blob: efdd2b7b62d707da7d7fdba901d5cc4331be0e54 [file] [log] [blame]
/**
* eCryptfs: Linux filesystem encryption layer
*
* Copyright (C) 1997-2004 Erez Zadok
* Copyright (C) 2001-2004 Stony Brook University
* Copyright (C) 2004-2006 International Business Machines Corp.
* Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
* Michael C. Thompsion <mcthomps@us.ibm.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
* 02111-1307, USA.
*/
#include <linux/file.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/dcache.h>
#include <linux/namei.h>
#include <linux/mount.h>
#include <linux/crypto.h>
#include "ecryptfs_kernel.h"
static struct dentry *lock_parent(struct dentry *dentry)
{
struct dentry *dir;
dir = dget(dentry->d_parent);
mutex_lock(&(dir->d_inode->i_mutex));
return dir;
}
static void unlock_parent(struct dentry *dentry)
{
mutex_unlock(&(dentry->d_parent->d_inode->i_mutex));
dput(dentry->d_parent);
}
static void unlock_dir(struct dentry *dir)
{
mutex_unlock(&dir->d_inode->i_mutex);
dput(dir);
}
void ecryptfs_copy_inode_size(struct inode *dst, const struct inode *src)
{
i_size_write(dst, i_size_read((struct inode *)src));
dst->i_blocks = src->i_blocks;
}
void ecryptfs_copy_attr_atime(struct inode *dest, const struct inode *src)
{
dest->i_atime = src->i_atime;
}
static void ecryptfs_copy_attr_times(struct inode *dest,
const struct inode *src)
{
dest->i_atime = src->i_atime;
dest->i_mtime = src->i_mtime;
dest->i_ctime = src->i_ctime;
}
static void ecryptfs_copy_attr_timesizes(struct inode *dest,
const struct inode *src)
{
dest->i_atime = src->i_atime;
dest->i_mtime = src->i_mtime;
dest->i_ctime = src->i_ctime;
ecryptfs_copy_inode_size(dest, src);
}
void ecryptfs_copy_attr_all(struct inode *dest, const struct inode *src)
{
dest->i_mode = src->i_mode;
dest->i_nlink = src->i_nlink;
dest->i_uid = src->i_uid;
dest->i_gid = src->i_gid;
dest->i_rdev = src->i_rdev;
dest->i_atime = src->i_atime;
dest->i_mtime = src->i_mtime;
dest->i_ctime = src->i_ctime;
dest->i_blkbits = src->i_blkbits;
dest->i_flags = src->i_flags;
}
/**
* ecryptfs_create_underlying_file
* @lower_dir_inode: inode of the parent in the lower fs of the new file
* @lower_dentry: New file's dentry in the lower fs
* @ecryptfs_dentry: New file's dentry in ecryptfs
* @mode: The mode of the new file
* @nd: nameidata of ecryptfs' parent's dentry & vfsmount
*
* Creates the file in the lower file system.
*
* Returns zero on success; non-zero on error condition
*/
static int
ecryptfs_create_underlying_file(struct inode *lower_dir_inode,
struct dentry *dentry, int mode,
struct nameidata *nd)
{
struct dentry *lower_dentry = ecryptfs_dentry_to_lower(dentry);
struct vfsmount *lower_mnt = ecryptfs_dentry_to_lower_mnt(dentry);
struct dentry *dentry_save;
struct vfsmount *vfsmount_save;
int rc;
dentry_save = nd->dentry;
vfsmount_save = nd->mnt;
nd->dentry = lower_dentry;
nd->mnt = lower_mnt;
rc = vfs_create(lower_dir_inode, lower_dentry, mode, nd);
nd->dentry = dentry_save;
nd->mnt = vfsmount_save;
return rc;
}
/**
* ecryptfs_do_create
* @directory_inode: inode of the new file's dentry's parent in ecryptfs
* @ecryptfs_dentry: New file's dentry in ecryptfs
* @mode: The mode of the new file
* @nd: nameidata of ecryptfs' parent's dentry & vfsmount
*
* Creates the underlying file and the eCryptfs inode which will link to
* it. It will also update the eCryptfs directory inode to mimic the
* stat of the lower directory inode.
*
* Returns zero on success; non-zero on error condition
*/
static int
ecryptfs_do_create(struct inode *directory_inode,
struct dentry *ecryptfs_dentry, int mode,
struct nameidata *nd)
{
int rc;
struct dentry *lower_dentry;
struct dentry *lower_dir_dentry;
lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
lower_dir_dentry = lock_parent(lower_dentry);
if (unlikely(IS_ERR(lower_dir_dentry))) {
ecryptfs_printk(KERN_ERR, "Error locking directory of "
"dentry\n");
rc = PTR_ERR(lower_dir_dentry);
goto out;
}
rc = ecryptfs_create_underlying_file(lower_dir_dentry->d_inode,
ecryptfs_dentry, mode, nd);
if (unlikely(rc)) {
ecryptfs_printk(KERN_ERR,
"Failure to create underlying file\n");
goto out_lock;
}
rc = ecryptfs_interpose(lower_dentry, ecryptfs_dentry,
directory_inode->i_sb, 0);
if (rc) {
ecryptfs_printk(KERN_ERR, "Failure in ecryptfs_interpose\n");
goto out_lock;
}
ecryptfs_copy_attr_timesizes(directory_inode,
lower_dir_dentry->d_inode);
out_lock:
unlock_dir(lower_dir_dentry);
out:
return rc;
}
/**
* grow_file
* @ecryptfs_dentry: the ecryptfs dentry
* @lower_file: The lower file
* @inode: The ecryptfs inode
* @lower_inode: The lower inode
*
* This is the code which will grow the file to its correct size.
*/
static int grow_file(struct dentry *ecryptfs_dentry, struct file *lower_file,
struct inode *inode, struct inode *lower_inode)
{
int rc = 0;
struct file fake_file;
struct ecryptfs_file_info tmp_file_info;
memset(&fake_file, 0, sizeof(fake_file));
fake_file.f_dentry = ecryptfs_dentry;
memset(&tmp_file_info, 0, sizeof(tmp_file_info));
ecryptfs_set_file_private(&fake_file, &tmp_file_info);
ecryptfs_set_file_lower(&fake_file, lower_file);
rc = ecryptfs_fill_zeros(&fake_file, 1);
if (rc) {
ECRYPTFS_SET_FLAG(
ecryptfs_inode_to_private(inode)->crypt_stat.flags,
ECRYPTFS_SECURITY_WARNING);
ecryptfs_printk(KERN_WARNING, "Error attempting to fill zeros "
"in file; rc = [%d]\n", rc);
goto out;
}
i_size_write(inode, 0);
ecryptfs_write_inode_size_to_header(lower_file, lower_inode, inode);
ECRYPTFS_SET_FLAG(ecryptfs_inode_to_private(inode)->crypt_stat.flags,
ECRYPTFS_NEW_FILE);
out:
return rc;
}
/**
* ecryptfs_initialize_file
*
* Cause the file to be changed from a basic empty file to an ecryptfs
* file with a header and first data page.
*
* Returns zero on success
*/
static int ecryptfs_initialize_file(struct dentry *ecryptfs_dentry)
{
int rc = 0;
int lower_flags;
struct ecryptfs_crypt_stat *crypt_stat;
struct dentry *lower_dentry;
struct dentry *tlower_dentry = NULL;
struct file *lower_file;
struct inode *inode, *lower_inode;
struct vfsmount *lower_mnt;
lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
ecryptfs_printk(KERN_DEBUG, "lower_dentry->d_name.name = [%s]\n",
lower_dentry->d_name.name);
inode = ecryptfs_dentry->d_inode;
crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
tlower_dentry = dget(lower_dentry);
if (!tlower_dentry) {
rc = -ENOMEM;
ecryptfs_printk(KERN_ERR, "Error dget'ing lower_dentry\n");
goto out;
}
lower_flags = ((O_CREAT | O_WRONLY | O_TRUNC) & O_ACCMODE) | O_RDWR;
#if BITS_PER_LONG != 32
lower_flags |= O_LARGEFILE;
#endif
lower_mnt = ecryptfs_dentry_to_lower_mnt(ecryptfs_dentry);
mntget(lower_mnt);
/* Corresponding fput() at end of this function */
lower_file = dentry_open(tlower_dentry, lower_mnt, lower_flags);
if (IS_ERR(lower_file)) {
rc = PTR_ERR(lower_file);
ecryptfs_printk(KERN_ERR,
"Error opening dentry; rc = [%i]\n", rc);
goto out;
}
/* fput(lower_file) should handle the puts if we do this */
lower_file->f_dentry = tlower_dentry;
lower_file->f_vfsmnt = lower_mnt;
lower_inode = tlower_dentry->d_inode;
if (S_ISDIR(ecryptfs_dentry->d_inode->i_mode)) {
ecryptfs_printk(KERN_DEBUG, "This is a directory\n");
ECRYPTFS_CLEAR_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED);
goto out_fput;
}
ECRYPTFS_SET_FLAG(crypt_stat->flags, ECRYPTFS_NEW_FILE);
ecryptfs_printk(KERN_DEBUG, "Initializing crypto context\n");
rc = ecryptfs_new_file_context(ecryptfs_dentry);
if (rc) {
ecryptfs_printk(KERN_DEBUG, "Error creating new file "
"context\n");
goto out_fput;
}
rc = ecryptfs_write_headers(ecryptfs_dentry, lower_file);
if (rc) {
ecryptfs_printk(KERN_DEBUG, "Error writing headers\n");
goto out_fput;
}
rc = grow_file(ecryptfs_dentry, lower_file, inode, lower_inode);
out_fput:
fput(lower_file);
out:
return rc;
}
/**
* ecryptfs_create
* @dir: The inode of the directory in which to create the file.
* @dentry: The eCryptfs dentry
* @mode: The mode of the new file.
* @nd: nameidata
*
* Creates a new file.
*
* Returns zero on success; non-zero on error condition
*/
static int
ecryptfs_create(struct inode *directory_inode, struct dentry *ecryptfs_dentry,
int mode, struct nameidata *nd)
{
int rc;
rc = ecryptfs_do_create(directory_inode, ecryptfs_dentry, mode, nd);
if (unlikely(rc)) {
ecryptfs_printk(KERN_WARNING, "Failed to create file in"
"lower filesystem\n");
goto out;
}
/* At this point, a file exists on "disk"; we need to make sure
* that this on disk file is prepared to be an ecryptfs file */
rc = ecryptfs_initialize_file(ecryptfs_dentry);
out:
return rc;
}
/**
* ecryptfs_lookup
* @dir: inode
* @dentry: The dentry
* @nd: nameidata, may be NULL
*
* Find a file on disk. If the file does not exist, then we'll add it to the
* dentry cache and continue on to read it from the disk.
*/
static struct dentry *ecryptfs_lookup(struct inode *dir, struct dentry *dentry,
struct nameidata *nd)
{
int rc = 0;
struct dentry *lower_dir_dentry;
struct dentry *lower_dentry;
struct vfsmount *lower_mnt;
struct dentry *tlower_dentry = NULL;
char *encoded_name;
unsigned int encoded_namelen;
struct ecryptfs_crypt_stat *crypt_stat = NULL;
char *page_virt = NULL;
struct inode *lower_inode;
u64 file_size;
lower_dir_dentry = ecryptfs_dentry_to_lower(dentry->d_parent);
dentry->d_op = &ecryptfs_dops;
if ((dentry->d_name.len == 1 && !strcmp(dentry->d_name.name, "."))
|| (dentry->d_name.len == 2 && !strcmp(dentry->d_name.name, "..")))
goto out_drop;
encoded_namelen = ecryptfs_encode_filename(crypt_stat,
dentry->d_name.name,
dentry->d_name.len,
&encoded_name);
if (encoded_namelen < 0) {
rc = encoded_namelen;
goto out_drop;
}
ecryptfs_printk(KERN_DEBUG, "encoded_name = [%s]; encoded_namelen "
"= [%d]\n", encoded_name, encoded_namelen);
lower_dentry = lookup_one_len(encoded_name, lower_dir_dentry,
encoded_namelen - 1);
kfree(encoded_name);
lower_mnt = mntget(ecryptfs_dentry_to_lower_mnt(dentry->d_parent));
if (IS_ERR(lower_dentry)) {
ecryptfs_printk(KERN_ERR, "ERR from lower_dentry\n");
rc = PTR_ERR(lower_dentry);
goto out_drop;
}
ecryptfs_printk(KERN_DEBUG, "lower_dentry = [%p]; lower_dentry->"
"d_name.name = [%s]\n", lower_dentry,
lower_dentry->d_name.name);
lower_inode = lower_dentry->d_inode;
ecryptfs_copy_attr_atime(dir, lower_dir_dentry->d_inode);
BUG_ON(!atomic_read(&lower_dentry->d_count));
ecryptfs_set_dentry_private(dentry,
kmem_cache_alloc(ecryptfs_dentry_info_cache,
SLAB_KERNEL));
if (!ecryptfs_dentry_to_private(dentry)) {
rc = -ENOMEM;
ecryptfs_printk(KERN_ERR, "Out of memory whilst attempting "
"to allocate ecryptfs_dentry_info struct\n");
goto out_dput;
}
ecryptfs_set_dentry_lower(dentry, lower_dentry);
ecryptfs_set_dentry_lower_mnt(dentry, lower_mnt);
if (!lower_dentry->d_inode) {
/* We want to add because we couldn't find in lower */
d_add(dentry, NULL);
goto out;
}
rc = ecryptfs_interpose(lower_dentry, dentry, dir->i_sb, 1);
if (rc) {
ecryptfs_printk(KERN_ERR, "Error interposing\n");
goto out_dput;
}
if (S_ISDIR(lower_inode->i_mode)) {
ecryptfs_printk(KERN_DEBUG, "Is a directory; returning\n");
goto out;
}
if (S_ISLNK(lower_inode->i_mode)) {
ecryptfs_printk(KERN_DEBUG, "Is a symlink; returning\n");
goto out;
}
if (!nd) {
ecryptfs_printk(KERN_DEBUG, "We have a NULL nd, just leave"
"as we *think* we are about to unlink\n");
goto out;
}
tlower_dentry = dget(lower_dentry);
if (!tlower_dentry || IS_ERR(tlower_dentry)) {
rc = -ENOMEM;
ecryptfs_printk(KERN_ERR, "Cannot dget lower_dentry\n");
goto out_dput;
}
/* Released in this function */
page_virt =
(char *)kmem_cache_alloc(ecryptfs_header_cache_2,
SLAB_USER);
if (!page_virt) {
rc = -ENOMEM;
ecryptfs_printk(KERN_ERR,
"Cannot ecryptfs_kmalloc a page\n");
goto out_dput;
}
memset(page_virt, 0, PAGE_CACHE_SIZE);
rc = ecryptfs_read_header_region(page_virt, tlower_dentry, nd->mnt);
crypt_stat = &ecryptfs_inode_to_private(dentry->d_inode)->crypt_stat;
if (!ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_POLICY_APPLIED))
ecryptfs_set_default_sizes(crypt_stat);
if (rc) {
rc = 0;
ecryptfs_printk(KERN_WARNING, "Error reading header region;"
" assuming unencrypted\n");
} else {
if (!contains_ecryptfs_marker(page_virt
+ ECRYPTFS_FILE_SIZE_BYTES)) {
kmem_cache_free(ecryptfs_header_cache_2, page_virt);
goto out;
}
memcpy(&file_size, page_virt, sizeof(file_size));
file_size = be64_to_cpu(file_size);
i_size_write(dentry->d_inode, (loff_t)file_size);
}
kmem_cache_free(ecryptfs_header_cache_2, page_virt);
goto out;
out_dput:
dput(lower_dentry);
if (tlower_dentry)
dput(tlower_dentry);
out_drop:
d_drop(dentry);
out:
return ERR_PTR(rc);
}
static int ecryptfs_link(struct dentry *old_dentry, struct inode *dir,
struct dentry *new_dentry)
{
struct dentry *lower_old_dentry;
struct dentry *lower_new_dentry;
struct dentry *lower_dir_dentry;
u64 file_size_save;
int rc;
file_size_save = i_size_read(old_dentry->d_inode);
lower_old_dentry = ecryptfs_dentry_to_lower(old_dentry);
lower_new_dentry = ecryptfs_dentry_to_lower(new_dentry);
dget(lower_old_dentry);
dget(lower_new_dentry);
lower_dir_dentry = lock_parent(lower_new_dentry);
rc = vfs_link(lower_old_dentry, lower_dir_dentry->d_inode,
lower_new_dentry);
if (rc || !lower_new_dentry->d_inode)
goto out_lock;
rc = ecryptfs_interpose(lower_new_dentry, new_dentry, dir->i_sb, 0);
if (rc)
goto out_lock;
ecryptfs_copy_attr_timesizes(dir, lower_new_dentry->d_inode);
old_dentry->d_inode->i_nlink =
ecryptfs_inode_to_lower(old_dentry->d_inode)->i_nlink;
i_size_write(new_dentry->d_inode, file_size_save);
out_lock:
unlock_dir(lower_dir_dentry);
dput(lower_new_dentry);
dput(lower_old_dentry);
if (!new_dentry->d_inode)
d_drop(new_dentry);
return rc;
}
static int ecryptfs_unlink(struct inode *dir, struct dentry *dentry)
{
int rc = 0;
struct dentry *lower_dentry = ecryptfs_dentry_to_lower(dentry);
struct inode *lower_dir_inode = ecryptfs_inode_to_lower(dir);
lock_parent(lower_dentry);
rc = vfs_unlink(lower_dir_inode, lower_dentry);
if (rc) {
ecryptfs_printk(KERN_ERR, "Error in vfs_unlink\n");
goto out_unlock;
}
ecryptfs_copy_attr_times(dir, lower_dir_inode);
dentry->d_inode->i_nlink =
ecryptfs_inode_to_lower(dentry->d_inode)->i_nlink;
dentry->d_inode->i_ctime = dir->i_ctime;
out_unlock:
unlock_parent(lower_dentry);
return rc;
}
static int ecryptfs_symlink(struct inode *dir, struct dentry *dentry,
const char *symname)
{
int rc;
struct dentry *lower_dentry;
struct dentry *lower_dir_dentry;
umode_t mode;
char *encoded_symname;
unsigned int encoded_symlen;
struct ecryptfs_crypt_stat *crypt_stat = NULL;
lower_dentry = ecryptfs_dentry_to_lower(dentry);
dget(lower_dentry);
lower_dir_dentry = lock_parent(lower_dentry);
mode = S_IALLUGO;
encoded_symlen = ecryptfs_encode_filename(crypt_stat, symname,
strlen(symname),
&encoded_symname);
if (encoded_symlen < 0) {
rc = encoded_symlen;
goto out_lock;
}
rc = vfs_symlink(lower_dir_dentry->d_inode, lower_dentry,
encoded_symname, mode);
kfree(encoded_symname);
if (rc || !lower_dentry->d_inode)
goto out_lock;
rc = ecryptfs_interpose(lower_dentry, dentry, dir->i_sb, 0);
if (rc)
goto out_lock;
ecryptfs_copy_attr_timesizes(dir, lower_dir_dentry->d_inode);
out_lock:
unlock_dir(lower_dir_dentry);
dput(lower_dentry);
if (!dentry->d_inode)
d_drop(dentry);
return rc;
}
static int ecryptfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
int rc;
struct dentry *lower_dentry;
struct dentry *lower_dir_dentry;
lower_dentry = ecryptfs_dentry_to_lower(dentry);
lower_dir_dentry = lock_parent(lower_dentry);
rc = vfs_mkdir(lower_dir_dentry->d_inode, lower_dentry, mode);
if (rc || !lower_dentry->d_inode)
goto out;
rc = ecryptfs_interpose(lower_dentry, dentry, dir->i_sb, 0);
if (rc)
goto out;
ecryptfs_copy_attr_timesizes(dir, lower_dir_dentry->d_inode);
dir->i_nlink = lower_dir_dentry->d_inode->i_nlink;
out:
unlock_dir(lower_dir_dentry);
if (!dentry->d_inode)
d_drop(dentry);
return rc;
}
static int ecryptfs_rmdir(struct inode *dir, struct dentry *dentry)
{
int rc = 0;
struct dentry *tdentry = NULL;
struct dentry *lower_dentry;
struct dentry *tlower_dentry = NULL;
struct dentry *lower_dir_dentry;
lower_dentry = ecryptfs_dentry_to_lower(dentry);
if (!(tdentry = dget(dentry))) {
rc = -EINVAL;
ecryptfs_printk(KERN_ERR, "Error dget'ing dentry [%p]\n",
dentry);
goto out;
}
lower_dir_dentry = lock_parent(lower_dentry);
if (!(tlower_dentry = dget(lower_dentry))) {
rc = -EINVAL;
ecryptfs_printk(KERN_ERR, "Error dget'ing lower_dentry "
"[%p]\n", lower_dentry);
goto out;
}
rc = vfs_rmdir(lower_dir_dentry->d_inode, lower_dentry);
if (!rc) {
d_delete(tlower_dentry);
tlower_dentry = NULL;
}
ecryptfs_copy_attr_times(dir, lower_dir_dentry->d_inode);
dir->i_nlink = lower_dir_dentry->d_inode->i_nlink;
unlock_dir(lower_dir_dentry);
if (!rc)
d_drop(dentry);
out:
if (tdentry)
dput(tdentry);
if (tlower_dentry)
dput(tlower_dentry);
return rc;
}
static int
ecryptfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
{
int rc;
struct dentry *lower_dentry;
struct dentry *lower_dir_dentry;
lower_dentry = ecryptfs_dentry_to_lower(dentry);
lower_dir_dentry = lock_parent(lower_dentry);
rc = vfs_mknod(lower_dir_dentry->d_inode, lower_dentry, mode, dev);
if (rc || !lower_dentry->d_inode)
goto out;
rc = ecryptfs_interpose(lower_dentry, dentry, dir->i_sb, 0);
if (rc)
goto out;
ecryptfs_copy_attr_timesizes(dir, lower_dir_dentry->d_inode);
out:
unlock_dir(lower_dir_dentry);
if (!dentry->d_inode)
d_drop(dentry);
return rc;
}
static int
ecryptfs_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry)
{
int rc;
struct dentry *lower_old_dentry;
struct dentry *lower_new_dentry;
struct dentry *lower_old_dir_dentry;
struct dentry *lower_new_dir_dentry;
lower_old_dentry = ecryptfs_dentry_to_lower(old_dentry);
lower_new_dentry = ecryptfs_dentry_to_lower(new_dentry);
dget(lower_old_dentry);
dget(lower_new_dentry);
lower_old_dir_dentry = dget_parent(lower_old_dentry);
lower_new_dir_dentry = dget_parent(lower_new_dentry);
lock_rename(lower_old_dir_dentry, lower_new_dir_dentry);
rc = vfs_rename(lower_old_dir_dentry->d_inode, lower_old_dentry,
lower_new_dir_dentry->d_inode, lower_new_dentry);
if (rc)
goto out_lock;
ecryptfs_copy_attr_all(new_dir, lower_new_dir_dentry->d_inode);
if (new_dir != old_dir)
ecryptfs_copy_attr_all(old_dir, lower_old_dir_dentry->d_inode);
out_lock:
unlock_rename(lower_old_dir_dentry, lower_new_dir_dentry);
dput(lower_new_dentry);
dput(lower_old_dentry);
return rc;
}
static int
ecryptfs_readlink(struct dentry *dentry, char __user * buf, int bufsiz)
{
int rc;
struct dentry *lower_dentry;
char *decoded_name;
char *lower_buf;
mm_segment_t old_fs;
struct ecryptfs_crypt_stat *crypt_stat;
lower_dentry = ecryptfs_dentry_to_lower(dentry);
if (!lower_dentry->d_inode->i_op ||
!lower_dentry->d_inode->i_op->readlink) {
rc = -EINVAL;
goto out;
}
/* Released in this function */
lower_buf = kmalloc(bufsiz, GFP_KERNEL);
if (lower_buf == NULL) {
ecryptfs_printk(KERN_ERR, "Out of memory\n");
rc = -ENOMEM;
goto out;
}
old_fs = get_fs();
set_fs(get_ds());
ecryptfs_printk(KERN_DEBUG, "Calling readlink w/ "
"lower_dentry->d_name.name = [%s]\n",
lower_dentry->d_name.name);
rc = lower_dentry->d_inode->i_op->readlink(lower_dentry,
(char __user *)lower_buf,
bufsiz);
set_fs(old_fs);
if (rc >= 0) {
crypt_stat = NULL;
rc = ecryptfs_decode_filename(crypt_stat, lower_buf, rc,
&decoded_name);
if (rc == -ENOMEM)
goto out_free_lower_buf;
if (rc > 0) {
ecryptfs_printk(KERN_DEBUG, "Copying [%d] bytes "
"to userspace: [%*s]\n", rc,
decoded_name);
if (copy_to_user(buf, decoded_name, rc))
rc = -EFAULT;
}
kfree(decoded_name);
ecryptfs_copy_attr_atime(dentry->d_inode,
lower_dentry->d_inode);
}
out_free_lower_buf:
kfree(lower_buf);
out:
return rc;
}
static void *ecryptfs_follow_link(struct dentry *dentry, struct nameidata *nd)
{
char *buf;
int len = PAGE_SIZE, rc;
mm_segment_t old_fs;
/* Released in ecryptfs_put_link(); only release here on error */
buf = kmalloc(len, GFP_KERNEL);
if (!buf) {
rc = -ENOMEM;
goto out;
}
old_fs = get_fs();
set_fs(get_ds());
ecryptfs_printk(KERN_DEBUG, "Calling readlink w/ "
"dentry->d_name.name = [%s]\n", dentry->d_name.name);
rc = dentry->d_inode->i_op->readlink(dentry, (char __user *)buf, len);
buf[rc] = '\0';
set_fs(old_fs);
if (rc < 0)
goto out_free;
rc = 0;
nd_set_link(nd, buf);
goto out;
out_free:
kfree(buf);
out:
return ERR_PTR(rc);
}
static void
ecryptfs_put_link(struct dentry *dentry, struct nameidata *nd, void *ptr)
{
/* Free the char* */
kfree(nd_get_link(nd));
}
/**
* upper_size_to_lower_size
* @crypt_stat: Crypt_stat associated with file
* @upper_size: Size of the upper file
*
* Calculate the requried size of the lower file based on the
* specified size of the upper file. This calculation is based on the
* number of headers in the underlying file and the extent size.
*
* Returns Calculated size of the lower file.
*/
static loff_t
upper_size_to_lower_size(struct ecryptfs_crypt_stat *crypt_stat,
loff_t upper_size)
{
loff_t lower_size;
lower_size = ( crypt_stat->header_extent_size
* crypt_stat->num_header_extents_at_front );
if (upper_size != 0) {
loff_t num_extents;
num_extents = upper_size >> crypt_stat->extent_shift;
if (upper_size & ~crypt_stat->extent_mask)
num_extents++;
lower_size += (num_extents * crypt_stat->extent_size);
}
return lower_size;
}
/**
* ecryptfs_truncate
* @dentry: The ecryptfs layer dentry
* @new_length: The length to expand the file to
*
* Function to handle truncations modifying the size of the file. Note
* that the file sizes are interpolated. When expanding, we are simply
* writing strings of 0's out. When truncating, we need to modify the
* underlying file size according to the page index interpolations.
*
* Returns zero on success; non-zero otherwise
*/
int ecryptfs_truncate(struct dentry *dentry, loff_t new_length)
{
int rc = 0;
struct inode *inode = dentry->d_inode;
struct dentry *lower_dentry;
struct vfsmount *lower_mnt;
struct file fake_ecryptfs_file, *lower_file = NULL;
struct ecryptfs_crypt_stat *crypt_stat;
loff_t i_size = i_size_read(inode);
loff_t lower_size_before_truncate;
loff_t lower_size_after_truncate;
if (unlikely((new_length == i_size)))
goto out;
crypt_stat = &ecryptfs_inode_to_private(dentry->d_inode)->crypt_stat;
/* Set up a fake ecryptfs file, this is used to interface with
* the file in the underlying filesystem so that the
* truncation has an effect there as well. */
memset(&fake_ecryptfs_file, 0, sizeof(fake_ecryptfs_file));
fake_ecryptfs_file.f_dentry = dentry;
/* Released at out_free: label */
ecryptfs_set_file_private(&fake_ecryptfs_file,
kmem_cache_alloc(ecryptfs_file_info_cache,
SLAB_KERNEL));
if (unlikely(!ecryptfs_file_to_private(&fake_ecryptfs_file))) {
rc = -ENOMEM;
goto out;
}
lower_dentry = ecryptfs_dentry_to_lower(dentry);
/* This dget & mntget is released through fput at out_fput: */
dget(lower_dentry);
lower_mnt = ecryptfs_dentry_to_lower_mnt(dentry);
mntget(lower_mnt);
lower_file = dentry_open(lower_dentry, lower_mnt, O_RDWR);
if (unlikely(IS_ERR(lower_file))) {
rc = PTR_ERR(lower_file);
goto out_free;
}
ecryptfs_set_file_lower(&fake_ecryptfs_file, lower_file);
/* Switch on growing or shrinking file */
if (new_length > i_size) {
rc = ecryptfs_fill_zeros(&fake_ecryptfs_file, new_length);
if (rc) {
ecryptfs_printk(KERN_ERR,
"Problem with fill_zeros\n");
goto out_fput;
}
i_size_write(inode, new_length);
rc = ecryptfs_write_inode_size_to_header(lower_file,
lower_dentry->d_inode,
inode);
if (rc) {
ecryptfs_printk(KERN_ERR,
"Problem with ecryptfs_write"
"_inode_size\n");
goto out_fput;
}
} else { /* new_length < i_size_read(inode) */
vmtruncate(inode, new_length);
ecryptfs_write_inode_size_to_header(lower_file,
lower_dentry->d_inode,
inode);
/* We are reducing the size of the ecryptfs file, and need to
* know if we need to reduce the size of the lower file. */
lower_size_before_truncate =
upper_size_to_lower_size(crypt_stat, i_size);
lower_size_after_truncate =
upper_size_to_lower_size(crypt_stat, new_length);
if (lower_size_after_truncate < lower_size_before_truncate)
vmtruncate(lower_dentry->d_inode,
lower_size_after_truncate);
}
/* Update the access times */
lower_dentry->d_inode->i_mtime = lower_dentry->d_inode->i_ctime
= CURRENT_TIME;
mark_inode_dirty_sync(inode);
out_fput:
fput(lower_file);
out_free:
if (ecryptfs_file_to_private(&fake_ecryptfs_file))
kmem_cache_free(ecryptfs_file_info_cache,
ecryptfs_file_to_private(&fake_ecryptfs_file));
out:
return rc;
}
static int
ecryptfs_permission(struct inode *inode, int mask, struct nameidata *nd)
{
int rc;
if (nd) {
struct vfsmount *vfsmnt_save = nd->mnt;
struct dentry *dentry_save = nd->dentry;
nd->mnt = ecryptfs_dentry_to_lower_mnt(nd->dentry);
nd->dentry = ecryptfs_dentry_to_lower(nd->dentry);
rc = permission(ecryptfs_inode_to_lower(inode), mask, nd);
nd->mnt = vfsmnt_save;
nd->dentry = dentry_save;
} else
rc = permission(ecryptfs_inode_to_lower(inode), mask, NULL);
return rc;
}
/**
* ecryptfs_setattr
* @dentry: dentry handle to the inode to modify
* @ia: Structure with flags of what to change and values
*
* Updates the metadata of an inode. If the update is to the size
* i.e. truncation, then ecryptfs_truncate will handle the size modification
* of both the ecryptfs inode and the lower inode.
*
* All other metadata changes will be passed right to the lower filesystem,
* and we will just update our inode to look like the lower.
*/
static int ecryptfs_setattr(struct dentry *dentry, struct iattr *ia)
{
int rc = 0;
struct dentry *lower_dentry;
struct inode *inode;
struct inode *lower_inode;
struct ecryptfs_crypt_stat *crypt_stat;
crypt_stat = &ecryptfs_inode_to_private(dentry->d_inode)->crypt_stat;
lower_dentry = ecryptfs_dentry_to_lower(dentry);
inode = dentry->d_inode;
lower_inode = ecryptfs_inode_to_lower(inode);
if (ia->ia_valid & ATTR_SIZE) {
ecryptfs_printk(KERN_DEBUG,
"ia->ia_valid = [0x%x] ATTR_SIZE" " = [0x%x]\n",
ia->ia_valid, ATTR_SIZE);
rc = ecryptfs_truncate(dentry, ia->ia_size);
/* ecryptfs_truncate handles resizing of the lower file */
ia->ia_valid &= ~ATTR_SIZE;
ecryptfs_printk(KERN_DEBUG, "ia->ia_valid = [%x]\n",
ia->ia_valid);
if (rc < 0)
goto out;
}
rc = notify_change(lower_dentry, ia);
out:
ecryptfs_copy_attr_all(inode, lower_inode);
return rc;
}
static int
ecryptfs_setxattr(struct dentry *dentry, const char *name, const void *value,
size_t size, int flags)
{
int rc = 0;
struct dentry *lower_dentry;
lower_dentry = ecryptfs_dentry_to_lower(dentry);
if (!lower_dentry->d_inode->i_op->setxattr) {
rc = -ENOSYS;
goto out;
}
mutex_lock(&lower_dentry->d_inode->i_mutex);
rc = lower_dentry->d_inode->i_op->setxattr(lower_dentry, name, value,
size, flags);
mutex_unlock(&lower_dentry->d_inode->i_mutex);
out:
return rc;
}
static ssize_t
ecryptfs_getxattr(struct dentry *dentry, const char *name, void *value,
size_t size)
{
int rc = 0;
struct dentry *lower_dentry;
lower_dentry = ecryptfs_dentry_to_lower(dentry);
if (!lower_dentry->d_inode->i_op->getxattr) {
rc = -ENOSYS;
goto out;
}
mutex_lock(&lower_dentry->d_inode->i_mutex);
rc = lower_dentry->d_inode->i_op->getxattr(lower_dentry, name, value,
size);
mutex_unlock(&lower_dentry->d_inode->i_mutex);
out:
return rc;
}
static ssize_t
ecryptfs_listxattr(struct dentry *dentry, char *list, size_t size)
{
int rc = 0;
struct dentry *lower_dentry;
lower_dentry = ecryptfs_dentry_to_lower(dentry);
if (!lower_dentry->d_inode->i_op->listxattr) {
rc = -ENOSYS;
goto out;
}
mutex_lock(&lower_dentry->d_inode->i_mutex);
rc = lower_dentry->d_inode->i_op->listxattr(lower_dentry, list, size);
mutex_unlock(&lower_dentry->d_inode->i_mutex);
out:
return rc;
}
static int ecryptfs_removexattr(struct dentry *dentry, const char *name)
{
int rc = 0;
struct dentry *lower_dentry;
lower_dentry = ecryptfs_dentry_to_lower(dentry);
if (!lower_dentry->d_inode->i_op->removexattr) {
rc = -ENOSYS;
goto out;
}
mutex_lock(&lower_dentry->d_inode->i_mutex);
rc = lower_dentry->d_inode->i_op->removexattr(lower_dentry, name);
mutex_unlock(&lower_dentry->d_inode->i_mutex);
out:
return rc;
}
int ecryptfs_inode_test(struct inode *inode, void *candidate_lower_inode)
{
if ((ecryptfs_inode_to_lower(inode)
== (struct inode *)candidate_lower_inode))
return 1;
else
return 0;
}
int ecryptfs_inode_set(struct inode *inode, void *lower_inode)
{
ecryptfs_init_inode(inode, (struct inode *)lower_inode);
return 0;
}
struct inode_operations ecryptfs_symlink_iops = {
.readlink = ecryptfs_readlink,
.follow_link = ecryptfs_follow_link,
.put_link = ecryptfs_put_link,
.permission = ecryptfs_permission,
.setattr = ecryptfs_setattr,
.setxattr = ecryptfs_setxattr,
.getxattr = ecryptfs_getxattr,
.listxattr = ecryptfs_listxattr,
.removexattr = ecryptfs_removexattr
};
struct inode_operations ecryptfs_dir_iops = {
.create = ecryptfs_create,
.lookup = ecryptfs_lookup,
.link = ecryptfs_link,
.unlink = ecryptfs_unlink,
.symlink = ecryptfs_symlink,
.mkdir = ecryptfs_mkdir,
.rmdir = ecryptfs_rmdir,
.mknod = ecryptfs_mknod,
.rename = ecryptfs_rename,
.permission = ecryptfs_permission,
.setattr = ecryptfs_setattr,
.setxattr = ecryptfs_setxattr,
.getxattr = ecryptfs_getxattr,
.listxattr = ecryptfs_listxattr,
.removexattr = ecryptfs_removexattr
};
struct inode_operations ecryptfs_main_iops = {
.permission = ecryptfs_permission,
.setattr = ecryptfs_setattr,
.setxattr = ecryptfs_setxattr,
.getxattr = ecryptfs_getxattr,
.listxattr = ecryptfs_listxattr,
.removexattr = ecryptfs_removexattr
};