| /* | 
 |  * Copyright (C) 1991, 1992 Linus Torvalds | 
 |  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics | 
 |  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE | 
 |  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> | 
 |  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> | 
 |  *	-  July2000 | 
 |  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 | 
 |  */ | 
 |  | 
 | /* | 
 |  * This handles all read/write requests to block devices | 
 |  */ | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/blk-mq.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/string.h> | 
 | #include <linux/init.h> | 
 | #include <linux/completion.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/task_io_accounting_ops.h> | 
 | #include <linux/fault-inject.h> | 
 | #include <linux/list_sort.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/ratelimit.h> | 
 | #include <linux/pm_runtime.h> | 
 | #include <linux/blk-cgroup.h> | 
 | #include <linux/debugfs.h> | 
 | #include <linux/bpf.h> | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/block.h> | 
 |  | 
 | #include "blk.h" | 
 | #include "blk-mq.h" | 
 | #include "blk-mq-sched.h" | 
 | #include "blk-pm.h" | 
 | #include "blk-rq-qos.h" | 
 |  | 
 | #ifdef CONFIG_DEBUG_FS | 
 | struct dentry *blk_debugfs_root; | 
 | #endif | 
 |  | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); | 
 |  | 
 | DEFINE_IDA(blk_queue_ida); | 
 |  | 
 | /* | 
 |  * For queue allocation | 
 |  */ | 
 | struct kmem_cache *blk_requestq_cachep; | 
 |  | 
 | /* | 
 |  * Controlling structure to kblockd | 
 |  */ | 
 | static struct workqueue_struct *kblockd_workqueue; | 
 |  | 
 | /** | 
 |  * blk_queue_flag_set - atomically set a queue flag | 
 |  * @flag: flag to be set | 
 |  * @q: request queue | 
 |  */ | 
 | void blk_queue_flag_set(unsigned int flag, struct request_queue *q) | 
 | { | 
 | 	set_bit(flag, &q->queue_flags); | 
 | } | 
 | EXPORT_SYMBOL(blk_queue_flag_set); | 
 |  | 
 | /** | 
 |  * blk_queue_flag_clear - atomically clear a queue flag | 
 |  * @flag: flag to be cleared | 
 |  * @q: request queue | 
 |  */ | 
 | void blk_queue_flag_clear(unsigned int flag, struct request_queue *q) | 
 | { | 
 | 	clear_bit(flag, &q->queue_flags); | 
 | } | 
 | EXPORT_SYMBOL(blk_queue_flag_clear); | 
 |  | 
 | /** | 
 |  * blk_queue_flag_test_and_set - atomically test and set a queue flag | 
 |  * @flag: flag to be set | 
 |  * @q: request queue | 
 |  * | 
 |  * Returns the previous value of @flag - 0 if the flag was not set and 1 if | 
 |  * the flag was already set. | 
 |  */ | 
 | bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q) | 
 | { | 
 | 	return test_and_set_bit(flag, &q->queue_flags); | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set); | 
 |  | 
 | void blk_rq_init(struct request_queue *q, struct request *rq) | 
 | { | 
 | 	memset(rq, 0, sizeof(*rq)); | 
 |  | 
 | 	INIT_LIST_HEAD(&rq->queuelist); | 
 | 	rq->q = q; | 
 | 	rq->__sector = (sector_t) -1; | 
 | 	INIT_HLIST_NODE(&rq->hash); | 
 | 	RB_CLEAR_NODE(&rq->rb_node); | 
 | 	rq->tag = -1; | 
 | 	rq->internal_tag = -1; | 
 | 	rq->start_time_ns = ktime_get_ns(); | 
 | 	rq->part = NULL; | 
 | } | 
 | EXPORT_SYMBOL(blk_rq_init); | 
 |  | 
 | static const struct { | 
 | 	int		errno; | 
 | 	const char	*name; | 
 | } blk_errors[] = { | 
 | 	[BLK_STS_OK]		= { 0,		"" }, | 
 | 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" }, | 
 | 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" }, | 
 | 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" }, | 
 | 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" }, | 
 | 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" }, | 
 | 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" }, | 
 | 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" }, | 
 | 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" }, | 
 | 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" }, | 
 | 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" }, | 
 | 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" }, | 
 |  | 
 | 	/* device mapper special case, should not leak out: */ | 
 | 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" }, | 
 |  | 
 | 	/* everything else not covered above: */ | 
 | 	[BLK_STS_IOERR]		= { -EIO,	"I/O" }, | 
 | }; | 
 |  | 
 | blk_status_t errno_to_blk_status(int errno) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { | 
 | 		if (blk_errors[i].errno == errno) | 
 | 			return (__force blk_status_t)i; | 
 | 	} | 
 |  | 
 | 	return BLK_STS_IOERR; | 
 | } | 
 | EXPORT_SYMBOL_GPL(errno_to_blk_status); | 
 |  | 
 | int blk_status_to_errno(blk_status_t status) | 
 | { | 
 | 	int idx = (__force int)status; | 
 |  | 
 | 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) | 
 | 		return -EIO; | 
 | 	return blk_errors[idx].errno; | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_status_to_errno); | 
 |  | 
 | static void print_req_error(struct request *req, blk_status_t status) | 
 | { | 
 | 	int idx = (__force int)status; | 
 |  | 
 | 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) | 
 | 		return; | 
 |  | 
 | 	printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu flags %x\n", | 
 | 				__func__, blk_errors[idx].name, | 
 | 				req->rq_disk ?  req->rq_disk->disk_name : "?", | 
 | 				(unsigned long long)blk_rq_pos(req), | 
 | 				req->cmd_flags); | 
 | } | 
 |  | 
 | static void req_bio_endio(struct request *rq, struct bio *bio, | 
 | 			  unsigned int nbytes, blk_status_t error) | 
 | { | 
 | 	if (error) | 
 | 		bio->bi_status = error; | 
 |  | 
 | 	if (unlikely(rq->rq_flags & RQF_QUIET)) | 
 | 		bio_set_flag(bio, BIO_QUIET); | 
 |  | 
 | 	bio_advance(bio, nbytes); | 
 |  | 
 | 	/* don't actually finish bio if it's part of flush sequence */ | 
 | 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) | 
 | 		bio_endio(bio); | 
 | } | 
 |  | 
 | void blk_dump_rq_flags(struct request *rq, char *msg) | 
 | { | 
 | 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, | 
 | 		rq->rq_disk ? rq->rq_disk->disk_name : "?", | 
 | 		(unsigned long long) rq->cmd_flags); | 
 |  | 
 | 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n", | 
 | 	       (unsigned long long)blk_rq_pos(rq), | 
 | 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); | 
 | 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n", | 
 | 	       rq->bio, rq->biotail, blk_rq_bytes(rq)); | 
 | } | 
 | EXPORT_SYMBOL(blk_dump_rq_flags); | 
 |  | 
 | /** | 
 |  * blk_sync_queue - cancel any pending callbacks on a queue | 
 |  * @q: the queue | 
 |  * | 
 |  * Description: | 
 |  *     The block layer may perform asynchronous callback activity | 
 |  *     on a queue, such as calling the unplug function after a timeout. | 
 |  *     A block device may call blk_sync_queue to ensure that any | 
 |  *     such activity is cancelled, thus allowing it to release resources | 
 |  *     that the callbacks might use. The caller must already have made sure | 
 |  *     that its ->make_request_fn will not re-add plugging prior to calling | 
 |  *     this function. | 
 |  * | 
 |  *     This function does not cancel any asynchronous activity arising | 
 |  *     out of elevator or throttling code. That would require elevator_exit() | 
 |  *     and blkcg_exit_queue() to be called with queue lock initialized. | 
 |  * | 
 |  */ | 
 | void blk_sync_queue(struct request_queue *q) | 
 | { | 
 | 	del_timer_sync(&q->timeout); | 
 | 	cancel_work_sync(&q->timeout_work); | 
 |  | 
 | 	if (queue_is_mq(q)) { | 
 | 		struct blk_mq_hw_ctx *hctx; | 
 | 		int i; | 
 |  | 
 | 		cancel_delayed_work_sync(&q->requeue_work); | 
 | 		queue_for_each_hw_ctx(q, hctx, i) | 
 | 			cancel_delayed_work_sync(&hctx->run_work); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(blk_sync_queue); | 
 |  | 
 | /** | 
 |  * blk_set_pm_only - increment pm_only counter | 
 |  * @q: request queue pointer | 
 |  */ | 
 | void blk_set_pm_only(struct request_queue *q) | 
 | { | 
 | 	atomic_inc(&q->pm_only); | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_set_pm_only); | 
 |  | 
 | void blk_clear_pm_only(struct request_queue *q) | 
 | { | 
 | 	int pm_only; | 
 |  | 
 | 	pm_only = atomic_dec_return(&q->pm_only); | 
 | 	WARN_ON_ONCE(pm_only < 0); | 
 | 	if (pm_only == 0) | 
 | 		wake_up_all(&q->mq_freeze_wq); | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_clear_pm_only); | 
 |  | 
 | void blk_put_queue(struct request_queue *q) | 
 | { | 
 | 	kobject_put(&q->kobj); | 
 | } | 
 | EXPORT_SYMBOL(blk_put_queue); | 
 |  | 
 | void blk_set_queue_dying(struct request_queue *q) | 
 | { | 
 | 	blk_queue_flag_set(QUEUE_FLAG_DYING, q); | 
 |  | 
 | 	/* | 
 | 	 * When queue DYING flag is set, we need to block new req | 
 | 	 * entering queue, so we call blk_freeze_queue_start() to | 
 | 	 * prevent I/O from crossing blk_queue_enter(). | 
 | 	 */ | 
 | 	blk_freeze_queue_start(q); | 
 |  | 
 | 	if (queue_is_mq(q)) | 
 | 		blk_mq_wake_waiters(q); | 
 |  | 
 | 	/* Make blk_queue_enter() reexamine the DYING flag. */ | 
 | 	wake_up_all(&q->mq_freeze_wq); | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_set_queue_dying); | 
 |  | 
 | /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */ | 
 | void blk_exit_queue(struct request_queue *q) | 
 | { | 
 | 	/* | 
 | 	 * Since the I/O scheduler exit code may access cgroup information, | 
 | 	 * perform I/O scheduler exit before disassociating from the block | 
 | 	 * cgroup controller. | 
 | 	 */ | 
 | 	if (q->elevator) { | 
 | 		ioc_clear_queue(q); | 
 | 		elevator_exit(q, q->elevator); | 
 | 		q->elevator = NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Remove all references to @q from the block cgroup controller before | 
 | 	 * restoring @q->queue_lock to avoid that restoring this pointer causes | 
 | 	 * e.g. blkcg_print_blkgs() to crash. | 
 | 	 */ | 
 | 	blkcg_exit_queue(q); | 
 |  | 
 | 	/* | 
 | 	 * Since the cgroup code may dereference the @q->backing_dev_info | 
 | 	 * pointer, only decrease its reference count after having removed the | 
 | 	 * association with the block cgroup controller. | 
 | 	 */ | 
 | 	bdi_put(q->backing_dev_info); | 
 | } | 
 |  | 
 | /** | 
 |  * blk_cleanup_queue - shutdown a request queue | 
 |  * @q: request queue to shutdown | 
 |  * | 
 |  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and | 
 |  * put it.  All future requests will be failed immediately with -ENODEV. | 
 |  */ | 
 | void blk_cleanup_queue(struct request_queue *q) | 
 | { | 
 | 	/* mark @q DYING, no new request or merges will be allowed afterwards */ | 
 | 	mutex_lock(&q->sysfs_lock); | 
 | 	blk_set_queue_dying(q); | 
 |  | 
 | 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q); | 
 | 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q); | 
 | 	blk_queue_flag_set(QUEUE_FLAG_DYING, q); | 
 | 	mutex_unlock(&q->sysfs_lock); | 
 |  | 
 | 	/* | 
 | 	 * Drain all requests queued before DYING marking. Set DEAD flag to | 
 | 	 * prevent that q->request_fn() gets invoked after draining finished. | 
 | 	 */ | 
 | 	blk_freeze_queue(q); | 
 |  | 
 | 	rq_qos_exit(q); | 
 |  | 
 | 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q); | 
 |  | 
 | 	/* | 
 | 	 * make sure all in-progress dispatch are completed because | 
 | 	 * blk_freeze_queue() can only complete all requests, and | 
 | 	 * dispatch may still be in-progress since we dispatch requests | 
 | 	 * from more than one contexts. | 
 | 	 * | 
 | 	 * We rely on driver to deal with the race in case that queue | 
 | 	 * initialization isn't done. | 
 | 	 */ | 
 | 	if (queue_is_mq(q) && blk_queue_init_done(q)) | 
 | 		blk_mq_quiesce_queue(q); | 
 |  | 
 | 	/* for synchronous bio-based driver finish in-flight integrity i/o */ | 
 | 	blk_flush_integrity(); | 
 |  | 
 | 	/* @q won't process any more request, flush async actions */ | 
 | 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); | 
 | 	blk_sync_queue(q); | 
 |  | 
 | 	/* | 
 | 	 * I/O scheduler exit is only safe after the sysfs scheduler attribute | 
 | 	 * has been removed. | 
 | 	 */ | 
 | 	WARN_ON_ONCE(q->kobj.state_in_sysfs); | 
 |  | 
 | 	blk_exit_queue(q); | 
 |  | 
 | 	if (queue_is_mq(q)) | 
 | 		blk_mq_free_queue(q); | 
 |  | 
 | 	percpu_ref_exit(&q->q_usage_counter); | 
 |  | 
 | 	/* @q is and will stay empty, shutdown and put */ | 
 | 	blk_put_queue(q); | 
 | } | 
 | EXPORT_SYMBOL(blk_cleanup_queue); | 
 |  | 
 | struct request_queue *blk_alloc_queue(gfp_t gfp_mask) | 
 | { | 
 | 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); | 
 | } | 
 | EXPORT_SYMBOL(blk_alloc_queue); | 
 |  | 
 | /** | 
 |  * blk_queue_enter() - try to increase q->q_usage_counter | 
 |  * @q: request queue pointer | 
 |  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT | 
 |  */ | 
 | int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) | 
 | { | 
 | 	const bool pm = flags & BLK_MQ_REQ_PREEMPT; | 
 |  | 
 | 	while (true) { | 
 | 		bool success = false; | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		if (percpu_ref_tryget_live(&q->q_usage_counter)) { | 
 | 			/* | 
 | 			 * The code that increments the pm_only counter is | 
 | 			 * responsible for ensuring that that counter is | 
 | 			 * globally visible before the queue is unfrozen. | 
 | 			 */ | 
 | 			if (pm || !blk_queue_pm_only(q)) { | 
 | 				success = true; | 
 | 			} else { | 
 | 				percpu_ref_put(&q->q_usage_counter); | 
 | 			} | 
 | 		} | 
 | 		rcu_read_unlock(); | 
 |  | 
 | 		if (success) | 
 | 			return 0; | 
 |  | 
 | 		if (flags & BLK_MQ_REQ_NOWAIT) | 
 | 			return -EBUSY; | 
 |  | 
 | 		/* | 
 | 		 * read pair of barrier in blk_freeze_queue_start(), | 
 | 		 * we need to order reading __PERCPU_REF_DEAD flag of | 
 | 		 * .q_usage_counter and reading .mq_freeze_depth or | 
 | 		 * queue dying flag, otherwise the following wait may | 
 | 		 * never return if the two reads are reordered. | 
 | 		 */ | 
 | 		smp_rmb(); | 
 |  | 
 | 		wait_event(q->mq_freeze_wq, | 
 | 			   (atomic_read(&q->mq_freeze_depth) == 0 && | 
 | 			    (pm || (blk_pm_request_resume(q), | 
 | 				    !blk_queue_pm_only(q)))) || | 
 | 			   blk_queue_dying(q)); | 
 | 		if (blk_queue_dying(q)) | 
 | 			return -ENODEV; | 
 | 	} | 
 | } | 
 |  | 
 | void blk_queue_exit(struct request_queue *q) | 
 | { | 
 | 	percpu_ref_put(&q->q_usage_counter); | 
 | } | 
 |  | 
 | static void blk_queue_usage_counter_release(struct percpu_ref *ref) | 
 | { | 
 | 	struct request_queue *q = | 
 | 		container_of(ref, struct request_queue, q_usage_counter); | 
 |  | 
 | 	wake_up_all(&q->mq_freeze_wq); | 
 | } | 
 |  | 
 | static void blk_rq_timed_out_timer(struct timer_list *t) | 
 | { | 
 | 	struct request_queue *q = from_timer(q, t, timeout); | 
 |  | 
 | 	kblockd_schedule_work(&q->timeout_work); | 
 | } | 
 |  | 
 | static void blk_timeout_work(struct work_struct *work) | 
 | { | 
 | } | 
 |  | 
 | /** | 
 |  * blk_alloc_queue_node - allocate a request queue | 
 |  * @gfp_mask: memory allocation flags | 
 |  * @node_id: NUMA node to allocate memory from | 
 |  */ | 
 | struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) | 
 | { | 
 | 	struct request_queue *q; | 
 | 	int ret; | 
 |  | 
 | 	q = kmem_cache_alloc_node(blk_requestq_cachep, | 
 | 				gfp_mask | __GFP_ZERO, node_id); | 
 | 	if (!q) | 
 | 		return NULL; | 
 |  | 
 | 	INIT_LIST_HEAD(&q->queue_head); | 
 | 	q->last_merge = NULL; | 
 |  | 
 | 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); | 
 | 	if (q->id < 0) | 
 | 		goto fail_q; | 
 |  | 
 | 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); | 
 | 	if (ret) | 
 | 		goto fail_id; | 
 |  | 
 | 	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id); | 
 | 	if (!q->backing_dev_info) | 
 | 		goto fail_split; | 
 |  | 
 | 	q->stats = blk_alloc_queue_stats(); | 
 | 	if (!q->stats) | 
 | 		goto fail_stats; | 
 |  | 
 | 	q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES; | 
 | 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK; | 
 | 	q->backing_dev_info->name = "block"; | 
 | 	q->node = node_id; | 
 |  | 
 | 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer, | 
 | 		    laptop_mode_timer_fn, 0); | 
 | 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); | 
 | 	INIT_WORK(&q->timeout_work, blk_timeout_work); | 
 | 	INIT_LIST_HEAD(&q->icq_list); | 
 | #ifdef CONFIG_BLK_CGROUP | 
 | 	INIT_LIST_HEAD(&q->blkg_list); | 
 | #endif | 
 |  | 
 | 	kobject_init(&q->kobj, &blk_queue_ktype); | 
 |  | 
 | #ifdef CONFIG_BLK_DEV_IO_TRACE | 
 | 	mutex_init(&q->blk_trace_mutex); | 
 | #endif | 
 | 	mutex_init(&q->sysfs_lock); | 
 | 	spin_lock_init(&q->queue_lock); | 
 |  | 
 | 	init_waitqueue_head(&q->mq_freeze_wq); | 
 |  | 
 | 	/* | 
 | 	 * Init percpu_ref in atomic mode so that it's faster to shutdown. | 
 | 	 * See blk_register_queue() for details. | 
 | 	 */ | 
 | 	if (percpu_ref_init(&q->q_usage_counter, | 
 | 				blk_queue_usage_counter_release, | 
 | 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) | 
 | 		goto fail_bdi; | 
 |  | 
 | 	if (blkcg_init_queue(q)) | 
 | 		goto fail_ref; | 
 |  | 
 | 	return q; | 
 |  | 
 | fail_ref: | 
 | 	percpu_ref_exit(&q->q_usage_counter); | 
 | fail_bdi: | 
 | 	blk_free_queue_stats(q->stats); | 
 | fail_stats: | 
 | 	bdi_put(q->backing_dev_info); | 
 | fail_split: | 
 | 	bioset_exit(&q->bio_split); | 
 | fail_id: | 
 | 	ida_simple_remove(&blk_queue_ida, q->id); | 
 | fail_q: | 
 | 	kmem_cache_free(blk_requestq_cachep, q); | 
 | 	return NULL; | 
 | } | 
 | EXPORT_SYMBOL(blk_alloc_queue_node); | 
 |  | 
 | bool blk_get_queue(struct request_queue *q) | 
 | { | 
 | 	if (likely(!blk_queue_dying(q))) { | 
 | 		__blk_get_queue(q); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 | EXPORT_SYMBOL(blk_get_queue); | 
 |  | 
 | /** | 
 |  * blk_get_request - allocate a request | 
 |  * @q: request queue to allocate a request for | 
 |  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC. | 
 |  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT. | 
 |  */ | 
 | struct request *blk_get_request(struct request_queue *q, unsigned int op, | 
 | 				blk_mq_req_flags_t flags) | 
 | { | 
 | 	struct request *req; | 
 |  | 
 | 	WARN_ON_ONCE(op & REQ_NOWAIT); | 
 | 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT)); | 
 |  | 
 | 	req = blk_mq_alloc_request(q, op, flags); | 
 | 	if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) | 
 | 		q->mq_ops->initialize_rq_fn(req); | 
 |  | 
 | 	return req; | 
 | } | 
 | EXPORT_SYMBOL(blk_get_request); | 
 |  | 
 | void blk_put_request(struct request *req) | 
 | { | 
 | 	blk_mq_free_request(req); | 
 | } | 
 | EXPORT_SYMBOL(blk_put_request); | 
 |  | 
 | bool bio_attempt_back_merge(struct request_queue *q, struct request *req, | 
 | 			    struct bio *bio) | 
 | { | 
 | 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK; | 
 |  | 
 | 	if (!ll_back_merge_fn(q, req, bio)) | 
 | 		return false; | 
 |  | 
 | 	trace_block_bio_backmerge(q, req, bio); | 
 |  | 
 | 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) | 
 | 		blk_rq_set_mixed_merge(req); | 
 |  | 
 | 	req->biotail->bi_next = bio; | 
 | 	req->biotail = bio; | 
 | 	req->__data_len += bio->bi_iter.bi_size; | 
 |  | 
 | 	blk_account_io_start(req, false); | 
 | 	return true; | 
 | } | 
 |  | 
 | bool bio_attempt_front_merge(struct request_queue *q, struct request *req, | 
 | 			     struct bio *bio) | 
 | { | 
 | 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK; | 
 |  | 
 | 	if (!ll_front_merge_fn(q, req, bio)) | 
 | 		return false; | 
 |  | 
 | 	trace_block_bio_frontmerge(q, req, bio); | 
 |  | 
 | 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) | 
 | 		blk_rq_set_mixed_merge(req); | 
 |  | 
 | 	bio->bi_next = req->bio; | 
 | 	req->bio = bio; | 
 |  | 
 | 	req->__sector = bio->bi_iter.bi_sector; | 
 | 	req->__data_len += bio->bi_iter.bi_size; | 
 |  | 
 | 	blk_account_io_start(req, false); | 
 | 	return true; | 
 | } | 
 |  | 
 | bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, | 
 | 		struct bio *bio) | 
 | { | 
 | 	unsigned short segments = blk_rq_nr_discard_segments(req); | 
 |  | 
 | 	if (segments >= queue_max_discard_segments(q)) | 
 | 		goto no_merge; | 
 | 	if (blk_rq_sectors(req) + bio_sectors(bio) > | 
 | 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) | 
 | 		goto no_merge; | 
 |  | 
 | 	req->biotail->bi_next = bio; | 
 | 	req->biotail = bio; | 
 | 	req->__data_len += bio->bi_iter.bi_size; | 
 | 	req->nr_phys_segments = segments + 1; | 
 |  | 
 | 	blk_account_io_start(req, false); | 
 | 	return true; | 
 | no_merge: | 
 | 	req_set_nomerge(q, req); | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  * blk_attempt_plug_merge - try to merge with %current's plugged list | 
 |  * @q: request_queue new bio is being queued at | 
 |  * @bio: new bio being queued | 
 |  * @same_queue_rq: pointer to &struct request that gets filled in when | 
 |  * another request associated with @q is found on the plug list | 
 |  * (optional, may be %NULL) | 
 |  * | 
 |  * Determine whether @bio being queued on @q can be merged with a request | 
 |  * on %current's plugged list.  Returns %true if merge was successful, | 
 |  * otherwise %false. | 
 |  * | 
 |  * Plugging coalesces IOs from the same issuer for the same purpose without | 
 |  * going through @q->queue_lock.  As such it's more of an issuing mechanism | 
 |  * than scheduling, and the request, while may have elvpriv data, is not | 
 |  * added on the elevator at this point.  In addition, we don't have | 
 |  * reliable access to the elevator outside queue lock.  Only check basic | 
 |  * merging parameters without querying the elevator. | 
 |  * | 
 |  * Caller must ensure !blk_queue_nomerges(q) beforehand. | 
 |  */ | 
 | bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, | 
 | 			    struct request **same_queue_rq) | 
 | { | 
 | 	struct blk_plug *plug; | 
 | 	struct request *rq; | 
 | 	struct list_head *plug_list; | 
 |  | 
 | 	plug = current->plug; | 
 | 	if (!plug) | 
 | 		return false; | 
 |  | 
 | 	plug_list = &plug->mq_list; | 
 |  | 
 | 	list_for_each_entry_reverse(rq, plug_list, queuelist) { | 
 | 		bool merged = false; | 
 |  | 
 | 		if (rq->q == q && same_queue_rq) { | 
 | 			/* | 
 | 			 * Only blk-mq multiple hardware queues case checks the | 
 | 			 * rq in the same queue, there should be only one such | 
 | 			 * rq in a queue | 
 | 			 **/ | 
 | 			*same_queue_rq = rq; | 
 | 		} | 
 |  | 
 | 		if (rq->q != q || !blk_rq_merge_ok(rq, bio)) | 
 | 			continue; | 
 |  | 
 | 		switch (blk_try_merge(rq, bio)) { | 
 | 		case ELEVATOR_BACK_MERGE: | 
 | 			merged = bio_attempt_back_merge(q, rq, bio); | 
 | 			break; | 
 | 		case ELEVATOR_FRONT_MERGE: | 
 | 			merged = bio_attempt_front_merge(q, rq, bio); | 
 | 			break; | 
 | 		case ELEVATOR_DISCARD_MERGE: | 
 | 			merged = bio_attempt_discard_merge(q, rq, bio); | 
 | 			break; | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (merged) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | void blk_init_request_from_bio(struct request *req, struct bio *bio) | 
 | { | 
 | 	if (bio->bi_opf & REQ_RAHEAD) | 
 | 		req->cmd_flags |= REQ_FAILFAST_MASK; | 
 |  | 
 | 	req->__sector = bio->bi_iter.bi_sector; | 
 | 	req->ioprio = bio_prio(bio); | 
 | 	req->write_hint = bio->bi_write_hint; | 
 | 	blk_rq_bio_prep(req->q, req, bio); | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_init_request_from_bio); | 
 |  | 
 | static void handle_bad_sector(struct bio *bio, sector_t maxsector) | 
 | { | 
 | 	char b[BDEVNAME_SIZE]; | 
 |  | 
 | 	printk(KERN_INFO "attempt to access beyond end of device\n"); | 
 | 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", | 
 | 			bio_devname(bio, b), bio->bi_opf, | 
 | 			(unsigned long long)bio_end_sector(bio), | 
 | 			(long long)maxsector); | 
 | } | 
 |  | 
 | #ifdef CONFIG_FAIL_MAKE_REQUEST | 
 |  | 
 | static DECLARE_FAULT_ATTR(fail_make_request); | 
 |  | 
 | static int __init setup_fail_make_request(char *str) | 
 | { | 
 | 	return setup_fault_attr(&fail_make_request, str); | 
 | } | 
 | __setup("fail_make_request=", setup_fail_make_request); | 
 |  | 
 | static bool should_fail_request(struct hd_struct *part, unsigned int bytes) | 
 | { | 
 | 	return part->make_it_fail && should_fail(&fail_make_request, bytes); | 
 | } | 
 |  | 
 | static int __init fail_make_request_debugfs(void) | 
 | { | 
 | 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request", | 
 | 						NULL, &fail_make_request); | 
 |  | 
 | 	return PTR_ERR_OR_ZERO(dir); | 
 | } | 
 |  | 
 | late_initcall(fail_make_request_debugfs); | 
 |  | 
 | #else /* CONFIG_FAIL_MAKE_REQUEST */ | 
 |  | 
 | static inline bool should_fail_request(struct hd_struct *part, | 
 | 					unsigned int bytes) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | #endif /* CONFIG_FAIL_MAKE_REQUEST */ | 
 |  | 
 | static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part) | 
 | { | 
 | 	const int op = bio_op(bio); | 
 |  | 
 | 	if (part->policy && op_is_write(op)) { | 
 | 		char b[BDEVNAME_SIZE]; | 
 |  | 
 | 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) | 
 | 			return false; | 
 |  | 
 | 		WARN_ONCE(1, | 
 | 		       "generic_make_request: Trying to write " | 
 | 			"to read-only block-device %s (partno %d)\n", | 
 | 			bio_devname(bio, b), part->partno); | 
 | 		/* Older lvm-tools actually trigger this */ | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static noinline int should_fail_bio(struct bio *bio) | 
 | { | 
 | 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size)) | 
 | 		return -EIO; | 
 | 	return 0; | 
 | } | 
 | ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO); | 
 |  | 
 | /* | 
 |  * Check whether this bio extends beyond the end of the device or partition. | 
 |  * This may well happen - the kernel calls bread() without checking the size of | 
 |  * the device, e.g., when mounting a file system. | 
 |  */ | 
 | static inline int bio_check_eod(struct bio *bio, sector_t maxsector) | 
 | { | 
 | 	unsigned int nr_sectors = bio_sectors(bio); | 
 |  | 
 | 	if (nr_sectors && maxsector && | 
 | 	    (nr_sectors > maxsector || | 
 | 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) { | 
 | 		handle_bad_sector(bio, maxsector); | 
 | 		return -EIO; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Remap block n of partition p to block n+start(p) of the disk. | 
 |  */ | 
 | static inline int blk_partition_remap(struct bio *bio) | 
 | { | 
 | 	struct hd_struct *p; | 
 | 	int ret = -EIO; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	p = __disk_get_part(bio->bi_disk, bio->bi_partno); | 
 | 	if (unlikely(!p)) | 
 | 		goto out; | 
 | 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size))) | 
 | 		goto out; | 
 | 	if (unlikely(bio_check_ro(bio, p))) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Zone reset does not include bi_size so bio_sectors() is always 0. | 
 | 	 * Include a test for the reset op code and perform the remap if needed. | 
 | 	 */ | 
 | 	if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) { | 
 | 		if (bio_check_eod(bio, part_nr_sects_read(p))) | 
 | 			goto out; | 
 | 		bio->bi_iter.bi_sector += p->start_sect; | 
 | 		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p), | 
 | 				      bio->bi_iter.bi_sector - p->start_sect); | 
 | 	} | 
 | 	bio->bi_partno = 0; | 
 | 	ret = 0; | 
 | out: | 
 | 	rcu_read_unlock(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static noinline_for_stack bool | 
 | generic_make_request_checks(struct bio *bio) | 
 | { | 
 | 	struct request_queue *q; | 
 | 	int nr_sectors = bio_sectors(bio); | 
 | 	blk_status_t status = BLK_STS_IOERR; | 
 | 	char b[BDEVNAME_SIZE]; | 
 |  | 
 | 	might_sleep(); | 
 |  | 
 | 	q = bio->bi_disk->queue; | 
 | 	if (unlikely(!q)) { | 
 | 		printk(KERN_ERR | 
 | 		       "generic_make_request: Trying to access " | 
 | 			"nonexistent block-device %s (%Lu)\n", | 
 | 			bio_devname(bio, b), (long long)bio->bi_iter.bi_sector); | 
 | 		goto end_io; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP | 
 | 	 * if queue is not a request based queue. | 
 | 	 */ | 
 | 	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q)) | 
 | 		goto not_supported; | 
 |  | 
 | 	if (should_fail_bio(bio)) | 
 | 		goto end_io; | 
 |  | 
 | 	if (bio->bi_partno) { | 
 | 		if (unlikely(blk_partition_remap(bio))) | 
 | 			goto end_io; | 
 | 	} else { | 
 | 		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0))) | 
 | 			goto end_io; | 
 | 		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk)))) | 
 | 			goto end_io; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Filter flush bio's early so that make_request based | 
 | 	 * drivers without flush support don't have to worry | 
 | 	 * about them. | 
 | 	 */ | 
 | 	if (op_is_flush(bio->bi_opf) && | 
 | 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { | 
 | 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); | 
 | 		if (!nr_sectors) { | 
 | 			status = BLK_STS_OK; | 
 | 			goto end_io; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) | 
 | 		bio->bi_opf &= ~REQ_HIPRI; | 
 |  | 
 | 	switch (bio_op(bio)) { | 
 | 	case REQ_OP_DISCARD: | 
 | 		if (!blk_queue_discard(q)) | 
 | 			goto not_supported; | 
 | 		break; | 
 | 	case REQ_OP_SECURE_ERASE: | 
 | 		if (!blk_queue_secure_erase(q)) | 
 | 			goto not_supported; | 
 | 		break; | 
 | 	case REQ_OP_WRITE_SAME: | 
 | 		if (!q->limits.max_write_same_sectors) | 
 | 			goto not_supported; | 
 | 		break; | 
 | 	case REQ_OP_ZONE_RESET: | 
 | 		if (!blk_queue_is_zoned(q)) | 
 | 			goto not_supported; | 
 | 		break; | 
 | 	case REQ_OP_WRITE_ZEROES: | 
 | 		if (!q->limits.max_write_zeroes_sectors) | 
 | 			goto not_supported; | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Various block parts want %current->io_context and lazy ioc | 
 | 	 * allocation ends up trading a lot of pain for a small amount of | 
 | 	 * memory.  Just allocate it upfront.  This may fail and block | 
 | 	 * layer knows how to live with it. | 
 | 	 */ | 
 | 	create_io_context(GFP_ATOMIC, q->node); | 
 |  | 
 | 	if (!blkcg_bio_issue_check(q, bio)) | 
 | 		return false; | 
 |  | 
 | 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { | 
 | 		trace_block_bio_queue(q, bio); | 
 | 		/* Now that enqueuing has been traced, we need to trace | 
 | 		 * completion as well. | 
 | 		 */ | 
 | 		bio_set_flag(bio, BIO_TRACE_COMPLETION); | 
 | 	} | 
 | 	return true; | 
 |  | 
 | not_supported: | 
 | 	status = BLK_STS_NOTSUPP; | 
 | end_io: | 
 | 	bio->bi_status = status; | 
 | 	bio_endio(bio); | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  * generic_make_request - hand a buffer to its device driver for I/O | 
 |  * @bio:  The bio describing the location in memory and on the device. | 
 |  * | 
 |  * generic_make_request() is used to make I/O requests of block | 
 |  * devices. It is passed a &struct bio, which describes the I/O that needs | 
 |  * to be done. | 
 |  * | 
 |  * generic_make_request() does not return any status.  The | 
 |  * success/failure status of the request, along with notification of | 
 |  * completion, is delivered asynchronously through the bio->bi_end_io | 
 |  * function described (one day) else where. | 
 |  * | 
 |  * The caller of generic_make_request must make sure that bi_io_vec | 
 |  * are set to describe the memory buffer, and that bi_dev and bi_sector are | 
 |  * set to describe the device address, and the | 
 |  * bi_end_io and optionally bi_private are set to describe how | 
 |  * completion notification should be signaled. | 
 |  * | 
 |  * generic_make_request and the drivers it calls may use bi_next if this | 
 |  * bio happens to be merged with someone else, and may resubmit the bio to | 
 |  * a lower device by calling into generic_make_request recursively, which | 
 |  * means the bio should NOT be touched after the call to ->make_request_fn. | 
 |  */ | 
 | blk_qc_t generic_make_request(struct bio *bio) | 
 | { | 
 | 	/* | 
 | 	 * bio_list_on_stack[0] contains bios submitted by the current | 
 | 	 * make_request_fn. | 
 | 	 * bio_list_on_stack[1] contains bios that were submitted before | 
 | 	 * the current make_request_fn, but that haven't been processed | 
 | 	 * yet. | 
 | 	 */ | 
 | 	struct bio_list bio_list_on_stack[2]; | 
 | 	blk_mq_req_flags_t flags = 0; | 
 | 	struct request_queue *q = bio->bi_disk->queue; | 
 | 	blk_qc_t ret = BLK_QC_T_NONE; | 
 |  | 
 | 	if (bio->bi_opf & REQ_NOWAIT) | 
 | 		flags = BLK_MQ_REQ_NOWAIT; | 
 | 	if (bio_flagged(bio, BIO_QUEUE_ENTERED)) | 
 | 		blk_queue_enter_live(q); | 
 | 	else if (blk_queue_enter(q, flags) < 0) { | 
 | 		if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT)) | 
 | 			bio_wouldblock_error(bio); | 
 | 		else | 
 | 			bio_io_error(bio); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	if (!generic_make_request_checks(bio)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * We only want one ->make_request_fn to be active at a time, else | 
 | 	 * stack usage with stacked devices could be a problem.  So use | 
 | 	 * current->bio_list to keep a list of requests submited by a | 
 | 	 * make_request_fn function.  current->bio_list is also used as a | 
 | 	 * flag to say if generic_make_request is currently active in this | 
 | 	 * task or not.  If it is NULL, then no make_request is active.  If | 
 | 	 * it is non-NULL, then a make_request is active, and new requests | 
 | 	 * should be added at the tail | 
 | 	 */ | 
 | 	if (current->bio_list) { | 
 | 		bio_list_add(¤t->bio_list[0], bio); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* following loop may be a bit non-obvious, and so deserves some | 
 | 	 * explanation. | 
 | 	 * Before entering the loop, bio->bi_next is NULL (as all callers | 
 | 	 * ensure that) so we have a list with a single bio. | 
 | 	 * We pretend that we have just taken it off a longer list, so | 
 | 	 * we assign bio_list to a pointer to the bio_list_on_stack, | 
 | 	 * thus initialising the bio_list of new bios to be | 
 | 	 * added.  ->make_request() may indeed add some more bios | 
 | 	 * through a recursive call to generic_make_request.  If it | 
 | 	 * did, we find a non-NULL value in bio_list and re-enter the loop | 
 | 	 * from the top.  In this case we really did just take the bio | 
 | 	 * of the top of the list (no pretending) and so remove it from | 
 | 	 * bio_list, and call into ->make_request() again. | 
 | 	 */ | 
 | 	BUG_ON(bio->bi_next); | 
 | 	bio_list_init(&bio_list_on_stack[0]); | 
 | 	current->bio_list = bio_list_on_stack; | 
 | 	do { | 
 | 		bool enter_succeeded = true; | 
 |  | 
 | 		if (unlikely(q != bio->bi_disk->queue)) { | 
 | 			if (q) | 
 | 				blk_queue_exit(q); | 
 | 			q = bio->bi_disk->queue; | 
 | 			flags = 0; | 
 | 			if (bio->bi_opf & REQ_NOWAIT) | 
 | 				flags = BLK_MQ_REQ_NOWAIT; | 
 | 			if (blk_queue_enter(q, flags) < 0) { | 
 | 				enter_succeeded = false; | 
 | 				q = NULL; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (enter_succeeded) { | 
 | 			struct bio_list lower, same; | 
 |  | 
 | 			/* Create a fresh bio_list for all subordinate requests */ | 
 | 			bio_list_on_stack[1] = bio_list_on_stack[0]; | 
 | 			bio_list_init(&bio_list_on_stack[0]); | 
 | 			ret = q->make_request_fn(q, bio); | 
 |  | 
 | 			/* sort new bios into those for a lower level | 
 | 			 * and those for the same level | 
 | 			 */ | 
 | 			bio_list_init(&lower); | 
 | 			bio_list_init(&same); | 
 | 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) | 
 | 				if (q == bio->bi_disk->queue) | 
 | 					bio_list_add(&same, bio); | 
 | 				else | 
 | 					bio_list_add(&lower, bio); | 
 | 			/* now assemble so we handle the lowest level first */ | 
 | 			bio_list_merge(&bio_list_on_stack[0], &lower); | 
 | 			bio_list_merge(&bio_list_on_stack[0], &same); | 
 | 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); | 
 | 		} else { | 
 | 			if (unlikely(!blk_queue_dying(q) && | 
 | 					(bio->bi_opf & REQ_NOWAIT))) | 
 | 				bio_wouldblock_error(bio); | 
 | 			else | 
 | 				bio_io_error(bio); | 
 | 		} | 
 | 		bio = bio_list_pop(&bio_list_on_stack[0]); | 
 | 	} while (bio); | 
 | 	current->bio_list = NULL; /* deactivate */ | 
 |  | 
 | out: | 
 | 	if (q) | 
 | 		blk_queue_exit(q); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(generic_make_request); | 
 |  | 
 | /** | 
 |  * direct_make_request - hand a buffer directly to its device driver for I/O | 
 |  * @bio:  The bio describing the location in memory and on the device. | 
 |  * | 
 |  * This function behaves like generic_make_request(), but does not protect | 
 |  * against recursion.  Must only be used if the called driver is known | 
 |  * to not call generic_make_request (or direct_make_request) again from | 
 |  * its make_request function.  (Calling direct_make_request again from | 
 |  * a workqueue is perfectly fine as that doesn't recurse). | 
 |  */ | 
 | blk_qc_t direct_make_request(struct bio *bio) | 
 | { | 
 | 	struct request_queue *q = bio->bi_disk->queue; | 
 | 	bool nowait = bio->bi_opf & REQ_NOWAIT; | 
 | 	blk_qc_t ret; | 
 |  | 
 | 	if (!generic_make_request_checks(bio)) | 
 | 		return BLK_QC_T_NONE; | 
 |  | 
 | 	if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) { | 
 | 		if (nowait && !blk_queue_dying(q)) | 
 | 			bio->bi_status = BLK_STS_AGAIN; | 
 | 		else | 
 | 			bio->bi_status = BLK_STS_IOERR; | 
 | 		bio_endio(bio); | 
 | 		return BLK_QC_T_NONE; | 
 | 	} | 
 |  | 
 | 	ret = q->make_request_fn(q, bio); | 
 | 	blk_queue_exit(q); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(direct_make_request); | 
 |  | 
 | /** | 
 |  * submit_bio - submit a bio to the block device layer for I/O | 
 |  * @bio: The &struct bio which describes the I/O | 
 |  * | 
 |  * submit_bio() is very similar in purpose to generic_make_request(), and | 
 |  * uses that function to do most of the work. Both are fairly rough | 
 |  * interfaces; @bio must be presetup and ready for I/O. | 
 |  * | 
 |  */ | 
 | blk_qc_t submit_bio(struct bio *bio) | 
 | { | 
 | 	/* | 
 | 	 * If it's a regular read/write or a barrier with data attached, | 
 | 	 * go through the normal accounting stuff before submission. | 
 | 	 */ | 
 | 	if (bio_has_data(bio)) { | 
 | 		unsigned int count; | 
 |  | 
 | 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) | 
 | 			count = queue_logical_block_size(bio->bi_disk->queue) >> 9; | 
 | 		else | 
 | 			count = bio_sectors(bio); | 
 |  | 
 | 		if (op_is_write(bio_op(bio))) { | 
 | 			count_vm_events(PGPGOUT, count); | 
 | 		} else { | 
 | 			task_io_account_read(bio->bi_iter.bi_size); | 
 | 			count_vm_events(PGPGIN, count); | 
 | 		} | 
 |  | 
 | 		if (unlikely(block_dump)) { | 
 | 			char b[BDEVNAME_SIZE]; | 
 | 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", | 
 | 			current->comm, task_pid_nr(current), | 
 | 				op_is_write(bio_op(bio)) ? "WRITE" : "READ", | 
 | 				(unsigned long long)bio->bi_iter.bi_sector, | 
 | 				bio_devname(bio, b), count); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return generic_make_request(bio); | 
 | } | 
 | EXPORT_SYMBOL(submit_bio); | 
 |  | 
 | /** | 
 |  * blk_cloned_rq_check_limits - Helper function to check a cloned request | 
 |  *                              for new the queue limits | 
 |  * @q:  the queue | 
 |  * @rq: the request being checked | 
 |  * | 
 |  * Description: | 
 |  *    @rq may have been made based on weaker limitations of upper-level queues | 
 |  *    in request stacking drivers, and it may violate the limitation of @q. | 
 |  *    Since the block layer and the underlying device driver trust @rq | 
 |  *    after it is inserted to @q, it should be checked against @q before | 
 |  *    the insertion using this generic function. | 
 |  * | 
 |  *    Request stacking drivers like request-based dm may change the queue | 
 |  *    limits when retrying requests on other queues. Those requests need | 
 |  *    to be checked against the new queue limits again during dispatch. | 
 |  */ | 
 | static int blk_cloned_rq_check_limits(struct request_queue *q, | 
 | 				      struct request *rq) | 
 | { | 
 | 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { | 
 | 		printk(KERN_ERR "%s: over max size limit.\n", __func__); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * queue's settings related to segment counting like q->bounce_pfn | 
 | 	 * may differ from that of other stacking queues. | 
 | 	 * Recalculate it to check the request correctly on this queue's | 
 | 	 * limitation. | 
 | 	 */ | 
 | 	blk_recalc_rq_segments(rq); | 
 | 	if (rq->nr_phys_segments > queue_max_segments(q)) { | 
 | 		printk(KERN_ERR "%s: over max segments limit.\n", __func__); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * blk_insert_cloned_request - Helper for stacking drivers to submit a request | 
 |  * @q:  the queue to submit the request | 
 |  * @rq: the request being queued | 
 |  */ | 
 | blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) | 
 | { | 
 | 	blk_qc_t unused; | 
 |  | 
 | 	if (blk_cloned_rq_check_limits(q, rq)) | 
 | 		return BLK_STS_IOERR; | 
 |  | 
 | 	if (rq->rq_disk && | 
 | 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) | 
 | 		return BLK_STS_IOERR; | 
 |  | 
 | 	if (blk_queue_io_stat(q)) | 
 | 		blk_account_io_start(rq, true); | 
 |  | 
 | 	/* | 
 | 	 * Since we have a scheduler attached on the top device, | 
 | 	 * bypass a potential scheduler on the bottom device for | 
 | 	 * insert. | 
 | 	 */ | 
 | 	return blk_mq_try_issue_directly(rq->mq_hctx, rq, &unused, true, true); | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_insert_cloned_request); | 
 |  | 
 | /** | 
 |  * blk_rq_err_bytes - determine number of bytes till the next failure boundary | 
 |  * @rq: request to examine | 
 |  * | 
 |  * Description: | 
 |  *     A request could be merge of IOs which require different failure | 
 |  *     handling.  This function determines the number of bytes which | 
 |  *     can be failed from the beginning of the request without | 
 |  *     crossing into area which need to be retried further. | 
 |  * | 
 |  * Return: | 
 |  *     The number of bytes to fail. | 
 |  */ | 
 | unsigned int blk_rq_err_bytes(const struct request *rq) | 
 | { | 
 | 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; | 
 | 	unsigned int bytes = 0; | 
 | 	struct bio *bio; | 
 |  | 
 | 	if (!(rq->rq_flags & RQF_MIXED_MERGE)) | 
 | 		return blk_rq_bytes(rq); | 
 |  | 
 | 	/* | 
 | 	 * Currently the only 'mixing' which can happen is between | 
 | 	 * different fastfail types.  We can safely fail portions | 
 | 	 * which have all the failfast bits that the first one has - | 
 | 	 * the ones which are at least as eager to fail as the first | 
 | 	 * one. | 
 | 	 */ | 
 | 	for (bio = rq->bio; bio; bio = bio->bi_next) { | 
 | 		if ((bio->bi_opf & ff) != ff) | 
 | 			break; | 
 | 		bytes += bio->bi_iter.bi_size; | 
 | 	} | 
 |  | 
 | 	/* this could lead to infinite loop */ | 
 | 	BUG_ON(blk_rq_bytes(rq) && !bytes); | 
 | 	return bytes; | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_rq_err_bytes); | 
 |  | 
 | void blk_account_io_completion(struct request *req, unsigned int bytes) | 
 | { | 
 | 	if (blk_do_io_stat(req)) { | 
 | 		const int sgrp = op_stat_group(req_op(req)); | 
 | 		struct hd_struct *part; | 
 |  | 
 | 		part_stat_lock(); | 
 | 		part = req->part; | 
 | 		part_stat_add(part, sectors[sgrp], bytes >> 9); | 
 | 		part_stat_unlock(); | 
 | 	} | 
 | } | 
 |  | 
 | void blk_account_io_done(struct request *req, u64 now) | 
 | { | 
 | 	/* | 
 | 	 * Account IO completion.  flush_rq isn't accounted as a | 
 | 	 * normal IO on queueing nor completion.  Accounting the | 
 | 	 * containing request is enough. | 
 | 	 */ | 
 | 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) { | 
 | 		const int sgrp = op_stat_group(req_op(req)); | 
 | 		struct hd_struct *part; | 
 |  | 
 | 		part_stat_lock(); | 
 | 		part = req->part; | 
 |  | 
 | 		update_io_ticks(part, jiffies); | 
 | 		part_stat_inc(part, ios[sgrp]); | 
 | 		part_stat_add(part, nsecs[sgrp], now - req->start_time_ns); | 
 | 		part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns)); | 
 | 		part_dec_in_flight(req->q, part, rq_data_dir(req)); | 
 |  | 
 | 		hd_struct_put(part); | 
 | 		part_stat_unlock(); | 
 | 	} | 
 | } | 
 |  | 
 | void blk_account_io_start(struct request *rq, bool new_io) | 
 | { | 
 | 	struct hd_struct *part; | 
 | 	int rw = rq_data_dir(rq); | 
 |  | 
 | 	if (!blk_do_io_stat(rq)) | 
 | 		return; | 
 |  | 
 | 	part_stat_lock(); | 
 |  | 
 | 	if (!new_io) { | 
 | 		part = rq->part; | 
 | 		part_stat_inc(part, merges[rw]); | 
 | 	} else { | 
 | 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); | 
 | 		if (!hd_struct_try_get(part)) { | 
 | 			/* | 
 | 			 * The partition is already being removed, | 
 | 			 * the request will be accounted on the disk only | 
 | 			 * | 
 | 			 * We take a reference on disk->part0 although that | 
 | 			 * partition will never be deleted, so we can treat | 
 | 			 * it as any other partition. | 
 | 			 */ | 
 | 			part = &rq->rq_disk->part0; | 
 | 			hd_struct_get(part); | 
 | 		} | 
 | 		part_inc_in_flight(rq->q, part, rw); | 
 | 		rq->part = part; | 
 | 	} | 
 |  | 
 | 	update_io_ticks(part, jiffies); | 
 |  | 
 | 	part_stat_unlock(); | 
 | } | 
 |  | 
 | /* | 
 |  * Steal bios from a request and add them to a bio list. | 
 |  * The request must not have been partially completed before. | 
 |  */ | 
 | void blk_steal_bios(struct bio_list *list, struct request *rq) | 
 | { | 
 | 	if (rq->bio) { | 
 | 		if (list->tail) | 
 | 			list->tail->bi_next = rq->bio; | 
 | 		else | 
 | 			list->head = rq->bio; | 
 | 		list->tail = rq->biotail; | 
 |  | 
 | 		rq->bio = NULL; | 
 | 		rq->biotail = NULL; | 
 | 	} | 
 |  | 
 | 	rq->__data_len = 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_steal_bios); | 
 |  | 
 | /** | 
 |  * blk_update_request - Special helper function for request stacking drivers | 
 |  * @req:      the request being processed | 
 |  * @error:    block status code | 
 |  * @nr_bytes: number of bytes to complete @req | 
 |  * | 
 |  * Description: | 
 |  *     Ends I/O on a number of bytes attached to @req, but doesn't complete | 
 |  *     the request structure even if @req doesn't have leftover. | 
 |  *     If @req has leftover, sets it up for the next range of segments. | 
 |  * | 
 |  *     This special helper function is only for request stacking drivers | 
 |  *     (e.g. request-based dm) so that they can handle partial completion. | 
 |  *     Actual device drivers should use blk_end_request instead. | 
 |  * | 
 |  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees | 
 |  *     %false return from this function. | 
 |  * | 
 |  * Note: | 
 |  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both | 
 |  *	blk_rq_bytes() and in blk_update_request(). | 
 |  * | 
 |  * Return: | 
 |  *     %false - this request doesn't have any more data | 
 |  *     %true  - this request has more data | 
 |  **/ | 
 | bool blk_update_request(struct request *req, blk_status_t error, | 
 | 		unsigned int nr_bytes) | 
 | { | 
 | 	int total_bytes; | 
 |  | 
 | 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); | 
 |  | 
 | 	if (!req->bio) | 
 | 		return false; | 
 |  | 
 | 	if (unlikely(error && !blk_rq_is_passthrough(req) && | 
 | 		     !(req->rq_flags & RQF_QUIET))) | 
 | 		print_req_error(req, error); | 
 |  | 
 | 	blk_account_io_completion(req, nr_bytes); | 
 |  | 
 | 	total_bytes = 0; | 
 | 	while (req->bio) { | 
 | 		struct bio *bio = req->bio; | 
 | 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); | 
 |  | 
 | 		if (bio_bytes == bio->bi_iter.bi_size) | 
 | 			req->bio = bio->bi_next; | 
 |  | 
 | 		/* Completion has already been traced */ | 
 | 		bio_clear_flag(bio, BIO_TRACE_COMPLETION); | 
 | 		req_bio_endio(req, bio, bio_bytes, error); | 
 |  | 
 | 		total_bytes += bio_bytes; | 
 | 		nr_bytes -= bio_bytes; | 
 |  | 
 | 		if (!nr_bytes) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * completely done | 
 | 	 */ | 
 | 	if (!req->bio) { | 
 | 		/* | 
 | 		 * Reset counters so that the request stacking driver | 
 | 		 * can find how many bytes remain in the request | 
 | 		 * later. | 
 | 		 */ | 
 | 		req->__data_len = 0; | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	req->__data_len -= total_bytes; | 
 |  | 
 | 	/* update sector only for requests with clear definition of sector */ | 
 | 	if (!blk_rq_is_passthrough(req)) | 
 | 		req->__sector += total_bytes >> 9; | 
 |  | 
 | 	/* mixed attributes always follow the first bio */ | 
 | 	if (req->rq_flags & RQF_MIXED_MERGE) { | 
 | 		req->cmd_flags &= ~REQ_FAILFAST_MASK; | 
 | 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; | 
 | 	} | 
 |  | 
 | 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { | 
 | 		/* | 
 | 		 * If total number of sectors is less than the first segment | 
 | 		 * size, something has gone terribly wrong. | 
 | 		 */ | 
 | 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { | 
 | 			blk_dump_rq_flags(req, "request botched"); | 
 | 			req->__data_len = blk_rq_cur_bytes(req); | 
 | 		} | 
 |  | 
 | 		/* recalculate the number of segments */ | 
 | 		blk_recalc_rq_segments(req); | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_update_request); | 
 |  | 
 | void blk_rq_bio_prep(struct request_queue *q, struct request *rq, | 
 | 		     struct bio *bio) | 
 | { | 
 | 	if (bio_has_data(bio)) | 
 | 		rq->nr_phys_segments = bio_phys_segments(q, bio); | 
 | 	else if (bio_op(bio) == REQ_OP_DISCARD) | 
 | 		rq->nr_phys_segments = 1; | 
 |  | 
 | 	rq->__data_len = bio->bi_iter.bi_size; | 
 | 	rq->bio = rq->biotail = bio; | 
 |  | 
 | 	if (bio->bi_disk) | 
 | 		rq->rq_disk = bio->bi_disk; | 
 | } | 
 |  | 
 | #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE | 
 | /** | 
 |  * rq_flush_dcache_pages - Helper function to flush all pages in a request | 
 |  * @rq: the request to be flushed | 
 |  * | 
 |  * Description: | 
 |  *     Flush all pages in @rq. | 
 |  */ | 
 | void rq_flush_dcache_pages(struct request *rq) | 
 | { | 
 | 	struct req_iterator iter; | 
 | 	struct bio_vec bvec; | 
 |  | 
 | 	rq_for_each_segment(bvec, rq, iter) | 
 | 		flush_dcache_page(bvec.bv_page); | 
 | } | 
 | EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); | 
 | #endif | 
 |  | 
 | /** | 
 |  * blk_lld_busy - Check if underlying low-level drivers of a device are busy | 
 |  * @q : the queue of the device being checked | 
 |  * | 
 |  * Description: | 
 |  *    Check if underlying low-level drivers of a device are busy. | 
 |  *    If the drivers want to export their busy state, they must set own | 
 |  *    exporting function using blk_queue_lld_busy() first. | 
 |  * | 
 |  *    Basically, this function is used only by request stacking drivers | 
 |  *    to stop dispatching requests to underlying devices when underlying | 
 |  *    devices are busy.  This behavior helps more I/O merging on the queue | 
 |  *    of the request stacking driver and prevents I/O throughput regression | 
 |  *    on burst I/O load. | 
 |  * | 
 |  * Return: | 
 |  *    0 - Not busy (The request stacking driver should dispatch request) | 
 |  *    1 - Busy (The request stacking driver should stop dispatching request) | 
 |  */ | 
 | int blk_lld_busy(struct request_queue *q) | 
 | { | 
 | 	if (queue_is_mq(q) && q->mq_ops->busy) | 
 | 		return q->mq_ops->busy(q); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_lld_busy); | 
 |  | 
 | /** | 
 |  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request | 
 |  * @rq: the clone request to be cleaned up | 
 |  * | 
 |  * Description: | 
 |  *     Free all bios in @rq for a cloned request. | 
 |  */ | 
 | void blk_rq_unprep_clone(struct request *rq) | 
 | { | 
 | 	struct bio *bio; | 
 |  | 
 | 	while ((bio = rq->bio) != NULL) { | 
 | 		rq->bio = bio->bi_next; | 
 |  | 
 | 		bio_put(bio); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); | 
 |  | 
 | /* | 
 |  * Copy attributes of the original request to the clone request. | 
 |  * The actual data parts (e.g. ->cmd, ->sense) are not copied. | 
 |  */ | 
 | static void __blk_rq_prep_clone(struct request *dst, struct request *src) | 
 | { | 
 | 	dst->__sector = blk_rq_pos(src); | 
 | 	dst->__data_len = blk_rq_bytes(src); | 
 | 	if (src->rq_flags & RQF_SPECIAL_PAYLOAD) { | 
 | 		dst->rq_flags |= RQF_SPECIAL_PAYLOAD; | 
 | 		dst->special_vec = src->special_vec; | 
 | 	} | 
 | 	dst->nr_phys_segments = src->nr_phys_segments; | 
 | 	dst->ioprio = src->ioprio; | 
 | 	dst->extra_len = src->extra_len; | 
 | } | 
 |  | 
 | /** | 
 |  * blk_rq_prep_clone - Helper function to setup clone request | 
 |  * @rq: the request to be setup | 
 |  * @rq_src: original request to be cloned | 
 |  * @bs: bio_set that bios for clone are allocated from | 
 |  * @gfp_mask: memory allocation mask for bio | 
 |  * @bio_ctr: setup function to be called for each clone bio. | 
 |  *           Returns %0 for success, non %0 for failure. | 
 |  * @data: private data to be passed to @bio_ctr | 
 |  * | 
 |  * Description: | 
 |  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. | 
 |  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense) | 
 |  *     are not copied, and copying such parts is the caller's responsibility. | 
 |  *     Also, pages which the original bios are pointing to are not copied | 
 |  *     and the cloned bios just point same pages. | 
 |  *     So cloned bios must be completed before original bios, which means | 
 |  *     the caller must complete @rq before @rq_src. | 
 |  */ | 
 | int blk_rq_prep_clone(struct request *rq, struct request *rq_src, | 
 | 		      struct bio_set *bs, gfp_t gfp_mask, | 
 | 		      int (*bio_ctr)(struct bio *, struct bio *, void *), | 
 | 		      void *data) | 
 | { | 
 | 	struct bio *bio, *bio_src; | 
 |  | 
 | 	if (!bs) | 
 | 		bs = &fs_bio_set; | 
 |  | 
 | 	__rq_for_each_bio(bio_src, rq_src) { | 
 | 		bio = bio_clone_fast(bio_src, gfp_mask, bs); | 
 | 		if (!bio) | 
 | 			goto free_and_out; | 
 |  | 
 | 		if (bio_ctr && bio_ctr(bio, bio_src, data)) | 
 | 			goto free_and_out; | 
 |  | 
 | 		if (rq->bio) { | 
 | 			rq->biotail->bi_next = bio; | 
 | 			rq->biotail = bio; | 
 | 		} else | 
 | 			rq->bio = rq->biotail = bio; | 
 | 	} | 
 |  | 
 | 	__blk_rq_prep_clone(rq, rq_src); | 
 |  | 
 | 	return 0; | 
 |  | 
 | free_and_out: | 
 | 	if (bio) | 
 | 		bio_put(bio); | 
 | 	blk_rq_unprep_clone(rq); | 
 |  | 
 | 	return -ENOMEM; | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_rq_prep_clone); | 
 |  | 
 | int kblockd_schedule_work(struct work_struct *work) | 
 | { | 
 | 	return queue_work(kblockd_workqueue, work); | 
 | } | 
 | EXPORT_SYMBOL(kblockd_schedule_work); | 
 |  | 
 | int kblockd_schedule_work_on(int cpu, struct work_struct *work) | 
 | { | 
 | 	return queue_work_on(cpu, kblockd_workqueue, work); | 
 | } | 
 | EXPORT_SYMBOL(kblockd_schedule_work_on); | 
 |  | 
 | int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, | 
 | 				unsigned long delay) | 
 | { | 
 | 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); | 
 | } | 
 | EXPORT_SYMBOL(kblockd_mod_delayed_work_on); | 
 |  | 
 | /** | 
 |  * blk_start_plug - initialize blk_plug and track it inside the task_struct | 
 |  * @plug:	The &struct blk_plug that needs to be initialized | 
 |  * | 
 |  * Description: | 
 |  *   blk_start_plug() indicates to the block layer an intent by the caller | 
 |  *   to submit multiple I/O requests in a batch.  The block layer may use | 
 |  *   this hint to defer submitting I/Os from the caller until blk_finish_plug() | 
 |  *   is called.  However, the block layer may choose to submit requests | 
 |  *   before a call to blk_finish_plug() if the number of queued I/Os | 
 |  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than | 
 |  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if | 
 |  *   the task schedules (see below). | 
 |  * | 
 |  *   Tracking blk_plug inside the task_struct will help with auto-flushing the | 
 |  *   pending I/O should the task end up blocking between blk_start_plug() and | 
 |  *   blk_finish_plug(). This is important from a performance perspective, but | 
 |  *   also ensures that we don't deadlock. For instance, if the task is blocking | 
 |  *   for a memory allocation, memory reclaim could end up wanting to free a | 
 |  *   page belonging to that request that is currently residing in our private | 
 |  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid | 
 |  *   this kind of deadlock. | 
 |  */ | 
 | void blk_start_plug(struct blk_plug *plug) | 
 | { | 
 | 	struct task_struct *tsk = current; | 
 |  | 
 | 	/* | 
 | 	 * If this is a nested plug, don't actually assign it. | 
 | 	 */ | 
 | 	if (tsk->plug) | 
 | 		return; | 
 |  | 
 | 	INIT_LIST_HEAD(&plug->mq_list); | 
 | 	INIT_LIST_HEAD(&plug->cb_list); | 
 | 	plug->rq_count = 0; | 
 | 	plug->multiple_queues = false; | 
 |  | 
 | 	/* | 
 | 	 * Store ordering should not be needed here, since a potential | 
 | 	 * preempt will imply a full memory barrier | 
 | 	 */ | 
 | 	tsk->plug = plug; | 
 | } | 
 | EXPORT_SYMBOL(blk_start_plug); | 
 |  | 
 | static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) | 
 | { | 
 | 	LIST_HEAD(callbacks); | 
 |  | 
 | 	while (!list_empty(&plug->cb_list)) { | 
 | 		list_splice_init(&plug->cb_list, &callbacks); | 
 |  | 
 | 		while (!list_empty(&callbacks)) { | 
 | 			struct blk_plug_cb *cb = list_first_entry(&callbacks, | 
 | 							  struct blk_plug_cb, | 
 | 							  list); | 
 | 			list_del(&cb->list); | 
 | 			cb->callback(cb, from_schedule); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, | 
 | 				      int size) | 
 | { | 
 | 	struct blk_plug *plug = current->plug; | 
 | 	struct blk_plug_cb *cb; | 
 |  | 
 | 	if (!plug) | 
 | 		return NULL; | 
 |  | 
 | 	list_for_each_entry(cb, &plug->cb_list, list) | 
 | 		if (cb->callback == unplug && cb->data == data) | 
 | 			return cb; | 
 |  | 
 | 	/* Not currently on the callback list */ | 
 | 	BUG_ON(size < sizeof(*cb)); | 
 | 	cb = kzalloc(size, GFP_ATOMIC); | 
 | 	if (cb) { | 
 | 		cb->data = data; | 
 | 		cb->callback = unplug; | 
 | 		list_add(&cb->list, &plug->cb_list); | 
 | 	} | 
 | 	return cb; | 
 | } | 
 | EXPORT_SYMBOL(blk_check_plugged); | 
 |  | 
 | void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) | 
 | { | 
 | 	flush_plug_callbacks(plug, from_schedule); | 
 |  | 
 | 	if (!list_empty(&plug->mq_list)) | 
 | 		blk_mq_flush_plug_list(plug, from_schedule); | 
 | } | 
 |  | 
 | /** | 
 |  * blk_finish_plug - mark the end of a batch of submitted I/O | 
 |  * @plug:	The &struct blk_plug passed to blk_start_plug() | 
 |  * | 
 |  * Description: | 
 |  * Indicate that a batch of I/O submissions is complete.  This function | 
 |  * must be paired with an initial call to blk_start_plug().  The intent | 
 |  * is to allow the block layer to optimize I/O submission.  See the | 
 |  * documentation for blk_start_plug() for more information. | 
 |  */ | 
 | void blk_finish_plug(struct blk_plug *plug) | 
 | { | 
 | 	if (plug != current->plug) | 
 | 		return; | 
 | 	blk_flush_plug_list(plug, false); | 
 |  | 
 | 	current->plug = NULL; | 
 | } | 
 | EXPORT_SYMBOL(blk_finish_plug); | 
 |  | 
 | int __init blk_dev_init(void) | 
 | { | 
 | 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); | 
 | 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * | 
 | 			FIELD_SIZEOF(struct request, cmd_flags)); | 
 | 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * | 
 | 			FIELD_SIZEOF(struct bio, bi_opf)); | 
 |  | 
 | 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */ | 
 | 	kblockd_workqueue = alloc_workqueue("kblockd", | 
 | 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); | 
 | 	if (!kblockd_workqueue) | 
 | 		panic("Failed to create kblockd\n"); | 
 |  | 
 | 	blk_requestq_cachep = kmem_cache_create("request_queue", | 
 | 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL); | 
 |  | 
 | #ifdef CONFIG_DEBUG_FS | 
 | 	blk_debugfs_root = debugfs_create_dir("block", NULL); | 
 | #endif | 
 |  | 
 | 	return 0; | 
 | } |