|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * DMA Pool allocator | 
|  | * | 
|  | * Copyright 2001 David Brownell | 
|  | * Copyright 2007 Intel Corporation | 
|  | *   Author: Matthew Wilcox <willy@linux.intel.com> | 
|  | * | 
|  | * This allocator returns small blocks of a given size which are DMA-able by | 
|  | * the given device.  It uses the dma_alloc_coherent page allocator to get | 
|  | * new pages, then splits them up into blocks of the required size. | 
|  | * Many older drivers still have their own code to do this. | 
|  | * | 
|  | * The current design of this allocator is fairly simple.  The pool is | 
|  | * represented by the 'struct dma_pool' which keeps a doubly-linked list of | 
|  | * allocated pages.  Each page in the page_list is split into blocks of at | 
|  | * least 'size' bytes.  Free blocks are tracked in an unsorted singly-linked | 
|  | * list of free blocks within the page.  Used blocks aren't tracked, but we | 
|  | * keep a count of how many are currently allocated from each page. | 
|  | */ | 
|  |  | 
|  | #include <linux/device.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/dmapool.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/poison.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/mm.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/stat.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/wait.h> | 
|  |  | 
|  | #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON) | 
|  | #define DMAPOOL_DEBUG 1 | 
|  | #endif | 
|  |  | 
|  | struct dma_pool {		/* the pool */ | 
|  | struct list_head page_list; | 
|  | spinlock_t lock; | 
|  | size_t size; | 
|  | struct device *dev; | 
|  | size_t allocation; | 
|  | size_t boundary; | 
|  | char name[32]; | 
|  | struct list_head pools; | 
|  | }; | 
|  |  | 
|  | struct dma_page {		/* cacheable header for 'allocation' bytes */ | 
|  | struct list_head page_list; | 
|  | void *vaddr; | 
|  | dma_addr_t dma; | 
|  | unsigned int in_use; | 
|  | unsigned int offset; | 
|  | }; | 
|  |  | 
|  | static DEFINE_MUTEX(pools_lock); | 
|  | static DEFINE_MUTEX(pools_reg_lock); | 
|  |  | 
|  | static ssize_t pools_show(struct device *dev, struct device_attribute *attr, char *buf) | 
|  | { | 
|  | unsigned temp; | 
|  | unsigned size; | 
|  | char *next; | 
|  | struct dma_page *page; | 
|  | struct dma_pool *pool; | 
|  |  | 
|  | next = buf; | 
|  | size = PAGE_SIZE; | 
|  |  | 
|  | temp = scnprintf(next, size, "poolinfo - 0.1\n"); | 
|  | size -= temp; | 
|  | next += temp; | 
|  |  | 
|  | mutex_lock(&pools_lock); | 
|  | list_for_each_entry(pool, &dev->dma_pools, pools) { | 
|  | unsigned pages = 0; | 
|  | unsigned blocks = 0; | 
|  |  | 
|  | spin_lock_irq(&pool->lock); | 
|  | list_for_each_entry(page, &pool->page_list, page_list) { | 
|  | pages++; | 
|  | blocks += page->in_use; | 
|  | } | 
|  | spin_unlock_irq(&pool->lock); | 
|  |  | 
|  | /* per-pool info, no real statistics yet */ | 
|  | temp = scnprintf(next, size, "%-16s %4u %4zu %4zu %2u\n", | 
|  | pool->name, blocks, | 
|  | pages * (pool->allocation / pool->size), | 
|  | pool->size, pages); | 
|  | size -= temp; | 
|  | next += temp; | 
|  | } | 
|  | mutex_unlock(&pools_lock); | 
|  |  | 
|  | return PAGE_SIZE - size; | 
|  | } | 
|  |  | 
|  | static DEVICE_ATTR_RO(pools); | 
|  |  | 
|  | /** | 
|  | * dma_pool_create - Creates a pool of consistent memory blocks, for dma. | 
|  | * @name: name of pool, for diagnostics | 
|  | * @dev: device that will be doing the DMA | 
|  | * @size: size of the blocks in this pool. | 
|  | * @align: alignment requirement for blocks; must be a power of two | 
|  | * @boundary: returned blocks won't cross this power of two boundary | 
|  | * Context: not in_interrupt() | 
|  | * | 
|  | * Given one of these pools, dma_pool_alloc() | 
|  | * may be used to allocate memory.  Such memory will all have "consistent" | 
|  | * DMA mappings, accessible by the device and its driver without using | 
|  | * cache flushing primitives.  The actual size of blocks allocated may be | 
|  | * larger than requested because of alignment. | 
|  | * | 
|  | * If @boundary is nonzero, objects returned from dma_pool_alloc() won't | 
|  | * cross that size boundary.  This is useful for devices which have | 
|  | * addressing restrictions on individual DMA transfers, such as not crossing | 
|  | * boundaries of 4KBytes. | 
|  | * | 
|  | * Return: a dma allocation pool with the requested characteristics, or | 
|  | * %NULL if one can't be created. | 
|  | */ | 
|  | struct dma_pool *dma_pool_create(const char *name, struct device *dev, | 
|  | size_t size, size_t align, size_t boundary) | 
|  | { | 
|  | struct dma_pool *retval; | 
|  | size_t allocation; | 
|  | bool empty = false; | 
|  |  | 
|  | if (align == 0) | 
|  | align = 1; | 
|  | else if (align & (align - 1)) | 
|  | return NULL; | 
|  |  | 
|  | if (size == 0) | 
|  | return NULL; | 
|  | else if (size < 4) | 
|  | size = 4; | 
|  |  | 
|  | size = ALIGN(size, align); | 
|  | allocation = max_t(size_t, size, PAGE_SIZE); | 
|  |  | 
|  | if (!boundary) | 
|  | boundary = allocation; | 
|  | else if ((boundary < size) || (boundary & (boundary - 1))) | 
|  | return NULL; | 
|  |  | 
|  | retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev)); | 
|  | if (!retval) | 
|  | return retval; | 
|  |  | 
|  | strscpy(retval->name, name, sizeof(retval->name)); | 
|  |  | 
|  | retval->dev = dev; | 
|  |  | 
|  | INIT_LIST_HEAD(&retval->page_list); | 
|  | spin_lock_init(&retval->lock); | 
|  | retval->size = size; | 
|  | retval->boundary = boundary; | 
|  | retval->allocation = allocation; | 
|  |  | 
|  | INIT_LIST_HEAD(&retval->pools); | 
|  |  | 
|  | /* | 
|  | * pools_lock ensures that the ->dma_pools list does not get corrupted. | 
|  | * pools_reg_lock ensures that there is not a race between | 
|  | * dma_pool_create() and dma_pool_destroy() or within dma_pool_create() | 
|  | * when the first invocation of dma_pool_create() failed on | 
|  | * device_create_file() and the second assumes that it has been done (I | 
|  | * know it is a short window). | 
|  | */ | 
|  | mutex_lock(&pools_reg_lock); | 
|  | mutex_lock(&pools_lock); | 
|  | if (list_empty(&dev->dma_pools)) | 
|  | empty = true; | 
|  | list_add(&retval->pools, &dev->dma_pools); | 
|  | mutex_unlock(&pools_lock); | 
|  | if (empty) { | 
|  | int err; | 
|  |  | 
|  | err = device_create_file(dev, &dev_attr_pools); | 
|  | if (err) { | 
|  | mutex_lock(&pools_lock); | 
|  | list_del(&retval->pools); | 
|  | mutex_unlock(&pools_lock); | 
|  | mutex_unlock(&pools_reg_lock); | 
|  | kfree(retval); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&pools_reg_lock); | 
|  | return retval; | 
|  | } | 
|  | EXPORT_SYMBOL(dma_pool_create); | 
|  |  | 
|  | static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page) | 
|  | { | 
|  | unsigned int offset = 0; | 
|  | unsigned int next_boundary = pool->boundary; | 
|  |  | 
|  | do { | 
|  | unsigned int next = offset + pool->size; | 
|  | if (unlikely((next + pool->size) >= next_boundary)) { | 
|  | next = next_boundary; | 
|  | next_boundary += pool->boundary; | 
|  | } | 
|  | *(int *)(page->vaddr + offset) = next; | 
|  | offset = next; | 
|  | } while (offset < pool->allocation); | 
|  | } | 
|  |  | 
|  | static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags) | 
|  | { | 
|  | struct dma_page *page; | 
|  |  | 
|  | page = kmalloc(sizeof(*page), mem_flags); | 
|  | if (!page) | 
|  | return NULL; | 
|  | page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation, | 
|  | &page->dma, mem_flags); | 
|  | if (page->vaddr) { | 
|  | #ifdef	DMAPOOL_DEBUG | 
|  | memset(page->vaddr, POOL_POISON_FREED, pool->allocation); | 
|  | #endif | 
|  | pool_initialise_page(pool, page); | 
|  | page->in_use = 0; | 
|  | page->offset = 0; | 
|  | } else { | 
|  | kfree(page); | 
|  | page = NULL; | 
|  | } | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static inline bool is_page_busy(struct dma_page *page) | 
|  | { | 
|  | return page->in_use != 0; | 
|  | } | 
|  |  | 
|  | static void pool_free_page(struct dma_pool *pool, struct dma_page *page) | 
|  | { | 
|  | dma_addr_t dma = page->dma; | 
|  |  | 
|  | #ifdef	DMAPOOL_DEBUG | 
|  | memset(page->vaddr, POOL_POISON_FREED, pool->allocation); | 
|  | #endif | 
|  | dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma); | 
|  | list_del(&page->page_list); | 
|  | kfree(page); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dma_pool_destroy - destroys a pool of dma memory blocks. | 
|  | * @pool: dma pool that will be destroyed | 
|  | * Context: !in_interrupt() | 
|  | * | 
|  | * Caller guarantees that no more memory from the pool is in use, | 
|  | * and that nothing will try to use the pool after this call. | 
|  | */ | 
|  | void dma_pool_destroy(struct dma_pool *pool) | 
|  | { | 
|  | struct dma_page *page, *tmp; | 
|  | bool empty = false; | 
|  |  | 
|  | if (unlikely(!pool)) | 
|  | return; | 
|  |  | 
|  | mutex_lock(&pools_reg_lock); | 
|  | mutex_lock(&pools_lock); | 
|  | list_del(&pool->pools); | 
|  | if (pool->dev && list_empty(&pool->dev->dma_pools)) | 
|  | empty = true; | 
|  | mutex_unlock(&pools_lock); | 
|  | if (empty) | 
|  | device_remove_file(pool->dev, &dev_attr_pools); | 
|  | mutex_unlock(&pools_reg_lock); | 
|  |  | 
|  | list_for_each_entry_safe(page, tmp, &pool->page_list, page_list) { | 
|  | if (is_page_busy(page)) { | 
|  | if (pool->dev) | 
|  | dev_err(pool->dev, "%s %s, %p busy\n", __func__, | 
|  | pool->name, page->vaddr); | 
|  | else | 
|  | pr_err("%s %s, %p busy\n", __func__, | 
|  | pool->name, page->vaddr); | 
|  | /* leak the still-in-use consistent memory */ | 
|  | list_del(&page->page_list); | 
|  | kfree(page); | 
|  | } else | 
|  | pool_free_page(pool, page); | 
|  | } | 
|  |  | 
|  | kfree(pool); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_pool_destroy); | 
|  |  | 
|  | /** | 
|  | * dma_pool_alloc - get a block of consistent memory | 
|  | * @pool: dma pool that will produce the block | 
|  | * @mem_flags: GFP_* bitmask | 
|  | * @handle: pointer to dma address of block | 
|  | * | 
|  | * Return: the kernel virtual address of a currently unused block, | 
|  | * and reports its dma address through the handle. | 
|  | * If such a memory block can't be allocated, %NULL is returned. | 
|  | */ | 
|  | void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags, | 
|  | dma_addr_t *handle) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct dma_page *page; | 
|  | size_t offset; | 
|  | void *retval; | 
|  |  | 
|  | might_alloc(mem_flags); | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | list_for_each_entry(page, &pool->page_list, page_list) { | 
|  | if (page->offset < pool->allocation) | 
|  | goto ready; | 
|  | } | 
|  |  | 
|  | /* pool_alloc_page() might sleep, so temporarily drop &pool->lock */ | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  |  | 
|  | page = pool_alloc_page(pool, mem_flags & (~__GFP_ZERO)); | 
|  | if (!page) | 
|  | return NULL; | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  |  | 
|  | list_add(&page->page_list, &pool->page_list); | 
|  | ready: | 
|  | page->in_use++; | 
|  | offset = page->offset; | 
|  | page->offset = *(int *)(page->vaddr + offset); | 
|  | retval = offset + page->vaddr; | 
|  | *handle = offset + page->dma; | 
|  | #ifdef	DMAPOOL_DEBUG | 
|  | { | 
|  | int i; | 
|  | u8 *data = retval; | 
|  | /* page->offset is stored in first 4 bytes */ | 
|  | for (i = sizeof(page->offset); i < pool->size; i++) { | 
|  | if (data[i] == POOL_POISON_FREED) | 
|  | continue; | 
|  | if (pool->dev) | 
|  | dev_err(pool->dev, "%s %s, %p (corrupted)\n", | 
|  | __func__, pool->name, retval); | 
|  | else | 
|  | pr_err("%s %s, %p (corrupted)\n", | 
|  | __func__, pool->name, retval); | 
|  |  | 
|  | /* | 
|  | * Dump the first 4 bytes even if they are not | 
|  | * POOL_POISON_FREED | 
|  | */ | 
|  | print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, | 
|  | data, pool->size, 1); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!(mem_flags & __GFP_ZERO)) | 
|  | memset(retval, POOL_POISON_ALLOCATED, pool->size); | 
|  | #endif | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  |  | 
|  | if (want_init_on_alloc(mem_flags)) | 
|  | memset(retval, 0, pool->size); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  | EXPORT_SYMBOL(dma_pool_alloc); | 
|  |  | 
|  | static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma) | 
|  | { | 
|  | struct dma_page *page; | 
|  |  | 
|  | list_for_each_entry(page, &pool->page_list, page_list) { | 
|  | if (dma < page->dma) | 
|  | continue; | 
|  | if ((dma - page->dma) < pool->allocation) | 
|  | return page; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dma_pool_free - put block back into dma pool | 
|  | * @pool: the dma pool holding the block | 
|  | * @vaddr: virtual address of block | 
|  | * @dma: dma address of block | 
|  | * | 
|  | * Caller promises neither device nor driver will again touch this block | 
|  | * unless it is first re-allocated. | 
|  | */ | 
|  | void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma) | 
|  | { | 
|  | struct dma_page *page; | 
|  | unsigned long flags; | 
|  | unsigned int offset; | 
|  |  | 
|  | spin_lock_irqsave(&pool->lock, flags); | 
|  | page = pool_find_page(pool, dma); | 
|  | if (!page) { | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | if (pool->dev) | 
|  | dev_err(pool->dev, "%s %s, %p/%pad (bad dma)\n", | 
|  | __func__, pool->name, vaddr, &dma); | 
|  | else | 
|  | pr_err("%s %s, %p/%pad (bad dma)\n", | 
|  | __func__, pool->name, vaddr, &dma); | 
|  | return; | 
|  | } | 
|  |  | 
|  | offset = vaddr - page->vaddr; | 
|  | if (want_init_on_free()) | 
|  | memset(vaddr, 0, pool->size); | 
|  | #ifdef	DMAPOOL_DEBUG | 
|  | if ((dma - page->dma) != offset) { | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | if (pool->dev) | 
|  | dev_err(pool->dev, "%s %s, %p (bad vaddr)/%pad\n", | 
|  | __func__, pool->name, vaddr, &dma); | 
|  | else | 
|  | pr_err("%s %s, %p (bad vaddr)/%pad\n", | 
|  | __func__, pool->name, vaddr, &dma); | 
|  | return; | 
|  | } | 
|  | { | 
|  | unsigned int chain = page->offset; | 
|  | while (chain < pool->allocation) { | 
|  | if (chain != offset) { | 
|  | chain = *(int *)(page->vaddr + chain); | 
|  | continue; | 
|  | } | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | if (pool->dev) | 
|  | dev_err(pool->dev, "%s %s, dma %pad already free\n", | 
|  | __func__, pool->name, &dma); | 
|  | else | 
|  | pr_err("%s %s, dma %pad already free\n", | 
|  | __func__, pool->name, &dma); | 
|  | return; | 
|  | } | 
|  | } | 
|  | memset(vaddr, POOL_POISON_FREED, pool->size); | 
|  | #endif | 
|  |  | 
|  | page->in_use--; | 
|  | *(int *)vaddr = page->offset; | 
|  | page->offset = offset; | 
|  | /* | 
|  | * Resist a temptation to do | 
|  | *    if (!is_page_busy(page)) pool_free_page(pool, page); | 
|  | * Better have a few empty pages hang around. | 
|  | */ | 
|  | spin_unlock_irqrestore(&pool->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_pool_free); | 
|  |  | 
|  | /* | 
|  | * Managed DMA pool | 
|  | */ | 
|  | static void dmam_pool_release(struct device *dev, void *res) | 
|  | { | 
|  | struct dma_pool *pool = *(struct dma_pool **)res; | 
|  |  | 
|  | dma_pool_destroy(pool); | 
|  | } | 
|  |  | 
|  | static int dmam_pool_match(struct device *dev, void *res, void *match_data) | 
|  | { | 
|  | return *(struct dma_pool **)res == match_data; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dmam_pool_create - Managed dma_pool_create() | 
|  | * @name: name of pool, for diagnostics | 
|  | * @dev: device that will be doing the DMA | 
|  | * @size: size of the blocks in this pool. | 
|  | * @align: alignment requirement for blocks; must be a power of two | 
|  | * @allocation: returned blocks won't cross this boundary (or zero) | 
|  | * | 
|  | * Managed dma_pool_create().  DMA pool created with this function is | 
|  | * automatically destroyed on driver detach. | 
|  | * | 
|  | * Return: a managed dma allocation pool with the requested | 
|  | * characteristics, or %NULL if one can't be created. | 
|  | */ | 
|  | struct dma_pool *dmam_pool_create(const char *name, struct device *dev, | 
|  | size_t size, size_t align, size_t allocation) | 
|  | { | 
|  | struct dma_pool **ptr, *pool; | 
|  |  | 
|  | ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL); | 
|  | if (!ptr) | 
|  | return NULL; | 
|  |  | 
|  | pool = *ptr = dma_pool_create(name, dev, size, align, allocation); | 
|  | if (pool) | 
|  | devres_add(dev, ptr); | 
|  | else | 
|  | devres_free(ptr); | 
|  |  | 
|  | return pool; | 
|  | } | 
|  | EXPORT_SYMBOL(dmam_pool_create); | 
|  |  | 
|  | /** | 
|  | * dmam_pool_destroy - Managed dma_pool_destroy() | 
|  | * @pool: dma pool that will be destroyed | 
|  | * | 
|  | * Managed dma_pool_destroy(). | 
|  | */ | 
|  | void dmam_pool_destroy(struct dma_pool *pool) | 
|  | { | 
|  | struct device *dev = pool->dev; | 
|  |  | 
|  | WARN_ON(devres_release(dev, dmam_pool_release, dmam_pool_match, pool)); | 
|  | } | 
|  | EXPORT_SYMBOL(dmam_pool_destroy); |