|  | /* SCTP kernel implementation | 
|  | * Copyright (c) 1999-2000 Cisco, Inc. | 
|  | * Copyright (c) 1999-2001 Motorola, Inc. | 
|  | * Copyright (c) 2001-2003 International Business Machines, Corp. | 
|  | * Copyright (c) 2001 Intel Corp. | 
|  | * Copyright (c) 2001 Nokia, Inc. | 
|  | * Copyright (c) 2001 La Monte H.P. Yarroll | 
|  | * | 
|  | * This file is part of the SCTP kernel implementation | 
|  | * | 
|  | * These functions handle all input from the IP layer into SCTP. | 
|  | * | 
|  | * This SCTP implementation is free software; | 
|  | * you can redistribute it and/or modify it under the terms of | 
|  | * the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2, or (at your option) | 
|  | * any later version. | 
|  | * | 
|  | * This SCTP implementation is distributed in the hope that it | 
|  | * will be useful, but WITHOUT ANY WARRANTY; without even the implied | 
|  | *                 ************************ | 
|  | * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. | 
|  | * See the GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with GNU CC; see the file COPYING.  If not, see | 
|  | * <http://www.gnu.org/licenses/>. | 
|  | * | 
|  | * Please send any bug reports or fixes you make to the | 
|  | * email address(es): | 
|  | *    lksctp developers <linux-sctp@vger.kernel.org> | 
|  | * | 
|  | * Written or modified by: | 
|  | *    La Monte H.P. Yarroll <piggy@acm.org> | 
|  | *    Karl Knutson <karl@athena.chicago.il.us> | 
|  | *    Xingang Guo <xingang.guo@intel.com> | 
|  | *    Jon Grimm <jgrimm@us.ibm.com> | 
|  | *    Hui Huang <hui.huang@nokia.com> | 
|  | *    Daisy Chang <daisyc@us.ibm.com> | 
|  | *    Sridhar Samudrala <sri@us.ibm.com> | 
|  | *    Ardelle Fan <ardelle.fan@intel.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/list.h> /* For struct list_head */ | 
|  | #include <linux/socket.h> | 
|  | #include <linux/ip.h> | 
|  | #include <linux/time.h> /* For struct timeval */ | 
|  | #include <linux/slab.h> | 
|  | #include <net/ip.h> | 
|  | #include <net/icmp.h> | 
|  | #include <net/snmp.h> | 
|  | #include <net/sock.h> | 
|  | #include <net/xfrm.h> | 
|  | #include <net/sctp/sctp.h> | 
|  | #include <net/sctp/sm.h> | 
|  | #include <net/sctp/checksum.h> | 
|  | #include <net/net_namespace.h> | 
|  | #include <linux/rhashtable.h> | 
|  |  | 
|  | /* Forward declarations for internal helpers. */ | 
|  | static int sctp_rcv_ootb(struct sk_buff *); | 
|  | static struct sctp_association *__sctp_rcv_lookup(struct net *net, | 
|  | struct sk_buff *skb, | 
|  | const union sctp_addr *paddr, | 
|  | const union sctp_addr *laddr, | 
|  | struct sctp_transport **transportp); | 
|  | static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net, | 
|  | const union sctp_addr *laddr); | 
|  | static struct sctp_association *__sctp_lookup_association( | 
|  | struct net *net, | 
|  | const union sctp_addr *local, | 
|  | const union sctp_addr *peer, | 
|  | struct sctp_transport **pt); | 
|  |  | 
|  | static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb); | 
|  |  | 
|  |  | 
|  | /* Calculate the SCTP checksum of an SCTP packet.  */ | 
|  | static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb) | 
|  | { | 
|  | struct sctphdr *sh = sctp_hdr(skb); | 
|  | __le32 cmp = sh->checksum; | 
|  | __le32 val = sctp_compute_cksum(skb, 0); | 
|  |  | 
|  | if (val != cmp) { | 
|  | /* CRC failure, dump it. */ | 
|  | __SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS); | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the routine which IP calls when receiving an SCTP packet. | 
|  | */ | 
|  | int sctp_rcv(struct sk_buff *skb) | 
|  | { | 
|  | struct sock *sk; | 
|  | struct sctp_association *asoc; | 
|  | struct sctp_endpoint *ep = NULL; | 
|  | struct sctp_ep_common *rcvr; | 
|  | struct sctp_transport *transport = NULL; | 
|  | struct sctp_chunk *chunk; | 
|  | union sctp_addr src; | 
|  | union sctp_addr dest; | 
|  | int family; | 
|  | struct sctp_af *af; | 
|  | struct net *net = dev_net(skb->dev); | 
|  | bool is_gso = skb_is_gso(skb) && skb_is_gso_sctp(skb); | 
|  |  | 
|  | if (skb->pkt_type != PACKET_HOST) | 
|  | goto discard_it; | 
|  |  | 
|  | __SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS); | 
|  |  | 
|  | /* If packet is too small to contain a single chunk, let's not | 
|  | * waste time on it anymore. | 
|  | */ | 
|  | if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) + | 
|  | skb_transport_offset(skb)) | 
|  | goto discard_it; | 
|  |  | 
|  | /* If the packet is fragmented and we need to do crc checking, | 
|  | * it's better to just linearize it otherwise crc computing | 
|  | * takes longer. | 
|  | */ | 
|  | if ((!is_gso && skb_linearize(skb)) || | 
|  | !pskb_may_pull(skb, sizeof(struct sctphdr))) | 
|  | goto discard_it; | 
|  |  | 
|  | /* Pull up the IP header. */ | 
|  | __skb_pull(skb, skb_transport_offset(skb)); | 
|  |  | 
|  | skb->csum_valid = 0; /* Previous value not applicable */ | 
|  | if (skb_csum_unnecessary(skb)) | 
|  | __skb_decr_checksum_unnecessary(skb); | 
|  | else if (!sctp_checksum_disable && | 
|  | !is_gso && | 
|  | sctp_rcv_checksum(net, skb) < 0) | 
|  | goto discard_it; | 
|  | skb->csum_valid = 1; | 
|  |  | 
|  | __skb_pull(skb, sizeof(struct sctphdr)); | 
|  |  | 
|  | family = ipver2af(ip_hdr(skb)->version); | 
|  | af = sctp_get_af_specific(family); | 
|  | if (unlikely(!af)) | 
|  | goto discard_it; | 
|  | SCTP_INPUT_CB(skb)->af = af; | 
|  |  | 
|  | /* Initialize local addresses for lookups. */ | 
|  | af->from_skb(&src, skb, 1); | 
|  | af->from_skb(&dest, skb, 0); | 
|  |  | 
|  | /* If the packet is to or from a non-unicast address, | 
|  | * silently discard the packet. | 
|  | * | 
|  | * This is not clearly defined in the RFC except in section | 
|  | * 8.4 - OOTB handling.  However, based on the book "Stream Control | 
|  | * Transmission Protocol" 2.1, "It is important to note that the | 
|  | * IP address of an SCTP transport address must be a routable | 
|  | * unicast address.  In other words, IP multicast addresses and | 
|  | * IP broadcast addresses cannot be used in an SCTP transport | 
|  | * address." | 
|  | */ | 
|  | if (!af->addr_valid(&src, NULL, skb) || | 
|  | !af->addr_valid(&dest, NULL, skb)) | 
|  | goto discard_it; | 
|  |  | 
|  | asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport); | 
|  |  | 
|  | if (!asoc) | 
|  | ep = __sctp_rcv_lookup_endpoint(net, &dest); | 
|  |  | 
|  | /* Retrieve the common input handling substructure. */ | 
|  | rcvr = asoc ? &asoc->base : &ep->base; | 
|  | sk = rcvr->sk; | 
|  |  | 
|  | /* | 
|  | * If a frame arrives on an interface and the receiving socket is | 
|  | * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB | 
|  | */ | 
|  | if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) { | 
|  | if (transport) { | 
|  | sctp_transport_put(transport); | 
|  | asoc = NULL; | 
|  | transport = NULL; | 
|  | } else { | 
|  | sctp_endpoint_put(ep); | 
|  | ep = NULL; | 
|  | } | 
|  | sk = net->sctp.ctl_sock; | 
|  | ep = sctp_sk(sk)->ep; | 
|  | sctp_endpoint_hold(ep); | 
|  | rcvr = &ep->base; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * RFC 2960, 8.4 - Handle "Out of the blue" Packets. | 
|  | * An SCTP packet is called an "out of the blue" (OOTB) | 
|  | * packet if it is correctly formed, i.e., passed the | 
|  | * receiver's checksum check, but the receiver is not | 
|  | * able to identify the association to which this | 
|  | * packet belongs. | 
|  | */ | 
|  | if (!asoc) { | 
|  | if (sctp_rcv_ootb(skb)) { | 
|  | __SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES); | 
|  | goto discard_release; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family)) | 
|  | goto discard_release; | 
|  | nf_reset(skb); | 
|  |  | 
|  | if (sk_filter(sk, skb)) | 
|  | goto discard_release; | 
|  |  | 
|  | /* Create an SCTP packet structure. */ | 
|  | chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC); | 
|  | if (!chunk) | 
|  | goto discard_release; | 
|  | SCTP_INPUT_CB(skb)->chunk = chunk; | 
|  |  | 
|  | /* Remember what endpoint is to handle this packet. */ | 
|  | chunk->rcvr = rcvr; | 
|  |  | 
|  | /* Remember the SCTP header. */ | 
|  | chunk->sctp_hdr = sctp_hdr(skb); | 
|  |  | 
|  | /* Set the source and destination addresses of the incoming chunk.  */ | 
|  | sctp_init_addrs(chunk, &src, &dest); | 
|  |  | 
|  | /* Remember where we came from.  */ | 
|  | chunk->transport = transport; | 
|  |  | 
|  | /* Acquire access to the sock lock. Note: We are safe from other | 
|  | * bottom halves on this lock, but a user may be in the lock too, | 
|  | * so check if it is busy. | 
|  | */ | 
|  | bh_lock_sock(sk); | 
|  |  | 
|  | if (sk != rcvr->sk) { | 
|  | /* Our cached sk is different from the rcvr->sk.  This is | 
|  | * because migrate()/accept() may have moved the association | 
|  | * to a new socket and released all the sockets.  So now we | 
|  | * are holding a lock on the old socket while the user may | 
|  | * be doing something with the new socket.  Switch our veiw | 
|  | * of the current sk. | 
|  | */ | 
|  | bh_unlock_sock(sk); | 
|  | sk = rcvr->sk; | 
|  | bh_lock_sock(sk); | 
|  | } | 
|  |  | 
|  | if (sock_owned_by_user(sk)) { | 
|  | if (sctp_add_backlog(sk, skb)) { | 
|  | bh_unlock_sock(sk); | 
|  | sctp_chunk_free(chunk); | 
|  | skb = NULL; /* sctp_chunk_free already freed the skb */ | 
|  | goto discard_release; | 
|  | } | 
|  | __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG); | 
|  | } else { | 
|  | __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ); | 
|  | sctp_inq_push(&chunk->rcvr->inqueue, chunk); | 
|  | } | 
|  |  | 
|  | bh_unlock_sock(sk); | 
|  |  | 
|  | /* Release the asoc/ep ref we took in the lookup calls. */ | 
|  | if (transport) | 
|  | sctp_transport_put(transport); | 
|  | else | 
|  | sctp_endpoint_put(ep); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | discard_it: | 
|  | __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS); | 
|  | kfree_skb(skb); | 
|  | return 0; | 
|  |  | 
|  | discard_release: | 
|  | /* Release the asoc/ep ref we took in the lookup calls. */ | 
|  | if (transport) | 
|  | sctp_transport_put(transport); | 
|  | else | 
|  | sctp_endpoint_put(ep); | 
|  |  | 
|  | goto discard_it; | 
|  | } | 
|  |  | 
|  | /* Process the backlog queue of the socket.  Every skb on | 
|  | * the backlog holds a ref on an association or endpoint. | 
|  | * We hold this ref throughout the state machine to make | 
|  | * sure that the structure we need is still around. | 
|  | */ | 
|  | int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; | 
|  | struct sctp_inq *inqueue = &chunk->rcvr->inqueue; | 
|  | struct sctp_transport *t = chunk->transport; | 
|  | struct sctp_ep_common *rcvr = NULL; | 
|  | int backloged = 0; | 
|  |  | 
|  | rcvr = chunk->rcvr; | 
|  |  | 
|  | /* If the rcvr is dead then the association or endpoint | 
|  | * has been deleted and we can safely drop the chunk | 
|  | * and refs that we are holding. | 
|  | */ | 
|  | if (rcvr->dead) { | 
|  | sctp_chunk_free(chunk); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (unlikely(rcvr->sk != sk)) { | 
|  | /* In this case, the association moved from one socket to | 
|  | * another.  We are currently sitting on the backlog of the | 
|  | * old socket, so we need to move. | 
|  | * However, since we are here in the process context we | 
|  | * need to take make sure that the user doesn't own | 
|  | * the new socket when we process the packet. | 
|  | * If the new socket is user-owned, queue the chunk to the | 
|  | * backlog of the new socket without dropping any refs. | 
|  | * Otherwise, we can safely push the chunk on the inqueue. | 
|  | */ | 
|  |  | 
|  | sk = rcvr->sk; | 
|  | local_bh_disable(); | 
|  | bh_lock_sock(sk); | 
|  |  | 
|  | if (sock_owned_by_user(sk)) { | 
|  | if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) | 
|  | sctp_chunk_free(chunk); | 
|  | else | 
|  | backloged = 1; | 
|  | } else | 
|  | sctp_inq_push(inqueue, chunk); | 
|  |  | 
|  | bh_unlock_sock(sk); | 
|  | local_bh_enable(); | 
|  |  | 
|  | /* If the chunk was backloged again, don't drop refs */ | 
|  | if (backloged) | 
|  | return 0; | 
|  | } else { | 
|  | sctp_inq_push(inqueue, chunk); | 
|  | } | 
|  |  | 
|  | done: | 
|  | /* Release the refs we took in sctp_add_backlog */ | 
|  | if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) | 
|  | sctp_transport_put(t); | 
|  | else if (SCTP_EP_TYPE_SOCKET == rcvr->type) | 
|  | sctp_endpoint_put(sctp_ep(rcvr)); | 
|  | else | 
|  | BUG(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; | 
|  | struct sctp_transport *t = chunk->transport; | 
|  | struct sctp_ep_common *rcvr = chunk->rcvr; | 
|  | int ret; | 
|  |  | 
|  | ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf); | 
|  | if (!ret) { | 
|  | /* Hold the assoc/ep while hanging on the backlog queue. | 
|  | * This way, we know structures we need will not disappear | 
|  | * from us | 
|  | */ | 
|  | if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) | 
|  | sctp_transport_hold(t); | 
|  | else if (SCTP_EP_TYPE_SOCKET == rcvr->type) | 
|  | sctp_endpoint_hold(sctp_ep(rcvr)); | 
|  | else | 
|  | BUG(); | 
|  | } | 
|  | return ret; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Handle icmp frag needed error. */ | 
|  | void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc, | 
|  | struct sctp_transport *t, __u32 pmtu) | 
|  | { | 
|  | if (!t || (t->pathmtu <= pmtu)) | 
|  | return; | 
|  |  | 
|  | if (sock_owned_by_user(sk)) { | 
|  | atomic_set(&t->mtu_info, pmtu); | 
|  | asoc->pmtu_pending = 1; | 
|  | t->pmtu_pending = 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!(t->param_flags & SPP_PMTUD_ENABLE)) | 
|  | /* We can't allow retransmitting in such case, as the | 
|  | * retransmission would be sized just as before, and thus we | 
|  | * would get another icmp, and retransmit again. | 
|  | */ | 
|  | return; | 
|  |  | 
|  | /* Update transports view of the MTU. Return if no update was needed. | 
|  | * If an update wasn't needed/possible, it also doesn't make sense to | 
|  | * try to retransmit now. | 
|  | */ | 
|  | if (!sctp_transport_update_pmtu(t, pmtu)) | 
|  | return; | 
|  |  | 
|  | /* Update association pmtu. */ | 
|  | sctp_assoc_sync_pmtu(asoc); | 
|  |  | 
|  | /* Retransmit with the new pmtu setting. */ | 
|  | sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD); | 
|  | } | 
|  |  | 
|  | void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | struct dst_entry *dst; | 
|  |  | 
|  | if (sock_owned_by_user(sk) || !t) | 
|  | return; | 
|  | dst = sctp_transport_dst_check(t); | 
|  | if (dst) | 
|  | dst->ops->redirect(dst, sk, skb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SCTP Implementer's Guide, 2.37 ICMP handling procedures | 
|  | * | 
|  | * ICMP8) If the ICMP code is a "Unrecognized next header type encountered" | 
|  | *        or a "Protocol Unreachable" treat this message as an abort | 
|  | *        with the T bit set. | 
|  | * | 
|  | * This function sends an event to the state machine, which will abort the | 
|  | * association. | 
|  | * | 
|  | */ | 
|  | void sctp_icmp_proto_unreachable(struct sock *sk, | 
|  | struct sctp_association *asoc, | 
|  | struct sctp_transport *t) | 
|  | { | 
|  | if (sock_owned_by_user(sk)) { | 
|  | if (timer_pending(&t->proto_unreach_timer)) | 
|  | return; | 
|  | else { | 
|  | if (!mod_timer(&t->proto_unreach_timer, | 
|  | jiffies + (HZ/20))) | 
|  | sctp_association_hold(asoc); | 
|  | } | 
|  | } else { | 
|  | struct net *net = sock_net(sk); | 
|  |  | 
|  | pr_debug("%s: unrecognized next header type " | 
|  | "encountered!\n", __func__); | 
|  |  | 
|  | if (del_timer(&t->proto_unreach_timer)) | 
|  | sctp_association_put(asoc); | 
|  |  | 
|  | sctp_do_sm(net, SCTP_EVENT_T_OTHER, | 
|  | SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH), | 
|  | asoc->state, asoc->ep, asoc, t, | 
|  | GFP_ATOMIC); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Common lookup code for icmp/icmpv6 error handler. */ | 
|  | struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb, | 
|  | struct sctphdr *sctphdr, | 
|  | struct sctp_association **app, | 
|  | struct sctp_transport **tpp) | 
|  | { | 
|  | struct sctp_init_chunk *chunkhdr, _chunkhdr; | 
|  | union sctp_addr saddr; | 
|  | union sctp_addr daddr; | 
|  | struct sctp_af *af; | 
|  | struct sock *sk = NULL; | 
|  | struct sctp_association *asoc; | 
|  | struct sctp_transport *transport = NULL; | 
|  | __u32 vtag = ntohl(sctphdr->vtag); | 
|  |  | 
|  | *app = NULL; *tpp = NULL; | 
|  |  | 
|  | af = sctp_get_af_specific(family); | 
|  | if (unlikely(!af)) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Initialize local addresses for lookups. */ | 
|  | af->from_skb(&saddr, skb, 1); | 
|  | af->from_skb(&daddr, skb, 0); | 
|  |  | 
|  | /* Look for an association that matches the incoming ICMP error | 
|  | * packet. | 
|  | */ | 
|  | asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport); | 
|  | if (!asoc) | 
|  | return NULL; | 
|  |  | 
|  | sk = asoc->base.sk; | 
|  |  | 
|  | /* RFC 4960, Appendix C. ICMP Handling | 
|  | * | 
|  | * ICMP6) An implementation MUST validate that the Verification Tag | 
|  | * contained in the ICMP message matches the Verification Tag of | 
|  | * the peer.  If the Verification Tag is not 0 and does NOT | 
|  | * match, discard the ICMP message.  If it is 0 and the ICMP | 
|  | * message contains enough bytes to verify that the chunk type is | 
|  | * an INIT chunk and that the Initiate Tag matches the tag of the | 
|  | * peer, continue with ICMP7.  If the ICMP message is too short | 
|  | * or the chunk type or the Initiate Tag does not match, silently | 
|  | * discard the packet. | 
|  | */ | 
|  | if (vtag == 0) { | 
|  | /* chunk header + first 4 octects of init header */ | 
|  | chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) + | 
|  | sizeof(struct sctphdr), | 
|  | sizeof(struct sctp_chunkhdr) + | 
|  | sizeof(__be32), &_chunkhdr); | 
|  | if (!chunkhdr || | 
|  | chunkhdr->chunk_hdr.type != SCTP_CID_INIT || | 
|  | ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) | 
|  | goto out; | 
|  |  | 
|  | } else if (vtag != asoc->c.peer_vtag) { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | bh_lock_sock(sk); | 
|  |  | 
|  | /* If too many ICMPs get dropped on busy | 
|  | * servers this needs to be solved differently. | 
|  | */ | 
|  | if (sock_owned_by_user(sk)) | 
|  | __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); | 
|  |  | 
|  | *app = asoc; | 
|  | *tpp = transport; | 
|  | return sk; | 
|  |  | 
|  | out: | 
|  | sctp_transport_put(transport); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Common cleanup code for icmp/icmpv6 error handler. */ | 
|  | void sctp_err_finish(struct sock *sk, struct sctp_transport *t) | 
|  | { | 
|  | bh_unlock_sock(sk); | 
|  | sctp_transport_put(t); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine is called by the ICMP module when it gets some | 
|  | * sort of error condition.  If err < 0 then the socket should | 
|  | * be closed and the error returned to the user.  If err > 0 | 
|  | * it's just the icmp type << 8 | icmp code.  After adjustment | 
|  | * header points to the first 8 bytes of the sctp header.  We need | 
|  | * to find the appropriate port. | 
|  | * | 
|  | * The locking strategy used here is very "optimistic". When | 
|  | * someone else accesses the socket the ICMP is just dropped | 
|  | * and for some paths there is no check at all. | 
|  | * A more general error queue to queue errors for later handling | 
|  | * is probably better. | 
|  | * | 
|  | */ | 
|  | void sctp_v4_err(struct sk_buff *skb, __u32 info) | 
|  | { | 
|  | const struct iphdr *iph = (const struct iphdr *)skb->data; | 
|  | const int ihlen = iph->ihl * 4; | 
|  | const int type = icmp_hdr(skb)->type; | 
|  | const int code = icmp_hdr(skb)->code; | 
|  | struct sock *sk; | 
|  | struct sctp_association *asoc = NULL; | 
|  | struct sctp_transport *transport; | 
|  | struct inet_sock *inet; | 
|  | __u16 saveip, savesctp; | 
|  | int err; | 
|  | struct net *net = dev_net(skb->dev); | 
|  |  | 
|  | /* Fix up skb to look at the embedded net header. */ | 
|  | saveip = skb->network_header; | 
|  | savesctp = skb->transport_header; | 
|  | skb_reset_network_header(skb); | 
|  | skb_set_transport_header(skb, ihlen); | 
|  | sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport); | 
|  | /* Put back, the original values. */ | 
|  | skb->network_header = saveip; | 
|  | skb->transport_header = savesctp; | 
|  | if (!sk) { | 
|  | __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); | 
|  | return; | 
|  | } | 
|  | /* Warning:  The sock lock is held.  Remember to call | 
|  | * sctp_err_finish! | 
|  | */ | 
|  |  | 
|  | switch (type) { | 
|  | case ICMP_PARAMETERPROB: | 
|  | err = EPROTO; | 
|  | break; | 
|  | case ICMP_DEST_UNREACH: | 
|  | if (code > NR_ICMP_UNREACH) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* PMTU discovery (RFC1191) */ | 
|  | if (ICMP_FRAG_NEEDED == code) { | 
|  | sctp_icmp_frag_needed(sk, asoc, transport, | 
|  | SCTP_TRUNC4(info)); | 
|  | goto out_unlock; | 
|  | } else { | 
|  | if (ICMP_PROT_UNREACH == code) { | 
|  | sctp_icmp_proto_unreachable(sk, asoc, | 
|  | transport); | 
|  | goto out_unlock; | 
|  | } | 
|  | } | 
|  | err = icmp_err_convert[code].errno; | 
|  | break; | 
|  | case ICMP_TIME_EXCEEDED: | 
|  | /* Ignore any time exceeded errors due to fragment reassembly | 
|  | * timeouts. | 
|  | */ | 
|  | if (ICMP_EXC_FRAGTIME == code) | 
|  | goto out_unlock; | 
|  |  | 
|  | err = EHOSTUNREACH; | 
|  | break; | 
|  | case ICMP_REDIRECT: | 
|  | sctp_icmp_redirect(sk, transport, skb); | 
|  | /* Fall through to out_unlock. */ | 
|  | default: | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | inet = inet_sk(sk); | 
|  | if (!sock_owned_by_user(sk) && inet->recverr) { | 
|  | sk->sk_err = err; | 
|  | sk->sk_error_report(sk); | 
|  | } else {  /* Only an error on timeout */ | 
|  | sk->sk_err_soft = err; | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | sctp_err_finish(sk, transport); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * RFC 2960, 8.4 - Handle "Out of the blue" Packets. | 
|  | * | 
|  | * This function scans all the chunks in the OOTB packet to determine if | 
|  | * the packet should be discarded right away.  If a response might be needed | 
|  | * for this packet, or, if further processing is possible, the packet will | 
|  | * be queued to a proper inqueue for the next phase of handling. | 
|  | * | 
|  | * Output: | 
|  | * Return 0 - If further processing is needed. | 
|  | * Return 1 - If the packet can be discarded right away. | 
|  | */ | 
|  | static int sctp_rcv_ootb(struct sk_buff *skb) | 
|  | { | 
|  | struct sctp_chunkhdr *ch, _ch; | 
|  | int ch_end, offset = 0; | 
|  |  | 
|  | /* Scan through all the chunks in the packet.  */ | 
|  | do { | 
|  | /* Make sure we have at least the header there */ | 
|  | if (offset + sizeof(_ch) > skb->len) | 
|  | break; | 
|  |  | 
|  | ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch); | 
|  |  | 
|  | /* Break out if chunk length is less then minimal. */ | 
|  | if (ntohs(ch->length) < sizeof(_ch)) | 
|  | break; | 
|  |  | 
|  | ch_end = offset + SCTP_PAD4(ntohs(ch->length)); | 
|  | if (ch_end > skb->len) | 
|  | break; | 
|  |  | 
|  | /* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the | 
|  | * receiver MUST silently discard the OOTB packet and take no | 
|  | * further action. | 
|  | */ | 
|  | if (SCTP_CID_ABORT == ch->type) | 
|  | goto discard; | 
|  |  | 
|  | /* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE | 
|  | * chunk, the receiver should silently discard the packet | 
|  | * and take no further action. | 
|  | */ | 
|  | if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type) | 
|  | goto discard; | 
|  |  | 
|  | /* RFC 4460, 2.11.2 | 
|  | * This will discard packets with INIT chunk bundled as | 
|  | * subsequent chunks in the packet.  When INIT is first, | 
|  | * the normal INIT processing will discard the chunk. | 
|  | */ | 
|  | if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data) | 
|  | goto discard; | 
|  |  | 
|  | offset = ch_end; | 
|  | } while (ch_end < skb->len); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | discard: | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Insert endpoint into the hash table.  */ | 
|  | static void __sctp_hash_endpoint(struct sctp_endpoint *ep) | 
|  | { | 
|  | struct net *net = sock_net(ep->base.sk); | 
|  | struct sctp_ep_common *epb; | 
|  | struct sctp_hashbucket *head; | 
|  |  | 
|  | epb = &ep->base; | 
|  |  | 
|  | epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port); | 
|  | head = &sctp_ep_hashtable[epb->hashent]; | 
|  |  | 
|  | write_lock(&head->lock); | 
|  | hlist_add_head(&epb->node, &head->chain); | 
|  | write_unlock(&head->lock); | 
|  | } | 
|  |  | 
|  | /* Add an endpoint to the hash. Local BH-safe. */ | 
|  | void sctp_hash_endpoint(struct sctp_endpoint *ep) | 
|  | { | 
|  | local_bh_disable(); | 
|  | __sctp_hash_endpoint(ep); | 
|  | local_bh_enable(); | 
|  | } | 
|  |  | 
|  | /* Remove endpoint from the hash table.  */ | 
|  | static void __sctp_unhash_endpoint(struct sctp_endpoint *ep) | 
|  | { | 
|  | struct net *net = sock_net(ep->base.sk); | 
|  | struct sctp_hashbucket *head; | 
|  | struct sctp_ep_common *epb; | 
|  |  | 
|  | epb = &ep->base; | 
|  |  | 
|  | epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port); | 
|  |  | 
|  | head = &sctp_ep_hashtable[epb->hashent]; | 
|  |  | 
|  | write_lock(&head->lock); | 
|  | hlist_del_init(&epb->node); | 
|  | write_unlock(&head->lock); | 
|  | } | 
|  |  | 
|  | /* Remove endpoint from the hash.  Local BH-safe. */ | 
|  | void sctp_unhash_endpoint(struct sctp_endpoint *ep) | 
|  | { | 
|  | local_bh_disable(); | 
|  | __sctp_unhash_endpoint(ep); | 
|  | local_bh_enable(); | 
|  | } | 
|  |  | 
|  | /* Look up an endpoint. */ | 
|  | static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net, | 
|  | const union sctp_addr *laddr) | 
|  | { | 
|  | struct sctp_hashbucket *head; | 
|  | struct sctp_ep_common *epb; | 
|  | struct sctp_endpoint *ep; | 
|  | int hash; | 
|  |  | 
|  | hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port)); | 
|  | head = &sctp_ep_hashtable[hash]; | 
|  | read_lock(&head->lock); | 
|  | sctp_for_each_hentry(epb, &head->chain) { | 
|  | ep = sctp_ep(epb); | 
|  | if (sctp_endpoint_is_match(ep, net, laddr)) | 
|  | goto hit; | 
|  | } | 
|  |  | 
|  | ep = sctp_sk(net->sctp.ctl_sock)->ep; | 
|  |  | 
|  | hit: | 
|  | sctp_endpoint_hold(ep); | 
|  | read_unlock(&head->lock); | 
|  | return ep; | 
|  | } | 
|  |  | 
|  | /* rhashtable for transport */ | 
|  | struct sctp_hash_cmp_arg { | 
|  | const union sctp_addr	*paddr; | 
|  | const struct net	*net; | 
|  | __be16			lport; | 
|  | }; | 
|  |  | 
|  | static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg, | 
|  | const void *ptr) | 
|  | { | 
|  | struct sctp_transport *t = (struct sctp_transport *)ptr; | 
|  | const struct sctp_hash_cmp_arg *x = arg->key; | 
|  | int err = 1; | 
|  |  | 
|  | if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr)) | 
|  | return err; | 
|  | if (!sctp_transport_hold(t)) | 
|  | return err; | 
|  |  | 
|  | if (!net_eq(sock_net(t->asoc->base.sk), x->net)) | 
|  | goto out; | 
|  | if (x->lport != htons(t->asoc->base.bind_addr.port)) | 
|  | goto out; | 
|  |  | 
|  | err = 0; | 
|  | out: | 
|  | sctp_transport_put(t); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed) | 
|  | { | 
|  | const struct sctp_transport *t = data; | 
|  | const union sctp_addr *paddr = &t->ipaddr; | 
|  | const struct net *net = sock_net(t->asoc->base.sk); | 
|  | __be16 lport = htons(t->asoc->base.bind_addr.port); | 
|  | __u32 addr; | 
|  |  | 
|  | if (paddr->sa.sa_family == AF_INET6) | 
|  | addr = jhash(&paddr->v6.sin6_addr, 16, seed); | 
|  | else | 
|  | addr = (__force __u32)paddr->v4.sin_addr.s_addr; | 
|  |  | 
|  | return  jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 | | 
|  | (__force __u32)lport, net_hash_mix(net), seed); | 
|  | } | 
|  |  | 
|  | static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed) | 
|  | { | 
|  | const struct sctp_hash_cmp_arg *x = data; | 
|  | const union sctp_addr *paddr = x->paddr; | 
|  | const struct net *net = x->net; | 
|  | __be16 lport = x->lport; | 
|  | __u32 addr; | 
|  |  | 
|  | if (paddr->sa.sa_family == AF_INET6) | 
|  | addr = jhash(&paddr->v6.sin6_addr, 16, seed); | 
|  | else | 
|  | addr = (__force __u32)paddr->v4.sin_addr.s_addr; | 
|  |  | 
|  | return  jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 | | 
|  | (__force __u32)lport, net_hash_mix(net), seed); | 
|  | } | 
|  |  | 
|  | static const struct rhashtable_params sctp_hash_params = { | 
|  | .head_offset		= offsetof(struct sctp_transport, node), | 
|  | .hashfn			= sctp_hash_key, | 
|  | .obj_hashfn		= sctp_hash_obj, | 
|  | .obj_cmpfn		= sctp_hash_cmp, | 
|  | .automatic_shrinking	= true, | 
|  | }; | 
|  |  | 
|  | int sctp_transport_hashtable_init(void) | 
|  | { | 
|  | return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params); | 
|  | } | 
|  |  | 
|  | void sctp_transport_hashtable_destroy(void) | 
|  | { | 
|  | rhltable_destroy(&sctp_transport_hashtable); | 
|  | } | 
|  |  | 
|  | int sctp_hash_transport(struct sctp_transport *t) | 
|  | { | 
|  | struct sctp_transport *transport; | 
|  | struct rhlist_head *tmp, *list; | 
|  | struct sctp_hash_cmp_arg arg; | 
|  | int err; | 
|  |  | 
|  | if (t->asoc->temp) | 
|  | return 0; | 
|  |  | 
|  | arg.net   = sock_net(t->asoc->base.sk); | 
|  | arg.paddr = &t->ipaddr; | 
|  | arg.lport = htons(t->asoc->base.bind_addr.port); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list = rhltable_lookup(&sctp_transport_hashtable, &arg, | 
|  | sctp_hash_params); | 
|  |  | 
|  | rhl_for_each_entry_rcu(transport, tmp, list, node) | 
|  | if (transport->asoc->ep == t->asoc->ep) { | 
|  | rcu_read_unlock(); | 
|  | return -EEXIST; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | err = rhltable_insert_key(&sctp_transport_hashtable, &arg, | 
|  | &t->node, sctp_hash_params); | 
|  | if (err) | 
|  | pr_err_once("insert transport fail, errno %d\n", err); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | void sctp_unhash_transport(struct sctp_transport *t) | 
|  | { | 
|  | if (t->asoc->temp) | 
|  | return; | 
|  |  | 
|  | rhltable_remove(&sctp_transport_hashtable, &t->node, | 
|  | sctp_hash_params); | 
|  | } | 
|  |  | 
|  | /* return a transport with holding it */ | 
|  | struct sctp_transport *sctp_addrs_lookup_transport( | 
|  | struct net *net, | 
|  | const union sctp_addr *laddr, | 
|  | const union sctp_addr *paddr) | 
|  | { | 
|  | struct rhlist_head *tmp, *list; | 
|  | struct sctp_transport *t; | 
|  | struct sctp_hash_cmp_arg arg = { | 
|  | .paddr = paddr, | 
|  | .net   = net, | 
|  | .lport = laddr->v4.sin_port, | 
|  | }; | 
|  |  | 
|  | list = rhltable_lookup(&sctp_transport_hashtable, &arg, | 
|  | sctp_hash_params); | 
|  |  | 
|  | rhl_for_each_entry_rcu(t, tmp, list, node) { | 
|  | if (!sctp_transport_hold(t)) | 
|  | continue; | 
|  |  | 
|  | if (sctp_bind_addr_match(&t->asoc->base.bind_addr, | 
|  | laddr, sctp_sk(t->asoc->base.sk))) | 
|  | return t; | 
|  | sctp_transport_put(t); | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* return a transport without holding it, as it's only used under sock lock */ | 
|  | struct sctp_transport *sctp_epaddr_lookup_transport( | 
|  | const struct sctp_endpoint *ep, | 
|  | const union sctp_addr *paddr) | 
|  | { | 
|  | struct net *net = sock_net(ep->base.sk); | 
|  | struct rhlist_head *tmp, *list; | 
|  | struct sctp_transport *t; | 
|  | struct sctp_hash_cmp_arg arg = { | 
|  | .paddr = paddr, | 
|  | .net   = net, | 
|  | .lport = htons(ep->base.bind_addr.port), | 
|  | }; | 
|  |  | 
|  | list = rhltable_lookup(&sctp_transport_hashtable, &arg, | 
|  | sctp_hash_params); | 
|  |  | 
|  | rhl_for_each_entry_rcu(t, tmp, list, node) | 
|  | if (ep == t->asoc->ep) | 
|  | return t; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Look up an association. */ | 
|  | static struct sctp_association *__sctp_lookup_association( | 
|  | struct net *net, | 
|  | const union sctp_addr *local, | 
|  | const union sctp_addr *peer, | 
|  | struct sctp_transport **pt) | 
|  | { | 
|  | struct sctp_transport *t; | 
|  | struct sctp_association *asoc = NULL; | 
|  |  | 
|  | t = sctp_addrs_lookup_transport(net, local, peer); | 
|  | if (!t) | 
|  | goto out; | 
|  |  | 
|  | asoc = t->asoc; | 
|  | *pt = t; | 
|  |  | 
|  | out: | 
|  | return asoc; | 
|  | } | 
|  |  | 
|  | /* Look up an association. protected by RCU read lock */ | 
|  | static | 
|  | struct sctp_association *sctp_lookup_association(struct net *net, | 
|  | const union sctp_addr *laddr, | 
|  | const union sctp_addr *paddr, | 
|  | struct sctp_transport **transportp) | 
|  | { | 
|  | struct sctp_association *asoc; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | asoc = __sctp_lookup_association(net, laddr, paddr, transportp); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return asoc; | 
|  | } | 
|  |  | 
|  | /* Is there an association matching the given local and peer addresses? */ | 
|  | bool sctp_has_association(struct net *net, | 
|  | const union sctp_addr *laddr, | 
|  | const union sctp_addr *paddr) | 
|  | { | 
|  | struct sctp_transport *transport; | 
|  |  | 
|  | if (sctp_lookup_association(net, laddr, paddr, &transport)) { | 
|  | sctp_transport_put(transport); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SCTP Implementors Guide, 2.18 Handling of address | 
|  | * parameters within the INIT or INIT-ACK. | 
|  | * | 
|  | * D) When searching for a matching TCB upon reception of an INIT | 
|  | *    or INIT-ACK chunk the receiver SHOULD use not only the | 
|  | *    source address of the packet (containing the INIT or | 
|  | *    INIT-ACK) but the receiver SHOULD also use all valid | 
|  | *    address parameters contained within the chunk. | 
|  | * | 
|  | * 2.18.3 Solution description | 
|  | * | 
|  | * This new text clearly specifies to an implementor the need | 
|  | * to look within the INIT or INIT-ACK. Any implementation that | 
|  | * does not do this, may not be able to establish associations | 
|  | * in certain circumstances. | 
|  | * | 
|  | */ | 
|  | static struct sctp_association *__sctp_rcv_init_lookup(struct net *net, | 
|  | struct sk_buff *skb, | 
|  | const union sctp_addr *laddr, struct sctp_transport **transportp) | 
|  | { | 
|  | struct sctp_association *asoc; | 
|  | union sctp_addr addr; | 
|  | union sctp_addr *paddr = &addr; | 
|  | struct sctphdr *sh = sctp_hdr(skb); | 
|  | union sctp_params params; | 
|  | struct sctp_init_chunk *init; | 
|  | struct sctp_af *af; | 
|  |  | 
|  | /* | 
|  | * This code will NOT touch anything inside the chunk--it is | 
|  | * strictly READ-ONLY. | 
|  | * | 
|  | * RFC 2960 3  SCTP packet Format | 
|  | * | 
|  | * Multiple chunks can be bundled into one SCTP packet up to | 
|  | * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN | 
|  | * COMPLETE chunks.  These chunks MUST NOT be bundled with any | 
|  | * other chunk in a packet.  See Section 6.10 for more details | 
|  | * on chunk bundling. | 
|  | */ | 
|  |  | 
|  | /* Find the start of the TLVs and the end of the chunk.  This is | 
|  | * the region we search for address parameters. | 
|  | */ | 
|  | init = (struct sctp_init_chunk *)skb->data; | 
|  |  | 
|  | /* Walk the parameters looking for embedded addresses. */ | 
|  | sctp_walk_params(params, init, init_hdr.params) { | 
|  |  | 
|  | /* Note: Ignoring hostname addresses. */ | 
|  | af = sctp_get_af_specific(param_type2af(params.p->type)); | 
|  | if (!af) | 
|  | continue; | 
|  |  | 
|  | af->from_addr_param(paddr, params.addr, sh->source, 0); | 
|  |  | 
|  | asoc = __sctp_lookup_association(net, laddr, paddr, transportp); | 
|  | if (asoc) | 
|  | return asoc; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* ADD-IP, Section 5.2 | 
|  | * When an endpoint receives an ASCONF Chunk from the remote peer | 
|  | * special procedures may be needed to identify the association the | 
|  | * ASCONF Chunk is associated with. To properly find the association | 
|  | * the following procedures SHOULD be followed: | 
|  | * | 
|  | * D2) If the association is not found, use the address found in the | 
|  | * Address Parameter TLV combined with the port number found in the | 
|  | * SCTP common header. If found proceed to rule D4. | 
|  | * | 
|  | * D2-ext) If more than one ASCONF Chunks are packed together, use the | 
|  | * address found in the ASCONF Address Parameter TLV of each of the | 
|  | * subsequent ASCONF Chunks. If found, proceed to rule D4. | 
|  | */ | 
|  | static struct sctp_association *__sctp_rcv_asconf_lookup( | 
|  | struct net *net, | 
|  | struct sctp_chunkhdr *ch, | 
|  | const union sctp_addr *laddr, | 
|  | __be16 peer_port, | 
|  | struct sctp_transport **transportp) | 
|  | { | 
|  | struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch; | 
|  | struct sctp_af *af; | 
|  | union sctp_addr_param *param; | 
|  | union sctp_addr paddr; | 
|  |  | 
|  | /* Skip over the ADDIP header and find the Address parameter */ | 
|  | param = (union sctp_addr_param *)(asconf + 1); | 
|  |  | 
|  | af = sctp_get_af_specific(param_type2af(param->p.type)); | 
|  | if (unlikely(!af)) | 
|  | return NULL; | 
|  |  | 
|  | af->from_addr_param(&paddr, param, peer_port, 0); | 
|  |  | 
|  | return __sctp_lookup_association(net, laddr, &paddr, transportp); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* SCTP-AUTH, Section 6.3: | 
|  | *    If the receiver does not find a STCB for a packet containing an AUTH | 
|  | *    chunk as the first chunk and not a COOKIE-ECHO chunk as the second | 
|  | *    chunk, it MUST use the chunks after the AUTH chunk to look up an existing | 
|  | *    association. | 
|  | * | 
|  | * This means that any chunks that can help us identify the association need | 
|  | * to be looked at to find this association. | 
|  | */ | 
|  | static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net, | 
|  | struct sk_buff *skb, | 
|  | const union sctp_addr *laddr, | 
|  | struct sctp_transport **transportp) | 
|  | { | 
|  | struct sctp_association *asoc = NULL; | 
|  | struct sctp_chunkhdr *ch; | 
|  | int have_auth = 0; | 
|  | unsigned int chunk_num = 1; | 
|  | __u8 *ch_end; | 
|  |  | 
|  | /* Walk through the chunks looking for AUTH or ASCONF chunks | 
|  | * to help us find the association. | 
|  | */ | 
|  | ch = (struct sctp_chunkhdr *)skb->data; | 
|  | do { | 
|  | /* Break out if chunk length is less then minimal. */ | 
|  | if (ntohs(ch->length) < sizeof(*ch)) | 
|  | break; | 
|  |  | 
|  | ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length)); | 
|  | if (ch_end > skb_tail_pointer(skb)) | 
|  | break; | 
|  |  | 
|  | switch (ch->type) { | 
|  | case SCTP_CID_AUTH: | 
|  | have_auth = chunk_num; | 
|  | break; | 
|  |  | 
|  | case SCTP_CID_COOKIE_ECHO: | 
|  | /* If a packet arrives containing an AUTH chunk as | 
|  | * a first chunk, a COOKIE-ECHO chunk as the second | 
|  | * chunk, and possibly more chunks after them, and | 
|  | * the receiver does not have an STCB for that | 
|  | * packet, then authentication is based on | 
|  | * the contents of the COOKIE- ECHO chunk. | 
|  | */ | 
|  | if (have_auth == 1 && chunk_num == 2) | 
|  | return NULL; | 
|  | break; | 
|  |  | 
|  | case SCTP_CID_ASCONF: | 
|  | if (have_auth || net->sctp.addip_noauth) | 
|  | asoc = __sctp_rcv_asconf_lookup( | 
|  | net, ch, laddr, | 
|  | sctp_hdr(skb)->source, | 
|  | transportp); | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (asoc) | 
|  | break; | 
|  |  | 
|  | ch = (struct sctp_chunkhdr *)ch_end; | 
|  | chunk_num++; | 
|  | } while (ch_end < skb_tail_pointer(skb)); | 
|  |  | 
|  | return asoc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There are circumstances when we need to look inside the SCTP packet | 
|  | * for information to help us find the association.   Examples | 
|  | * include looking inside of INIT/INIT-ACK chunks or after the AUTH | 
|  | * chunks. | 
|  | */ | 
|  | static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net, | 
|  | struct sk_buff *skb, | 
|  | const union sctp_addr *laddr, | 
|  | struct sctp_transport **transportp) | 
|  | { | 
|  | struct sctp_chunkhdr *ch; | 
|  |  | 
|  | /* We do not allow GSO frames here as we need to linearize and | 
|  | * then cannot guarantee frame boundaries. This shouldn't be an | 
|  | * issue as packets hitting this are mostly INIT or INIT-ACK and | 
|  | * those cannot be on GSO-style anyway. | 
|  | */ | 
|  | if (skb_is_gso(skb) && skb_is_gso_sctp(skb)) | 
|  | return NULL; | 
|  |  | 
|  | ch = (struct sctp_chunkhdr *)skb->data; | 
|  |  | 
|  | /* The code below will attempt to walk the chunk and extract | 
|  | * parameter information.  Before we do that, we need to verify | 
|  | * that the chunk length doesn't cause overflow.  Otherwise, we'll | 
|  | * walk off the end. | 
|  | */ | 
|  | if (SCTP_PAD4(ntohs(ch->length)) > skb->len) | 
|  | return NULL; | 
|  |  | 
|  | /* If this is INIT/INIT-ACK look inside the chunk too. */ | 
|  | if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK) | 
|  | return __sctp_rcv_init_lookup(net, skb, laddr, transportp); | 
|  |  | 
|  | return __sctp_rcv_walk_lookup(net, skb, laddr, transportp); | 
|  | } | 
|  |  | 
|  | /* Lookup an association for an inbound skb. */ | 
|  | static struct sctp_association *__sctp_rcv_lookup(struct net *net, | 
|  | struct sk_buff *skb, | 
|  | const union sctp_addr *paddr, | 
|  | const union sctp_addr *laddr, | 
|  | struct sctp_transport **transportp) | 
|  | { | 
|  | struct sctp_association *asoc; | 
|  |  | 
|  | asoc = __sctp_lookup_association(net, laddr, paddr, transportp); | 
|  | if (asoc) | 
|  | goto out; | 
|  |  | 
|  | /* Further lookup for INIT/INIT-ACK packets. | 
|  | * SCTP Implementors Guide, 2.18 Handling of address | 
|  | * parameters within the INIT or INIT-ACK. | 
|  | */ | 
|  | asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp); | 
|  | if (asoc) | 
|  | goto out; | 
|  |  | 
|  | if (paddr->sa.sa_family == AF_INET) | 
|  | pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n", | 
|  | &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port), | 
|  | &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port)); | 
|  | else | 
|  | pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n", | 
|  | &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port), | 
|  | &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port)); | 
|  |  | 
|  | out: | 
|  | return asoc; | 
|  | } |