = cfg_ap_config.strictGtkRekeyEnabled;
priv->group_sec_config.apGmkTimeout = cfg_ap_config.gmkTimeout;
priv->group_sec_config.apResponseTimeout = cfg_ap_config.responseTimeout;
priv->group_sec_config.apRetransLimit = cfg_ap_config.retransLimit;
priv->ap_mac_config.shortSlotTimeEnabled = cfg_ap_config.shortSlotTimeEnabled;
priv->ap_mac_config.ctsProtectionType=cfg_ap_config.ctsProtectionType;
priv->ap_mac_config.wmmEnabled = cfg_ap_config.wmmEnabled;
priv->ap_mac_config.apHtParams.rxStbc=cfg_ap_config.rxStbc;
priv->ap_mac_config.apHtParams.rifsModeAllowed=cfg_ap_config.rifsModeAllowed;
priv->ap_mac_config.phySupportedBitmap = cfg_ap_config.phySupportedBitmap;
priv->ap_mac_config.maxListenInterval=cfg_ap_config.maxListenInterval;
priv->ap_mac_config.supportedRatesCount= uf_configure_supported_rates(priv->ap_mac_config.supportedRates,priv->ap_mac_config.phySupportedBitmap);
return 0;
}
#endif
#ifdef CSR_SUPPORT_WEXT
void
uf_sme_config_wq(struct work_struct *work)
{
CsrWifiSmeStaConfig staConfig;
CsrWifiSmeDeviceConfig deviceConfig;
unifi_priv_t *priv = container_of(work, unifi_priv_t, sme_config_task);
/* Register to receive indications from the SME */
CsrWifiSmeEventMaskSetReqSend(0,
CSR_WIFI_SME_INDICATIONS_WIFIOFF | CSR_WIFI_SME_INDICATIONS_CONNECTIONQUALITY |
CSR_WIFI_SME_INDICATIONS_MEDIASTATUS | CSR_WIFI_SME_INDICATIONS_MICFAILURE);
if (sme_mgt_sme_config_get(priv, &staConfig, &deviceConfig)) {
unifi_warning(priv, "uf_sme_config_wq: Get unifi_SMEConfigValue failed.\n");
return;
}
if (priv->if_index == CSR_INDEX_5G) {
staConfig.ifIndex = CSR_WIFI_SME_RADIO_IF_GHZ_5_0;
} else {
staConfig.ifIndex = CSR_WIFI_SME_RADIO_IF_GHZ_2_4;
}
deviceConfig.trustLevel = (CsrWifiSme80211dTrustLevel)tl_80211d;
if (sme_mgt_sme_config_set(priv, &staConfig, &deviceConfig)) {
unifi_warning(priv,
"SME config for 802.11d Trust Level and Radio Band failed.\n");
return;
}
} /* uf_sme_config_wq() */
#endif /* CSR_SUPPORT_WEXT */
/*
* ---------------------------------------------------------------------------
* uf_ta_ind_wq
*
* Deferred work queue function to send Traffic Analysis protocols
* indications to the SME.
* These are done in a deferred work queue for two reasons:
* - the CsrWifiRouterCtrl...Send() functions are not safe for atomic context
* - we want to load the main driver data path as lightly as possible
*
* The TA classifications already come from a workqueue.
*
* Arguments:
* work Pointer to work queue item.
*
* Returns:
* None.
* ---------------------------------------------------------------------------
*/
void
uf_ta_ind_wq(struct work_struct *work)
{
struct ta_ind *ind = container_of(work, struct ta_ind, task);
unifi_priv_t *priv = container_of(ind, unifi_priv_t, ta_ind_work);
u16 interfaceTag = 0;
CsrWifiRouterCtrlTrafficProtocolIndSend(priv->CSR_WIFI_SME_IFACEQUEUE,0,
interfaceTag,
ind->packet_type,
ind->direction,
ind->src_addr);
ind->in_use = 0;
} /* uf_ta_ind_wq() */
/*
* ---------------------------------------------------------------------------
* uf_ta_sample_ind_wq
*
* Deferred work queue function to send Traffic Analysis sample
* indications to the SME.
* These are done in a deferred work queue for two reasons:
* - the CsrWifiRouterCtrl...Send() functions are not safe for atomic context
* - we want to load the main driver data path as lightly as possible
*
* The TA classifications already come from a workqueue.
*
* Arguments:
* work Pointer to work queue item.
*
* Returns:
* None.
* ---------------------------------------------------------------------------
*/
void
uf_ta_sample_ind_wq(struct work_struct *work)
{
struct ta_sample_ind *ind = container_of(work, struct ta_sample_ind, task);
unifi_priv_t *priv = container_of(ind, unifi_priv_t, ta_sample_ind_work);
u16 interfaceTag = 0;
unifi_trace(priv, UDBG5, "rxtcp %d txtcp %d rxudp %d txudp %d prio %d\n",
priv->rxTcpThroughput,
priv->txTcpThroughput,
priv->rxUdpThroughput,
priv->txUdpThroughput,
priv->bh_thread.prio);
if(priv->rxTcpThroughput > 1000)
{
if (bh_priority == -1 && priv->bh_thread.prio != 1)
{
struct sched_param param;
priv->bh_thread.prio = 1;
unifi_trace(priv, UDBG1, "%s new thread (RT) priority = %d\n",
priv->bh_thread.name, priv->bh_thread.prio);
param.sched_priority = priv->bh_thread.prio;
sched_setscheduler(priv->bh_thread.thread_task, SCHED_FIFO, &param);
}
} else
{
if (bh_priority == -1 && priv->bh_thread.prio != DEFAULT_PRIO)
{
struct sched_param param;
param.sched_priority = 0;
sched_setscheduler(priv->bh_thread.thread_task, SCHED_NORMAL, &param);
priv->bh_thread.prio = DEFAULT_PRIO;
unifi_trace(priv, UDBG1, "%s new thread priority = %d\n",
priv->bh_thread.name, priv->bh_thread.prio);
set_user_nice(priv->bh_thread.thread_task, PRIO_TO_NICE(priv->bh_thread.prio));
}
}
CsrWifiRouterCtrlTrafficSampleIndSend(priv->CSR_WIFI_SME_IFACEQUEUE,0, interfaceTag, ind->stats);
ind->in_use = 0;
} /* uf_ta_sample_ind_wq() */
/*
* ---------------------------------------------------------------------------
* uf_send_m4_ready_wq
*
* Deferred work queue function to send M4 ReadyToSend inds to the SME.
* These are done in a deferred work queue for two reasons:
* - the CsrWifiRouterCtrl...Send() functions are not safe for atomic context
* - we want to load the main driver data path as lightly as possible
*
* Arguments:
* work Pointer to work queue item.
*
* Returns:
* None.
* ---------------------------------------------------------------------------
*/
void
uf_send_m4_ready_wq(struct work_struct *work)
{
netInterface_priv_t *InterfacePriv = container_of(work, netInterface_priv_t, send_m4_ready_task);
u16 iface = InterfacePriv->InterfaceTag;
unifi_priv_t *priv = InterfacePriv->privPtr;
CSR_MA_PACKET_REQUEST *req = &InterfacePriv->m4_signal.u.MaPacketRequest;
CsrWifiMacAddress peer;
unsigned long flags;
func_enter();
/* The peer address was stored in the signal */
spin_lock_irqsave(&priv->m4_lock, flags);
memcpy(peer.a, req->Ra.x, sizeof(peer.a));
spin_unlock_irqrestore(&priv->m4_lock, flags);
/* Send a signal to SME */
CsrWifiRouterCtrlM4ReadyToSendIndSend(priv->CSR_WIFI_SME_IFACEQUEUE, 0, iface, peer);
unifi_trace(priv, UDBG1, "M4ReadyToSendInd sent for peer %pMF\n",
peer.a);
func_exit();
} /* uf_send_m4_ready_wq() */
#if (defined(CSR_WIFI_SECURITY_WAPI_ENABLE) && defined(CSR_WIFI_SECURITY_WAPI_SW_ENCRYPTION))
/*
* ---------------------------------------------------------------------------
* uf_send_pkt_to_encrypt
*
* Deferred work queue function to send the WAPI data pkts to SME when unicast KeyId = 1
* These are done in a deferred work queue for two reasons:
* - the CsrWifiRouterCtrl...Send() functions are not safe for atomic context
* - we want to load the main driver data path as lightly as possible
*
* Arguments:
* work Pointer to work queue item.
*
* Returns:
* None.
* ---------------------------------------------------------------------------
*/
void uf_send_pkt_to_encrypt(struct work_struct *work)
{
netInterface_priv_t *interfacePriv = container_of(work, netInterface_priv_t, send_pkt_to_encrypt);
u16 interfaceTag = interfacePriv->InterfaceTag;
unifi_priv_t *priv = interfacePriv->privPtr;
u32 pktBulkDataLength;
u8 *pktBulkData;
unsigned long flags;
if (interfacePriv->interfaceMode == CSR_WIFI_ROUTER_CTRL_MODE_STA) {
func_enter();
pktBulkDataLength = interfacePriv->wapi_unicast_bulk_data.data_length;
if (pktBulkDataLength > 0) {
pktBulkData = kmalloc(pktBulkDataLength, GFP_KERNEL);
memset(pktBulkData, 0, pktBulkDataLength);
} else {
unifi_error(priv, "uf_send_pkt_to_encrypt() : invalid buffer\n");
return;
}
spin_lock_irqsave(&priv->wapi_lock, flags);
/* Copy over the MA PKT REQ bulk data */
memcpy(pktBulkData, (u8*)interfacePriv->wapi_unicast_bulk_data.os_data_ptr, pktBulkDataLength);
/* Free any bulk data buffers allocated for the WAPI Data pkt */
unifi_net_data_free(priv, &interfacePriv->wapi_unicast_bulk_data);
interfacePriv->wapi_unicast_bulk_data.net_buf_length = 0;
interfacePriv->wapi_unicast_bulk_data.data_length = 0;
interfacePriv->wapi_unicast_bulk_data.os_data_ptr = interfacePriv->wapi_unicast_bulk_data.os_net_buf_ptr = NULL;
spin_unlock_irqrestore(&priv->wapi_lock, flags);
CsrWifiRouterCtrlWapiUnicastTxEncryptIndSend(priv->CSR_WIFI_SME_IFACEQUEUE, 0, interfaceTag, pktBulkDataLength, pktBulkData);
unifi_trace(priv, UDBG1, "WapiUnicastTxEncryptInd sent to SME\n");
kfree(pktBulkData); /* Would have been copied over by the SME Handler */
func_exit();
} else {
unifi_warning(priv, "uf_send_pkt_to_encrypt() is NOT applicable for interface mode - %d\n",interfacePriv->interfaceMode);
}
}/* uf_send_pkt_to_encrypt() */
#endif