|  | /* | 
|  | * random.c -- A strong random number generator | 
|  | * | 
|  | * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 | 
|  | * | 
|  | * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All | 
|  | * rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, and the entire permission notice in its entirety, | 
|  | *    including the disclaimer of warranties. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * 3. The name of the author may not be used to endorse or promote | 
|  | *    products derived from this software without specific prior | 
|  | *    written permission. | 
|  | * | 
|  | * ALTERNATIVELY, this product may be distributed under the terms of | 
|  | * the GNU General Public License, in which case the provisions of the GPL are | 
|  | * required INSTEAD OF the above restrictions.  (This clause is | 
|  | * necessary due to a potential bad interaction between the GPL and | 
|  | * the restrictions contained in a BSD-style copyright.) | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED | 
|  | * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES | 
|  | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF | 
|  | * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE | 
|  | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT | 
|  | * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR | 
|  | * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | 
|  | * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE | 
|  | * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH | 
|  | * DAMAGE. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * (now, with legal B.S. out of the way.....) | 
|  | * | 
|  | * This routine gathers environmental noise from device drivers, etc., | 
|  | * and returns good random numbers, suitable for cryptographic use. | 
|  | * Besides the obvious cryptographic uses, these numbers are also good | 
|  | * for seeding TCP sequence numbers, and other places where it is | 
|  | * desirable to have numbers which are not only random, but hard to | 
|  | * predict by an attacker. | 
|  | * | 
|  | * Theory of operation | 
|  | * =================== | 
|  | * | 
|  | * Computers are very predictable devices.  Hence it is extremely hard | 
|  | * to produce truly random numbers on a computer --- as opposed to | 
|  | * pseudo-random numbers, which can easily generated by using a | 
|  | * algorithm.  Unfortunately, it is very easy for attackers to guess | 
|  | * the sequence of pseudo-random number generators, and for some | 
|  | * applications this is not acceptable.  So instead, we must try to | 
|  | * gather "environmental noise" from the computer's environment, which | 
|  | * must be hard for outside attackers to observe, and use that to | 
|  | * generate random numbers.  In a Unix environment, this is best done | 
|  | * from inside the kernel. | 
|  | * | 
|  | * Sources of randomness from the environment include inter-keyboard | 
|  | * timings, inter-interrupt timings from some interrupts, and other | 
|  | * events which are both (a) non-deterministic and (b) hard for an | 
|  | * outside observer to measure.  Randomness from these sources are | 
|  | * added to an "entropy pool", which is mixed using a CRC-like function. | 
|  | * This is not cryptographically strong, but it is adequate assuming | 
|  | * the randomness is not chosen maliciously, and it is fast enough that | 
|  | * the overhead of doing it on every interrupt is very reasonable. | 
|  | * As random bytes are mixed into the entropy pool, the routines keep | 
|  | * an *estimate* of how many bits of randomness have been stored into | 
|  | * the random number generator's internal state. | 
|  | * | 
|  | * When random bytes are desired, they are obtained by taking the SHA | 
|  | * hash of the contents of the "entropy pool".  The SHA hash avoids | 
|  | * exposing the internal state of the entropy pool.  It is believed to | 
|  | * be computationally infeasible to derive any useful information | 
|  | * about the input of SHA from its output.  Even if it is possible to | 
|  | * analyze SHA in some clever way, as long as the amount of data | 
|  | * returned from the generator is less than the inherent entropy in | 
|  | * the pool, the output data is totally unpredictable.  For this | 
|  | * reason, the routine decreases its internal estimate of how many | 
|  | * bits of "true randomness" are contained in the entropy pool as it | 
|  | * outputs random numbers. | 
|  | * | 
|  | * If this estimate goes to zero, the routine can still generate | 
|  | * random numbers; however, an attacker may (at least in theory) be | 
|  | * able to infer the future output of the generator from prior | 
|  | * outputs.  This requires successful cryptanalysis of SHA, which is | 
|  | * not believed to be feasible, but there is a remote possibility. | 
|  | * Nonetheless, these numbers should be useful for the vast majority | 
|  | * of purposes. | 
|  | * | 
|  | * Exported interfaces ---- output | 
|  | * =============================== | 
|  | * | 
|  | * There are three exported interfaces; the first is one designed to | 
|  | * be used from within the kernel: | 
|  | * | 
|  | * 	void get_random_bytes(void *buf, int nbytes); | 
|  | * | 
|  | * This interface will return the requested number of random bytes, | 
|  | * and place it in the requested buffer. | 
|  | * | 
|  | * The two other interfaces are two character devices /dev/random and | 
|  | * /dev/urandom.  /dev/random is suitable for use when very high | 
|  | * quality randomness is desired (for example, for key generation or | 
|  | * one-time pads), as it will only return a maximum of the number of | 
|  | * bits of randomness (as estimated by the random number generator) | 
|  | * contained in the entropy pool. | 
|  | * | 
|  | * The /dev/urandom device does not have this limit, and will return | 
|  | * as many bytes as are requested.  As more and more random bytes are | 
|  | * requested without giving time for the entropy pool to recharge, | 
|  | * this will result in random numbers that are merely cryptographically | 
|  | * strong.  For many applications, however, this is acceptable. | 
|  | * | 
|  | * Exported interfaces ---- input | 
|  | * ============================== | 
|  | * | 
|  | * The current exported interfaces for gathering environmental noise | 
|  | * from the devices are: | 
|  | * | 
|  | *	void add_device_randomness(const void *buf, unsigned int size); | 
|  | * 	void add_input_randomness(unsigned int type, unsigned int code, | 
|  | *                                unsigned int value); | 
|  | *	void add_interrupt_randomness(int irq, int irq_flags); | 
|  | * 	void add_disk_randomness(struct gendisk *disk); | 
|  | * | 
|  | * add_device_randomness() is for adding data to the random pool that | 
|  | * is likely to differ between two devices (or possibly even per boot). | 
|  | * This would be things like MAC addresses or serial numbers, or the | 
|  | * read-out of the RTC. This does *not* add any actual entropy to the | 
|  | * pool, but it initializes the pool to different values for devices | 
|  | * that might otherwise be identical and have very little entropy | 
|  | * available to them (particularly common in the embedded world). | 
|  | * | 
|  | * add_input_randomness() uses the input layer interrupt timing, as well as | 
|  | * the event type information from the hardware. | 
|  | * | 
|  | * add_interrupt_randomness() uses the interrupt timing as random | 
|  | * inputs to the entropy pool. Using the cycle counters and the irq source | 
|  | * as inputs, it feeds the randomness roughly once a second. | 
|  | * | 
|  | * add_disk_randomness() uses what amounts to the seek time of block | 
|  | * layer request events, on a per-disk_devt basis, as input to the | 
|  | * entropy pool. Note that high-speed solid state drives with very low | 
|  | * seek times do not make for good sources of entropy, as their seek | 
|  | * times are usually fairly consistent. | 
|  | * | 
|  | * All of these routines try to estimate how many bits of randomness a | 
|  | * particular randomness source.  They do this by keeping track of the | 
|  | * first and second order deltas of the event timings. | 
|  | * | 
|  | * Ensuring unpredictability at system startup | 
|  | * ============================================ | 
|  | * | 
|  | * When any operating system starts up, it will go through a sequence | 
|  | * of actions that are fairly predictable by an adversary, especially | 
|  | * if the start-up does not involve interaction with a human operator. | 
|  | * This reduces the actual number of bits of unpredictability in the | 
|  | * entropy pool below the value in entropy_count.  In order to | 
|  | * counteract this effect, it helps to carry information in the | 
|  | * entropy pool across shut-downs and start-ups.  To do this, put the | 
|  | * following lines an appropriate script which is run during the boot | 
|  | * sequence: | 
|  | * | 
|  | *	echo "Initializing random number generator..." | 
|  | *	random_seed=/var/run/random-seed | 
|  | *	# Carry a random seed from start-up to start-up | 
|  | *	# Load and then save the whole entropy pool | 
|  | *	if [ -f $random_seed ]; then | 
|  | *		cat $random_seed >/dev/urandom | 
|  | *	else | 
|  | *		touch $random_seed | 
|  | *	fi | 
|  | *	chmod 600 $random_seed | 
|  | *	dd if=/dev/urandom of=$random_seed count=1 bs=512 | 
|  | * | 
|  | * and the following lines in an appropriate script which is run as | 
|  | * the system is shutdown: | 
|  | * | 
|  | *	# Carry a random seed from shut-down to start-up | 
|  | *	# Save the whole entropy pool | 
|  | *	echo "Saving random seed..." | 
|  | *	random_seed=/var/run/random-seed | 
|  | *	touch $random_seed | 
|  | *	chmod 600 $random_seed | 
|  | *	dd if=/dev/urandom of=$random_seed count=1 bs=512 | 
|  | * | 
|  | * For example, on most modern systems using the System V init | 
|  | * scripts, such code fragments would be found in | 
|  | * /etc/rc.d/init.d/random.  On older Linux systems, the correct script | 
|  | * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. | 
|  | * | 
|  | * Effectively, these commands cause the contents of the entropy pool | 
|  | * to be saved at shut-down time and reloaded into the entropy pool at | 
|  | * start-up.  (The 'dd' in the addition to the bootup script is to | 
|  | * make sure that /etc/random-seed is different for every start-up, | 
|  | * even if the system crashes without executing rc.0.)  Even with | 
|  | * complete knowledge of the start-up activities, predicting the state | 
|  | * of the entropy pool requires knowledge of the previous history of | 
|  | * the system. | 
|  | * | 
|  | * Configuring the /dev/random driver under Linux | 
|  | * ============================================== | 
|  | * | 
|  | * The /dev/random driver under Linux uses minor numbers 8 and 9 of | 
|  | * the /dev/mem major number (#1).  So if your system does not have | 
|  | * /dev/random and /dev/urandom created already, they can be created | 
|  | * by using the commands: | 
|  | * | 
|  | * 	mknod /dev/random c 1 8 | 
|  | * 	mknod /dev/urandom c 1 9 | 
|  | * | 
|  | * Acknowledgements: | 
|  | * ================= | 
|  | * | 
|  | * Ideas for constructing this random number generator were derived | 
|  | * from Pretty Good Privacy's random number generator, and from private | 
|  | * discussions with Phil Karn.  Colin Plumb provided a faster random | 
|  | * number generator, which speed up the mixing function of the entropy | 
|  | * pool, taken from PGPfone.  Dale Worley has also contributed many | 
|  | * useful ideas and suggestions to improve this driver. | 
|  | * | 
|  | * Any flaws in the design are solely my responsibility, and should | 
|  | * not be attributed to the Phil, Colin, or any of authors of PGP. | 
|  | * | 
|  | * Further background information on this topic may be obtained from | 
|  | * RFC 1750, "Randomness Recommendations for Security", by Donald | 
|  | * Eastlake, Steve Crocker, and Jeff Schiller. | 
|  | */ | 
|  |  | 
|  | #include <linux/utsname.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/major.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/fcntl.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/poll.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/genhd.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/cryptohash.h> | 
|  | #include <linux/fips.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/kmemcheck.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/completion.h> | 
|  |  | 
|  | #include <asm/processor.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/irq.h> | 
|  | #include <asm/irq_regs.h> | 
|  | #include <asm/io.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/random.h> | 
|  |  | 
|  | /* #define ADD_INTERRUPT_BENCH */ | 
|  |  | 
|  | /* | 
|  | * Configuration information | 
|  | */ | 
|  | #define INPUT_POOL_SHIFT	12 | 
|  | #define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5)) | 
|  | #define OUTPUT_POOL_SHIFT	10 | 
|  | #define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5)) | 
|  | #define SEC_XFER_SIZE		512 | 
|  | #define EXTRACT_SIZE		10 | 
|  |  | 
|  | #define DEBUG_RANDOM_BOOT 0 | 
|  |  | 
|  | #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long)) | 
|  |  | 
|  | /* | 
|  | * To allow fractional bits to be tracked, the entropy_count field is | 
|  | * denominated in units of 1/8th bits. | 
|  | * | 
|  | * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in | 
|  | * credit_entropy_bits() needs to be 64 bits wide. | 
|  | */ | 
|  | #define ENTROPY_SHIFT 3 | 
|  | #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT) | 
|  |  | 
|  | /* | 
|  | * The minimum number of bits of entropy before we wake up a read on | 
|  | * /dev/random.  Should be enough to do a significant reseed. | 
|  | */ | 
|  | static int random_read_wakeup_bits = 64; | 
|  |  | 
|  | /* | 
|  | * If the entropy count falls under this number of bits, then we | 
|  | * should wake up processes which are selecting or polling on write | 
|  | * access to /dev/random. | 
|  | */ | 
|  | static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS; | 
|  |  | 
|  | /* | 
|  | * The minimum number of seconds between urandom pool reseeding.  We | 
|  | * do this to limit the amount of entropy that can be drained from the | 
|  | * input pool even if there are heavy demands on /dev/urandom. | 
|  | */ | 
|  | static int random_min_urandom_seed = 60; | 
|  |  | 
|  | /* | 
|  | * Originally, we used a primitive polynomial of degree .poolwords | 
|  | * over GF(2).  The taps for various sizes are defined below.  They | 
|  | * were chosen to be evenly spaced except for the last tap, which is 1 | 
|  | * to get the twisting happening as fast as possible. | 
|  | * | 
|  | * For the purposes of better mixing, we use the CRC-32 polynomial as | 
|  | * well to make a (modified) twisted Generalized Feedback Shift | 
|  | * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR | 
|  | * generators.  ACM Transactions on Modeling and Computer Simulation | 
|  | * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted | 
|  | * GFSR generators II.  ACM Transactions on Modeling and Computer | 
|  | * Simulation 4:254-266) | 
|  | * | 
|  | * Thanks to Colin Plumb for suggesting this. | 
|  | * | 
|  | * The mixing operation is much less sensitive than the output hash, | 
|  | * where we use SHA-1.  All that we want of mixing operation is that | 
|  | * it be a good non-cryptographic hash; i.e. it not produce collisions | 
|  | * when fed "random" data of the sort we expect to see.  As long as | 
|  | * the pool state differs for different inputs, we have preserved the | 
|  | * input entropy and done a good job.  The fact that an intelligent | 
|  | * attacker can construct inputs that will produce controlled | 
|  | * alterations to the pool's state is not important because we don't | 
|  | * consider such inputs to contribute any randomness.  The only | 
|  | * property we need with respect to them is that the attacker can't | 
|  | * increase his/her knowledge of the pool's state.  Since all | 
|  | * additions are reversible (knowing the final state and the input, | 
|  | * you can reconstruct the initial state), if an attacker has any | 
|  | * uncertainty about the initial state, he/she can only shuffle that | 
|  | * uncertainty about, but never cause any collisions (which would | 
|  | * decrease the uncertainty). | 
|  | * | 
|  | * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and | 
|  | * Videau in their paper, "The Linux Pseudorandom Number Generator | 
|  | * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their | 
|  | * paper, they point out that we are not using a true Twisted GFSR, | 
|  | * since Matsumoto & Kurita used a trinomial feedback polynomial (that | 
|  | * is, with only three taps, instead of the six that we are using). | 
|  | * As a result, the resulting polynomial is neither primitive nor | 
|  | * irreducible, and hence does not have a maximal period over | 
|  | * GF(2**32).  They suggest a slight change to the generator | 
|  | * polynomial which improves the resulting TGFSR polynomial to be | 
|  | * irreducible, which we have made here. | 
|  | */ | 
|  | static struct poolinfo { | 
|  | int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits; | 
|  | #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5) | 
|  | int tap1, tap2, tap3, tap4, tap5; | 
|  | } poolinfo_table[] = { | 
|  | /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */ | 
|  | /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */ | 
|  | { S(128),	104,	76,	51,	25,	1 }, | 
|  | /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */ | 
|  | /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */ | 
|  | { S(32),	26,	19,	14,	7,	1 }, | 
|  | #if 0 | 
|  | /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */ | 
|  | { S(2048),	1638,	1231,	819,	411,	1 }, | 
|  |  | 
|  | /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */ | 
|  | { S(1024),	817,	615,	412,	204,	1 }, | 
|  |  | 
|  | /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */ | 
|  | { S(1024),	819,	616,	410,	207,	2 }, | 
|  |  | 
|  | /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */ | 
|  | { S(512),	411,	308,	208,	104,	1 }, | 
|  |  | 
|  | /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */ | 
|  | { S(512),	409,	307,	206,	102,	2 }, | 
|  | /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */ | 
|  | { S(512),	409,	309,	205,	103,	2 }, | 
|  |  | 
|  | /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */ | 
|  | { S(256),	205,	155,	101,	52,	1 }, | 
|  |  | 
|  | /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */ | 
|  | { S(128),	103,	78,	51,	27,	2 }, | 
|  |  | 
|  | /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */ | 
|  | { S(64),	52,	39,	26,	14,	1 }, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Static global variables | 
|  | */ | 
|  | static DECLARE_WAIT_QUEUE_HEAD(random_read_wait); | 
|  | static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); | 
|  | static DECLARE_WAIT_QUEUE_HEAD(urandom_init_wait); | 
|  | static struct fasync_struct *fasync; | 
|  |  | 
|  | static DEFINE_SPINLOCK(random_ready_list_lock); | 
|  | static LIST_HEAD(random_ready_list); | 
|  |  | 
|  | /********************************************************************** | 
|  | * | 
|  | * OS independent entropy store.   Here are the functions which handle | 
|  | * storing entropy in an entropy pool. | 
|  | * | 
|  | **********************************************************************/ | 
|  |  | 
|  | struct entropy_store; | 
|  | struct entropy_store { | 
|  | /* read-only data: */ | 
|  | const struct poolinfo *poolinfo; | 
|  | __u32 *pool; | 
|  | const char *name; | 
|  | struct entropy_store *pull; | 
|  | struct work_struct push_work; | 
|  |  | 
|  | /* read-write data: */ | 
|  | unsigned long last_pulled; | 
|  | spinlock_t lock; | 
|  | unsigned short add_ptr; | 
|  | unsigned short input_rotate; | 
|  | int entropy_count; | 
|  | int entropy_total; | 
|  | unsigned int initialized:1; | 
|  | unsigned int limit:1; | 
|  | unsigned int last_data_init:1; | 
|  | __u8 last_data[EXTRACT_SIZE]; | 
|  | }; | 
|  |  | 
|  | static void push_to_pool(struct work_struct *work); | 
|  | static __u32 input_pool_data[INPUT_POOL_WORDS]; | 
|  | static __u32 blocking_pool_data[OUTPUT_POOL_WORDS]; | 
|  | static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS]; | 
|  |  | 
|  | static struct entropy_store input_pool = { | 
|  | .poolinfo = &poolinfo_table[0], | 
|  | .name = "input", | 
|  | .limit = 1, | 
|  | .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), | 
|  | .pool = input_pool_data | 
|  | }; | 
|  |  | 
|  | static struct entropy_store blocking_pool = { | 
|  | .poolinfo = &poolinfo_table[1], | 
|  | .name = "blocking", | 
|  | .limit = 1, | 
|  | .pull = &input_pool, | 
|  | .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock), | 
|  | .pool = blocking_pool_data, | 
|  | .push_work = __WORK_INITIALIZER(blocking_pool.push_work, | 
|  | push_to_pool), | 
|  | }; | 
|  |  | 
|  | static struct entropy_store nonblocking_pool = { | 
|  | .poolinfo = &poolinfo_table[1], | 
|  | .name = "nonblocking", | 
|  | .pull = &input_pool, | 
|  | .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock), | 
|  | .pool = nonblocking_pool_data, | 
|  | .push_work = __WORK_INITIALIZER(nonblocking_pool.push_work, | 
|  | push_to_pool), | 
|  | }; | 
|  |  | 
|  | static __u32 const twist_table[8] = { | 
|  | 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, | 
|  | 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; | 
|  |  | 
|  | /* | 
|  | * This function adds bytes into the entropy "pool".  It does not | 
|  | * update the entropy estimate.  The caller should call | 
|  | * credit_entropy_bits if this is appropriate. | 
|  | * | 
|  | * The pool is stirred with a primitive polynomial of the appropriate | 
|  | * degree, and then twisted.  We twist by three bits at a time because | 
|  | * it's cheap to do so and helps slightly in the expected case where | 
|  | * the entropy is concentrated in the low-order bits. | 
|  | */ | 
|  | static void _mix_pool_bytes(struct entropy_store *r, const void *in, | 
|  | int nbytes) | 
|  | { | 
|  | unsigned long i, tap1, tap2, tap3, tap4, tap5; | 
|  | int input_rotate; | 
|  | int wordmask = r->poolinfo->poolwords - 1; | 
|  | const char *bytes = in; | 
|  | __u32 w; | 
|  |  | 
|  | tap1 = r->poolinfo->tap1; | 
|  | tap2 = r->poolinfo->tap2; | 
|  | tap3 = r->poolinfo->tap3; | 
|  | tap4 = r->poolinfo->tap4; | 
|  | tap5 = r->poolinfo->tap5; | 
|  |  | 
|  | input_rotate = r->input_rotate; | 
|  | i = r->add_ptr; | 
|  |  | 
|  | /* mix one byte at a time to simplify size handling and churn faster */ | 
|  | while (nbytes--) { | 
|  | w = rol32(*bytes++, input_rotate); | 
|  | i = (i - 1) & wordmask; | 
|  |  | 
|  | /* XOR in the various taps */ | 
|  | w ^= r->pool[i]; | 
|  | w ^= r->pool[(i + tap1) & wordmask]; | 
|  | w ^= r->pool[(i + tap2) & wordmask]; | 
|  | w ^= r->pool[(i + tap3) & wordmask]; | 
|  | w ^= r->pool[(i + tap4) & wordmask]; | 
|  | w ^= r->pool[(i + tap5) & wordmask]; | 
|  |  | 
|  | /* Mix the result back in with a twist */ | 
|  | r->pool[i] = (w >> 3) ^ twist_table[w & 7]; | 
|  |  | 
|  | /* | 
|  | * Normally, we add 7 bits of rotation to the pool. | 
|  | * At the beginning of the pool, add an extra 7 bits | 
|  | * rotation, so that successive passes spread the | 
|  | * input bits across the pool evenly. | 
|  | */ | 
|  | input_rotate = (input_rotate + (i ? 7 : 14)) & 31; | 
|  | } | 
|  |  | 
|  | r->input_rotate = input_rotate; | 
|  | r->add_ptr = i; | 
|  | } | 
|  |  | 
|  | static void __mix_pool_bytes(struct entropy_store *r, const void *in, | 
|  | int nbytes) | 
|  | { | 
|  | trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_); | 
|  | _mix_pool_bytes(r, in, nbytes); | 
|  | } | 
|  |  | 
|  | static void mix_pool_bytes(struct entropy_store *r, const void *in, | 
|  | int nbytes) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | trace_mix_pool_bytes(r->name, nbytes, _RET_IP_); | 
|  | spin_lock_irqsave(&r->lock, flags); | 
|  | _mix_pool_bytes(r, in, nbytes); | 
|  | spin_unlock_irqrestore(&r->lock, flags); | 
|  | } | 
|  |  | 
|  | struct fast_pool { | 
|  | __u32		pool[4]; | 
|  | unsigned long	last; | 
|  | unsigned short	reg_idx; | 
|  | unsigned char	count; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * This is a fast mixing routine used by the interrupt randomness | 
|  | * collector.  It's hardcoded for an 128 bit pool and assumes that any | 
|  | * locks that might be needed are taken by the caller. | 
|  | */ | 
|  | static void fast_mix(struct fast_pool *f) | 
|  | { | 
|  | __u32 a = f->pool[0],	b = f->pool[1]; | 
|  | __u32 c = f->pool[2],	d = f->pool[3]; | 
|  |  | 
|  | a += b;			c += d; | 
|  | b = rol32(b, 6);	d = rol32(d, 27); | 
|  | d ^= a;			b ^= c; | 
|  |  | 
|  | a += b;			c += d; | 
|  | b = rol32(b, 16);	d = rol32(d, 14); | 
|  | d ^= a;			b ^= c; | 
|  |  | 
|  | a += b;			c += d; | 
|  | b = rol32(b, 6);	d = rol32(d, 27); | 
|  | d ^= a;			b ^= c; | 
|  |  | 
|  | a += b;			c += d; | 
|  | b = rol32(b, 16);	d = rol32(d, 14); | 
|  | d ^= a;			b ^= c; | 
|  |  | 
|  | f->pool[0] = a;  f->pool[1] = b; | 
|  | f->pool[2] = c;  f->pool[3] = d; | 
|  | f->count++; | 
|  | } | 
|  |  | 
|  | static void process_random_ready_list(void) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct random_ready_callback *rdy, *tmp; | 
|  |  | 
|  | spin_lock_irqsave(&random_ready_list_lock, flags); | 
|  | list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) { | 
|  | struct module *owner = rdy->owner; | 
|  |  | 
|  | list_del_init(&rdy->list); | 
|  | rdy->func(rdy); | 
|  | module_put(owner); | 
|  | } | 
|  | spin_unlock_irqrestore(&random_ready_list_lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Credit (or debit) the entropy store with n bits of entropy. | 
|  | * Use credit_entropy_bits_safe() if the value comes from userspace | 
|  | * or otherwise should be checked for extreme values. | 
|  | */ | 
|  | static void credit_entropy_bits(struct entropy_store *r, int nbits) | 
|  | { | 
|  | int entropy_count, orig; | 
|  | const int pool_size = r->poolinfo->poolfracbits; | 
|  | int nfrac = nbits << ENTROPY_SHIFT; | 
|  |  | 
|  | if (!nbits) | 
|  | return; | 
|  |  | 
|  | retry: | 
|  | entropy_count = orig = ACCESS_ONCE(r->entropy_count); | 
|  | if (nfrac < 0) { | 
|  | /* Debit */ | 
|  | entropy_count += nfrac; | 
|  | } else { | 
|  | /* | 
|  | * Credit: we have to account for the possibility of | 
|  | * overwriting already present entropy.	 Even in the | 
|  | * ideal case of pure Shannon entropy, new contributions | 
|  | * approach the full value asymptotically: | 
|  | * | 
|  | * entropy <- entropy + (pool_size - entropy) * | 
|  | *	(1 - exp(-add_entropy/pool_size)) | 
|  | * | 
|  | * For add_entropy <= pool_size/2 then | 
|  | * (1 - exp(-add_entropy/pool_size)) >= | 
|  | *    (add_entropy/pool_size)*0.7869... | 
|  | * so we can approximate the exponential with | 
|  | * 3/4*add_entropy/pool_size and still be on the | 
|  | * safe side by adding at most pool_size/2 at a time. | 
|  | * | 
|  | * The use of pool_size-2 in the while statement is to | 
|  | * prevent rounding artifacts from making the loop | 
|  | * arbitrarily long; this limits the loop to log2(pool_size)*2 | 
|  | * turns no matter how large nbits is. | 
|  | */ | 
|  | int pnfrac = nfrac; | 
|  | const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2; | 
|  | /* The +2 corresponds to the /4 in the denominator */ | 
|  |  | 
|  | do { | 
|  | unsigned int anfrac = min(pnfrac, pool_size/2); | 
|  | unsigned int add = | 
|  | ((pool_size - entropy_count)*anfrac*3) >> s; | 
|  |  | 
|  | entropy_count += add; | 
|  | pnfrac -= anfrac; | 
|  | } while (unlikely(entropy_count < pool_size-2 && pnfrac)); | 
|  | } | 
|  |  | 
|  | if (unlikely(entropy_count < 0)) { | 
|  | pr_warn("random: negative entropy/overflow: pool %s count %d\n", | 
|  | r->name, entropy_count); | 
|  | WARN_ON(1); | 
|  | entropy_count = 0; | 
|  | } else if (entropy_count > pool_size) | 
|  | entropy_count = pool_size; | 
|  | if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) | 
|  | goto retry; | 
|  |  | 
|  | r->entropy_total += nbits; | 
|  | if (!r->initialized && r->entropy_total > 128) { | 
|  | r->initialized = 1; | 
|  | r->entropy_total = 0; | 
|  | if (r == &nonblocking_pool) { | 
|  | prandom_reseed_late(); | 
|  | process_random_ready_list(); | 
|  | wake_up_all(&urandom_init_wait); | 
|  | pr_notice("random: %s pool is initialized\n", r->name); | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_credit_entropy_bits(r->name, nbits, | 
|  | entropy_count >> ENTROPY_SHIFT, | 
|  | r->entropy_total, _RET_IP_); | 
|  |  | 
|  | if (r == &input_pool) { | 
|  | int entropy_bits = entropy_count >> ENTROPY_SHIFT; | 
|  |  | 
|  | /* should we wake readers? */ | 
|  | if (entropy_bits >= random_read_wakeup_bits) { | 
|  | wake_up_interruptible(&random_read_wait); | 
|  | kill_fasync(&fasync, SIGIO, POLL_IN); | 
|  | } | 
|  | /* If the input pool is getting full, send some | 
|  | * entropy to the two output pools, flipping back and | 
|  | * forth between them, until the output pools are 75% | 
|  | * full. | 
|  | */ | 
|  | if (entropy_bits > random_write_wakeup_bits && | 
|  | r->initialized && | 
|  | r->entropy_total >= 2*random_read_wakeup_bits) { | 
|  | static struct entropy_store *last = &blocking_pool; | 
|  | struct entropy_store *other = &blocking_pool; | 
|  |  | 
|  | if (last == &blocking_pool) | 
|  | other = &nonblocking_pool; | 
|  | if (other->entropy_count <= | 
|  | 3 * other->poolinfo->poolfracbits / 4) | 
|  | last = other; | 
|  | if (last->entropy_count <= | 
|  | 3 * last->poolinfo->poolfracbits / 4) { | 
|  | schedule_work(&last->push_work); | 
|  | r->entropy_total = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void credit_entropy_bits_safe(struct entropy_store *r, int nbits) | 
|  | { | 
|  | const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1)); | 
|  |  | 
|  | /* Cap the value to avoid overflows */ | 
|  | nbits = min(nbits,  nbits_max); | 
|  | nbits = max(nbits, -nbits_max); | 
|  |  | 
|  | credit_entropy_bits(r, nbits); | 
|  | } | 
|  |  | 
|  | /********************************************************************* | 
|  | * | 
|  | * Entropy input management | 
|  | * | 
|  | *********************************************************************/ | 
|  |  | 
|  | /* There is one of these per entropy source */ | 
|  | struct timer_rand_state { | 
|  | cycles_t last_time; | 
|  | long last_delta, last_delta2; | 
|  | unsigned dont_count_entropy:1; | 
|  | }; | 
|  |  | 
|  | #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, }; | 
|  |  | 
|  | /* | 
|  | * Add device- or boot-specific data to the input and nonblocking | 
|  | * pools to help initialize them to unique values. | 
|  | * | 
|  | * None of this adds any entropy, it is meant to avoid the | 
|  | * problem of the nonblocking pool having similar initial state | 
|  | * across largely identical devices. | 
|  | */ | 
|  | void add_device_randomness(const void *buf, unsigned int size) | 
|  | { | 
|  | unsigned long time = random_get_entropy() ^ jiffies; | 
|  | unsigned long flags; | 
|  |  | 
|  | trace_add_device_randomness(size, _RET_IP_); | 
|  | spin_lock_irqsave(&input_pool.lock, flags); | 
|  | _mix_pool_bytes(&input_pool, buf, size); | 
|  | _mix_pool_bytes(&input_pool, &time, sizeof(time)); | 
|  | spin_unlock_irqrestore(&input_pool.lock, flags); | 
|  |  | 
|  | spin_lock_irqsave(&nonblocking_pool.lock, flags); | 
|  | _mix_pool_bytes(&nonblocking_pool, buf, size); | 
|  | _mix_pool_bytes(&nonblocking_pool, &time, sizeof(time)); | 
|  | spin_unlock_irqrestore(&nonblocking_pool.lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(add_device_randomness); | 
|  |  | 
|  | static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE; | 
|  |  | 
|  | /* | 
|  | * This function adds entropy to the entropy "pool" by using timing | 
|  | * delays.  It uses the timer_rand_state structure to make an estimate | 
|  | * of how many bits of entropy this call has added to the pool. | 
|  | * | 
|  | * The number "num" is also added to the pool - it should somehow describe | 
|  | * the type of event which just happened.  This is currently 0-255 for | 
|  | * keyboard scan codes, and 256 upwards for interrupts. | 
|  | * | 
|  | */ | 
|  | static void add_timer_randomness(struct timer_rand_state *state, unsigned num) | 
|  | { | 
|  | struct entropy_store	*r; | 
|  | struct { | 
|  | long jiffies; | 
|  | unsigned cycles; | 
|  | unsigned num; | 
|  | } sample; | 
|  | long delta, delta2, delta3; | 
|  |  | 
|  | preempt_disable(); | 
|  |  | 
|  | sample.jiffies = jiffies; | 
|  | sample.cycles = random_get_entropy(); | 
|  | sample.num = num; | 
|  | r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool; | 
|  | mix_pool_bytes(r, &sample, sizeof(sample)); | 
|  |  | 
|  | /* | 
|  | * Calculate number of bits of randomness we probably added. | 
|  | * We take into account the first, second and third-order deltas | 
|  | * in order to make our estimate. | 
|  | */ | 
|  |  | 
|  | if (!state->dont_count_entropy) { | 
|  | delta = sample.jiffies - state->last_time; | 
|  | state->last_time = sample.jiffies; | 
|  |  | 
|  | delta2 = delta - state->last_delta; | 
|  | state->last_delta = delta; | 
|  |  | 
|  | delta3 = delta2 - state->last_delta2; | 
|  | state->last_delta2 = delta2; | 
|  |  | 
|  | if (delta < 0) | 
|  | delta = -delta; | 
|  | if (delta2 < 0) | 
|  | delta2 = -delta2; | 
|  | if (delta3 < 0) | 
|  | delta3 = -delta3; | 
|  | if (delta > delta2) | 
|  | delta = delta2; | 
|  | if (delta > delta3) | 
|  | delta = delta3; | 
|  |  | 
|  | /* | 
|  | * delta is now minimum absolute delta. | 
|  | * Round down by 1 bit on general principles, | 
|  | * and limit entropy entimate to 12 bits. | 
|  | */ | 
|  | credit_entropy_bits(r, min_t(int, fls(delta>>1), 11)); | 
|  | } | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | void add_input_randomness(unsigned int type, unsigned int code, | 
|  | unsigned int value) | 
|  | { | 
|  | static unsigned char last_value; | 
|  |  | 
|  | /* ignore autorepeat and the like */ | 
|  | if (value == last_value) | 
|  | return; | 
|  |  | 
|  | last_value = value; | 
|  | add_timer_randomness(&input_timer_state, | 
|  | (type << 4) ^ code ^ (code >> 4) ^ value); | 
|  | trace_add_input_randomness(ENTROPY_BITS(&input_pool)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(add_input_randomness); | 
|  |  | 
|  | static DEFINE_PER_CPU(struct fast_pool, irq_randomness); | 
|  |  | 
|  | #ifdef ADD_INTERRUPT_BENCH | 
|  | static unsigned long avg_cycles, avg_deviation; | 
|  |  | 
|  | #define AVG_SHIFT 8     /* Exponential average factor k=1/256 */ | 
|  | #define FIXED_1_2 (1 << (AVG_SHIFT-1)) | 
|  |  | 
|  | static void add_interrupt_bench(cycles_t start) | 
|  | { | 
|  | long delta = random_get_entropy() - start; | 
|  |  | 
|  | /* Use a weighted moving average */ | 
|  | delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT); | 
|  | avg_cycles += delta; | 
|  | /* And average deviation */ | 
|  | delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT); | 
|  | avg_deviation += delta; | 
|  | } | 
|  | #else | 
|  | #define add_interrupt_bench(x) | 
|  | #endif | 
|  |  | 
|  | static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs) | 
|  | { | 
|  | __u32 *ptr = (__u32 *) regs; | 
|  |  | 
|  | if (regs == NULL) | 
|  | return 0; | 
|  | if (f->reg_idx >= sizeof(struct pt_regs) / sizeof(__u32)) | 
|  | f->reg_idx = 0; | 
|  | return *(ptr + f->reg_idx++); | 
|  | } | 
|  |  | 
|  | void add_interrupt_randomness(int irq, int irq_flags) | 
|  | { | 
|  | struct entropy_store	*r; | 
|  | struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness); | 
|  | struct pt_regs		*regs = get_irq_regs(); | 
|  | unsigned long		now = jiffies; | 
|  | cycles_t		cycles = random_get_entropy(); | 
|  | __u32			c_high, j_high; | 
|  | __u64			ip; | 
|  | unsigned long		seed; | 
|  | int			credit = 0; | 
|  |  | 
|  | if (cycles == 0) | 
|  | cycles = get_reg(fast_pool, regs); | 
|  | c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0; | 
|  | j_high = (sizeof(now) > 4) ? now >> 32 : 0; | 
|  | fast_pool->pool[0] ^= cycles ^ j_high ^ irq; | 
|  | fast_pool->pool[1] ^= now ^ c_high; | 
|  | ip = regs ? instruction_pointer(regs) : _RET_IP_; | 
|  | fast_pool->pool[2] ^= ip; | 
|  | fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 : | 
|  | get_reg(fast_pool, regs); | 
|  |  | 
|  | fast_mix(fast_pool); | 
|  | add_interrupt_bench(cycles); | 
|  |  | 
|  | if ((fast_pool->count < 64) && | 
|  | !time_after(now, fast_pool->last + HZ)) | 
|  | return; | 
|  |  | 
|  | r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool; | 
|  | if (!spin_trylock(&r->lock)) | 
|  | return; | 
|  |  | 
|  | fast_pool->last = now; | 
|  | __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool)); | 
|  |  | 
|  | /* | 
|  | * If we have architectural seed generator, produce a seed and | 
|  | * add it to the pool.  For the sake of paranoia don't let the | 
|  | * architectural seed generator dominate the input from the | 
|  | * interrupt noise. | 
|  | */ | 
|  | if (arch_get_random_seed_long(&seed)) { | 
|  | __mix_pool_bytes(r, &seed, sizeof(seed)); | 
|  | credit = 1; | 
|  | } | 
|  | spin_unlock(&r->lock); | 
|  |  | 
|  | fast_pool->count = 0; | 
|  |  | 
|  | /* award one bit for the contents of the fast pool */ | 
|  | credit_entropy_bits(r, credit + 1); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_BLOCK | 
|  | void add_disk_randomness(struct gendisk *disk) | 
|  | { | 
|  | if (!disk || !disk->random) | 
|  | return; | 
|  | /* first major is 1, so we get >= 0x200 here */ | 
|  | add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); | 
|  | trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(add_disk_randomness); | 
|  | #endif | 
|  |  | 
|  | /********************************************************************* | 
|  | * | 
|  | * Entropy extraction routines | 
|  | * | 
|  | *********************************************************************/ | 
|  |  | 
|  | static ssize_t extract_entropy(struct entropy_store *r, void *buf, | 
|  | size_t nbytes, int min, int rsvd); | 
|  |  | 
|  | /* | 
|  | * This utility inline function is responsible for transferring entropy | 
|  | * from the primary pool to the secondary extraction pool. We make | 
|  | * sure we pull enough for a 'catastrophic reseed'. | 
|  | */ | 
|  | static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes); | 
|  | static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes) | 
|  | { | 
|  | if (!r->pull || | 
|  | r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) || | 
|  | r->entropy_count > r->poolinfo->poolfracbits) | 
|  | return; | 
|  |  | 
|  | if (r->limit == 0 && random_min_urandom_seed) { | 
|  | unsigned long now = jiffies; | 
|  |  | 
|  | if (time_before(now, | 
|  | r->last_pulled + random_min_urandom_seed * HZ)) | 
|  | return; | 
|  | r->last_pulled = now; | 
|  | } | 
|  |  | 
|  | _xfer_secondary_pool(r, nbytes); | 
|  | } | 
|  |  | 
|  | static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes) | 
|  | { | 
|  | __u32	tmp[OUTPUT_POOL_WORDS]; | 
|  |  | 
|  | /* For /dev/random's pool, always leave two wakeups' worth */ | 
|  | int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4; | 
|  | int bytes = nbytes; | 
|  |  | 
|  | /* pull at least as much as a wakeup */ | 
|  | bytes = max_t(int, bytes, random_read_wakeup_bits / 8); | 
|  | /* but never more than the buffer size */ | 
|  | bytes = min_t(int, bytes, sizeof(tmp)); | 
|  |  | 
|  | trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8, | 
|  | ENTROPY_BITS(r), ENTROPY_BITS(r->pull)); | 
|  | bytes = extract_entropy(r->pull, tmp, bytes, | 
|  | random_read_wakeup_bits / 8, rsvd_bytes); | 
|  | mix_pool_bytes(r, tmp, bytes); | 
|  | credit_entropy_bits(r, bytes*8); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Used as a workqueue function so that when the input pool is getting | 
|  | * full, we can "spill over" some entropy to the output pools.  That | 
|  | * way the output pools can store some of the excess entropy instead | 
|  | * of letting it go to waste. | 
|  | */ | 
|  | static void push_to_pool(struct work_struct *work) | 
|  | { | 
|  | struct entropy_store *r = container_of(work, struct entropy_store, | 
|  | push_work); | 
|  | BUG_ON(!r); | 
|  | _xfer_secondary_pool(r, random_read_wakeup_bits/8); | 
|  | trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT, | 
|  | r->pull->entropy_count >> ENTROPY_SHIFT); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function decides how many bytes to actually take from the | 
|  | * given pool, and also debits the entropy count accordingly. | 
|  | */ | 
|  | static size_t account(struct entropy_store *r, size_t nbytes, int min, | 
|  | int reserved) | 
|  | { | 
|  | int entropy_count, orig; | 
|  | size_t ibytes, nfrac; | 
|  |  | 
|  | BUG_ON(r->entropy_count > r->poolinfo->poolfracbits); | 
|  |  | 
|  | /* Can we pull enough? */ | 
|  | retry: | 
|  | entropy_count = orig = ACCESS_ONCE(r->entropy_count); | 
|  | ibytes = nbytes; | 
|  | /* If limited, never pull more than available */ | 
|  | if (r->limit) { | 
|  | int have_bytes = entropy_count >> (ENTROPY_SHIFT + 3); | 
|  |  | 
|  | if ((have_bytes -= reserved) < 0) | 
|  | have_bytes = 0; | 
|  | ibytes = min_t(size_t, ibytes, have_bytes); | 
|  | } | 
|  | if (ibytes < min) | 
|  | ibytes = 0; | 
|  |  | 
|  | if (unlikely(entropy_count < 0)) { | 
|  | pr_warn("random: negative entropy count: pool %s count %d\n", | 
|  | r->name, entropy_count); | 
|  | WARN_ON(1); | 
|  | entropy_count = 0; | 
|  | } | 
|  | nfrac = ibytes << (ENTROPY_SHIFT + 3); | 
|  | if ((size_t) entropy_count > nfrac) | 
|  | entropy_count -= nfrac; | 
|  | else | 
|  | entropy_count = 0; | 
|  |  | 
|  | if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) | 
|  | goto retry; | 
|  |  | 
|  | trace_debit_entropy(r->name, 8 * ibytes); | 
|  | if (ibytes && | 
|  | (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) { | 
|  | wake_up_interruptible(&random_write_wait); | 
|  | kill_fasync(&fasync, SIGIO, POLL_OUT); | 
|  | } | 
|  |  | 
|  | return ibytes; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function does the actual extraction for extract_entropy and | 
|  | * extract_entropy_user. | 
|  | * | 
|  | * Note: we assume that .poolwords is a multiple of 16 words. | 
|  | */ | 
|  | static void extract_buf(struct entropy_store *r, __u8 *out) | 
|  | { | 
|  | int i; | 
|  | union { | 
|  | __u32 w[5]; | 
|  | unsigned long l[LONGS(20)]; | 
|  | } hash; | 
|  | __u32 workspace[SHA_WORKSPACE_WORDS]; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * If we have an architectural hardware random number | 
|  | * generator, use it for SHA's initial vector | 
|  | */ | 
|  | sha_init(hash.w); | 
|  | for (i = 0; i < LONGS(20); i++) { | 
|  | unsigned long v; | 
|  | if (!arch_get_random_long(&v)) | 
|  | break; | 
|  | hash.l[i] = v; | 
|  | } | 
|  |  | 
|  | /* Generate a hash across the pool, 16 words (512 bits) at a time */ | 
|  | spin_lock_irqsave(&r->lock, flags); | 
|  | for (i = 0; i < r->poolinfo->poolwords; i += 16) | 
|  | sha_transform(hash.w, (__u8 *)(r->pool + i), workspace); | 
|  |  | 
|  | /* | 
|  | * We mix the hash back into the pool to prevent backtracking | 
|  | * attacks (where the attacker knows the state of the pool | 
|  | * plus the current outputs, and attempts to find previous | 
|  | * ouputs), unless the hash function can be inverted. By | 
|  | * mixing at least a SHA1 worth of hash data back, we make | 
|  | * brute-forcing the feedback as hard as brute-forcing the | 
|  | * hash. | 
|  | */ | 
|  | __mix_pool_bytes(r, hash.w, sizeof(hash.w)); | 
|  | spin_unlock_irqrestore(&r->lock, flags); | 
|  |  | 
|  | memzero_explicit(workspace, sizeof(workspace)); | 
|  |  | 
|  | /* | 
|  | * In case the hash function has some recognizable output | 
|  | * pattern, we fold it in half. Thus, we always feed back | 
|  | * twice as much data as we output. | 
|  | */ | 
|  | hash.w[0] ^= hash.w[3]; | 
|  | hash.w[1] ^= hash.w[4]; | 
|  | hash.w[2] ^= rol32(hash.w[2], 16); | 
|  |  | 
|  | memcpy(out, &hash, EXTRACT_SIZE); | 
|  | memzero_explicit(&hash, sizeof(hash)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function extracts randomness from the "entropy pool", and | 
|  | * returns it in a buffer. | 
|  | * | 
|  | * The min parameter specifies the minimum amount we can pull before | 
|  | * failing to avoid races that defeat catastrophic reseeding while the | 
|  | * reserved parameter indicates how much entropy we must leave in the | 
|  | * pool after each pull to avoid starving other readers. | 
|  | */ | 
|  | static ssize_t extract_entropy(struct entropy_store *r, void *buf, | 
|  | size_t nbytes, int min, int reserved) | 
|  | { | 
|  | ssize_t ret = 0, i; | 
|  | __u8 tmp[EXTRACT_SIZE]; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */ | 
|  | if (fips_enabled) { | 
|  | spin_lock_irqsave(&r->lock, flags); | 
|  | if (!r->last_data_init) { | 
|  | r->last_data_init = 1; | 
|  | spin_unlock_irqrestore(&r->lock, flags); | 
|  | trace_extract_entropy(r->name, EXTRACT_SIZE, | 
|  | ENTROPY_BITS(r), _RET_IP_); | 
|  | xfer_secondary_pool(r, EXTRACT_SIZE); | 
|  | extract_buf(r, tmp); | 
|  | spin_lock_irqsave(&r->lock, flags); | 
|  | memcpy(r->last_data, tmp, EXTRACT_SIZE); | 
|  | } | 
|  | spin_unlock_irqrestore(&r->lock, flags); | 
|  | } | 
|  |  | 
|  | trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_); | 
|  | xfer_secondary_pool(r, nbytes); | 
|  | nbytes = account(r, nbytes, min, reserved); | 
|  |  | 
|  | while (nbytes) { | 
|  | extract_buf(r, tmp); | 
|  |  | 
|  | if (fips_enabled) { | 
|  | spin_lock_irqsave(&r->lock, flags); | 
|  | if (!memcmp(tmp, r->last_data, EXTRACT_SIZE)) | 
|  | panic("Hardware RNG duplicated output!\n"); | 
|  | memcpy(r->last_data, tmp, EXTRACT_SIZE); | 
|  | spin_unlock_irqrestore(&r->lock, flags); | 
|  | } | 
|  | i = min_t(int, nbytes, EXTRACT_SIZE); | 
|  | memcpy(buf, tmp, i); | 
|  | nbytes -= i; | 
|  | buf += i; | 
|  | ret += i; | 
|  | } | 
|  |  | 
|  | /* Wipe data just returned from memory */ | 
|  | memzero_explicit(tmp, sizeof(tmp)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function extracts randomness from the "entropy pool", and | 
|  | * returns it in a userspace buffer. | 
|  | */ | 
|  | static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf, | 
|  | size_t nbytes) | 
|  | { | 
|  | ssize_t ret = 0, i; | 
|  | __u8 tmp[EXTRACT_SIZE]; | 
|  | int large_request = (nbytes > 256); | 
|  |  | 
|  | trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_); | 
|  | xfer_secondary_pool(r, nbytes); | 
|  | nbytes = account(r, nbytes, 0, 0); | 
|  |  | 
|  | while (nbytes) { | 
|  | if (large_request && need_resched()) { | 
|  | if (signal_pending(current)) { | 
|  | if (ret == 0) | 
|  | ret = -ERESTARTSYS; | 
|  | break; | 
|  | } | 
|  | schedule(); | 
|  | } | 
|  |  | 
|  | extract_buf(r, tmp); | 
|  | i = min_t(int, nbytes, EXTRACT_SIZE); | 
|  | if (copy_to_user(buf, tmp, i)) { | 
|  | ret = -EFAULT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | nbytes -= i; | 
|  | buf += i; | 
|  | ret += i; | 
|  | } | 
|  |  | 
|  | /* Wipe data just returned from memory */ | 
|  | memzero_explicit(tmp, sizeof(tmp)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is the exported kernel interface.  It returns some | 
|  | * number of good random numbers, suitable for key generation, seeding | 
|  | * TCP sequence numbers, etc.  It does not rely on the hardware random | 
|  | * number generator.  For random bytes direct from the hardware RNG | 
|  | * (when available), use get_random_bytes_arch(). | 
|  | */ | 
|  | void get_random_bytes(void *buf, int nbytes) | 
|  | { | 
|  | #if DEBUG_RANDOM_BOOT > 0 | 
|  | if (unlikely(nonblocking_pool.initialized == 0)) | 
|  | printk(KERN_NOTICE "random: %pF get_random_bytes called " | 
|  | "with %d bits of entropy available\n", | 
|  | (void *) _RET_IP_, | 
|  | nonblocking_pool.entropy_total); | 
|  | #endif | 
|  | trace_get_random_bytes(nbytes, _RET_IP_); | 
|  | extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0); | 
|  | } | 
|  | EXPORT_SYMBOL(get_random_bytes); | 
|  |  | 
|  | /* | 
|  | * Add a callback function that will be invoked when the nonblocking | 
|  | * pool is initialised. | 
|  | * | 
|  | * returns: 0 if callback is successfully added | 
|  | *	    -EALREADY if pool is already initialised (callback not called) | 
|  | *	    -ENOENT if module for callback is not alive | 
|  | */ | 
|  | int add_random_ready_callback(struct random_ready_callback *rdy) | 
|  | { | 
|  | struct module *owner; | 
|  | unsigned long flags; | 
|  | int err = -EALREADY; | 
|  |  | 
|  | if (likely(nonblocking_pool.initialized)) | 
|  | return err; | 
|  |  | 
|  | owner = rdy->owner; | 
|  | if (!try_module_get(owner)) | 
|  | return -ENOENT; | 
|  |  | 
|  | spin_lock_irqsave(&random_ready_list_lock, flags); | 
|  | if (nonblocking_pool.initialized) | 
|  | goto out; | 
|  |  | 
|  | owner = NULL; | 
|  |  | 
|  | list_add(&rdy->list, &random_ready_list); | 
|  | err = 0; | 
|  |  | 
|  | out: | 
|  | spin_unlock_irqrestore(&random_ready_list_lock, flags); | 
|  |  | 
|  | module_put(owner); | 
|  |  | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(add_random_ready_callback); | 
|  |  | 
|  | /* | 
|  | * Delete a previously registered readiness callback function. | 
|  | */ | 
|  | void del_random_ready_callback(struct random_ready_callback *rdy) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct module *owner = NULL; | 
|  |  | 
|  | spin_lock_irqsave(&random_ready_list_lock, flags); | 
|  | if (!list_empty(&rdy->list)) { | 
|  | list_del_init(&rdy->list); | 
|  | owner = rdy->owner; | 
|  | } | 
|  | spin_unlock_irqrestore(&random_ready_list_lock, flags); | 
|  |  | 
|  | module_put(owner); | 
|  | } | 
|  | EXPORT_SYMBOL(del_random_ready_callback); | 
|  |  | 
|  | /* | 
|  | * This function will use the architecture-specific hardware random | 
|  | * number generator if it is available.  The arch-specific hw RNG will | 
|  | * almost certainly be faster than what we can do in software, but it | 
|  | * is impossible to verify that it is implemented securely (as | 
|  | * opposed, to, say, the AES encryption of a sequence number using a | 
|  | * key known by the NSA).  So it's useful if we need the speed, but | 
|  | * only if we're willing to trust the hardware manufacturer not to | 
|  | * have put in a back door. | 
|  | */ | 
|  | void get_random_bytes_arch(void *buf, int nbytes) | 
|  | { | 
|  | char *p = buf; | 
|  |  | 
|  | trace_get_random_bytes_arch(nbytes, _RET_IP_); | 
|  | while (nbytes) { | 
|  | unsigned long v; | 
|  | int chunk = min(nbytes, (int)sizeof(unsigned long)); | 
|  |  | 
|  | if (!arch_get_random_long(&v)) | 
|  | break; | 
|  |  | 
|  | memcpy(p, &v, chunk); | 
|  | p += chunk; | 
|  | nbytes -= chunk; | 
|  | } | 
|  |  | 
|  | if (nbytes) | 
|  | extract_entropy(&nonblocking_pool, p, nbytes, 0, 0); | 
|  | } | 
|  | EXPORT_SYMBOL(get_random_bytes_arch); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * init_std_data - initialize pool with system data | 
|  | * | 
|  | * @r: pool to initialize | 
|  | * | 
|  | * This function clears the pool's entropy count and mixes some system | 
|  | * data into the pool to prepare it for use. The pool is not cleared | 
|  | * as that can only decrease the entropy in the pool. | 
|  | */ | 
|  | static void init_std_data(struct entropy_store *r) | 
|  | { | 
|  | int i; | 
|  | ktime_t now = ktime_get_real(); | 
|  | unsigned long rv; | 
|  |  | 
|  | r->last_pulled = jiffies; | 
|  | mix_pool_bytes(r, &now, sizeof(now)); | 
|  | for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) { | 
|  | if (!arch_get_random_seed_long(&rv) && | 
|  | !arch_get_random_long(&rv)) | 
|  | rv = random_get_entropy(); | 
|  | mix_pool_bytes(r, &rv, sizeof(rv)); | 
|  | } | 
|  | mix_pool_bytes(r, utsname(), sizeof(*(utsname()))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note that setup_arch() may call add_device_randomness() | 
|  | * long before we get here. This allows seeding of the pools | 
|  | * with some platform dependent data very early in the boot | 
|  | * process. But it limits our options here. We must use | 
|  | * statically allocated structures that already have all | 
|  | * initializations complete at compile time. We should also | 
|  | * take care not to overwrite the precious per platform data | 
|  | * we were given. | 
|  | */ | 
|  | static int rand_initialize(void) | 
|  | { | 
|  | init_std_data(&input_pool); | 
|  | init_std_data(&blocking_pool); | 
|  | init_std_data(&nonblocking_pool); | 
|  | return 0; | 
|  | } | 
|  | early_initcall(rand_initialize); | 
|  |  | 
|  | #ifdef CONFIG_BLOCK | 
|  | void rand_initialize_disk(struct gendisk *disk) | 
|  | { | 
|  | struct timer_rand_state *state; | 
|  |  | 
|  | /* | 
|  | * If kzalloc returns null, we just won't use that entropy | 
|  | * source. | 
|  | */ | 
|  | state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); | 
|  | if (state) { | 
|  | state->last_time = INITIAL_JIFFIES; | 
|  | disk->random = state; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static ssize_t | 
|  | _random_read(int nonblock, char __user *buf, size_t nbytes) | 
|  | { | 
|  | ssize_t n; | 
|  |  | 
|  | if (nbytes == 0) | 
|  | return 0; | 
|  |  | 
|  | nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE); | 
|  | while (1) { | 
|  | n = extract_entropy_user(&blocking_pool, buf, nbytes); | 
|  | if (n < 0) | 
|  | return n; | 
|  | trace_random_read(n*8, (nbytes-n)*8, | 
|  | ENTROPY_BITS(&blocking_pool), | 
|  | ENTROPY_BITS(&input_pool)); | 
|  | if (n > 0) | 
|  | return n; | 
|  |  | 
|  | /* Pool is (near) empty.  Maybe wait and retry. */ | 
|  | if (nonblock) | 
|  | return -EAGAIN; | 
|  |  | 
|  | wait_event_interruptible(random_read_wait, | 
|  | ENTROPY_BITS(&input_pool) >= | 
|  | random_read_wakeup_bits); | 
|  | if (signal_pending(current)) | 
|  | return -ERESTARTSYS; | 
|  | } | 
|  | } | 
|  |  | 
|  | static ssize_t | 
|  | random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) | 
|  | { | 
|  | return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes); | 
|  | } | 
|  |  | 
|  | static ssize_t | 
|  | urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (unlikely(nonblocking_pool.initialized == 0)) | 
|  | printk_once(KERN_NOTICE "random: %s urandom read " | 
|  | "with %d bits of entropy available\n", | 
|  | current->comm, nonblocking_pool.entropy_total); | 
|  |  | 
|  | nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3)); | 
|  | ret = extract_entropy_user(&nonblocking_pool, buf, nbytes); | 
|  |  | 
|  | trace_urandom_read(8 * nbytes, ENTROPY_BITS(&nonblocking_pool), | 
|  | ENTROPY_BITS(&input_pool)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static unsigned int | 
|  | random_poll(struct file *file, poll_table * wait) | 
|  | { | 
|  | unsigned int mask; | 
|  |  | 
|  | poll_wait(file, &random_read_wait, wait); | 
|  | poll_wait(file, &random_write_wait, wait); | 
|  | mask = 0; | 
|  | if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits) | 
|  | mask |= POLLIN | POLLRDNORM; | 
|  | if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits) | 
|  | mask |= POLLOUT | POLLWRNORM; | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | static int | 
|  | write_pool(struct entropy_store *r, const char __user *buffer, size_t count) | 
|  | { | 
|  | size_t bytes; | 
|  | __u32 buf[16]; | 
|  | const char __user *p = buffer; | 
|  |  | 
|  | while (count > 0) { | 
|  | bytes = min(count, sizeof(buf)); | 
|  | if (copy_from_user(&buf, p, bytes)) | 
|  | return -EFAULT; | 
|  |  | 
|  | count -= bytes; | 
|  | p += bytes; | 
|  |  | 
|  | mix_pool_bytes(r, buf, bytes); | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t random_write(struct file *file, const char __user *buffer, | 
|  | size_t count, loff_t *ppos) | 
|  | { | 
|  | size_t ret; | 
|  |  | 
|  | ret = write_pool(&blocking_pool, buffer, count); | 
|  | if (ret) | 
|  | return ret; | 
|  | ret = write_pool(&nonblocking_pool, buffer, count); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return (ssize_t)count; | 
|  | } | 
|  |  | 
|  | static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) | 
|  | { | 
|  | int size, ent_count; | 
|  | int __user *p = (int __user *)arg; | 
|  | int retval; | 
|  |  | 
|  | switch (cmd) { | 
|  | case RNDGETENTCNT: | 
|  | /* inherently racy, no point locking */ | 
|  | ent_count = ENTROPY_BITS(&input_pool); | 
|  | if (put_user(ent_count, p)) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | case RNDADDTOENTCNT: | 
|  | if (!capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  | if (get_user(ent_count, p)) | 
|  | return -EFAULT; | 
|  | credit_entropy_bits_safe(&input_pool, ent_count); | 
|  | return 0; | 
|  | case RNDADDENTROPY: | 
|  | if (!capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  | if (get_user(ent_count, p++)) | 
|  | return -EFAULT; | 
|  | if (ent_count < 0) | 
|  | return -EINVAL; | 
|  | if (get_user(size, p++)) | 
|  | return -EFAULT; | 
|  | retval = write_pool(&input_pool, (const char __user *)p, | 
|  | size); | 
|  | if (retval < 0) | 
|  | return retval; | 
|  | credit_entropy_bits_safe(&input_pool, ent_count); | 
|  | return 0; | 
|  | case RNDZAPENTCNT: | 
|  | case RNDCLEARPOOL: | 
|  | /* | 
|  | * Clear the entropy pool counters. We no longer clear | 
|  | * the entropy pool, as that's silly. | 
|  | */ | 
|  | if (!capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  | input_pool.entropy_count = 0; | 
|  | nonblocking_pool.entropy_count = 0; | 
|  | blocking_pool.entropy_count = 0; | 
|  | return 0; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int random_fasync(int fd, struct file *filp, int on) | 
|  | { | 
|  | return fasync_helper(fd, filp, on, &fasync); | 
|  | } | 
|  |  | 
|  | const struct file_operations random_fops = { | 
|  | .read  = random_read, | 
|  | .write = random_write, | 
|  | .poll  = random_poll, | 
|  | .unlocked_ioctl = random_ioctl, | 
|  | .fasync = random_fasync, | 
|  | .llseek = noop_llseek, | 
|  | }; | 
|  |  | 
|  | const struct file_operations urandom_fops = { | 
|  | .read  = urandom_read, | 
|  | .write = random_write, | 
|  | .unlocked_ioctl = random_ioctl, | 
|  | .fasync = random_fasync, | 
|  | .llseek = noop_llseek, | 
|  | }; | 
|  |  | 
|  | SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, | 
|  | unsigned int, flags) | 
|  | { | 
|  | if (flags & ~(GRND_NONBLOCK|GRND_RANDOM)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (count > INT_MAX) | 
|  | count = INT_MAX; | 
|  |  | 
|  | if (flags & GRND_RANDOM) | 
|  | return _random_read(flags & GRND_NONBLOCK, buf, count); | 
|  |  | 
|  | if (unlikely(nonblocking_pool.initialized == 0)) { | 
|  | if (flags & GRND_NONBLOCK) | 
|  | return -EAGAIN; | 
|  | wait_event_interruptible(urandom_init_wait, | 
|  | nonblocking_pool.initialized); | 
|  | if (signal_pending(current)) | 
|  | return -ERESTARTSYS; | 
|  | } | 
|  | return urandom_read(NULL, buf, count, NULL); | 
|  | } | 
|  |  | 
|  | /*************************************************************** | 
|  | * Random UUID interface | 
|  | * | 
|  | * Used here for a Boot ID, but can be useful for other kernel | 
|  | * drivers. | 
|  | ***************************************************************/ | 
|  |  | 
|  | /* | 
|  | * Generate random UUID | 
|  | */ | 
|  | void generate_random_uuid(unsigned char uuid_out[16]) | 
|  | { | 
|  | get_random_bytes(uuid_out, 16); | 
|  | /* Set UUID version to 4 --- truly random generation */ | 
|  | uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40; | 
|  | /* Set the UUID variant to DCE */ | 
|  | uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80; | 
|  | } | 
|  | EXPORT_SYMBOL(generate_random_uuid); | 
|  |  | 
|  | /******************************************************************** | 
|  | * | 
|  | * Sysctl interface | 
|  | * | 
|  | ********************************************************************/ | 
|  |  | 
|  | #ifdef CONFIG_SYSCTL | 
|  |  | 
|  | #include <linux/sysctl.h> | 
|  |  | 
|  | static int min_read_thresh = 8, min_write_thresh; | 
|  | static int max_read_thresh = OUTPUT_POOL_WORDS * 32; | 
|  | static int max_write_thresh = INPUT_POOL_WORDS * 32; | 
|  | static char sysctl_bootid[16]; | 
|  |  | 
|  | /* | 
|  | * This function is used to return both the bootid UUID, and random | 
|  | * UUID.  The difference is in whether table->data is NULL; if it is, | 
|  | * then a new UUID is generated and returned to the user. | 
|  | * | 
|  | * If the user accesses this via the proc interface, the UUID will be | 
|  | * returned as an ASCII string in the standard UUID format; if via the | 
|  | * sysctl system call, as 16 bytes of binary data. | 
|  | */ | 
|  | static int proc_do_uuid(struct ctl_table *table, int write, | 
|  | void __user *buffer, size_t *lenp, loff_t *ppos) | 
|  | { | 
|  | struct ctl_table fake_table; | 
|  | unsigned char buf[64], tmp_uuid[16], *uuid; | 
|  |  | 
|  | uuid = table->data; | 
|  | if (!uuid) { | 
|  | uuid = tmp_uuid; | 
|  | generate_random_uuid(uuid); | 
|  | } else { | 
|  | static DEFINE_SPINLOCK(bootid_spinlock); | 
|  |  | 
|  | spin_lock(&bootid_spinlock); | 
|  | if (!uuid[8]) | 
|  | generate_random_uuid(uuid); | 
|  | spin_unlock(&bootid_spinlock); | 
|  | } | 
|  |  | 
|  | sprintf(buf, "%pU", uuid); | 
|  |  | 
|  | fake_table.data = buf; | 
|  | fake_table.maxlen = sizeof(buf); | 
|  |  | 
|  | return proc_dostring(&fake_table, write, buffer, lenp, ppos); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return entropy available scaled to integral bits | 
|  | */ | 
|  | static int proc_do_entropy(struct ctl_table *table, int write, | 
|  | void __user *buffer, size_t *lenp, loff_t *ppos) | 
|  | { | 
|  | struct ctl_table fake_table; | 
|  | int entropy_count; | 
|  |  | 
|  | entropy_count = *(int *)table->data >> ENTROPY_SHIFT; | 
|  |  | 
|  | fake_table.data = &entropy_count; | 
|  | fake_table.maxlen = sizeof(entropy_count); | 
|  |  | 
|  | return proc_dointvec(&fake_table, write, buffer, lenp, ppos); | 
|  | } | 
|  |  | 
|  | static int sysctl_poolsize = INPUT_POOL_WORDS * 32; | 
|  | extern struct ctl_table random_table[]; | 
|  | struct ctl_table random_table[] = { | 
|  | { | 
|  | .procname	= "poolsize", | 
|  | .data		= &sysctl_poolsize, | 
|  | .maxlen		= sizeof(int), | 
|  | .mode		= 0444, | 
|  | .proc_handler	= proc_dointvec, | 
|  | }, | 
|  | { | 
|  | .procname	= "entropy_avail", | 
|  | .maxlen		= sizeof(int), | 
|  | .mode		= 0444, | 
|  | .proc_handler	= proc_do_entropy, | 
|  | .data		= &input_pool.entropy_count, | 
|  | }, | 
|  | { | 
|  | .procname	= "read_wakeup_threshold", | 
|  | .data		= &random_read_wakeup_bits, | 
|  | .maxlen		= sizeof(int), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= proc_dointvec_minmax, | 
|  | .extra1		= &min_read_thresh, | 
|  | .extra2		= &max_read_thresh, | 
|  | }, | 
|  | { | 
|  | .procname	= "write_wakeup_threshold", | 
|  | .data		= &random_write_wakeup_bits, | 
|  | .maxlen		= sizeof(int), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= proc_dointvec_minmax, | 
|  | .extra1		= &min_write_thresh, | 
|  | .extra2		= &max_write_thresh, | 
|  | }, | 
|  | { | 
|  | .procname	= "urandom_min_reseed_secs", | 
|  | .data		= &random_min_urandom_seed, | 
|  | .maxlen		= sizeof(int), | 
|  | .mode		= 0644, | 
|  | .proc_handler	= proc_dointvec, | 
|  | }, | 
|  | { | 
|  | .procname	= "boot_id", | 
|  | .data		= &sysctl_bootid, | 
|  | .maxlen		= 16, | 
|  | .mode		= 0444, | 
|  | .proc_handler	= proc_do_uuid, | 
|  | }, | 
|  | { | 
|  | .procname	= "uuid", | 
|  | .maxlen		= 16, | 
|  | .mode		= 0444, | 
|  | .proc_handler	= proc_do_uuid, | 
|  | }, | 
|  | #ifdef ADD_INTERRUPT_BENCH | 
|  | { | 
|  | .procname	= "add_interrupt_avg_cycles", | 
|  | .data		= &avg_cycles, | 
|  | .maxlen		= sizeof(avg_cycles), | 
|  | .mode		= 0444, | 
|  | .proc_handler	= proc_doulongvec_minmax, | 
|  | }, | 
|  | { | 
|  | .procname	= "add_interrupt_avg_deviation", | 
|  | .data		= &avg_deviation, | 
|  | .maxlen		= sizeof(avg_deviation), | 
|  | .mode		= 0444, | 
|  | .proc_handler	= proc_doulongvec_minmax, | 
|  | }, | 
|  | #endif | 
|  | { } | 
|  | }; | 
|  | #endif 	/* CONFIG_SYSCTL */ | 
|  |  | 
|  | static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned; | 
|  |  | 
|  | int random_int_secret_init(void) | 
|  | { | 
|  | get_random_bytes(random_int_secret, sizeof(random_int_secret)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get a random word for internal kernel use only. Similar to urandom but | 
|  | * with the goal of minimal entropy pool depletion. As a result, the random | 
|  | * value is not cryptographically secure but for several uses the cost of | 
|  | * depleting entropy is too high | 
|  | */ | 
|  | static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash); | 
|  | unsigned int get_random_int(void) | 
|  | { | 
|  | __u32 *hash; | 
|  | unsigned int ret; | 
|  |  | 
|  | if (arch_get_random_int(&ret)) | 
|  | return ret; | 
|  |  | 
|  | hash = get_cpu_var(get_random_int_hash); | 
|  |  | 
|  | hash[0] += current->pid + jiffies + random_get_entropy(); | 
|  | md5_transform(hash, random_int_secret); | 
|  | ret = hash[0]; | 
|  | put_cpu_var(get_random_int_hash); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(get_random_int); | 
|  |  | 
|  | /* | 
|  | * Same as get_random_int(), but returns unsigned long. | 
|  | */ | 
|  | unsigned long get_random_long(void) | 
|  | { | 
|  | __u32 *hash; | 
|  | unsigned long ret; | 
|  |  | 
|  | if (arch_get_random_long(&ret)) | 
|  | return ret; | 
|  |  | 
|  | hash = get_cpu_var(get_random_int_hash); | 
|  |  | 
|  | hash[0] += current->pid + jiffies + random_get_entropy(); | 
|  | md5_transform(hash, random_int_secret); | 
|  | ret = *(unsigned long *)hash; | 
|  | put_cpu_var(get_random_int_hash); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(get_random_long); | 
|  |  | 
|  | /* | 
|  | * randomize_range() returns a start address such that | 
|  | * | 
|  | *    [...... <range> .....] | 
|  | *  start                  end | 
|  | * | 
|  | * a <range> with size "len" starting at the return value is inside in the | 
|  | * area defined by [start, end], but is otherwise randomized. | 
|  | */ | 
|  | unsigned long | 
|  | randomize_range(unsigned long start, unsigned long end, unsigned long len) | 
|  | { | 
|  | unsigned long range = end - len - start; | 
|  |  | 
|  | if (end <= start + len) | 
|  | return 0; | 
|  | return PAGE_ALIGN(get_random_int() % range + start); | 
|  | } | 
|  |  | 
|  | /* Interface for in-kernel drivers of true hardware RNGs. | 
|  | * Those devices may produce endless random bits and will be throttled | 
|  | * when our pool is full. | 
|  | */ | 
|  | void add_hwgenerator_randomness(const char *buffer, size_t count, | 
|  | size_t entropy) | 
|  | { | 
|  | struct entropy_store *poolp = &input_pool; | 
|  |  | 
|  | /* Suspend writing if we're above the trickle threshold. | 
|  | * We'll be woken up again once below random_write_wakeup_thresh, | 
|  | * or when the calling thread is about to terminate. | 
|  | */ | 
|  | wait_event_interruptible(random_write_wait, kthread_should_stop() || | 
|  | ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits); | 
|  | mix_pool_bytes(poolp, buffer, count); | 
|  | credit_entropy_bits(poolp, entropy); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); |