|  | /* | 
|  | * Common EFI (Extensible Firmware Interface) support functions | 
|  | * Based on Extensible Firmware Interface Specification version 1.0 | 
|  | * | 
|  | * Copyright (C) 1999 VA Linux Systems | 
|  | * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> | 
|  | * Copyright (C) 1999-2002 Hewlett-Packard Co. | 
|  | *	David Mosberger-Tang <davidm@hpl.hp.com> | 
|  | *	Stephane Eranian <eranian@hpl.hp.com> | 
|  | * Copyright (C) 2005-2008 Intel Co. | 
|  | *	Fenghua Yu <fenghua.yu@intel.com> | 
|  | *	Bibo Mao <bibo.mao@intel.com> | 
|  | *	Chandramouli Narayanan <mouli@linux.intel.com> | 
|  | *	Huang Ying <ying.huang@intel.com> | 
|  | * | 
|  | * Copied from efi_32.c to eliminate the duplicated code between EFI | 
|  | * 32/64 support code. --ying 2007-10-26 | 
|  | * | 
|  | * All EFI Runtime Services are not implemented yet as EFI only | 
|  | * supports physical mode addressing on SoftSDV. This is to be fixed | 
|  | * in a future version.  --drummond 1999-07-20 | 
|  | * | 
|  | * Implemented EFI runtime services and virtual mode calls.  --davidm | 
|  | * | 
|  | * Goutham Rao: <goutham.rao@intel.com> | 
|  | *	Skip non-WB memory and ignore empty memory ranges. | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/efi.h> | 
|  | #include <linux/efi-bgrt.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/reboot.h> | 
|  | #include <linux/bcd.h> | 
|  |  | 
|  | #include <asm/setup.h> | 
|  | #include <asm/efi.h> | 
|  | #include <asm/time.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/x86_init.h> | 
|  | #include <asm/rtc.h> | 
|  |  | 
|  | #define EFI_DEBUG	1 | 
|  |  | 
|  | #define EFI_MIN_RESERVE 5120 | 
|  |  | 
|  | #define EFI_DUMMY_GUID \ | 
|  | EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9) | 
|  |  | 
|  | static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 }; | 
|  |  | 
|  | struct efi __read_mostly efi = { | 
|  | .mps        = EFI_INVALID_TABLE_ADDR, | 
|  | .acpi       = EFI_INVALID_TABLE_ADDR, | 
|  | .acpi20     = EFI_INVALID_TABLE_ADDR, | 
|  | .smbios     = EFI_INVALID_TABLE_ADDR, | 
|  | .sal_systab = EFI_INVALID_TABLE_ADDR, | 
|  | .boot_info  = EFI_INVALID_TABLE_ADDR, | 
|  | .hcdp       = EFI_INVALID_TABLE_ADDR, | 
|  | .uga        = EFI_INVALID_TABLE_ADDR, | 
|  | .uv_systab  = EFI_INVALID_TABLE_ADDR, | 
|  | }; | 
|  | EXPORT_SYMBOL(efi); | 
|  |  | 
|  | struct efi_memory_map memmap; | 
|  |  | 
|  | static struct efi efi_phys __initdata; | 
|  | static efi_system_table_t efi_systab __initdata; | 
|  |  | 
|  | unsigned long x86_efi_facility; | 
|  |  | 
|  | /* | 
|  | * Returns 1 if 'facility' is enabled, 0 otherwise. | 
|  | */ | 
|  | int efi_enabled(int facility) | 
|  | { | 
|  | return test_bit(facility, &x86_efi_facility) != 0; | 
|  | } | 
|  | EXPORT_SYMBOL(efi_enabled); | 
|  |  | 
|  | static bool __initdata disable_runtime = false; | 
|  | static int __init setup_noefi(char *arg) | 
|  | { | 
|  | disable_runtime = true; | 
|  | return 0; | 
|  | } | 
|  | early_param("noefi", setup_noefi); | 
|  |  | 
|  | int add_efi_memmap; | 
|  | EXPORT_SYMBOL(add_efi_memmap); | 
|  |  | 
|  | static int __init setup_add_efi_memmap(char *arg) | 
|  | { | 
|  | add_efi_memmap = 1; | 
|  | return 0; | 
|  | } | 
|  | early_param("add_efi_memmap", setup_add_efi_memmap); | 
|  |  | 
|  | static bool efi_no_storage_paranoia; | 
|  |  | 
|  | static int __init setup_storage_paranoia(char *arg) | 
|  | { | 
|  | efi_no_storage_paranoia = true; | 
|  | return 0; | 
|  | } | 
|  | early_param("efi_no_storage_paranoia", setup_storage_paranoia); | 
|  |  | 
|  |  | 
|  | static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc) | 
|  | { | 
|  | unsigned long flags; | 
|  | efi_status_t status; | 
|  |  | 
|  | spin_lock_irqsave(&rtc_lock, flags); | 
|  | status = efi_call_virt2(get_time, tm, tc); | 
|  | spin_unlock_irqrestore(&rtc_lock, flags); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static efi_status_t virt_efi_set_time(efi_time_t *tm) | 
|  | { | 
|  | unsigned long flags; | 
|  | efi_status_t status; | 
|  |  | 
|  | spin_lock_irqsave(&rtc_lock, flags); | 
|  | status = efi_call_virt1(set_time, tm); | 
|  | spin_unlock_irqrestore(&rtc_lock, flags); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled, | 
|  | efi_bool_t *pending, | 
|  | efi_time_t *tm) | 
|  | { | 
|  | unsigned long flags; | 
|  | efi_status_t status; | 
|  |  | 
|  | spin_lock_irqsave(&rtc_lock, flags); | 
|  | status = efi_call_virt3(get_wakeup_time, | 
|  | enabled, pending, tm); | 
|  | spin_unlock_irqrestore(&rtc_lock, flags); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm) | 
|  | { | 
|  | unsigned long flags; | 
|  | efi_status_t status; | 
|  |  | 
|  | spin_lock_irqsave(&rtc_lock, flags); | 
|  | status = efi_call_virt2(set_wakeup_time, | 
|  | enabled, tm); | 
|  | spin_unlock_irqrestore(&rtc_lock, flags); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static efi_status_t virt_efi_get_variable(efi_char16_t *name, | 
|  | efi_guid_t *vendor, | 
|  | u32 *attr, | 
|  | unsigned long *data_size, | 
|  | void *data) | 
|  | { | 
|  | return efi_call_virt5(get_variable, | 
|  | name, vendor, attr, | 
|  | data_size, data); | 
|  | } | 
|  |  | 
|  | static efi_status_t virt_efi_get_next_variable(unsigned long *name_size, | 
|  | efi_char16_t *name, | 
|  | efi_guid_t *vendor) | 
|  | { | 
|  | return efi_call_virt3(get_next_variable, | 
|  | name_size, name, vendor); | 
|  | } | 
|  |  | 
|  | static efi_status_t virt_efi_set_variable(efi_char16_t *name, | 
|  | efi_guid_t *vendor, | 
|  | u32 attr, | 
|  | unsigned long data_size, | 
|  | void *data) | 
|  | { | 
|  | return efi_call_virt5(set_variable, | 
|  | name, vendor, attr, | 
|  | data_size, data); | 
|  | } | 
|  |  | 
|  | static efi_status_t virt_efi_query_variable_info(u32 attr, | 
|  | u64 *storage_space, | 
|  | u64 *remaining_space, | 
|  | u64 *max_variable_size) | 
|  | { | 
|  | if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) | 
|  | return EFI_UNSUPPORTED; | 
|  |  | 
|  | return efi_call_virt4(query_variable_info, attr, storage_space, | 
|  | remaining_space, max_variable_size); | 
|  | } | 
|  |  | 
|  | static efi_status_t virt_efi_get_next_high_mono_count(u32 *count) | 
|  | { | 
|  | return efi_call_virt1(get_next_high_mono_count, count); | 
|  | } | 
|  |  | 
|  | static void virt_efi_reset_system(int reset_type, | 
|  | efi_status_t status, | 
|  | unsigned long data_size, | 
|  | efi_char16_t *data) | 
|  | { | 
|  | efi_call_virt4(reset_system, reset_type, status, | 
|  | data_size, data); | 
|  | } | 
|  |  | 
|  | static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules, | 
|  | unsigned long count, | 
|  | unsigned long sg_list) | 
|  | { | 
|  | if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) | 
|  | return EFI_UNSUPPORTED; | 
|  |  | 
|  | return efi_call_virt3(update_capsule, capsules, count, sg_list); | 
|  | } | 
|  |  | 
|  | static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules, | 
|  | unsigned long count, | 
|  | u64 *max_size, | 
|  | int *reset_type) | 
|  | { | 
|  | if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) | 
|  | return EFI_UNSUPPORTED; | 
|  |  | 
|  | return efi_call_virt4(query_capsule_caps, capsules, count, max_size, | 
|  | reset_type); | 
|  | } | 
|  |  | 
|  | static efi_status_t __init phys_efi_set_virtual_address_map( | 
|  | unsigned long memory_map_size, | 
|  | unsigned long descriptor_size, | 
|  | u32 descriptor_version, | 
|  | efi_memory_desc_t *virtual_map) | 
|  | { | 
|  | efi_status_t status; | 
|  |  | 
|  | efi_call_phys_prelog(); | 
|  | status = efi_call_phys4(efi_phys.set_virtual_address_map, | 
|  | memory_map_size, descriptor_size, | 
|  | descriptor_version, virtual_map); | 
|  | efi_call_phys_epilog(); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static efi_status_t __init phys_efi_get_time(efi_time_t *tm, | 
|  | efi_time_cap_t *tc) | 
|  | { | 
|  | unsigned long flags; | 
|  | efi_status_t status; | 
|  |  | 
|  | spin_lock_irqsave(&rtc_lock, flags); | 
|  | efi_call_phys_prelog(); | 
|  | status = efi_call_phys2(efi_phys.get_time, virt_to_phys(tm), | 
|  | virt_to_phys(tc)); | 
|  | efi_call_phys_epilog(); | 
|  | spin_unlock_irqrestore(&rtc_lock, flags); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | int efi_set_rtc_mmss(unsigned long nowtime) | 
|  | { | 
|  | efi_status_t 	status; | 
|  | efi_time_t 	eft; | 
|  | efi_time_cap_t 	cap; | 
|  | struct rtc_time	tm; | 
|  |  | 
|  | status = efi.get_time(&eft, &cap); | 
|  | if (status != EFI_SUCCESS) { | 
|  | pr_err("Oops: efitime: can't read time!\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | rtc_time_to_tm(nowtime, &tm); | 
|  | if (!rtc_valid_tm(&tm)) { | 
|  | eft.year = tm.tm_year + 1900; | 
|  | eft.month = tm.tm_mon + 1; | 
|  | eft.day = tm.tm_mday; | 
|  | eft.minute = tm.tm_min; | 
|  | eft.second = tm.tm_sec; | 
|  | eft.nanosecond = 0; | 
|  | } else { | 
|  | printk(KERN_ERR | 
|  | "%s: Invalid EFI RTC value: write of %lx to EFI RTC failed\n", | 
|  | __FUNCTION__, nowtime); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | status = efi.set_time(&eft); | 
|  | if (status != EFI_SUCCESS) { | 
|  | pr_err("Oops: efitime: can't write time!\n"); | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned long efi_get_time(void) | 
|  | { | 
|  | efi_status_t status; | 
|  | efi_time_t eft; | 
|  | efi_time_cap_t cap; | 
|  |  | 
|  | status = efi.get_time(&eft, &cap); | 
|  | if (status != EFI_SUCCESS) | 
|  | pr_err("Oops: efitime: can't read time!\n"); | 
|  |  | 
|  | return mktime(eft.year, eft.month, eft.day, eft.hour, | 
|  | eft.minute, eft.second); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Tell the kernel about the EFI memory map.  This might include | 
|  | * more than the max 128 entries that can fit in the e820 legacy | 
|  | * (zeropage) memory map. | 
|  | */ | 
|  |  | 
|  | static void __init do_add_efi_memmap(void) | 
|  | { | 
|  | void *p; | 
|  |  | 
|  | for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
|  | efi_memory_desc_t *md = p; | 
|  | unsigned long long start = md->phys_addr; | 
|  | unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; | 
|  | int e820_type; | 
|  |  | 
|  | switch (md->type) { | 
|  | case EFI_LOADER_CODE: | 
|  | case EFI_LOADER_DATA: | 
|  | case EFI_BOOT_SERVICES_CODE: | 
|  | case EFI_BOOT_SERVICES_DATA: | 
|  | case EFI_CONVENTIONAL_MEMORY: | 
|  | if (md->attribute & EFI_MEMORY_WB) | 
|  | e820_type = E820_RAM; | 
|  | else | 
|  | e820_type = E820_RESERVED; | 
|  | break; | 
|  | case EFI_ACPI_RECLAIM_MEMORY: | 
|  | e820_type = E820_ACPI; | 
|  | break; | 
|  | case EFI_ACPI_MEMORY_NVS: | 
|  | e820_type = E820_NVS; | 
|  | break; | 
|  | case EFI_UNUSABLE_MEMORY: | 
|  | e820_type = E820_UNUSABLE; | 
|  | break; | 
|  | default: | 
|  | /* | 
|  | * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE | 
|  | * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO | 
|  | * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE | 
|  | */ | 
|  | e820_type = E820_RESERVED; | 
|  | break; | 
|  | } | 
|  | e820_add_region(start, size, e820_type); | 
|  | } | 
|  | sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map); | 
|  | } | 
|  |  | 
|  | int __init efi_memblock_x86_reserve_range(void) | 
|  | { | 
|  | struct efi_info *e = &boot_params.efi_info; | 
|  | unsigned long pmap; | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | /* Can't handle data above 4GB at this time */ | 
|  | if (e->efi_memmap_hi) { | 
|  | pr_err("Memory map is above 4GB, disabling EFI.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | pmap =  e->efi_memmap; | 
|  | #else | 
|  | pmap = (e->efi_memmap |	((__u64)e->efi_memmap_hi << 32)); | 
|  | #endif | 
|  | memmap.phys_map		= (void *)pmap; | 
|  | memmap.nr_map		= e->efi_memmap_size / | 
|  | e->efi_memdesc_size; | 
|  | memmap.desc_size	= e->efi_memdesc_size; | 
|  | memmap.desc_version	= e->efi_memdesc_version; | 
|  |  | 
|  | memblock_reserve(pmap, memmap.nr_map * memmap.desc_size); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if EFI_DEBUG | 
|  | static void __init print_efi_memmap(void) | 
|  | { | 
|  | efi_memory_desc_t *md; | 
|  | void *p; | 
|  | int i; | 
|  |  | 
|  | for (p = memmap.map, i = 0; | 
|  | p < memmap.map_end; | 
|  | p += memmap.desc_size, i++) { | 
|  | md = p; | 
|  | pr_info("mem%02u: type=%u, attr=0x%llx, " | 
|  | "range=[0x%016llx-0x%016llx) (%lluMB)\n", | 
|  | i, md->type, md->attribute, md->phys_addr, | 
|  | md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT), | 
|  | (md->num_pages >> (20 - EFI_PAGE_SHIFT))); | 
|  | } | 
|  | } | 
|  | #endif  /*  EFI_DEBUG  */ | 
|  |  | 
|  | void __init efi_reserve_boot_services(void) | 
|  | { | 
|  | void *p; | 
|  |  | 
|  | for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
|  | efi_memory_desc_t *md = p; | 
|  | u64 start = md->phys_addr; | 
|  | u64 size = md->num_pages << EFI_PAGE_SHIFT; | 
|  |  | 
|  | if (md->type != EFI_BOOT_SERVICES_CODE && | 
|  | md->type != EFI_BOOT_SERVICES_DATA) | 
|  | continue; | 
|  | /* Only reserve where possible: | 
|  | * - Not within any already allocated areas | 
|  | * - Not over any memory area (really needed, if above?) | 
|  | * - Not within any part of the kernel | 
|  | * - Not the bios reserved area | 
|  | */ | 
|  | if ((start+size >= __pa_symbol(_text) | 
|  | && start <= __pa_symbol(_end)) || | 
|  | !e820_all_mapped(start, start+size, E820_RAM) || | 
|  | memblock_is_region_reserved(start, size)) { | 
|  | /* Could not reserve, skip it */ | 
|  | md->num_pages = 0; | 
|  | memblock_dbg("Could not reserve boot range " | 
|  | "[0x%010llx-0x%010llx]\n", | 
|  | start, start+size-1); | 
|  | } else | 
|  | memblock_reserve(start, size); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init efi_unmap_memmap(void) | 
|  | { | 
|  | clear_bit(EFI_MEMMAP, &x86_efi_facility); | 
|  | if (memmap.map) { | 
|  | early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size); | 
|  | memmap.map = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init efi_free_boot_services(void) | 
|  | { | 
|  | void *p; | 
|  |  | 
|  | if (!efi_is_native()) | 
|  | return; | 
|  |  | 
|  | for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
|  | efi_memory_desc_t *md = p; | 
|  | unsigned long long start = md->phys_addr; | 
|  | unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; | 
|  |  | 
|  | if (md->type != EFI_BOOT_SERVICES_CODE && | 
|  | md->type != EFI_BOOT_SERVICES_DATA) | 
|  | continue; | 
|  |  | 
|  | /* Could not reserve boot area */ | 
|  | if (!size) | 
|  | continue; | 
|  |  | 
|  | free_bootmem_late(start, size); | 
|  | } | 
|  |  | 
|  | efi_unmap_memmap(); | 
|  | } | 
|  |  | 
|  | static int __init efi_systab_init(void *phys) | 
|  | { | 
|  | if (efi_enabled(EFI_64BIT)) { | 
|  | efi_system_table_64_t *systab64; | 
|  | u64 tmp = 0; | 
|  |  | 
|  | systab64 = early_ioremap((unsigned long)phys, | 
|  | sizeof(*systab64)); | 
|  | if (systab64 == NULL) { | 
|  | pr_err("Couldn't map the system table!\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | efi_systab.hdr = systab64->hdr; | 
|  | efi_systab.fw_vendor = systab64->fw_vendor; | 
|  | tmp |= systab64->fw_vendor; | 
|  | efi_systab.fw_revision = systab64->fw_revision; | 
|  | efi_systab.con_in_handle = systab64->con_in_handle; | 
|  | tmp |= systab64->con_in_handle; | 
|  | efi_systab.con_in = systab64->con_in; | 
|  | tmp |= systab64->con_in; | 
|  | efi_systab.con_out_handle = systab64->con_out_handle; | 
|  | tmp |= systab64->con_out_handle; | 
|  | efi_systab.con_out = systab64->con_out; | 
|  | tmp |= systab64->con_out; | 
|  | efi_systab.stderr_handle = systab64->stderr_handle; | 
|  | tmp |= systab64->stderr_handle; | 
|  | efi_systab.stderr = systab64->stderr; | 
|  | tmp |= systab64->stderr; | 
|  | efi_systab.runtime = (void *)(unsigned long)systab64->runtime; | 
|  | tmp |= systab64->runtime; | 
|  | efi_systab.boottime = (void *)(unsigned long)systab64->boottime; | 
|  | tmp |= systab64->boottime; | 
|  | efi_systab.nr_tables = systab64->nr_tables; | 
|  | efi_systab.tables = systab64->tables; | 
|  | tmp |= systab64->tables; | 
|  |  | 
|  | early_iounmap(systab64, sizeof(*systab64)); | 
|  | #ifdef CONFIG_X86_32 | 
|  | if (tmp >> 32) { | 
|  | pr_err("EFI data located above 4GB, disabling EFI.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | #endif | 
|  | } else { | 
|  | efi_system_table_32_t *systab32; | 
|  |  | 
|  | systab32 = early_ioremap((unsigned long)phys, | 
|  | sizeof(*systab32)); | 
|  | if (systab32 == NULL) { | 
|  | pr_err("Couldn't map the system table!\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | efi_systab.hdr = systab32->hdr; | 
|  | efi_systab.fw_vendor = systab32->fw_vendor; | 
|  | efi_systab.fw_revision = systab32->fw_revision; | 
|  | efi_systab.con_in_handle = systab32->con_in_handle; | 
|  | efi_systab.con_in = systab32->con_in; | 
|  | efi_systab.con_out_handle = systab32->con_out_handle; | 
|  | efi_systab.con_out = systab32->con_out; | 
|  | efi_systab.stderr_handle = systab32->stderr_handle; | 
|  | efi_systab.stderr = systab32->stderr; | 
|  | efi_systab.runtime = (void *)(unsigned long)systab32->runtime; | 
|  | efi_systab.boottime = (void *)(unsigned long)systab32->boottime; | 
|  | efi_systab.nr_tables = systab32->nr_tables; | 
|  | efi_systab.tables = systab32->tables; | 
|  |  | 
|  | early_iounmap(systab32, sizeof(*systab32)); | 
|  | } | 
|  |  | 
|  | efi.systab = &efi_systab; | 
|  |  | 
|  | /* | 
|  | * Verify the EFI Table | 
|  | */ | 
|  | if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) { | 
|  | pr_err("System table signature incorrect!\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if ((efi.systab->hdr.revision >> 16) == 0) | 
|  | pr_err("Warning: System table version " | 
|  | "%d.%02d, expected 1.00 or greater!\n", | 
|  | efi.systab->hdr.revision >> 16, | 
|  | efi.systab->hdr.revision & 0xffff); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init efi_config_init(u64 tables, int nr_tables) | 
|  | { | 
|  | void *config_tables, *tablep; | 
|  | int i, sz; | 
|  |  | 
|  | if (efi_enabled(EFI_64BIT)) | 
|  | sz = sizeof(efi_config_table_64_t); | 
|  | else | 
|  | sz = sizeof(efi_config_table_32_t); | 
|  |  | 
|  | /* | 
|  | * Let's see what config tables the firmware passed to us. | 
|  | */ | 
|  | config_tables = early_ioremap(tables, nr_tables * sz); | 
|  | if (config_tables == NULL) { | 
|  | pr_err("Could not map Configuration table!\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | tablep = config_tables; | 
|  | pr_info(""); | 
|  | for (i = 0; i < efi.systab->nr_tables; i++) { | 
|  | efi_guid_t guid; | 
|  | unsigned long table; | 
|  |  | 
|  | if (efi_enabled(EFI_64BIT)) { | 
|  | u64 table64; | 
|  | guid = ((efi_config_table_64_t *)tablep)->guid; | 
|  | table64 = ((efi_config_table_64_t *)tablep)->table; | 
|  | table = table64; | 
|  | #ifdef CONFIG_X86_32 | 
|  | if (table64 >> 32) { | 
|  | pr_cont("\n"); | 
|  | pr_err("Table located above 4GB, disabling EFI.\n"); | 
|  | early_iounmap(config_tables, | 
|  | efi.systab->nr_tables * sz); | 
|  | return -EINVAL; | 
|  | } | 
|  | #endif | 
|  | } else { | 
|  | guid = ((efi_config_table_32_t *)tablep)->guid; | 
|  | table = ((efi_config_table_32_t *)tablep)->table; | 
|  | } | 
|  | if (!efi_guidcmp(guid, MPS_TABLE_GUID)) { | 
|  | efi.mps = table; | 
|  | pr_cont(" MPS=0x%lx ", table); | 
|  | } else if (!efi_guidcmp(guid, ACPI_20_TABLE_GUID)) { | 
|  | efi.acpi20 = table; | 
|  | pr_cont(" ACPI 2.0=0x%lx ", table); | 
|  | } else if (!efi_guidcmp(guid, ACPI_TABLE_GUID)) { | 
|  | efi.acpi = table; | 
|  | pr_cont(" ACPI=0x%lx ", table); | 
|  | } else if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID)) { | 
|  | efi.smbios = table; | 
|  | pr_cont(" SMBIOS=0x%lx ", table); | 
|  | #ifdef CONFIG_X86_UV | 
|  | } else if (!efi_guidcmp(guid, UV_SYSTEM_TABLE_GUID)) { | 
|  | efi.uv_systab = table; | 
|  | pr_cont(" UVsystab=0x%lx ", table); | 
|  | #endif | 
|  | } else if (!efi_guidcmp(guid, HCDP_TABLE_GUID)) { | 
|  | efi.hcdp = table; | 
|  | pr_cont(" HCDP=0x%lx ", table); | 
|  | } else if (!efi_guidcmp(guid, UGA_IO_PROTOCOL_GUID)) { | 
|  | efi.uga = table; | 
|  | pr_cont(" UGA=0x%lx ", table); | 
|  | } | 
|  | tablep += sz; | 
|  | } | 
|  | pr_cont("\n"); | 
|  | early_iounmap(config_tables, efi.systab->nr_tables * sz); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init efi_runtime_init(void) | 
|  | { | 
|  | efi_runtime_services_t *runtime; | 
|  |  | 
|  | /* | 
|  | * Check out the runtime services table. We need to map | 
|  | * the runtime services table so that we can grab the physical | 
|  | * address of several of the EFI runtime functions, needed to | 
|  | * set the firmware into virtual mode. | 
|  | */ | 
|  | runtime = early_ioremap((unsigned long)efi.systab->runtime, | 
|  | sizeof(efi_runtime_services_t)); | 
|  | if (!runtime) { | 
|  | pr_err("Could not map the runtime service table!\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | /* | 
|  | * We will only need *early* access to the following | 
|  | * two EFI runtime services before set_virtual_address_map | 
|  | * is invoked. | 
|  | */ | 
|  | efi_phys.get_time = (efi_get_time_t *)runtime->get_time; | 
|  | efi_phys.set_virtual_address_map = | 
|  | (efi_set_virtual_address_map_t *) | 
|  | runtime->set_virtual_address_map; | 
|  | /* | 
|  | * Make efi_get_time can be called before entering | 
|  | * virtual mode. | 
|  | */ | 
|  | efi.get_time = phys_efi_get_time; | 
|  | early_iounmap(runtime, sizeof(efi_runtime_services_t)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init efi_memmap_init(void) | 
|  | { | 
|  | /* Map the EFI memory map */ | 
|  | memmap.map = early_ioremap((unsigned long)memmap.phys_map, | 
|  | memmap.nr_map * memmap.desc_size); | 
|  | if (memmap.map == NULL) { | 
|  | pr_err("Could not map the memory map!\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size); | 
|  |  | 
|  | if (add_efi_memmap) | 
|  | do_add_efi_memmap(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __init efi_init(void) | 
|  | { | 
|  | efi_char16_t *c16; | 
|  | char vendor[100] = "unknown"; | 
|  | int i = 0; | 
|  | void *tmp; | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | if (boot_params.efi_info.efi_systab_hi || | 
|  | boot_params.efi_info.efi_memmap_hi) { | 
|  | pr_info("Table located above 4GB, disabling EFI.\n"); | 
|  | return; | 
|  | } | 
|  | efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab; | 
|  | #else | 
|  | efi_phys.systab = (efi_system_table_t *) | 
|  | (boot_params.efi_info.efi_systab | | 
|  | ((__u64)boot_params.efi_info.efi_systab_hi<<32)); | 
|  | #endif | 
|  |  | 
|  | if (efi_systab_init(efi_phys.systab)) | 
|  | return; | 
|  |  | 
|  | set_bit(EFI_SYSTEM_TABLES, &x86_efi_facility); | 
|  |  | 
|  | /* | 
|  | * Show what we know for posterity | 
|  | */ | 
|  | c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2); | 
|  | if (c16) { | 
|  | for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i) | 
|  | vendor[i] = *c16++; | 
|  | vendor[i] = '\0'; | 
|  | } else | 
|  | pr_err("Could not map the firmware vendor!\n"); | 
|  | early_iounmap(tmp, 2); | 
|  |  | 
|  | pr_info("EFI v%u.%.02u by %s\n", | 
|  | efi.systab->hdr.revision >> 16, | 
|  | efi.systab->hdr.revision & 0xffff, vendor); | 
|  |  | 
|  | if (efi_config_init(efi.systab->tables, efi.systab->nr_tables)) | 
|  | return; | 
|  |  | 
|  | set_bit(EFI_CONFIG_TABLES, &x86_efi_facility); | 
|  |  | 
|  | /* | 
|  | * Note: We currently don't support runtime services on an EFI | 
|  | * that doesn't match the kernel 32/64-bit mode. | 
|  | */ | 
|  |  | 
|  | if (!efi_is_native()) | 
|  | pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n"); | 
|  | else { | 
|  | if (disable_runtime || efi_runtime_init()) | 
|  | return; | 
|  | set_bit(EFI_RUNTIME_SERVICES, &x86_efi_facility); | 
|  | } | 
|  |  | 
|  | if (efi_memmap_init()) | 
|  | return; | 
|  |  | 
|  | set_bit(EFI_MEMMAP, &x86_efi_facility); | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | if (efi_is_native()) { | 
|  | x86_platform.get_wallclock = efi_get_time; | 
|  | x86_platform.set_wallclock = efi_set_rtc_mmss; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if EFI_DEBUG | 
|  | print_efi_memmap(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void __init efi_late_init(void) | 
|  | { | 
|  | efi_bgrt_init(); | 
|  | } | 
|  |  | 
|  | void __init efi_set_executable(efi_memory_desc_t *md, bool executable) | 
|  | { | 
|  | u64 addr, npages; | 
|  |  | 
|  | addr = md->virt_addr; | 
|  | npages = md->num_pages; | 
|  |  | 
|  | memrange_efi_to_native(&addr, &npages); | 
|  |  | 
|  | if (executable) | 
|  | set_memory_x(addr, npages); | 
|  | else | 
|  | set_memory_nx(addr, npages); | 
|  | } | 
|  |  | 
|  | static void __init runtime_code_page_mkexec(void) | 
|  | { | 
|  | efi_memory_desc_t *md; | 
|  | void *p; | 
|  |  | 
|  | /* Make EFI runtime service code area executable */ | 
|  | for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
|  | md = p; | 
|  |  | 
|  | if (md->type != EFI_RUNTIME_SERVICES_CODE) | 
|  | continue; | 
|  |  | 
|  | efi_set_executable(md, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We can't ioremap data in EFI boot services RAM, because we've already mapped | 
|  | * it as RAM.  So, look it up in the existing EFI memory map instead.  Only | 
|  | * callable after efi_enter_virtual_mode and before efi_free_boot_services. | 
|  | */ | 
|  | void __iomem *efi_lookup_mapped_addr(u64 phys_addr) | 
|  | { | 
|  | void *p; | 
|  | if (WARN_ON(!memmap.map)) | 
|  | return NULL; | 
|  | for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
|  | efi_memory_desc_t *md = p; | 
|  | u64 size = md->num_pages << EFI_PAGE_SHIFT; | 
|  | u64 end = md->phys_addr + size; | 
|  | if (!(md->attribute & EFI_MEMORY_RUNTIME) && | 
|  | md->type != EFI_BOOT_SERVICES_CODE && | 
|  | md->type != EFI_BOOT_SERVICES_DATA) | 
|  | continue; | 
|  | if (!md->virt_addr) | 
|  | continue; | 
|  | if (phys_addr >= md->phys_addr && phys_addr < end) { | 
|  | phys_addr += md->virt_addr - md->phys_addr; | 
|  | return (__force void __iomem *)(unsigned long)phys_addr; | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void efi_memory_uc(u64 addr, unsigned long size) | 
|  | { | 
|  | unsigned long page_shift = 1UL << EFI_PAGE_SHIFT; | 
|  | u64 npages; | 
|  |  | 
|  | npages = round_up(size, page_shift) / page_shift; | 
|  | memrange_efi_to_native(&addr, &npages); | 
|  | set_memory_uc(addr, npages); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function will switch the EFI runtime services to virtual mode. | 
|  | * Essentially, look through the EFI memmap and map every region that | 
|  | * has the runtime attribute bit set in its memory descriptor and update | 
|  | * that memory descriptor with the virtual address obtained from ioremap(). | 
|  | * This enables the runtime services to be called without having to | 
|  | * thunk back into physical mode for every invocation. | 
|  | */ | 
|  | void __init efi_enter_virtual_mode(void) | 
|  | { | 
|  | efi_memory_desc_t *md, *prev_md = NULL; | 
|  | efi_status_t status; | 
|  | unsigned long size; | 
|  | u64 end, systab, start_pfn, end_pfn; | 
|  | void *p, *va, *new_memmap = NULL; | 
|  | int count = 0; | 
|  |  | 
|  | efi.systab = NULL; | 
|  |  | 
|  | /* | 
|  | * We don't do virtual mode, since we don't do runtime services, on | 
|  | * non-native EFI | 
|  | */ | 
|  |  | 
|  | if (!efi_is_native()) { | 
|  | efi_unmap_memmap(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Merge contiguous regions of the same type and attribute */ | 
|  | for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
|  | u64 prev_size; | 
|  | md = p; | 
|  |  | 
|  | if (!prev_md) { | 
|  | prev_md = md; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (prev_md->type != md->type || | 
|  | prev_md->attribute != md->attribute) { | 
|  | prev_md = md; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | prev_size = prev_md->num_pages << EFI_PAGE_SHIFT; | 
|  |  | 
|  | if (md->phys_addr == (prev_md->phys_addr + prev_size)) { | 
|  | prev_md->num_pages += md->num_pages; | 
|  | md->type = EFI_RESERVED_TYPE; | 
|  | md->attribute = 0; | 
|  | continue; | 
|  | } | 
|  | prev_md = md; | 
|  | } | 
|  |  | 
|  | for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
|  | md = p; | 
|  | if (!(md->attribute & EFI_MEMORY_RUNTIME) && | 
|  | md->type != EFI_BOOT_SERVICES_CODE && | 
|  | md->type != EFI_BOOT_SERVICES_DATA) | 
|  | continue; | 
|  |  | 
|  | size = md->num_pages << EFI_PAGE_SHIFT; | 
|  | end = md->phys_addr + size; | 
|  |  | 
|  | start_pfn = PFN_DOWN(md->phys_addr); | 
|  | end_pfn = PFN_UP(end); | 
|  | if (pfn_range_is_mapped(start_pfn, end_pfn)) { | 
|  | va = __va(md->phys_addr); | 
|  |  | 
|  | if (!(md->attribute & EFI_MEMORY_WB)) | 
|  | efi_memory_uc((u64)(unsigned long)va, size); | 
|  | } else | 
|  | va = efi_ioremap(md->phys_addr, size, | 
|  | md->type, md->attribute); | 
|  |  | 
|  | md->virt_addr = (u64) (unsigned long) va; | 
|  |  | 
|  | if (!va) { | 
|  | pr_err("ioremap of 0x%llX failed!\n", | 
|  | (unsigned long long)md->phys_addr); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | systab = (u64) (unsigned long) efi_phys.systab; | 
|  | if (md->phys_addr <= systab && systab < end) { | 
|  | systab += md->virt_addr - md->phys_addr; | 
|  | efi.systab = (efi_system_table_t *) (unsigned long) systab; | 
|  | } | 
|  | new_memmap = krealloc(new_memmap, | 
|  | (count + 1) * memmap.desc_size, | 
|  | GFP_KERNEL); | 
|  | memcpy(new_memmap + (count * memmap.desc_size), md, | 
|  | memmap.desc_size); | 
|  | count++; | 
|  | } | 
|  |  | 
|  | BUG_ON(!efi.systab); | 
|  |  | 
|  | status = phys_efi_set_virtual_address_map( | 
|  | memmap.desc_size * count, | 
|  | memmap.desc_size, | 
|  | memmap.desc_version, | 
|  | (efi_memory_desc_t *)__pa(new_memmap)); | 
|  |  | 
|  | if (status != EFI_SUCCESS) { | 
|  | pr_alert("Unable to switch EFI into virtual mode " | 
|  | "(status=%lx)!\n", status); | 
|  | panic("EFI call to SetVirtualAddressMap() failed!"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now that EFI is in virtual mode, update the function | 
|  | * pointers in the runtime service table to the new virtual addresses. | 
|  | * | 
|  | * Call EFI services through wrapper functions. | 
|  | */ | 
|  | efi.runtime_version = efi_systab.hdr.revision; | 
|  | efi.get_time = virt_efi_get_time; | 
|  | efi.set_time = virt_efi_set_time; | 
|  | efi.get_wakeup_time = virt_efi_get_wakeup_time; | 
|  | efi.set_wakeup_time = virt_efi_set_wakeup_time; | 
|  | efi.get_variable = virt_efi_get_variable; | 
|  | efi.get_next_variable = virt_efi_get_next_variable; | 
|  | efi.set_variable = virt_efi_set_variable; | 
|  | efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count; | 
|  | efi.reset_system = virt_efi_reset_system; | 
|  | efi.set_virtual_address_map = NULL; | 
|  | efi.query_variable_info = virt_efi_query_variable_info; | 
|  | efi.update_capsule = virt_efi_update_capsule; | 
|  | efi.query_capsule_caps = virt_efi_query_capsule_caps; | 
|  | if (__supported_pte_mask & _PAGE_NX) | 
|  | runtime_code_page_mkexec(); | 
|  |  | 
|  | kfree(new_memmap); | 
|  |  | 
|  | /* clean DUMMY object */ | 
|  | efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID, | 
|  | EFI_VARIABLE_NON_VOLATILE | | 
|  | EFI_VARIABLE_BOOTSERVICE_ACCESS | | 
|  | EFI_VARIABLE_RUNTIME_ACCESS, | 
|  | 0, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convenience functions to obtain memory types and attributes | 
|  | */ | 
|  | u32 efi_mem_type(unsigned long phys_addr) | 
|  | { | 
|  | efi_memory_desc_t *md; | 
|  | void *p; | 
|  |  | 
|  | if (!efi_enabled(EFI_MEMMAP)) | 
|  | return 0; | 
|  |  | 
|  | for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
|  | md = p; | 
|  | if ((md->phys_addr <= phys_addr) && | 
|  | (phys_addr < (md->phys_addr + | 
|  | (md->num_pages << EFI_PAGE_SHIFT)))) | 
|  | return md->type; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | u64 efi_mem_attributes(unsigned long phys_addr) | 
|  | { | 
|  | efi_memory_desc_t *md; | 
|  | void *p; | 
|  |  | 
|  | for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { | 
|  | md = p; | 
|  | if ((md->phys_addr <= phys_addr) && | 
|  | (phys_addr < (md->phys_addr + | 
|  | (md->num_pages << EFI_PAGE_SHIFT)))) | 
|  | return md->attribute; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some firmware has serious problems when using more than 50% of the EFI | 
|  | * variable store, i.e. it triggers bugs that can brick machines. Ensure that | 
|  | * we never use more than this safe limit. | 
|  | * | 
|  | * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable | 
|  | * store. | 
|  | */ | 
|  | efi_status_t efi_query_variable_store(u32 attributes, unsigned long size) | 
|  | { | 
|  | efi_status_t status; | 
|  | u64 storage_size, remaining_size, max_size; | 
|  |  | 
|  | if (!(attributes & EFI_VARIABLE_NON_VOLATILE)) | 
|  | return 0; | 
|  |  | 
|  | status = efi.query_variable_info(attributes, &storage_size, | 
|  | &remaining_size, &max_size); | 
|  | if (status != EFI_SUCCESS) | 
|  | return status; | 
|  |  | 
|  | /* | 
|  | * Some firmware implementations refuse to boot if there's insufficient | 
|  | * space in the variable store. We account for that by refusing the | 
|  | * write if permitting it would reduce the available space to under | 
|  | * 5KB. This figure was provided by Samsung, so should be safe. | 
|  | */ | 
|  | if ((remaining_size - size < EFI_MIN_RESERVE) && | 
|  | !efi_no_storage_paranoia) { | 
|  |  | 
|  | /* | 
|  | * Triggering garbage collection may require that the firmware | 
|  | * generate a real EFI_OUT_OF_RESOURCES error. We can force | 
|  | * that by attempting to use more space than is available. | 
|  | */ | 
|  | unsigned long dummy_size = remaining_size + 1024; | 
|  | void *dummy = kmalloc(dummy_size, GFP_ATOMIC); | 
|  |  | 
|  | status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID, | 
|  | EFI_VARIABLE_NON_VOLATILE | | 
|  | EFI_VARIABLE_BOOTSERVICE_ACCESS | | 
|  | EFI_VARIABLE_RUNTIME_ACCESS, | 
|  | dummy_size, dummy); | 
|  |  | 
|  | if (status == EFI_SUCCESS) { | 
|  | /* | 
|  | * This should have failed, so if it didn't make sure | 
|  | * that we delete it... | 
|  | */ | 
|  | efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID, | 
|  | EFI_VARIABLE_NON_VOLATILE | | 
|  | EFI_VARIABLE_BOOTSERVICE_ACCESS | | 
|  | EFI_VARIABLE_RUNTIME_ACCESS, | 
|  | 0, dummy); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The runtime code may now have triggered a garbage collection | 
|  | * run, so check the variable info again | 
|  | */ | 
|  | status = efi.query_variable_info(attributes, &storage_size, | 
|  | &remaining_size, &max_size); | 
|  |  | 
|  | if (status != EFI_SUCCESS) | 
|  | return status; | 
|  |  | 
|  | /* | 
|  | * There still isn't enough room, so return an error | 
|  | */ | 
|  | if (remaining_size - size < EFI_MIN_RESERVE) | 
|  | return EFI_OUT_OF_RESOURCES; | 
|  | } | 
|  |  | 
|  | return EFI_SUCCESS; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(efi_query_variable_store); |