|  | /* | 
|  | *	linux/mm/mlock.c | 
|  | * | 
|  | *  (C) Copyright 1995 Linus Torvalds | 
|  | *  (C) Copyright 2002 Christoph Hellwig | 
|  | */ | 
|  |  | 
|  | #include <linux/capability.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/mmzone.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/memcontrol.h> | 
|  | #include <linux/mm_inline.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | bool can_do_mlock(void) | 
|  | { | 
|  | if (rlimit(RLIMIT_MEMLOCK) != 0) | 
|  | return true; | 
|  | if (capable(CAP_IPC_LOCK)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  | EXPORT_SYMBOL(can_do_mlock); | 
|  |  | 
|  | /* | 
|  | * Mlocked pages are marked with PageMlocked() flag for efficient testing | 
|  | * in vmscan and, possibly, the fault path; and to support semi-accurate | 
|  | * statistics. | 
|  | * | 
|  | * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will | 
|  | * be placed on the LRU "unevictable" list, rather than the [in]active lists. | 
|  | * The unevictable list is an LRU sibling list to the [in]active lists. | 
|  | * PageUnevictable is set to indicate the unevictable state. | 
|  | * | 
|  | * When lazy mlocking via vmscan, it is important to ensure that the | 
|  | * vma's VM_LOCKED status is not concurrently being modified, otherwise we | 
|  | * may have mlocked a page that is being munlocked. So lazy mlock must take | 
|  | * the mmap_sem for read, and verify that the vma really is locked | 
|  | * (see mm/rmap.c). | 
|  | */ | 
|  |  | 
|  | /* | 
|  | *  LRU accounting for clear_page_mlock() | 
|  | */ | 
|  | void clear_page_mlock(struct page *page) | 
|  | { | 
|  | if (!TestClearPageMlocked(page)) | 
|  | return; | 
|  |  | 
|  | mod_zone_page_state(page_zone(page), NR_MLOCK, | 
|  | -hpage_nr_pages(page)); | 
|  | count_vm_event(UNEVICTABLE_PGCLEARED); | 
|  | if (!isolate_lru_page(page)) { | 
|  | putback_lru_page(page); | 
|  | } else { | 
|  | /* | 
|  | * We lost the race. the page already moved to evictable list. | 
|  | */ | 
|  | if (PageUnevictable(page)) | 
|  | count_vm_event(UNEVICTABLE_PGSTRANDED); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mark page as mlocked if not already. | 
|  | * If page on LRU, isolate and putback to move to unevictable list. | 
|  | */ | 
|  | void mlock_vma_page(struct page *page) | 
|  | { | 
|  | /* Serialize with page migration */ | 
|  | BUG_ON(!PageLocked(page)); | 
|  |  | 
|  | VM_BUG_ON_PAGE(PageTail(page), page); | 
|  | VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); | 
|  |  | 
|  | if (!TestSetPageMlocked(page)) { | 
|  | mod_zone_page_state(page_zone(page), NR_MLOCK, | 
|  | hpage_nr_pages(page)); | 
|  | count_vm_event(UNEVICTABLE_PGMLOCKED); | 
|  | if (!isolate_lru_page(page)) | 
|  | putback_lru_page(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Isolate a page from LRU with optional get_page() pin. | 
|  | * Assumes lru_lock already held and page already pinned. | 
|  | */ | 
|  | static bool __munlock_isolate_lru_page(struct page *page, bool getpage) | 
|  | { | 
|  | if (PageLRU(page)) { | 
|  | struct lruvec *lruvec; | 
|  |  | 
|  | lruvec = mem_cgroup_page_lruvec(page, page_zone(page)); | 
|  | if (getpage) | 
|  | get_page(page); | 
|  | ClearPageLRU(page); | 
|  | del_page_from_lru_list(page, lruvec, page_lru(page)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Finish munlock after successful page isolation | 
|  | * | 
|  | * Page must be locked. This is a wrapper for try_to_munlock() | 
|  | * and putback_lru_page() with munlock accounting. | 
|  | */ | 
|  | static void __munlock_isolated_page(struct page *page) | 
|  | { | 
|  | int ret = SWAP_AGAIN; | 
|  |  | 
|  | /* | 
|  | * Optimization: if the page was mapped just once, that's our mapping | 
|  | * and we don't need to check all the other vmas. | 
|  | */ | 
|  | if (page_mapcount(page) > 1) | 
|  | ret = try_to_munlock(page); | 
|  |  | 
|  | /* Did try_to_unlock() succeed or punt? */ | 
|  | if (ret != SWAP_MLOCK) | 
|  | count_vm_event(UNEVICTABLE_PGMUNLOCKED); | 
|  |  | 
|  | putback_lru_page(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Accounting for page isolation fail during munlock | 
|  | * | 
|  | * Performs accounting when page isolation fails in munlock. There is nothing | 
|  | * else to do because it means some other task has already removed the page | 
|  | * from the LRU. putback_lru_page() will take care of removing the page from | 
|  | * the unevictable list, if necessary. vmscan [page_referenced()] will move | 
|  | * the page back to the unevictable list if some other vma has it mlocked. | 
|  | */ | 
|  | static void __munlock_isolation_failed(struct page *page) | 
|  | { | 
|  | if (PageUnevictable(page)) | 
|  | __count_vm_event(UNEVICTABLE_PGSTRANDED); | 
|  | else | 
|  | __count_vm_event(UNEVICTABLE_PGMUNLOCKED); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * munlock_vma_page - munlock a vma page | 
|  | * @page - page to be unlocked, either a normal page or THP page head | 
|  | * | 
|  | * returns the size of the page as a page mask (0 for normal page, | 
|  | *         HPAGE_PMD_NR - 1 for THP head page) | 
|  | * | 
|  | * called from munlock()/munmap() path with page supposedly on the LRU. | 
|  | * When we munlock a page, because the vma where we found the page is being | 
|  | * munlock()ed or munmap()ed, we want to check whether other vmas hold the | 
|  | * page locked so that we can leave it on the unevictable lru list and not | 
|  | * bother vmscan with it.  However, to walk the page's rmap list in | 
|  | * try_to_munlock() we must isolate the page from the LRU.  If some other | 
|  | * task has removed the page from the LRU, we won't be able to do that. | 
|  | * So we clear the PageMlocked as we might not get another chance.  If we | 
|  | * can't isolate the page, we leave it for putback_lru_page() and vmscan | 
|  | * [page_referenced()/try_to_unmap()] to deal with. | 
|  | */ | 
|  | unsigned int munlock_vma_page(struct page *page) | 
|  | { | 
|  | int nr_pages; | 
|  | struct zone *zone = page_zone(page); | 
|  |  | 
|  | /* For try_to_munlock() and to serialize with page migration */ | 
|  | BUG_ON(!PageLocked(page)); | 
|  |  | 
|  | VM_BUG_ON_PAGE(PageTail(page), page); | 
|  |  | 
|  | /* | 
|  | * Serialize with any parallel __split_huge_page_refcount() which | 
|  | * might otherwise copy PageMlocked to part of the tail pages before | 
|  | * we clear it in the head page. It also stabilizes hpage_nr_pages(). | 
|  | */ | 
|  | spin_lock_irq(&zone->lru_lock); | 
|  |  | 
|  | nr_pages = hpage_nr_pages(page); | 
|  | if (!TestClearPageMlocked(page)) | 
|  | goto unlock_out; | 
|  |  | 
|  | __mod_zone_page_state(zone, NR_MLOCK, -nr_pages); | 
|  |  | 
|  | if (__munlock_isolate_lru_page(page, true)) { | 
|  | spin_unlock_irq(&zone->lru_lock); | 
|  | __munlock_isolated_page(page); | 
|  | goto out; | 
|  | } | 
|  | __munlock_isolation_failed(page); | 
|  |  | 
|  | unlock_out: | 
|  | spin_unlock_irq(&zone->lru_lock); | 
|  |  | 
|  | out: | 
|  | return nr_pages - 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * convert get_user_pages() return value to posix mlock() error | 
|  | */ | 
|  | static int __mlock_posix_error_return(long retval) | 
|  | { | 
|  | if (retval == -EFAULT) | 
|  | retval = -ENOMEM; | 
|  | else if (retval == -ENOMEM) | 
|  | retval = -EAGAIN; | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec() | 
|  | * | 
|  | * The fast path is available only for evictable pages with single mapping. | 
|  | * Then we can bypass the per-cpu pvec and get better performance. | 
|  | * when mapcount > 1 we need try_to_munlock() which can fail. | 
|  | * when !page_evictable(), we need the full redo logic of putback_lru_page to | 
|  | * avoid leaving evictable page in unevictable list. | 
|  | * | 
|  | * In case of success, @page is added to @pvec and @pgrescued is incremented | 
|  | * in case that the page was previously unevictable. @page is also unlocked. | 
|  | */ | 
|  | static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec, | 
|  | int *pgrescued) | 
|  | { | 
|  | VM_BUG_ON_PAGE(PageLRU(page), page); | 
|  | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  |  | 
|  | if (page_mapcount(page) <= 1 && page_evictable(page)) { | 
|  | pagevec_add(pvec, page); | 
|  | if (TestClearPageUnevictable(page)) | 
|  | (*pgrescued)++; | 
|  | unlock_page(page); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Putback multiple evictable pages to the LRU | 
|  | * | 
|  | * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of | 
|  | * the pages might have meanwhile become unevictable but that is OK. | 
|  | */ | 
|  | static void __putback_lru_fast(struct pagevec *pvec, int pgrescued) | 
|  | { | 
|  | count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec)); | 
|  | /* | 
|  | *__pagevec_lru_add() calls release_pages() so we don't call | 
|  | * put_page() explicitly | 
|  | */ | 
|  | __pagevec_lru_add(pvec); | 
|  | count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Munlock a batch of pages from the same zone | 
|  | * | 
|  | * The work is split to two main phases. First phase clears the Mlocked flag | 
|  | * and attempts to isolate the pages, all under a single zone lru lock. | 
|  | * The second phase finishes the munlock only for pages where isolation | 
|  | * succeeded. | 
|  | * | 
|  | * Note that the pagevec may be modified during the process. | 
|  | */ | 
|  | static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone) | 
|  | { | 
|  | int i; | 
|  | int nr = pagevec_count(pvec); | 
|  | int delta_munlocked; | 
|  | struct pagevec pvec_putback; | 
|  | int pgrescued = 0; | 
|  |  | 
|  | pagevec_init(&pvec_putback, 0); | 
|  |  | 
|  | /* Phase 1: page isolation */ | 
|  | spin_lock_irq(&zone->lru_lock); | 
|  | for (i = 0; i < nr; i++) { | 
|  | struct page *page = pvec->pages[i]; | 
|  |  | 
|  | if (TestClearPageMlocked(page)) { | 
|  | /* | 
|  | * We already have pin from follow_page_mask() | 
|  | * so we can spare the get_page() here. | 
|  | */ | 
|  | if (__munlock_isolate_lru_page(page, false)) | 
|  | continue; | 
|  | else | 
|  | __munlock_isolation_failed(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We won't be munlocking this page in the next phase | 
|  | * but we still need to release the follow_page_mask() | 
|  | * pin. We cannot do it under lru_lock however. If it's | 
|  | * the last pin, __page_cache_release() would deadlock. | 
|  | */ | 
|  | pagevec_add(&pvec_putback, pvec->pages[i]); | 
|  | pvec->pages[i] = NULL; | 
|  | } | 
|  | delta_munlocked = -nr + pagevec_count(&pvec_putback); | 
|  | __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked); | 
|  | spin_unlock_irq(&zone->lru_lock); | 
|  |  | 
|  | /* Now we can release pins of pages that we are not munlocking */ | 
|  | pagevec_release(&pvec_putback); | 
|  |  | 
|  | /* Phase 2: page munlock */ | 
|  | for (i = 0; i < nr; i++) { | 
|  | struct page *page = pvec->pages[i]; | 
|  |  | 
|  | if (page) { | 
|  | lock_page(page); | 
|  | if (!__putback_lru_fast_prepare(page, &pvec_putback, | 
|  | &pgrescued)) { | 
|  | /* | 
|  | * Slow path. We don't want to lose the last | 
|  | * pin before unlock_page() | 
|  | */ | 
|  | get_page(page); /* for putback_lru_page() */ | 
|  | __munlock_isolated_page(page); | 
|  | unlock_page(page); | 
|  | put_page(page); /* from follow_page_mask() */ | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Phase 3: page putback for pages that qualified for the fast path | 
|  | * This will also call put_page() to return pin from follow_page_mask() | 
|  | */ | 
|  | if (pagevec_count(&pvec_putback)) | 
|  | __putback_lru_fast(&pvec_putback, pgrescued); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fill up pagevec for __munlock_pagevec using pte walk | 
|  | * | 
|  | * The function expects that the struct page corresponding to @start address is | 
|  | * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone. | 
|  | * | 
|  | * The rest of @pvec is filled by subsequent pages within the same pmd and same | 
|  | * zone, as long as the pte's are present and vm_normal_page() succeeds. These | 
|  | * pages also get pinned. | 
|  | * | 
|  | * Returns the address of the next page that should be scanned. This equals | 
|  | * @start + PAGE_SIZE when no page could be added by the pte walk. | 
|  | */ | 
|  | static unsigned long __munlock_pagevec_fill(struct pagevec *pvec, | 
|  | struct vm_area_struct *vma, int zoneid,	unsigned long start, | 
|  | unsigned long end) | 
|  | { | 
|  | pte_t *pte; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | /* | 
|  | * Initialize pte walk starting at the already pinned page where we | 
|  | * are sure that there is a pte, as it was pinned under the same | 
|  | * mmap_sem write op. | 
|  | */ | 
|  | pte = get_locked_pte(vma->vm_mm, start,	&ptl); | 
|  | /* Make sure we do not cross the page table boundary */ | 
|  | end = pgd_addr_end(start, end); | 
|  | end = pud_addr_end(start, end); | 
|  | end = pmd_addr_end(start, end); | 
|  |  | 
|  | /* The page next to the pinned page is the first we will try to get */ | 
|  | start += PAGE_SIZE; | 
|  | while (start < end) { | 
|  | struct page *page = NULL; | 
|  | pte++; | 
|  | if (pte_present(*pte)) | 
|  | page = vm_normal_page(vma, start, *pte); | 
|  | /* | 
|  | * Break if page could not be obtained or the page's node+zone does not | 
|  | * match | 
|  | */ | 
|  | if (!page || page_zone_id(page) != zoneid) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Do not use pagevec for PTE-mapped THP, | 
|  | * munlock_vma_pages_range() will handle them. | 
|  | */ | 
|  | if (PageTransCompound(page)) | 
|  | break; | 
|  |  | 
|  | get_page(page); | 
|  | /* | 
|  | * Increase the address that will be returned *before* the | 
|  | * eventual break due to pvec becoming full by adding the page | 
|  | */ | 
|  | start += PAGE_SIZE; | 
|  | if (pagevec_add(pvec, page) == 0) | 
|  | break; | 
|  | } | 
|  | pte_unmap_unlock(pte, ptl); | 
|  | return start; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * munlock_vma_pages_range() - munlock all pages in the vma range.' | 
|  | * @vma - vma containing range to be munlock()ed. | 
|  | * @start - start address in @vma of the range | 
|  | * @end - end of range in @vma. | 
|  | * | 
|  | *  For mremap(), munmap() and exit(). | 
|  | * | 
|  | * Called with @vma VM_LOCKED. | 
|  | * | 
|  | * Returns with VM_LOCKED cleared.  Callers must be prepared to | 
|  | * deal with this. | 
|  | * | 
|  | * We don't save and restore VM_LOCKED here because pages are | 
|  | * still on lru.  In unmap path, pages might be scanned by reclaim | 
|  | * and re-mlocked by try_to_{munlock|unmap} before we unmap and | 
|  | * free them.  This will result in freeing mlocked pages. | 
|  | */ | 
|  | void munlock_vma_pages_range(struct vm_area_struct *vma, | 
|  | unsigned long start, unsigned long end) | 
|  | { | 
|  | vma->vm_flags &= VM_LOCKED_CLEAR_MASK; | 
|  |  | 
|  | while (start < end) { | 
|  | struct page *page; | 
|  | unsigned int page_mask; | 
|  | unsigned long page_increm; | 
|  | struct pagevec pvec; | 
|  | struct zone *zone; | 
|  | int zoneid; | 
|  |  | 
|  | pagevec_init(&pvec, 0); | 
|  | /* | 
|  | * Although FOLL_DUMP is intended for get_dump_page(), | 
|  | * it just so happens that its special treatment of the | 
|  | * ZERO_PAGE (returning an error instead of doing get_page) | 
|  | * suits munlock very well (and if somehow an abnormal page | 
|  | * has sneaked into the range, we won't oops here: great). | 
|  | */ | 
|  | page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP, | 
|  | &page_mask); | 
|  |  | 
|  | if (page && !IS_ERR(page)) { | 
|  | if (PageTransTail(page)) { | 
|  | VM_BUG_ON_PAGE(PageMlocked(page), page); | 
|  | put_page(page); /* follow_page_mask() */ | 
|  | } else if (PageTransHuge(page)) { | 
|  | lock_page(page); | 
|  | /* | 
|  | * Any THP page found by follow_page_mask() may | 
|  | * have gotten split before reaching | 
|  | * munlock_vma_page(), so we need to recompute | 
|  | * the page_mask here. | 
|  | */ | 
|  | page_mask = munlock_vma_page(page); | 
|  | unlock_page(page); | 
|  | put_page(page); /* follow_page_mask() */ | 
|  | } else { | 
|  | /* | 
|  | * Non-huge pages are handled in batches via | 
|  | * pagevec. The pin from follow_page_mask() | 
|  | * prevents them from collapsing by THP. | 
|  | */ | 
|  | pagevec_add(&pvec, page); | 
|  | zone = page_zone(page); | 
|  | zoneid = page_zone_id(page); | 
|  |  | 
|  | /* | 
|  | * Try to fill the rest of pagevec using fast | 
|  | * pte walk. This will also update start to | 
|  | * the next page to process. Then munlock the | 
|  | * pagevec. | 
|  | */ | 
|  | start = __munlock_pagevec_fill(&pvec, vma, | 
|  | zoneid, start, end); | 
|  | __munlock_pagevec(&pvec, zone); | 
|  | goto next; | 
|  | } | 
|  | } | 
|  | page_increm = 1 + page_mask; | 
|  | start += page_increm * PAGE_SIZE; | 
|  | next: | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mlock_fixup  - handle mlock[all]/munlock[all] requests. | 
|  | * | 
|  | * Filters out "special" vmas -- VM_LOCKED never gets set for these, and | 
|  | * munlock is a no-op.  However, for some special vmas, we go ahead and | 
|  | * populate the ptes. | 
|  | * | 
|  | * For vmas that pass the filters, merge/split as appropriate. | 
|  | */ | 
|  | static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, | 
|  | unsigned long start, unsigned long end, vm_flags_t newflags) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | pgoff_t pgoff; | 
|  | int nr_pages; | 
|  | int ret = 0; | 
|  | int lock = !!(newflags & VM_LOCKED); | 
|  |  | 
|  | if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) || | 
|  | is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm)) | 
|  | /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */ | 
|  | goto out; | 
|  |  | 
|  | pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); | 
|  | *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma, | 
|  | vma->vm_file, pgoff, vma_policy(vma), | 
|  | vma->vm_userfaultfd_ctx); | 
|  | if (*prev) { | 
|  | vma = *prev; | 
|  | goto success; | 
|  | } | 
|  |  | 
|  | if (start != vma->vm_start) { | 
|  | ret = split_vma(mm, vma, start, 1); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (end != vma->vm_end) { | 
|  | ret = split_vma(mm, vma, end, 0); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | success: | 
|  | /* | 
|  | * Keep track of amount of locked VM. | 
|  | */ | 
|  | nr_pages = (end - start) >> PAGE_SHIFT; | 
|  | if (!lock) | 
|  | nr_pages = -nr_pages; | 
|  | mm->locked_vm += nr_pages; | 
|  |  | 
|  | /* | 
|  | * vm_flags is protected by the mmap_sem held in write mode. | 
|  | * It's okay if try_to_unmap_one unmaps a page just after we | 
|  | * set VM_LOCKED, populate_vma_page_range will bring it back. | 
|  | */ | 
|  |  | 
|  | if (lock) | 
|  | vma->vm_flags = newflags; | 
|  | else | 
|  | munlock_vma_pages_range(vma, start, end); | 
|  |  | 
|  | out: | 
|  | *prev = vma; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int apply_vma_lock_flags(unsigned long start, size_t len, | 
|  | vm_flags_t flags) | 
|  | { | 
|  | unsigned long nstart, end, tmp; | 
|  | struct vm_area_struct * vma, * prev; | 
|  | int error; | 
|  |  | 
|  | VM_BUG_ON(offset_in_page(start)); | 
|  | VM_BUG_ON(len != PAGE_ALIGN(len)); | 
|  | end = start + len; | 
|  | if (end < start) | 
|  | return -EINVAL; | 
|  | if (end == start) | 
|  | return 0; | 
|  | vma = find_vma(current->mm, start); | 
|  | if (!vma || vma->vm_start > start) | 
|  | return -ENOMEM; | 
|  |  | 
|  | prev = vma->vm_prev; | 
|  | if (start > vma->vm_start) | 
|  | prev = vma; | 
|  |  | 
|  | for (nstart = start ; ; ) { | 
|  | vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; | 
|  |  | 
|  | newflags |= flags; | 
|  |  | 
|  | /* Here we know that  vma->vm_start <= nstart < vma->vm_end. */ | 
|  | tmp = vma->vm_end; | 
|  | if (tmp > end) | 
|  | tmp = end; | 
|  | error = mlock_fixup(vma, &prev, nstart, tmp, newflags); | 
|  | if (error) | 
|  | break; | 
|  | nstart = tmp; | 
|  | if (nstart < prev->vm_end) | 
|  | nstart = prev->vm_end; | 
|  | if (nstart >= end) | 
|  | break; | 
|  |  | 
|  | vma = prev->vm_next; | 
|  | if (!vma || vma->vm_start != nstart) { | 
|  | error = -ENOMEM; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags) | 
|  | { | 
|  | unsigned long locked; | 
|  | unsigned long lock_limit; | 
|  | int error = -ENOMEM; | 
|  |  | 
|  | if (!can_do_mlock()) | 
|  | return -EPERM; | 
|  |  | 
|  | lru_add_drain_all();	/* flush pagevec */ | 
|  |  | 
|  | len = PAGE_ALIGN(len + (offset_in_page(start))); | 
|  | start &= PAGE_MASK; | 
|  |  | 
|  | lock_limit = rlimit(RLIMIT_MEMLOCK); | 
|  | lock_limit >>= PAGE_SHIFT; | 
|  | locked = len >> PAGE_SHIFT; | 
|  |  | 
|  | if (down_write_killable(¤t->mm->mmap_sem)) | 
|  | return -EINTR; | 
|  |  | 
|  | locked += current->mm->locked_vm; | 
|  |  | 
|  | /* check against resource limits */ | 
|  | if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) | 
|  | error = apply_vma_lock_flags(start, len, flags); | 
|  |  | 
|  | up_write(¤t->mm->mmap_sem); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | error = __mm_populate(start, len, 0); | 
|  | if (error) | 
|  | return __mlock_posix_error_return(error); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len) | 
|  | { | 
|  | return do_mlock(start, len, VM_LOCKED); | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags) | 
|  | { | 
|  | vm_flags_t vm_flags = VM_LOCKED; | 
|  |  | 
|  | if (flags & ~MLOCK_ONFAULT) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (flags & MLOCK_ONFAULT) | 
|  | vm_flags |= VM_LOCKONFAULT; | 
|  |  | 
|  | return do_mlock(start, len, vm_flags); | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | len = PAGE_ALIGN(len + (offset_in_page(start))); | 
|  | start &= PAGE_MASK; | 
|  |  | 
|  | if (down_write_killable(¤t->mm->mmap_sem)) | 
|  | return -EINTR; | 
|  | ret = apply_vma_lock_flags(start, len, 0); | 
|  | up_write(¤t->mm->mmap_sem); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall) | 
|  | * and translate into the appropriate modifications to mm->def_flags and/or the | 
|  | * flags for all current VMAs. | 
|  | * | 
|  | * There are a couple of subtleties with this.  If mlockall() is called multiple | 
|  | * times with different flags, the values do not necessarily stack.  If mlockall | 
|  | * is called once including the MCL_FUTURE flag and then a second time without | 
|  | * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags. | 
|  | */ | 
|  | static int apply_mlockall_flags(int flags) | 
|  | { | 
|  | struct vm_area_struct * vma, * prev = NULL; | 
|  | vm_flags_t to_add = 0; | 
|  |  | 
|  | current->mm->def_flags &= VM_LOCKED_CLEAR_MASK; | 
|  | if (flags & MCL_FUTURE) { | 
|  | current->mm->def_flags |= VM_LOCKED; | 
|  |  | 
|  | if (flags & MCL_ONFAULT) | 
|  | current->mm->def_flags |= VM_LOCKONFAULT; | 
|  |  | 
|  | if (!(flags & MCL_CURRENT)) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (flags & MCL_CURRENT) { | 
|  | to_add |= VM_LOCKED; | 
|  | if (flags & MCL_ONFAULT) | 
|  | to_add |= VM_LOCKONFAULT; | 
|  | } | 
|  |  | 
|  | for (vma = current->mm->mmap; vma ; vma = prev->vm_next) { | 
|  | vm_flags_t newflags; | 
|  |  | 
|  | newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK; | 
|  | newflags |= to_add; | 
|  |  | 
|  | /* Ignore errors */ | 
|  | mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags); | 
|  | cond_resched_rcu_qs(); | 
|  | } | 
|  | out: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE1(mlockall, int, flags) | 
|  | { | 
|  | unsigned long lock_limit; | 
|  | int ret; | 
|  |  | 
|  | if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT))) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!can_do_mlock()) | 
|  | return -EPERM; | 
|  |  | 
|  | if (flags & MCL_CURRENT) | 
|  | lru_add_drain_all();	/* flush pagevec */ | 
|  |  | 
|  | lock_limit = rlimit(RLIMIT_MEMLOCK); | 
|  | lock_limit >>= PAGE_SHIFT; | 
|  |  | 
|  | if (down_write_killable(¤t->mm->mmap_sem)) | 
|  | return -EINTR; | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || | 
|  | capable(CAP_IPC_LOCK)) | 
|  | ret = apply_mlockall_flags(flags); | 
|  | up_write(¤t->mm->mmap_sem); | 
|  | if (!ret && (flags & MCL_CURRENT)) | 
|  | mm_populate(0, TASK_SIZE); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE0(munlockall) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (down_write_killable(¤t->mm->mmap_sem)) | 
|  | return -EINTR; | 
|  | ret = apply_mlockall_flags(0); | 
|  | up_write(¤t->mm->mmap_sem); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB | 
|  | * shm segments) get accounted against the user_struct instead. | 
|  | */ | 
|  | static DEFINE_SPINLOCK(shmlock_user_lock); | 
|  |  | 
|  | int user_shm_lock(size_t size, struct user_struct *user) | 
|  | { | 
|  | unsigned long lock_limit, locked; | 
|  | int allowed = 0; | 
|  |  | 
|  | locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | lock_limit = rlimit(RLIMIT_MEMLOCK); | 
|  | if (lock_limit == RLIM_INFINITY) | 
|  | allowed = 1; | 
|  | lock_limit >>= PAGE_SHIFT; | 
|  | spin_lock(&shmlock_user_lock); | 
|  | if (!allowed && | 
|  | locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK)) | 
|  | goto out; | 
|  | get_uid(user); | 
|  | user->locked_shm += locked; | 
|  | allowed = 1; | 
|  | out: | 
|  | spin_unlock(&shmlock_user_lock); | 
|  | return allowed; | 
|  | } | 
|  |  | 
|  | void user_shm_unlock(size_t size, struct user_struct *user) | 
|  | { | 
|  | spin_lock(&shmlock_user_lock); | 
|  | user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | spin_unlock(&shmlock_user_lock); | 
|  | free_uid(user); | 
|  | } |