rcu: Explain why rcu_all_qs() is a stub in preemptible TREE RCU

The cond_resched() function reports an RCU quiescent state only in
non-preemptible TREE RCU implementation.  This commit therefore adds a
comment explaining why cond_resched() does nothing in preemptible kernels.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Neeraj Upadhyay <neeraju@codeaurora.org>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index 2d9ff40f4..6a03c3f 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -7781,6 +7781,17 @@
 		preempt_schedule_common();
 		return 1;
 	}
+	/*
+	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
+	 * whether the current CPU is in an RCU read-side critical section,
+	 * so the tick can report quiescent states even for CPUs looping
+	 * in kernel context.  In contrast, in non-preemptible kernels,
+	 * RCU readers leave no in-memory hints, which means that CPU-bound
+	 * processes executing in kernel context might never report an
+	 * RCU quiescent state.  Therefore, the following code causes
+	 * cond_resched() to report a quiescent state, but only when RCU
+	 * is in urgent need of one.
+	 */
 #ifndef CONFIG_PREEMPT_RCU
 	rcu_all_qs();
 #endif