blob: 6bb07b339325ecdc36895f57735edad50a422fd0 [file] [log] [blame]
/*
Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
<http://rt2x00.serialmonkey.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the
Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
Module: rt2500usb
Abstract: rt2500usb device specific routines.
Supported chipsets: RT2570.
*/
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/usb.h>
#include "rt2x00.h"
#include "rt2x00usb.h"
#include "rt2500usb.h"
/*
* Register access.
* All access to the CSR registers will go through the methods
* rt2500usb_register_read and rt2500usb_register_write.
* BBP and RF register require indirect register access,
* and use the CSR registers BBPCSR and RFCSR to achieve this.
* These indirect registers work with busy bits,
* and we will try maximal REGISTER_BUSY_COUNT times to access
* the register while taking a REGISTER_BUSY_DELAY us delay
* between each attampt. When the busy bit is still set at that time,
* the access attempt is considered to have failed,
* and we will print an error.
* If the usb_cache_mutex is already held then the _lock variants must
* be used instead.
*/
static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
const unsigned int offset,
u16 *value)
{
__le16 reg;
rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
USB_VENDOR_REQUEST_IN, offset,
&reg, sizeof(u16), REGISTER_TIMEOUT);
*value = le16_to_cpu(reg);
}
static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
const unsigned int offset,
u16 *value)
{
__le16 reg;
rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
USB_VENDOR_REQUEST_IN, offset,
&reg, sizeof(u16), REGISTER_TIMEOUT);
*value = le16_to_cpu(reg);
}
static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
const unsigned int offset,
void *value, const u16 length)
{
int timeout = REGISTER_TIMEOUT * (length / sizeof(u16));
rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
USB_VENDOR_REQUEST_IN, offset,
value, length, timeout);
}
static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
const unsigned int offset,
u16 value)
{
__le16 reg = cpu_to_le16(value);
rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
USB_VENDOR_REQUEST_OUT, offset,
&reg, sizeof(u16), REGISTER_TIMEOUT);
}
static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
const unsigned int offset,
u16 value)
{
__le16 reg = cpu_to_le16(value);
rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
USB_VENDOR_REQUEST_OUT, offset,
&reg, sizeof(u16), REGISTER_TIMEOUT);
}
static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
const unsigned int offset,
void *value, const u16 length)
{
int timeout = REGISTER_TIMEOUT * (length / sizeof(u16));
rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
USB_VENDOR_REQUEST_OUT, offset,
value, length, timeout);
}
static u16 rt2500usb_bbp_check(struct rt2x00_dev *rt2x00dev)
{
u16 reg;
unsigned int i;
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2500usb_register_read_lock(rt2x00dev, PHY_CSR8, &reg);
if (!rt2x00_get_field16(reg, PHY_CSR8_BUSY))
break;
udelay(REGISTER_BUSY_DELAY);
}
return reg;
}
static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
const unsigned int word, const u8 value)
{
u16 reg;
mutex_lock(&rt2x00dev->usb_cache_mutex);
/*
* Wait until the BBP becomes ready.
*/
reg = rt2500usb_bbp_check(rt2x00dev);
if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
ERROR(rt2x00dev, "PHY_CSR8 register busy. Write failed.\n");
mutex_unlock(&rt2x00dev->usb_cache_mutex);
return;
}
/*
* Write the data into the BBP.
*/
reg = 0;
rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
mutex_unlock(&rt2x00dev->usb_cache_mutex);
}
static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
const unsigned int word, u8 *value)
{
u16 reg;
mutex_lock(&rt2x00dev->usb_cache_mutex);
/*
* Wait until the BBP becomes ready.
*/
reg = rt2500usb_bbp_check(rt2x00dev);
if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
return;
}
/*
* Write the request into the BBP.
*/
reg = 0;
rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
/*
* Wait until the BBP becomes ready.
*/
reg = rt2500usb_bbp_check(rt2x00dev);
if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
*value = 0xff;
mutex_unlock(&rt2x00dev->usb_cache_mutex);
return;
}
rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
*value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
mutex_unlock(&rt2x00dev->usb_cache_mutex);
}
static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
const unsigned int word, const u32 value)
{
u16 reg;
unsigned int i;
if (!word)
return;
mutex_lock(&rt2x00dev->usb_cache_mutex);
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2500usb_register_read_lock(rt2x00dev, PHY_CSR10, &reg);
if (!rt2x00_get_field16(reg, PHY_CSR10_RF_BUSY))
goto rf_write;
udelay(REGISTER_BUSY_DELAY);
}
mutex_unlock(&rt2x00dev->usb_cache_mutex);
ERROR(rt2x00dev, "PHY_CSR10 register busy. Write failed.\n");
return;
rf_write:
reg = 0;
rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
reg = 0;
rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
rt2x00_rf_write(rt2x00dev, word, value);
mutex_unlock(&rt2x00dev->usb_cache_mutex);
}
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
#define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u16)) )
static void rt2500usb_read_csr(struct rt2x00_dev *rt2x00dev,
const unsigned int word, u32 *data)
{
rt2500usb_register_read(rt2x00dev, CSR_OFFSET(word), (u16 *) data);
}
static void rt2500usb_write_csr(struct rt2x00_dev *rt2x00dev,
const unsigned int word, u32 data)
{
rt2500usb_register_write(rt2x00dev, CSR_OFFSET(word), data);
}
static const struct rt2x00debug rt2500usb_rt2x00debug = {
.owner = THIS_MODULE,
.csr = {
.read = rt2500usb_read_csr,
.write = rt2500usb_write_csr,
.word_size = sizeof(u16),
.word_count = CSR_REG_SIZE / sizeof(u16),
},
.eeprom = {
.read = rt2x00_eeprom_read,
.write = rt2x00_eeprom_write,
.word_size = sizeof(u16),
.word_count = EEPROM_SIZE / sizeof(u16),
},
.bbp = {
.read = rt2500usb_bbp_read,
.write = rt2500usb_bbp_write,
.word_size = sizeof(u8),
.word_count = BBP_SIZE / sizeof(u8),
},
.rf = {
.read = rt2x00_rf_read,
.write = rt2500usb_rf_write,
.word_size = sizeof(u32),
.word_count = RF_SIZE / sizeof(u32),
},
};
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
#ifdef CONFIG_RT2500USB_LEDS
static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
enum led_brightness brightness)
{
struct rt2x00_led *led =
container_of(led_cdev, struct rt2x00_led, led_dev);
unsigned int enabled = brightness != LED_OFF;
u16 reg;
rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
else if (led->type == LED_TYPE_ACTIVITY)
rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
}
static int rt2500usb_blink_set(struct led_classdev *led_cdev,
unsigned long *delay_on,
unsigned long *delay_off)
{
struct rt2x00_led *led =
container_of(led_cdev, struct rt2x00_led, led_dev);
u16 reg;
rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
return 0;
}
#endif /* CONFIG_RT2500USB_LEDS */
/*
* Configuration handlers.
*/
static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
const unsigned int filter_flags)
{
u16 reg;
/*
* Start configuration steps.
* Note that the version error will always be dropped
* and broadcast frames will always be accepted since
* there is no filter for it at this time.
*/
rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
!(filter_flags & FIF_FCSFAIL));
rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
!(filter_flags & FIF_PLCPFAIL));
rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
!(filter_flags & FIF_CONTROL));
rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
!(filter_flags & FIF_PROMISC_IN_BSS));
rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
!(filter_flags & FIF_PROMISC_IN_BSS) &&
!rt2x00dev->intf_ap_count);
rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
!(filter_flags & FIF_ALLMULTI));
rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
}
static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
struct rt2x00_intf *intf,
struct rt2x00intf_conf *conf,
const unsigned int flags)
{
unsigned int bcn_preload;
u16 reg;
if (flags & CONFIG_UPDATE_TYPE) {
/*
* Enable beacon config
*/
bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
2 * (conf->type != IEEE80211_IF_TYPE_STA));
rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
/*
* Enable synchronisation.
*/
rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
}
if (flags & CONFIG_UPDATE_MAC)
rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
(3 * sizeof(__le16)));
if (flags & CONFIG_UPDATE_BSSID)
rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
(3 * sizeof(__le16)));
}
static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_erp *erp)
{
u16 reg;
rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
rt2x00_set_field16(&reg, TXRX_CSR1_ACK_TIMEOUT, erp->ack_timeout);
rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
!!erp->short_preamble);
rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
}
static void rt2500usb_config_phymode(struct rt2x00_dev *rt2x00dev,
const int basic_rate_mask)
{
rt2500usb_register_write(rt2x00dev, TXRX_CSR11, basic_rate_mask);
}
static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
struct rf_channel *rf, const int txpower)
{
/*
* Set TXpower.
*/
rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
/*
* For RT2525E we should first set the channel to half band higher.
*/
if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
static const u32 vals[] = {
0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
0x00000902, 0x00000906
};
rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
if (rf->rf4)
rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
}
rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
if (rf->rf4)
rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
}
static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
const int txpower)
{
u32 rf3;
rt2x00_rf_read(rt2x00dev, 3, &rf3);
rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
rt2500usb_rf_write(rt2x00dev, 3, rf3);
}
static void rt2500usb_config_antenna(struct rt2x00_dev *rt2x00dev,
struct antenna_setup *ant)
{
u8 r2;
u8 r14;
u16 csr5;
u16 csr6;
/*
* We should never come here because rt2x00lib is supposed
* to catch this and send us the correct antenna explicitely.
*/
BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
ant->tx == ANTENNA_SW_DIVERSITY);
rt2500usb_bbp_read(rt2x00dev, 2, &r2);
rt2500usb_bbp_read(rt2x00dev, 14, &r14);
rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
/*
* Configure the TX antenna.
*/
switch (ant->tx) {
case ANTENNA_HW_DIVERSITY:
rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
break;
case ANTENNA_A:
rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
break;
case ANTENNA_B:
default:
rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
break;
}
/*
* Configure the RX antenna.
*/
switch (ant->rx) {
case ANTENNA_HW_DIVERSITY:
rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
break;
case ANTENNA_A:
rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
break;
case ANTENNA_B:
default:
rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
break;
}
/*
* RT2525E and RT5222 need to flip TX I/Q
*/
if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
rt2x00_rf(&rt2x00dev->chip, RF5222)) {
rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
/*
* RT2525E does not need RX I/Q Flip.
*/
if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
} else {
rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
}
rt2500usb_bbp_write(rt2x00dev, 2, r2);
rt2500usb_bbp_write(rt2x00dev, 14, r14);
rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
}
static void rt2500usb_config_duration(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_conf *libconf)
{
u16 reg;
rt2500usb_register_write(rt2x00dev, MAC_CSR10, libconf->slot_time);
rt2500usb_register_write(rt2x00dev, MAC_CSR11, libconf->sifs);
rt2500usb_register_write(rt2x00dev, MAC_CSR12, libconf->eifs);
rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
libconf->conf->beacon_int * 4);
rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
}
static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_conf *libconf,
const unsigned int flags)
{
if (flags & CONFIG_UPDATE_PHYMODE)
rt2500usb_config_phymode(rt2x00dev, libconf->basic_rates);
if (flags & CONFIG_UPDATE_CHANNEL)
rt2500usb_config_channel(rt2x00dev, &libconf->rf,
libconf->conf->power_level);
if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
rt2500usb_config_txpower(rt2x00dev,
libconf->conf->power_level);
if (flags & CONFIG_UPDATE_ANTENNA)
rt2500usb_config_antenna(rt2x00dev, &libconf->ant);
if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
rt2500usb_config_duration(rt2x00dev, libconf);
}
/*
* Link tuning
*/
static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
struct link_qual *qual)
{
u16 reg;
/*
* Update FCS error count from register.
*/
rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
/*
* Update False CCA count from register.
*/
rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
}
static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev)
{
u16 eeprom;
u16 value;
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
rt2500usb_bbp_write(rt2x00dev, 24, value);
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
rt2500usb_bbp_write(rt2x00dev, 25, value);
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
rt2500usb_bbp_write(rt2x00dev, 61, value);
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
rt2500usb_bbp_write(rt2x00dev, 17, value);
rt2x00dev->link.vgc_level = value;
}
static void rt2500usb_link_tuner(struct rt2x00_dev *rt2x00dev)
{
int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
u16 bbp_thresh;
u16 vgc_bound;
u16 sens;
u16 r24;
u16 r25;
u16 r61;
u16 r17_sens;
u8 r17;
u8 up_bound;
u8 low_bound;
/*
* Read current r17 value, as well as the sensitivity values
* for the r17 register.
*/
rt2500usb_bbp_read(rt2x00dev, 17, &r17);
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &r17_sens);
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &vgc_bound);
up_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCUPPER);
low_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCLOWER);
/*
* If we are not associated, we should go straight to the
* dynamic CCA tuning.
*/
if (!rt2x00dev->intf_associated)
goto dynamic_cca_tune;
/*
* Determine the BBP tuning threshold and correctly
* set BBP 24, 25 and 61.
*/
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &bbp_thresh);
bbp_thresh = rt2x00_get_field16(bbp_thresh, EEPROM_BBPTUNE_THRESHOLD);
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &r24);
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &r25);
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &r61);
if ((rssi + bbp_thresh) > 0) {
r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_HIGH);
r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_HIGH);
r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_HIGH);
} else {
r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_LOW);
r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_LOW);
r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_LOW);
}
rt2500usb_bbp_write(rt2x00dev, 24, r24);
rt2500usb_bbp_write(rt2x00dev, 25, r25);
rt2500usb_bbp_write(rt2x00dev, 61, r61);
/*
* A too low RSSI will cause too much false CCA which will
* then corrupt the R17 tuning. To remidy this the tuning should
* be stopped (While making sure the R17 value will not exceed limits)
*/
if (rssi >= -40) {
if (r17 != 0x60)
rt2500usb_bbp_write(rt2x00dev, 17, 0x60);
return;
}
/*
* Special big-R17 for short distance
*/
if (rssi >= -58) {
sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_LOW);
if (r17 != sens)
rt2500usb_bbp_write(rt2x00dev, 17, sens);
return;
}
/*
* Special mid-R17 for middle distance
*/
if (rssi >= -74) {
sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_HIGH);
if (r17 != sens)
rt2500usb_bbp_write(rt2x00dev, 17, sens);
return;
}
/*
* Leave short or middle distance condition, restore r17
* to the dynamic tuning range.
*/
low_bound = 0x32;
if (rssi < -77)
up_bound -= (-77 - rssi);
if (up_bound < low_bound)
up_bound = low_bound;
if (r17 > up_bound) {
rt2500usb_bbp_write(rt2x00dev, 17, up_bound);
rt2x00dev->link.vgc_level = up_bound;
return;
}
dynamic_cca_tune:
/*
* R17 is inside the dynamic tuning range,
* start tuning the link based on the false cca counter.
*/
if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
rt2500usb_bbp_write(rt2x00dev, 17, ++r17);
rt2x00dev->link.vgc_level = r17;
} else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
rt2500usb_bbp_write(rt2x00dev, 17, --r17);
rt2x00dev->link.vgc_level = r17;
}
}
/*
* Initialization functions.
*/
static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
{
u16 reg;
rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
USB_MODE_TEST, REGISTER_TIMEOUT);
rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
0x00f0, REGISTER_TIMEOUT);
rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
return -EBUSY;
rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
if (rt2x00_rev(&rt2x00dev->chip) >= RT2570_VERSION_C) {
rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
} else {
reg = 0;
rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
}
rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
rt2x00dev->rx->data_size);
rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0xff);
rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
return 0;
}
static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
{
unsigned int i;
u16 eeprom;
u8 value;
u8 reg_id;
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2500usb_bbp_read(rt2x00dev, 0, &value);
if ((value != 0xff) && (value != 0x00))
goto continue_csr_init;
NOTICE(rt2x00dev, "Waiting for BBP register.\n");
udelay(REGISTER_BUSY_DELAY);
}
ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
return -EACCES;
continue_csr_init:
rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
for (i = 0; i < EEPROM_BBP_SIZE; i++) {
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
if (eeprom != 0xffff && eeprom != 0x0000) {
reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
rt2500usb_bbp_write(rt2x00dev, reg_id, value);
}
}
return 0;
}
/*
* Device state switch handlers.
*/
static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
enum dev_state state)
{
u16 reg;
rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
state == STATE_RADIO_RX_OFF);
rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
}
static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
{
/*
* Initialize all registers.
*/
if (rt2500usb_init_registers(rt2x00dev) ||
rt2500usb_init_bbp(rt2x00dev)) {
ERROR(rt2x00dev, "Register initialization failed.\n");
return -EIO;
}
return 0;
}
static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
{
rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
/*
* Disable synchronisation.
*/
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
rt2x00usb_disable_radio(rt2x00dev);
}
static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
enum dev_state state)
{
u16 reg;
u16 reg2;
unsigned int i;
char put_to_sleep;
char bbp_state;
char rf_state;
put_to_sleep = (state != STATE_AWAKE);
reg = 0;
rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
/*
* Device is not guaranteed to be in the requested state yet.
* We must wait until the register indicates that the
* device has entered the correct state.
*/
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
if (bbp_state == state && rf_state == state)
return 0;
rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
msleep(30);
}
NOTICE(rt2x00dev, "Device failed to enter state %d, "
"current device state: bbp %d and rf %d.\n",
state, bbp_state, rf_state);
return -EBUSY;
}
static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
enum dev_state state)
{
int retval = 0;
switch (state) {
case STATE_RADIO_ON:
retval = rt2500usb_enable_radio(rt2x00dev);
break;
case STATE_RADIO_OFF:
rt2500usb_disable_radio(rt2x00dev);
break;
case STATE_RADIO_RX_ON:
case STATE_RADIO_RX_ON_LINK:
rt2500usb_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
break;
case STATE_RADIO_RX_OFF:
case STATE_RADIO_RX_OFF_LINK:
rt2500usb_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
break;
case STATE_DEEP_SLEEP:
case STATE_SLEEP:
case STATE_STANDBY:
case STATE_AWAKE:
retval = rt2500usb_set_state(rt2x00dev, state);
break;
default:
retval = -ENOTSUPP;
break;
}
return retval;
}
/*
* TX descriptor initialization
*/
static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
struct sk_buff *skb,
struct txentry_desc *txdesc,
struct ieee80211_tx_control *control)
{
struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
__le32 *txd = skbdesc->desc;
u32 word;
/*
* Start writing the descriptor words.
*/
rt2x00_desc_read(txd, 1, &word);
rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
rt2x00_desc_write(txd, 1, word);
rt2x00_desc_read(txd, 2, &word);
rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
rt2x00_desc_write(txd, 2, word);
rt2x00_desc_read(txd, 0, &word);
rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, control->retry_limit);
rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
rt2x00_set_field32(&word, TXD_W0_ACK,
test_bit(ENTRY_TXD_ACK, &txdesc->flags));
rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
rt2x00_set_field32(&word, TXD_W0_OFDM,
test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
!!(control->flags & IEEE80211_TXCTL_FIRST_FRAGMENT));
rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
rt2x00_set_field32(&word, TXD_W0_CIPHER, CIPHER_NONE);
rt2x00_desc_write(txd, 0, word);
}
static int rt2500usb_get_tx_data_len(struct rt2x00_dev *rt2x00dev,
struct sk_buff *skb)
{
int length;
/*
* The length _must_ be a multiple of 2,
* but it must _not_ be a multiple of the USB packet size.
*/
length = roundup(skb->len, 2);
length += (2 * !(length % rt2x00dev->usb_maxpacket));
return length;
}
/*
* TX data initialization
*/
static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
const unsigned int queue)
{
u16 reg;
if (queue != RT2X00_BCN_QUEUE_BEACON)
return;
rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
/*
* Beacon generation will fail initially.
* To prevent this we need to register the TXRX_CSR19
* register several times.
*/
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
}
}
/*
* RX control handlers
*/
static void rt2500usb_fill_rxdone(struct queue_entry *entry,
struct rxdone_entry_desc *rxdesc)
{
struct queue_entry_priv_usb_rx *priv_rx = entry->priv_data;
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
__le32 *rxd =
(__le32 *)(entry->skb->data +
(priv_rx->urb->actual_length - entry->queue->desc_size));
unsigned int offset = entry->queue->desc_size + 2;
u32 word0;
u32 word1;
/*
* Copy descriptor to the available headroom inside the skbuffer.
*/
skb_push(entry->skb, offset);
memcpy(entry->skb->data, rxd, entry->queue->desc_size);
rxd = (__le32 *)entry->skb->data;
/*
* The descriptor is now aligned to 4 bytes and thus it is
* now safe to read it on all architectures.
*/
rt2x00_desc_read(rxd, 0, &word0);
rt2x00_desc_read(rxd, 1, &word1);
rxdesc->flags = 0;
if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
/*
* Obtain the status about this packet.
* When frame was received with an OFDM bitrate,
* the signal is the PLCP value. If it was received with
* a CCK bitrate the signal is the rate in 100kbit/s.
*/
rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
rxdesc->rssi = rt2x00_get_field32(word1, RXD_W1_RSSI) -
entry->queue->rt2x00dev->rssi_offset;
rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
rxdesc->dev_flags = 0;
if (rt2x00_get_field32(word0, RXD_W0_OFDM))
rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
rxdesc->dev_flags |= RXDONE_MY_BSS;
/*
* Adjust the skb memory window to the frame boundaries.
*/
skb_pull(entry->skb, offset);
skb_trim(entry->skb, rxdesc->size);
/*
* Set descriptor and data pointer.
*/
skbdesc->data = entry->skb->data;
skbdesc->data_len = rxdesc->size;
skbdesc->desc = rxd;
skbdesc->desc_len = entry->queue->desc_size;
}
/*
* Interrupt functions.
*/
static void rt2500usb_beacondone(struct urb *urb)
{
struct queue_entry *entry = (struct queue_entry *)urb->context;
struct queue_entry_priv_usb_bcn *priv_bcn = entry->priv_data;
if (!test_bit(DEVICE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
return;
/*
* Check if this was the guardian beacon,
* if that was the case we need to send the real beacon now.
* Otherwise we should free the sk_buffer, the device
* should be doing the rest of the work now.
*/
if (priv_bcn->guardian_urb == urb) {
usb_submit_urb(priv_bcn->urb, GFP_ATOMIC);
} else if (priv_bcn->urb == urb) {
dev_kfree_skb(entry->skb);
entry->skb = NULL;
}
}
/*
* Device probe functions.
*/
static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
u16 word;
u8 *mac;
u8 bbp;
rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
/*
* Start validation of the data that has been read.
*/
mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
if (!is_valid_ether_addr(mac)) {
DECLARE_MAC_BUF(macbuf);
random_ether_addr(mac);
EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
ANTENNA_SW_DIVERSITY);
rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
ANTENNA_SW_DIVERSITY);
rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
LED_MODE_DEFAULT);
rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
DEFAULT_RSSI_OFFSET);
rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
}
/*
* Switch lower vgc bound to current BBP R17 value,
* lower the value a bit for better quality.
*/
rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
bbp -= 6;
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
} else {
rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
}
return 0;
}
static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
{
u16 reg;
u16 value;
u16 eeprom;
/*
* Read EEPROM word for configuration.
*/
rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
/*
* Identify RF chipset.
*/
value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
if (!rt2x00_check_rev(&rt2x00dev->chip, 0)) {
ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
return -ENODEV;
}
if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
!rt2x00_rf(&rt2x00dev->chip, RF2523) &&
!rt2x00_rf(&rt2x00dev->chip, RF2524) &&
!rt2x00_rf(&rt2x00dev->chip, RF2525) &&
!rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
!rt2x00_rf(&rt2x00dev->chip, RF5222)) {
ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
return -ENODEV;
}
/*
* Identify default antenna configuration.
*/
rt2x00dev->default_ant.tx =
rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
rt2x00dev->default_ant.rx =
rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
/*
* When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
* I am not 100% sure about this, but the legacy drivers do not
* indicate antenna swapping in software is required when
* diversity is enabled.
*/
if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
/*
* Store led mode, for correct led behaviour.
*/
#ifdef CONFIG_RT2500USB_LEDS
value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
rt2x00dev->led_radio.rt2x00dev = rt2x00dev;
rt2x00dev->led_radio.type = LED_TYPE_RADIO;
rt2x00dev->led_radio.led_dev.brightness_set =
rt2500usb_brightness_set;
rt2x00dev->led_radio.led_dev.blink_set =
rt2500usb_blink_set;
rt2x00dev->led_radio.flags = LED_INITIALIZED;
if (value == LED_MODE_TXRX_ACTIVITY) {
rt2x00dev->led_qual.rt2x00dev = rt2x00dev;
rt2x00dev->led_radio.type = LED_TYPE_ACTIVITY;
rt2x00dev->led_qual.led_dev.brightness_set =
rt2500usb_brightness_set;
rt2x00dev->led_qual.led_dev.blink_set =
rt2500usb_blink_set;
rt2x00dev->led_qual.flags = LED_INITIALIZED;
}
#endif /* CONFIG_RT2500USB_LEDS */
/*
* Check if the BBP tuning should be disabled.
*/
rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
__set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
/*
* Read the RSSI <-> dBm offset information.
*/
rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
rt2x00dev->rssi_offset =
rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
return 0;
}
/*
* RF value list for RF2522
* Supports: 2.4 GHz
*/
static const struct rf_channel rf_vals_bg_2522[] = {
{ 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
{ 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
{ 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
{ 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
{ 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
{ 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
{ 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
{ 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
{ 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
};
/*
* RF value list for RF2523
* Supports: 2.4 GHz
*/
static const struct rf_channel rf_vals_bg_2523[] = {
{ 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
{ 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
{ 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
{ 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
{ 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
{ 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
{ 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
{ 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
{ 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
};
/*
* RF value list for RF2524
* Supports: 2.4 GHz
*/
static const struct rf_channel rf_vals_bg_2524[] = {
{ 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
{ 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
{ 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
{ 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
{ 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
{ 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
{ 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
{ 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
{ 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
};
/*
* RF value list for RF2525
* Supports: 2.4 GHz
*/
static const struct rf_channel rf_vals_bg_2525[] = {
{ 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
{ 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
{ 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
{ 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
{ 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
{ 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
{ 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
{ 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
{ 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
};
/*
* RF value list for RF2525e
* Supports: 2.4 GHz
*/
static const struct rf_channel rf_vals_bg_2525e[] = {
{ 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
{ 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
{ 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
{ 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
{ 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
{ 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
{ 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
{ 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
{ 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
{ 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
{ 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
{ 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
{ 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
{ 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
};
/*
* RF value list for RF5222
* Supports: 2.4 GHz & 5.2 GHz
*/
static const struct rf_channel rf_vals_5222[] = {
{ 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
{ 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
{ 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
{ 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
{ 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
{ 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
{ 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
{ 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
{ 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
/* 802.11 UNI / HyperLan 2 */
{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
/* 802.11 HyperLan 2 */
{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
/* 802.11 UNII */
{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
};
static void rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
{
struct hw_mode_spec *spec = &rt2x00dev->spec;
u8 *txpower;
unsigned int i;
/*
* Initialize all hw fields.
*/
rt2x00dev->hw->flags =
IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
IEEE80211_HW_RX_INCLUDES_FCS |
IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
rt2x00dev->hw->max_signal = MAX_SIGNAL;
rt2x00dev->hw->max_rssi = MAX_RX_SSI;
rt2x00dev->hw->queues = 2;
SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_usb(rt2x00dev)->dev);
SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
rt2x00_eeprom_addr(rt2x00dev,
EEPROM_MAC_ADDR_0));
/*
* Convert tx_power array in eeprom.
*/
txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
for (i = 0; i < 14; i++)
txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
/*
* Initialize hw_mode information.
*/
spec->supported_bands = SUPPORT_BAND_2GHZ;
spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
spec->tx_power_a = NULL;
spec->tx_power_bg = txpower;
spec->tx_power_default = DEFAULT_TXPOWER;
if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
spec->channels = rf_vals_bg_2522;
} else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
spec->channels = rf_vals_bg_2523;
} else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
spec->channels = rf_vals_bg_2524;
} else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
spec->channels = rf_vals_bg_2525;
} else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
spec->channels = rf_vals_bg_2525e;
} else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
spec->supported_bands |= SUPPORT_BAND_5GHZ;
spec->num_channels = ARRAY_SIZE(rf_vals_5222);
spec->channels = rf_vals_5222;
}
}
static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
{
int retval;
/*
* Allocate eeprom data.
*/
retval = rt2500usb_validate_eeprom(rt2x00dev);
if (retval)
return retval;
retval = rt2500usb_init_eeprom(rt2x00dev);
if (retval)
return retval;
/*
* Initialize hw specifications.
*/
rt2500usb_probe_hw_mode(rt2x00dev);
/*
* This device requires the atim queue
*/
__set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
__set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
__set_bit(DRIVER_REQUIRE_SCHEDULED, &rt2x00dev->flags);
/*
* Set the rssi offset.
*/
rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
return 0;
}
/*
* IEEE80211 stack callback functions.
*/
static int rt2500usb_beacon_update(struct ieee80211_hw *hw,
struct sk_buff *skb,
struct ieee80211_tx_control *control)
{
struct rt2x00_dev *rt2x00dev = hw->priv;
struct usb_device *usb_dev = rt2x00dev_usb_dev(rt2x00dev);
struct rt2x00_intf *intf = vif_to_intf(control->vif);
struct queue_entry_priv_usb_bcn *priv_bcn;
struct skb_frame_desc *skbdesc;
int pipe = usb_sndbulkpipe(usb_dev, 1);
int length;
u16 reg;
if (unlikely(!intf->beacon))
return -ENOBUFS;
priv_bcn = intf->beacon->priv_data;
/*
* Add the descriptor in front of the skb.
*/
skb_push(skb, intf->beacon->queue->desc_size);
memset(skb->data, 0, intf->beacon->queue->desc_size);
/*
* Fill in skb descriptor
*/
skbdesc = get_skb_frame_desc(skb);
memset(skbdesc, 0, sizeof(*skbdesc));
skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
skbdesc->data = skb->data + intf->beacon->queue->desc_size;
skbdesc->data_len = skb->len - intf->beacon->queue->desc_size;
skbdesc->desc = skb->data;
skbdesc->desc_len = intf->beacon->queue->desc_size;
skbdesc->entry = intf->beacon;
/*
* Disable beaconing while we are reloading the beacon data,
* otherwise we might be sending out invalid data.
*/
rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
/*
* mac80211 doesn't provide the control->queue variable
* for beacons. Set our own queue identification so
* it can be used during descriptor initialization.
*/
control->queue = RT2X00_BCN_QUEUE_BEACON;
rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
/*
* USB devices cannot blindly pass the skb->len as the
* length of the data to usb_fill_bulk_urb. Pass the skb
* to the driver to determine what the length should be.
*/
length = rt2500usb_get_tx_data_len(rt2x00dev, skb);
usb_fill_bulk_urb(priv_bcn->urb, usb_dev, pipe,
skb->data, length, rt2500usb_beacondone,
intf->beacon);
/*
* Second we need to create the guardian byte.
* We only need a single byte, so lets recycle
* the 'flags' field we are not using for beacons.
*/
priv_bcn->guardian_data = 0;
usb_fill_bulk_urb(priv_bcn->guardian_urb, usb_dev, pipe,
&priv_bcn->guardian_data, 1, rt2500usb_beacondone,
intf->beacon);
/*
* Send out the guardian byte.
*/
usb_submit_urb(priv_bcn->guardian_urb, GFP_ATOMIC);
/*
* Enable beacon generation.
*/
rt2500usb_kick_tx_queue(rt2x00dev, control->queue);
return 0;
}
static const struct ieee80211_ops rt2500usb_mac80211_ops = {
.tx = rt2x00mac_tx,
.start = rt2x00mac_start,
.stop = rt2x00mac_stop,
.add_interface = rt2x00mac_add_interface,
.remove_interface = rt2x00mac_remove_interface,
.config = rt2x00mac_config,
.config_interface = rt2x00mac_config_interface,
.configure_filter = rt2x00mac_configure_filter,
.get_stats = rt2x00mac_get_stats,
.bss_info_changed = rt2x00mac_bss_info_changed,
.conf_tx = rt2x00mac_conf_tx,
.get_tx_stats = rt2x00mac_get_tx_stats,
.beacon_update = rt2500usb_beacon_update,
};
static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
.probe_hw = rt2500usb_probe_hw,
.initialize = rt2x00usb_initialize,
.uninitialize = rt2x00usb_uninitialize,
.init_rxentry = rt2x00usb_init_rxentry,
.init_txentry = rt2x00usb_init_txentry,
.set_device_state = rt2500usb_set_device_state,
.link_stats = rt2500usb_link_stats,
.reset_tuner = rt2500usb_reset_tuner,
.link_tuner = rt2500usb_link_tuner,
.write_tx_desc = rt2500usb_write_tx_desc,
.write_tx_data = rt2x00usb_write_tx_data,
.get_tx_data_len = rt2500usb_get_tx_data_len,
.kick_tx_queue = rt2500usb_kick_tx_queue,
.fill_rxdone = rt2500usb_fill_rxdone,
.config_filter = rt2500usb_config_filter,
.config_intf = rt2500usb_config_intf,
.config_erp = rt2500usb_config_erp,
.config = rt2500usb_config,
};
static const struct data_queue_desc rt2500usb_queue_rx = {
.entry_num = RX_ENTRIES,
.data_size = DATA_FRAME_SIZE,
.desc_size = RXD_DESC_SIZE,
.priv_size = sizeof(struct queue_entry_priv_usb_rx),
};
static const struct data_queue_desc rt2500usb_queue_tx = {
.entry_num = TX_ENTRIES,
.data_size = DATA_FRAME_SIZE,
.desc_size = TXD_DESC_SIZE,
.priv_size = sizeof(struct queue_entry_priv_usb_tx),
};
static const struct data_queue_desc rt2500usb_queue_bcn = {
.entry_num = BEACON_ENTRIES,
.data_size = MGMT_FRAME_SIZE,
.desc_size = TXD_DESC_SIZE,
.priv_size = sizeof(struct queue_entry_priv_usb_bcn),
};
static const struct data_queue_desc rt2500usb_queue_atim = {
.entry_num = ATIM_ENTRIES,
.data_size = DATA_FRAME_SIZE,
.desc_size = TXD_DESC_SIZE,
.priv_size = sizeof(struct queue_entry_priv_usb_tx),
};
static const struct rt2x00_ops rt2500usb_ops = {
.name = KBUILD_MODNAME,
.max_sta_intf = 1,
.max_ap_intf = 1,
.eeprom_size = EEPROM_SIZE,
.rf_size = RF_SIZE,
.rx = &rt2500usb_queue_rx,
.tx = &rt2500usb_queue_tx,
.bcn = &rt2500usb_queue_bcn,
.atim = &rt2500usb_queue_atim,
.lib = &rt2500usb_rt2x00_ops,
.hw = &rt2500usb_mac80211_ops,
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
.debugfs = &rt2500usb_rt2x00debug,
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};
/*
* rt2500usb module information.
*/
static struct usb_device_id rt2500usb_device_table[] = {
/* ASUS */
{ USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Belkin */
{ USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Cisco Systems */
{ USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Conceptronic */
{ USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
/* D-LINK */
{ USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Gigabyte */
{ USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Hercules */
{ USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Melco */
{ USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
/* MSI */
{ USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Ralink */
{ USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Siemens */
{ USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
/* SMC */
{ USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Spairon */
{ USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Trust */
{ USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Zinwell */
{ USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
{ 0, }
};
MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
MODULE_LICENSE("GPL");
static struct usb_driver rt2500usb_driver = {
.name = KBUILD_MODNAME,
.id_table = rt2500usb_device_table,
.probe = rt2x00usb_probe,
.disconnect = rt2x00usb_disconnect,
.suspend = rt2x00usb_suspend,
.resume = rt2x00usb_resume,
};
static int __init rt2500usb_init(void)
{
return usb_register(&rt2500usb_driver);
}
static void __exit rt2500usb_exit(void)
{
usb_deregister(&rt2500usb_driver);
}
module_init(rt2500usb_init);
module_exit(rt2500usb_exit);