|  | /* | 
|  | * Common EFI (Extensible Firmware Interface) support functions | 
|  | * Based on Extensible Firmware Interface Specification version 1.0 | 
|  | * | 
|  | * Copyright (C) 1999 VA Linux Systems | 
|  | * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> | 
|  | * Copyright (C) 1999-2002 Hewlett-Packard Co. | 
|  | *	David Mosberger-Tang <davidm@hpl.hp.com> | 
|  | *	Stephane Eranian <eranian@hpl.hp.com> | 
|  | * Copyright (C) 2005-2008 Intel Co. | 
|  | *	Fenghua Yu <fenghua.yu@intel.com> | 
|  | *	Bibo Mao <bibo.mao@intel.com> | 
|  | *	Chandramouli Narayanan <mouli@linux.intel.com> | 
|  | *	Huang Ying <ying.huang@intel.com> | 
|  | * Copyright (C) 2013 SuSE Labs | 
|  | *	Borislav Petkov <bp@suse.de> - runtime services VA mapping | 
|  | * | 
|  | * Copied from efi_32.c to eliminate the duplicated code between EFI | 
|  | * 32/64 support code. --ying 2007-10-26 | 
|  | * | 
|  | * All EFI Runtime Services are not implemented yet as EFI only | 
|  | * supports physical mode addressing on SoftSDV. This is to be fixed | 
|  | * in a future version.  --drummond 1999-07-20 | 
|  | * | 
|  | * Implemented EFI runtime services and virtual mode calls.  --davidm | 
|  | * | 
|  | * Goutham Rao: <goutham.rao@intel.com> | 
|  | *	Skip non-WB memory and ignore empty memory ranges. | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/efi.h> | 
|  | #include <linux/efi-bgrt.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/reboot.h> | 
|  | #include <linux/bcd.h> | 
|  |  | 
|  | #include <asm/setup.h> | 
|  | #include <asm/efi.h> | 
|  | #include <asm/time.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/x86_init.h> | 
|  | #include <asm/rtc.h> | 
|  | #include <asm/uv/uv.h> | 
|  |  | 
|  | #define EFI_DEBUG | 
|  |  | 
|  | struct efi_memory_map memmap; | 
|  |  | 
|  | static struct efi efi_phys __initdata; | 
|  | static efi_system_table_t efi_systab __initdata; | 
|  |  | 
|  | static efi_config_table_type_t arch_tables[] __initdata = { | 
|  | #ifdef CONFIG_X86_UV | 
|  | {UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab}, | 
|  | #endif | 
|  | {NULL_GUID, NULL, NULL}, | 
|  | }; | 
|  |  | 
|  | u64 efi_setup;		/* efi setup_data physical address */ | 
|  |  | 
|  | static int add_efi_memmap __initdata; | 
|  | static int __init setup_add_efi_memmap(char *arg) | 
|  | { | 
|  | add_efi_memmap = 1; | 
|  | return 0; | 
|  | } | 
|  | early_param("add_efi_memmap", setup_add_efi_memmap); | 
|  |  | 
|  | static efi_status_t __init phys_efi_set_virtual_address_map( | 
|  | unsigned long memory_map_size, | 
|  | unsigned long descriptor_size, | 
|  | u32 descriptor_version, | 
|  | efi_memory_desc_t *virtual_map) | 
|  | { | 
|  | efi_status_t status; | 
|  | unsigned long flags; | 
|  | pgd_t *save_pgd; | 
|  |  | 
|  | save_pgd = efi_call_phys_prolog(); | 
|  |  | 
|  | /* Disable interrupts around EFI calls: */ | 
|  | local_irq_save(flags); | 
|  | status = efi_call_phys(efi_phys.set_virtual_address_map, | 
|  | memory_map_size, descriptor_size, | 
|  | descriptor_version, virtual_map); | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | efi_call_phys_epilog(save_pgd); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | void efi_get_time(struct timespec *now) | 
|  | { | 
|  | efi_status_t status; | 
|  | efi_time_t eft; | 
|  | efi_time_cap_t cap; | 
|  |  | 
|  | status = efi.get_time(&eft, &cap); | 
|  | if (status != EFI_SUCCESS) | 
|  | pr_err("Oops: efitime: can't read time!\n"); | 
|  |  | 
|  | now->tv_sec = mktime(eft.year, eft.month, eft.day, eft.hour, | 
|  | eft.minute, eft.second); | 
|  | now->tv_nsec = 0; | 
|  | } | 
|  |  | 
|  | void __init efi_find_mirror(void) | 
|  | { | 
|  | void *p; | 
|  | u64 mirror_size = 0, total_size = 0; | 
|  |  | 
|  | for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
|  | efi_memory_desc_t *md = p; | 
|  | unsigned long long start = md->phys_addr; | 
|  | unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; | 
|  |  | 
|  | total_size += size; | 
|  | if (md->attribute & EFI_MEMORY_MORE_RELIABLE) { | 
|  | memblock_mark_mirror(start, size); | 
|  | mirror_size += size; | 
|  | } | 
|  | } | 
|  | if (mirror_size) | 
|  | pr_info("Memory: %lldM/%lldM mirrored memory\n", | 
|  | mirror_size>>20, total_size>>20); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Tell the kernel about the EFI memory map.  This might include | 
|  | * more than the max 128 entries that can fit in the e820 legacy | 
|  | * (zeropage) memory map. | 
|  | */ | 
|  |  | 
|  | static void __init do_add_efi_memmap(void) | 
|  | { | 
|  | void *p; | 
|  |  | 
|  | for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
|  | efi_memory_desc_t *md = p; | 
|  | unsigned long long start = md->phys_addr; | 
|  | unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; | 
|  | int e820_type; | 
|  |  | 
|  | switch (md->type) { | 
|  | case EFI_LOADER_CODE: | 
|  | case EFI_LOADER_DATA: | 
|  | case EFI_BOOT_SERVICES_CODE: | 
|  | case EFI_BOOT_SERVICES_DATA: | 
|  | case EFI_CONVENTIONAL_MEMORY: | 
|  | if (md->attribute & EFI_MEMORY_WB) | 
|  | e820_type = E820_RAM; | 
|  | else | 
|  | e820_type = E820_RESERVED; | 
|  | break; | 
|  | case EFI_ACPI_RECLAIM_MEMORY: | 
|  | e820_type = E820_ACPI; | 
|  | break; | 
|  | case EFI_ACPI_MEMORY_NVS: | 
|  | e820_type = E820_NVS; | 
|  | break; | 
|  | case EFI_UNUSABLE_MEMORY: | 
|  | e820_type = E820_UNUSABLE; | 
|  | break; | 
|  | case EFI_PERSISTENT_MEMORY: | 
|  | e820_type = E820_PMEM; | 
|  | break; | 
|  | default: | 
|  | /* | 
|  | * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE | 
|  | * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO | 
|  | * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE | 
|  | */ | 
|  | e820_type = E820_RESERVED; | 
|  | break; | 
|  | } | 
|  | e820_add_region(start, size, e820_type); | 
|  | } | 
|  | sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map); | 
|  | } | 
|  |  | 
|  | int __init efi_memblock_x86_reserve_range(void) | 
|  | { | 
|  | struct efi_info *e = &boot_params.efi_info; | 
|  | phys_addr_t pmap; | 
|  |  | 
|  | if (efi_enabled(EFI_PARAVIRT)) | 
|  | return 0; | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | /* Can't handle data above 4GB at this time */ | 
|  | if (e->efi_memmap_hi) { | 
|  | pr_err("Memory map is above 4GB, disabling EFI.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | pmap =  e->efi_memmap; | 
|  | #else | 
|  | pmap = (e->efi_memmap |	((__u64)e->efi_memmap_hi << 32)); | 
|  | #endif | 
|  | memmap.phys_map		= pmap; | 
|  | memmap.nr_map		= e->efi_memmap_size / | 
|  | e->efi_memdesc_size; | 
|  | memmap.desc_size	= e->efi_memdesc_size; | 
|  | memmap.desc_version	= e->efi_memdesc_version; | 
|  |  | 
|  | memblock_reserve(pmap, memmap.nr_map * memmap.desc_size); | 
|  |  | 
|  | efi.memmap = &memmap; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __init efi_print_memmap(void) | 
|  | { | 
|  | #ifdef EFI_DEBUG | 
|  | efi_memory_desc_t *md; | 
|  | void *p; | 
|  | int i; | 
|  |  | 
|  | for (p = memmap.map, i = 0; | 
|  | p < memmap.map_end; | 
|  | p += memmap.desc_size, i++) { | 
|  | char buf[64]; | 
|  |  | 
|  | md = p; | 
|  | pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n", | 
|  | i, efi_md_typeattr_format(buf, sizeof(buf), md), | 
|  | md->phys_addr, | 
|  | md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1, | 
|  | (md->num_pages >> (20 - EFI_PAGE_SHIFT))); | 
|  | } | 
|  | #endif  /*  EFI_DEBUG  */ | 
|  | } | 
|  |  | 
|  | void __init efi_unmap_memmap(void) | 
|  | { | 
|  | clear_bit(EFI_MEMMAP, &efi.flags); | 
|  | if (memmap.map) { | 
|  | early_memunmap(memmap.map, memmap.nr_map * memmap.desc_size); | 
|  | memmap.map = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __init efi_systab_init(void *phys) | 
|  | { | 
|  | if (efi_enabled(EFI_64BIT)) { | 
|  | efi_system_table_64_t *systab64; | 
|  | struct efi_setup_data *data = NULL; | 
|  | u64 tmp = 0; | 
|  |  | 
|  | if (efi_setup) { | 
|  | data = early_memremap(efi_setup, sizeof(*data)); | 
|  | if (!data) | 
|  | return -ENOMEM; | 
|  | } | 
|  | systab64 = early_memremap((unsigned long)phys, | 
|  | sizeof(*systab64)); | 
|  | if (systab64 == NULL) { | 
|  | pr_err("Couldn't map the system table!\n"); | 
|  | if (data) | 
|  | early_memunmap(data, sizeof(*data)); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | efi_systab.hdr = systab64->hdr; | 
|  | efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor : | 
|  | systab64->fw_vendor; | 
|  | tmp |= data ? data->fw_vendor : systab64->fw_vendor; | 
|  | efi_systab.fw_revision = systab64->fw_revision; | 
|  | efi_systab.con_in_handle = systab64->con_in_handle; | 
|  | tmp |= systab64->con_in_handle; | 
|  | efi_systab.con_in = systab64->con_in; | 
|  | tmp |= systab64->con_in; | 
|  | efi_systab.con_out_handle = systab64->con_out_handle; | 
|  | tmp |= systab64->con_out_handle; | 
|  | efi_systab.con_out = systab64->con_out; | 
|  | tmp |= systab64->con_out; | 
|  | efi_systab.stderr_handle = systab64->stderr_handle; | 
|  | tmp |= systab64->stderr_handle; | 
|  | efi_systab.stderr = systab64->stderr; | 
|  | tmp |= systab64->stderr; | 
|  | efi_systab.runtime = data ? | 
|  | (void *)(unsigned long)data->runtime : | 
|  | (void *)(unsigned long)systab64->runtime; | 
|  | tmp |= data ? data->runtime : systab64->runtime; | 
|  | efi_systab.boottime = (void *)(unsigned long)systab64->boottime; | 
|  | tmp |= systab64->boottime; | 
|  | efi_systab.nr_tables = systab64->nr_tables; | 
|  | efi_systab.tables = data ? (unsigned long)data->tables : | 
|  | systab64->tables; | 
|  | tmp |= data ? data->tables : systab64->tables; | 
|  |  | 
|  | early_memunmap(systab64, sizeof(*systab64)); | 
|  | if (data) | 
|  | early_memunmap(data, sizeof(*data)); | 
|  | #ifdef CONFIG_X86_32 | 
|  | if (tmp >> 32) { | 
|  | pr_err("EFI data located above 4GB, disabling EFI.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | #endif | 
|  | } else { | 
|  | efi_system_table_32_t *systab32; | 
|  |  | 
|  | systab32 = early_memremap((unsigned long)phys, | 
|  | sizeof(*systab32)); | 
|  | if (systab32 == NULL) { | 
|  | pr_err("Couldn't map the system table!\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | efi_systab.hdr = systab32->hdr; | 
|  | efi_systab.fw_vendor = systab32->fw_vendor; | 
|  | efi_systab.fw_revision = systab32->fw_revision; | 
|  | efi_systab.con_in_handle = systab32->con_in_handle; | 
|  | efi_systab.con_in = systab32->con_in; | 
|  | efi_systab.con_out_handle = systab32->con_out_handle; | 
|  | efi_systab.con_out = systab32->con_out; | 
|  | efi_systab.stderr_handle = systab32->stderr_handle; | 
|  | efi_systab.stderr = systab32->stderr; | 
|  | efi_systab.runtime = (void *)(unsigned long)systab32->runtime; | 
|  | efi_systab.boottime = (void *)(unsigned long)systab32->boottime; | 
|  | efi_systab.nr_tables = systab32->nr_tables; | 
|  | efi_systab.tables = systab32->tables; | 
|  |  | 
|  | early_memunmap(systab32, sizeof(*systab32)); | 
|  | } | 
|  |  | 
|  | efi.systab = &efi_systab; | 
|  |  | 
|  | /* | 
|  | * Verify the EFI Table | 
|  | */ | 
|  | if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) { | 
|  | pr_err("System table signature incorrect!\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if ((efi.systab->hdr.revision >> 16) == 0) | 
|  | pr_err("Warning: System table version %d.%02d, expected 1.00 or greater!\n", | 
|  | efi.systab->hdr.revision >> 16, | 
|  | efi.systab->hdr.revision & 0xffff); | 
|  |  | 
|  | set_bit(EFI_SYSTEM_TABLES, &efi.flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init efi_runtime_init32(void) | 
|  | { | 
|  | efi_runtime_services_32_t *runtime; | 
|  |  | 
|  | runtime = early_memremap((unsigned long)efi.systab->runtime, | 
|  | sizeof(efi_runtime_services_32_t)); | 
|  | if (!runtime) { | 
|  | pr_err("Could not map the runtime service table!\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We will only need *early* access to the SetVirtualAddressMap | 
|  | * EFI runtime service. All other runtime services will be called | 
|  | * via the virtual mapping. | 
|  | */ | 
|  | efi_phys.set_virtual_address_map = | 
|  | (efi_set_virtual_address_map_t *) | 
|  | (unsigned long)runtime->set_virtual_address_map; | 
|  | early_memunmap(runtime, sizeof(efi_runtime_services_32_t)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init efi_runtime_init64(void) | 
|  | { | 
|  | efi_runtime_services_64_t *runtime; | 
|  |  | 
|  | runtime = early_memremap((unsigned long)efi.systab->runtime, | 
|  | sizeof(efi_runtime_services_64_t)); | 
|  | if (!runtime) { | 
|  | pr_err("Could not map the runtime service table!\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We will only need *early* access to the SetVirtualAddressMap | 
|  | * EFI runtime service. All other runtime services will be called | 
|  | * via the virtual mapping. | 
|  | */ | 
|  | efi_phys.set_virtual_address_map = | 
|  | (efi_set_virtual_address_map_t *) | 
|  | (unsigned long)runtime->set_virtual_address_map; | 
|  | early_memunmap(runtime, sizeof(efi_runtime_services_64_t)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init efi_runtime_init(void) | 
|  | { | 
|  | int rv; | 
|  |  | 
|  | /* | 
|  | * Check out the runtime services table. We need to map | 
|  | * the runtime services table so that we can grab the physical | 
|  | * address of several of the EFI runtime functions, needed to | 
|  | * set the firmware into virtual mode. | 
|  | * | 
|  | * When EFI_PARAVIRT is in force then we could not map runtime | 
|  | * service memory region because we do not have direct access to it. | 
|  | * However, runtime services are available through proxy functions | 
|  | * (e.g. in case of Xen dom0 EFI implementation they call special | 
|  | * hypercall which executes relevant EFI functions) and that is why | 
|  | * they are always enabled. | 
|  | */ | 
|  |  | 
|  | if (!efi_enabled(EFI_PARAVIRT)) { | 
|  | if (efi_enabled(EFI_64BIT)) | 
|  | rv = efi_runtime_init64(); | 
|  | else | 
|  | rv = efi_runtime_init32(); | 
|  |  | 
|  | if (rv) | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | set_bit(EFI_RUNTIME_SERVICES, &efi.flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init efi_memmap_init(void) | 
|  | { | 
|  | if (efi_enabled(EFI_PARAVIRT)) | 
|  | return 0; | 
|  |  | 
|  | /* Map the EFI memory map */ | 
|  | memmap.map = early_memremap((unsigned long)memmap.phys_map, | 
|  | memmap.nr_map * memmap.desc_size); | 
|  | if (memmap.map == NULL) { | 
|  | pr_err("Could not map the memory map!\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size); | 
|  |  | 
|  | if (add_efi_memmap) | 
|  | do_add_efi_memmap(); | 
|  |  | 
|  | set_bit(EFI_MEMMAP, &efi.flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __init efi_init(void) | 
|  | { | 
|  | efi_char16_t *c16; | 
|  | char vendor[100] = "unknown"; | 
|  | int i = 0; | 
|  | void *tmp; | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | if (boot_params.efi_info.efi_systab_hi || | 
|  | boot_params.efi_info.efi_memmap_hi) { | 
|  | pr_info("Table located above 4GB, disabling EFI.\n"); | 
|  | return; | 
|  | } | 
|  | efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab; | 
|  | #else | 
|  | efi_phys.systab = (efi_system_table_t *) | 
|  | (boot_params.efi_info.efi_systab | | 
|  | ((__u64)boot_params.efi_info.efi_systab_hi<<32)); | 
|  | #endif | 
|  |  | 
|  | if (efi_systab_init(efi_phys.systab)) | 
|  | return; | 
|  |  | 
|  | efi.config_table = (unsigned long)efi.systab->tables; | 
|  | efi.fw_vendor	 = (unsigned long)efi.systab->fw_vendor; | 
|  | efi.runtime	 = (unsigned long)efi.systab->runtime; | 
|  |  | 
|  | /* | 
|  | * Show what we know for posterity | 
|  | */ | 
|  | c16 = tmp = early_memremap(efi.systab->fw_vendor, 2); | 
|  | if (c16) { | 
|  | for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i) | 
|  | vendor[i] = *c16++; | 
|  | vendor[i] = '\0'; | 
|  | } else | 
|  | pr_err("Could not map the firmware vendor!\n"); | 
|  | early_memunmap(tmp, 2); | 
|  |  | 
|  | pr_info("EFI v%u.%.02u by %s\n", | 
|  | efi.systab->hdr.revision >> 16, | 
|  | efi.systab->hdr.revision & 0xffff, vendor); | 
|  |  | 
|  | if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables)) | 
|  | return; | 
|  |  | 
|  | if (efi_config_init(arch_tables)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Note: We currently don't support runtime services on an EFI | 
|  | * that doesn't match the kernel 32/64-bit mode. | 
|  | */ | 
|  |  | 
|  | if (!efi_runtime_supported()) | 
|  | pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n"); | 
|  | else { | 
|  | if (efi_runtime_disabled() || efi_runtime_init()) | 
|  | return; | 
|  | } | 
|  | if (efi_memmap_init()) | 
|  | return; | 
|  |  | 
|  | if (efi_enabled(EFI_DBG)) | 
|  | efi_print_memmap(); | 
|  |  | 
|  | efi_esrt_init(); | 
|  | } | 
|  |  | 
|  | void __init efi_late_init(void) | 
|  | { | 
|  | efi_bgrt_init(); | 
|  | } | 
|  |  | 
|  | void __init efi_set_executable(efi_memory_desc_t *md, bool executable) | 
|  | { | 
|  | u64 addr, npages; | 
|  |  | 
|  | addr = md->virt_addr; | 
|  | npages = md->num_pages; | 
|  |  | 
|  | memrange_efi_to_native(&addr, &npages); | 
|  |  | 
|  | if (executable) | 
|  | set_memory_x(addr, npages); | 
|  | else | 
|  | set_memory_nx(addr, npages); | 
|  | } | 
|  |  | 
|  | void __init runtime_code_page_mkexec(void) | 
|  | { | 
|  | efi_memory_desc_t *md; | 
|  | void *p; | 
|  |  | 
|  | /* Make EFI runtime service code area executable */ | 
|  | for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
|  | md = p; | 
|  |  | 
|  | if (md->type != EFI_RUNTIME_SERVICES_CODE) | 
|  | continue; | 
|  |  | 
|  | efi_set_executable(md, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init efi_memory_uc(u64 addr, unsigned long size) | 
|  | { | 
|  | unsigned long page_shift = 1UL << EFI_PAGE_SHIFT; | 
|  | u64 npages; | 
|  |  | 
|  | npages = round_up(size, page_shift) / page_shift; | 
|  | memrange_efi_to_native(&addr, &npages); | 
|  | set_memory_uc(addr, npages); | 
|  | } | 
|  |  | 
|  | void __init old_map_region(efi_memory_desc_t *md) | 
|  | { | 
|  | u64 start_pfn, end_pfn, end; | 
|  | unsigned long size; | 
|  | void *va; | 
|  |  | 
|  | start_pfn = PFN_DOWN(md->phys_addr); | 
|  | size	  = md->num_pages << PAGE_SHIFT; | 
|  | end	  = md->phys_addr + size; | 
|  | end_pfn   = PFN_UP(end); | 
|  |  | 
|  | if (pfn_range_is_mapped(start_pfn, end_pfn)) { | 
|  | va = __va(md->phys_addr); | 
|  |  | 
|  | if (!(md->attribute & EFI_MEMORY_WB)) | 
|  | efi_memory_uc((u64)(unsigned long)va, size); | 
|  | } else | 
|  | va = efi_ioremap(md->phys_addr, size, | 
|  | md->type, md->attribute); | 
|  |  | 
|  | md->virt_addr = (u64) (unsigned long) va; | 
|  | if (!va) | 
|  | pr_err("ioremap of 0x%llX failed!\n", | 
|  | (unsigned long long)md->phys_addr); | 
|  | } | 
|  |  | 
|  | /* Merge contiguous regions of the same type and attribute */ | 
|  | static void __init efi_merge_regions(void) | 
|  | { | 
|  | void *p; | 
|  | efi_memory_desc_t *md, *prev_md = NULL; | 
|  |  | 
|  | for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
|  | u64 prev_size; | 
|  | md = p; | 
|  |  | 
|  | if (!prev_md) { | 
|  | prev_md = md; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (prev_md->type != md->type || | 
|  | prev_md->attribute != md->attribute) { | 
|  | prev_md = md; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | prev_size = prev_md->num_pages << EFI_PAGE_SHIFT; | 
|  |  | 
|  | if (md->phys_addr == (prev_md->phys_addr + prev_size)) { | 
|  | prev_md->num_pages += md->num_pages; | 
|  | md->type = EFI_RESERVED_TYPE; | 
|  | md->attribute = 0; | 
|  | continue; | 
|  | } | 
|  | prev_md = md; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init get_systab_virt_addr(efi_memory_desc_t *md) | 
|  | { | 
|  | unsigned long size; | 
|  | u64 end, systab; | 
|  |  | 
|  | size = md->num_pages << EFI_PAGE_SHIFT; | 
|  | end = md->phys_addr + size; | 
|  | systab = (u64)(unsigned long)efi_phys.systab; | 
|  | if (md->phys_addr <= systab && systab < end) { | 
|  | systab += md->virt_addr - md->phys_addr; | 
|  | efi.systab = (efi_system_table_t *)(unsigned long)systab; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init save_runtime_map(void) | 
|  | { | 
|  | #ifdef CONFIG_KEXEC_CORE | 
|  | efi_memory_desc_t *md; | 
|  | void *tmp, *p, *q = NULL; | 
|  | int count = 0; | 
|  |  | 
|  | if (efi_enabled(EFI_OLD_MEMMAP)) | 
|  | return; | 
|  |  | 
|  | for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
|  | md = p; | 
|  |  | 
|  | if (!(md->attribute & EFI_MEMORY_RUNTIME) || | 
|  | (md->type == EFI_BOOT_SERVICES_CODE) || | 
|  | (md->type == EFI_BOOT_SERVICES_DATA)) | 
|  | continue; | 
|  | tmp = krealloc(q, (count + 1) * memmap.desc_size, GFP_KERNEL); | 
|  | if (!tmp) | 
|  | goto out; | 
|  | q = tmp; | 
|  |  | 
|  | memcpy(q + count * memmap.desc_size, md, memmap.desc_size); | 
|  | count++; | 
|  | } | 
|  |  | 
|  | efi_runtime_map_setup(q, count, memmap.desc_size); | 
|  | return; | 
|  |  | 
|  | out: | 
|  | kfree(q); | 
|  | pr_err("Error saving runtime map, efi runtime on kexec non-functional!!\n"); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void *realloc_pages(void *old_memmap, int old_shift) | 
|  | { | 
|  | void *ret; | 
|  |  | 
|  | ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1); | 
|  | if (!ret) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * A first-time allocation doesn't have anything to copy. | 
|  | */ | 
|  | if (!old_memmap) | 
|  | return ret; | 
|  |  | 
|  | memcpy(ret, old_memmap, PAGE_SIZE << old_shift); | 
|  |  | 
|  | out: | 
|  | free_pages((unsigned long)old_memmap, old_shift); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Iterate the EFI memory map in reverse order because the regions | 
|  | * will be mapped top-down. The end result is the same as if we had | 
|  | * mapped things forward, but doesn't require us to change the | 
|  | * existing implementation of efi_map_region(). | 
|  | */ | 
|  | static inline void *efi_map_next_entry_reverse(void *entry) | 
|  | { | 
|  | /* Initial call */ | 
|  | if (!entry) | 
|  | return memmap.map_end - memmap.desc_size; | 
|  |  | 
|  | entry -= memmap.desc_size; | 
|  | if (entry < memmap.map) | 
|  | return NULL; | 
|  |  | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * efi_map_next_entry - Return the next EFI memory map descriptor | 
|  | * @entry: Previous EFI memory map descriptor | 
|  | * | 
|  | * This is a helper function to iterate over the EFI memory map, which | 
|  | * we do in different orders depending on the current configuration. | 
|  | * | 
|  | * To begin traversing the memory map @entry must be %NULL. | 
|  | * | 
|  | * Returns %NULL when we reach the end of the memory map. | 
|  | */ | 
|  | static void *efi_map_next_entry(void *entry) | 
|  | { | 
|  | if (!efi_enabled(EFI_OLD_MEMMAP) && efi_enabled(EFI_64BIT)) { | 
|  | /* | 
|  | * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE | 
|  | * config table feature requires us to map all entries | 
|  | * in the same order as they appear in the EFI memory | 
|  | * map. That is to say, entry N must have a lower | 
|  | * virtual address than entry N+1. This is because the | 
|  | * firmware toolchain leaves relative references in | 
|  | * the code/data sections, which are split and become | 
|  | * separate EFI memory regions. Mapping things | 
|  | * out-of-order leads to the firmware accessing | 
|  | * unmapped addresses. | 
|  | * | 
|  | * Since we need to map things this way whether or not | 
|  | * the kernel actually makes use of | 
|  | * EFI_PROPERTIES_TABLE, let's just switch to this | 
|  | * scheme by default for 64-bit. | 
|  | */ | 
|  | return efi_map_next_entry_reverse(entry); | 
|  | } | 
|  |  | 
|  | /* Initial call */ | 
|  | if (!entry) | 
|  | return memmap.map; | 
|  |  | 
|  | entry += memmap.desc_size; | 
|  | if (entry >= memmap.map_end) | 
|  | return NULL; | 
|  |  | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Map the efi memory ranges of the runtime services and update new_mmap with | 
|  | * virtual addresses. | 
|  | */ | 
|  | static void * __init efi_map_regions(int *count, int *pg_shift) | 
|  | { | 
|  | void *p, *new_memmap = NULL; | 
|  | unsigned long left = 0; | 
|  | efi_memory_desc_t *md; | 
|  |  | 
|  | p = NULL; | 
|  | while ((p = efi_map_next_entry(p))) { | 
|  | md = p; | 
|  | if (!(md->attribute & EFI_MEMORY_RUNTIME)) { | 
|  | #ifdef CONFIG_X86_64 | 
|  | if (md->type != EFI_BOOT_SERVICES_CODE && | 
|  | md->type != EFI_BOOT_SERVICES_DATA) | 
|  | #endif | 
|  | continue; | 
|  | } | 
|  |  | 
|  | efi_map_region(md); | 
|  | get_systab_virt_addr(md); | 
|  |  | 
|  | if (left < memmap.desc_size) { | 
|  | new_memmap = realloc_pages(new_memmap, *pg_shift); | 
|  | if (!new_memmap) | 
|  | return NULL; | 
|  |  | 
|  | left += PAGE_SIZE << *pg_shift; | 
|  | (*pg_shift)++; | 
|  | } | 
|  |  | 
|  | memcpy(new_memmap + (*count * memmap.desc_size), md, | 
|  | memmap.desc_size); | 
|  |  | 
|  | left -= memmap.desc_size; | 
|  | (*count)++; | 
|  | } | 
|  |  | 
|  | return new_memmap; | 
|  | } | 
|  |  | 
|  | static void __init kexec_enter_virtual_mode(void) | 
|  | { | 
|  | #ifdef CONFIG_KEXEC_CORE | 
|  | efi_memory_desc_t *md; | 
|  | unsigned int num_pages; | 
|  | void *p; | 
|  |  | 
|  | efi.systab = NULL; | 
|  |  | 
|  | /* | 
|  | * We don't do virtual mode, since we don't do runtime services, on | 
|  | * non-native EFI | 
|  | */ | 
|  | if (!efi_is_native()) { | 
|  | efi_unmap_memmap(); | 
|  | clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (efi_alloc_page_tables()) { | 
|  | pr_err("Failed to allocate EFI page tables\n"); | 
|  | clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Map efi regions which were passed via setup_data. The virt_addr is a | 
|  | * fixed addr which was used in first kernel of a kexec boot. | 
|  | */ | 
|  | for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
|  | md = p; | 
|  | efi_map_region_fixed(md); /* FIXME: add error handling */ | 
|  | get_systab_virt_addr(md); | 
|  | } | 
|  |  | 
|  | save_runtime_map(); | 
|  |  | 
|  | BUG_ON(!efi.systab); | 
|  |  | 
|  | num_pages = ALIGN(memmap.nr_map * memmap.desc_size, PAGE_SIZE); | 
|  | num_pages >>= PAGE_SHIFT; | 
|  |  | 
|  | if (efi_setup_page_tables(memmap.phys_map, num_pages)) { | 
|  | clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | efi_sync_low_kernel_mappings(); | 
|  |  | 
|  | /* | 
|  | * Now that EFI is in virtual mode, update the function | 
|  | * pointers in the runtime service table to the new virtual addresses. | 
|  | * | 
|  | * Call EFI services through wrapper functions. | 
|  | */ | 
|  | efi.runtime_version = efi_systab.hdr.revision; | 
|  |  | 
|  | efi_native_runtime_setup(); | 
|  |  | 
|  | efi.set_virtual_address_map = NULL; | 
|  |  | 
|  | if (efi_enabled(EFI_OLD_MEMMAP) && (__supported_pte_mask & _PAGE_NX)) | 
|  | runtime_code_page_mkexec(); | 
|  |  | 
|  | /* clean DUMMY object */ | 
|  | efi_delete_dummy_variable(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function will switch the EFI runtime services to virtual mode. | 
|  | * Essentially, we look through the EFI memmap and map every region that | 
|  | * has the runtime attribute bit set in its memory descriptor into the | 
|  | * efi_pgd page table. | 
|  | * | 
|  | * The old method which used to update that memory descriptor with the | 
|  | * virtual address obtained from ioremap() is still supported when the | 
|  | * kernel is booted with efi=old_map on its command line. Same old | 
|  | * method enabled the runtime services to be called without having to | 
|  | * thunk back into physical mode for every invocation. | 
|  | * | 
|  | * The new method does a pagetable switch in a preemption-safe manner | 
|  | * so that we're in a different address space when calling a runtime | 
|  | * function. For function arguments passing we do copy the PUDs of the | 
|  | * kernel page table into efi_pgd prior to each call. | 
|  | * | 
|  | * Specially for kexec boot, efi runtime maps in previous kernel should | 
|  | * be passed in via setup_data. In that case runtime ranges will be mapped | 
|  | * to the same virtual addresses as the first kernel, see | 
|  | * kexec_enter_virtual_mode(). | 
|  | */ | 
|  | static void __init __efi_enter_virtual_mode(void) | 
|  | { | 
|  | int count = 0, pg_shift = 0; | 
|  | void *new_memmap = NULL; | 
|  | efi_status_t status; | 
|  |  | 
|  | efi.systab = NULL; | 
|  |  | 
|  | if (efi_alloc_page_tables()) { | 
|  | pr_err("Failed to allocate EFI page tables\n"); | 
|  | clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | efi_merge_regions(); | 
|  | new_memmap = efi_map_regions(&count, &pg_shift); | 
|  | if (!new_memmap) { | 
|  | pr_err("Error reallocating memory, EFI runtime non-functional!\n"); | 
|  | clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | save_runtime_map(); | 
|  |  | 
|  | BUG_ON(!efi.systab); | 
|  |  | 
|  | if (efi_setup_page_tables(__pa(new_memmap), 1 << pg_shift)) { | 
|  | clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | efi_sync_low_kernel_mappings(); | 
|  |  | 
|  | if (efi_is_native()) { | 
|  | status = phys_efi_set_virtual_address_map( | 
|  | memmap.desc_size * count, | 
|  | memmap.desc_size, | 
|  | memmap.desc_version, | 
|  | (efi_memory_desc_t *)__pa(new_memmap)); | 
|  | } else { | 
|  | status = efi_thunk_set_virtual_address_map( | 
|  | efi_phys.set_virtual_address_map, | 
|  | memmap.desc_size * count, | 
|  | memmap.desc_size, | 
|  | memmap.desc_version, | 
|  | (efi_memory_desc_t *)__pa(new_memmap)); | 
|  | } | 
|  |  | 
|  | if (status != EFI_SUCCESS) { | 
|  | pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n", | 
|  | status); | 
|  | panic("EFI call to SetVirtualAddressMap() failed!"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now that EFI is in virtual mode, update the function | 
|  | * pointers in the runtime service table to the new virtual addresses. | 
|  | * | 
|  | * Call EFI services through wrapper functions. | 
|  | */ | 
|  | efi.runtime_version = efi_systab.hdr.revision; | 
|  |  | 
|  | if (efi_is_native()) | 
|  | efi_native_runtime_setup(); | 
|  | else | 
|  | efi_thunk_runtime_setup(); | 
|  |  | 
|  | efi.set_virtual_address_map = NULL; | 
|  |  | 
|  | /* | 
|  | * Apply more restrictive page table mapping attributes now that | 
|  | * SVAM() has been called and the firmware has performed all | 
|  | * necessary relocation fixups for the new virtual addresses. | 
|  | */ | 
|  | efi_runtime_update_mappings(); | 
|  | efi_dump_pagetable(); | 
|  |  | 
|  | /* | 
|  | * We mapped the descriptor array into the EFI pagetable above | 
|  | * but we're not unmapping it here because if we're running in | 
|  | * EFI mixed mode we need all of memory to be accessible when | 
|  | * we pass parameters to the EFI runtime services in the | 
|  | * thunking code. | 
|  | * | 
|  | * efi_cleanup_page_tables(__pa(new_memmap), 1 << pg_shift); | 
|  | */ | 
|  | free_pages((unsigned long)new_memmap, pg_shift); | 
|  |  | 
|  | /* clean DUMMY object */ | 
|  | efi_delete_dummy_variable(); | 
|  | } | 
|  |  | 
|  | void __init efi_enter_virtual_mode(void) | 
|  | { | 
|  | if (efi_enabled(EFI_PARAVIRT)) | 
|  | return; | 
|  |  | 
|  | if (efi_setup) | 
|  | kexec_enter_virtual_mode(); | 
|  | else | 
|  | __efi_enter_virtual_mode(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convenience functions to obtain memory types and attributes | 
|  | */ | 
|  | u32 efi_mem_type(unsigned long phys_addr) | 
|  | { | 
|  | efi_memory_desc_t *md; | 
|  | void *p; | 
|  |  | 
|  | if (!efi_enabled(EFI_MEMMAP)) | 
|  | return 0; | 
|  |  | 
|  | for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
|  | md = p; | 
|  | if ((md->phys_addr <= phys_addr) && | 
|  | (phys_addr < (md->phys_addr + | 
|  | (md->num_pages << EFI_PAGE_SHIFT)))) | 
|  | return md->type; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init arch_parse_efi_cmdline(char *str) | 
|  | { | 
|  | if (!str) { | 
|  | pr_warn("need at least one option\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (parse_option_str(str, "old_map")) | 
|  | set_bit(EFI_OLD_MEMMAP, &efi.flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | early_param("efi", arch_parse_efi_cmdline); |