|  | /* | 
|  | *  linux/arch/parisc/mm/init.c | 
|  | * | 
|  | *  Copyright (C) 1995	Linus Torvalds | 
|  | *  Copyright 1999 SuSE GmbH | 
|  | *    changed by Philipp Rumpf | 
|  | *  Copyright 1999 Philipp Rumpf (prumpf@tux.org) | 
|  | *  Copyright 2004 Randolph Chung (tausq@debian.org) | 
|  | *  Copyright 2006-2007 Helge Deller (deller@gmx.de) | 
|  | * | 
|  | */ | 
|  |  | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/pci.h>		/* for hppa_dma_ops and pcxl_dma_ops */ | 
|  | #include <linux/initrd.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/unistd.h> | 
|  | #include <linux/nodemask.h>	/* for node_online_map */ | 
|  | #include <linux/pagemap.h>	/* for release_pages */ | 
|  | #include <linux/compat.h> | 
|  |  | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/pdc_chassis.h> | 
|  | #include <asm/mmzone.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/msgbuf.h> | 
|  |  | 
|  | extern int  data_start; | 
|  | extern void parisc_kernel_start(void);	/* Kernel entry point in head.S */ | 
|  |  | 
|  | #if CONFIG_PGTABLE_LEVELS == 3 | 
|  | /* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout | 
|  | * with the first pmd adjacent to the pgd and below it. gcc doesn't actually | 
|  | * guarantee that global objects will be laid out in memory in the same order | 
|  | * as the order of declaration, so put these in different sections and use | 
|  | * the linker script to order them. */ | 
|  | pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE))); | 
|  | #endif | 
|  |  | 
|  | pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE))); | 
|  | pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE))); | 
|  |  | 
|  | #ifdef CONFIG_DISCONTIGMEM | 
|  | struct node_map_data node_data[MAX_NUMNODES] __read_mostly; | 
|  | signed char pfnnid_map[PFNNID_MAP_MAX] __read_mostly; | 
|  | #endif | 
|  |  | 
|  | static struct resource data_resource = { | 
|  | .name	= "Kernel data", | 
|  | .flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, | 
|  | }; | 
|  |  | 
|  | static struct resource code_resource = { | 
|  | .name	= "Kernel code", | 
|  | .flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, | 
|  | }; | 
|  |  | 
|  | static struct resource pdcdata_resource = { | 
|  | .name	= "PDC data (Page Zero)", | 
|  | .start	= 0, | 
|  | .end	= 0x9ff, | 
|  | .flags	= IORESOURCE_BUSY | IORESOURCE_MEM, | 
|  | }; | 
|  |  | 
|  | static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly; | 
|  |  | 
|  | /* The following array is initialized from the firmware specific | 
|  | * information retrieved in kernel/inventory.c. | 
|  | */ | 
|  |  | 
|  | physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly; | 
|  | int npmem_ranges __read_mostly; | 
|  |  | 
|  | /* | 
|  | * get_memblock() allocates pages via memblock. | 
|  | * We can't use memblock_find_in_range(0, KERNEL_INITIAL_SIZE) here since it | 
|  | * doesn't allocate from bottom to top which is needed because we only created | 
|  | * the initial mapping up to KERNEL_INITIAL_SIZE in the assembly bootup code. | 
|  | */ | 
|  | static void * __init get_memblock(unsigned long size) | 
|  | { | 
|  | static phys_addr_t search_addr __initdata; | 
|  | phys_addr_t phys; | 
|  |  | 
|  | if (!search_addr) | 
|  | search_addr = PAGE_ALIGN(__pa((unsigned long) &_end)); | 
|  | search_addr = ALIGN(search_addr, size); | 
|  | while (!memblock_is_region_memory(search_addr, size) || | 
|  | memblock_is_region_reserved(search_addr, size)) { | 
|  | search_addr += size; | 
|  | } | 
|  | phys = search_addr; | 
|  |  | 
|  | if (phys) | 
|  | memblock_reserve(phys, size); | 
|  | else | 
|  | panic("get_memblock() failed.\n"); | 
|  |  | 
|  | memset(__va(phys), 0, size); | 
|  |  | 
|  | return __va(phys); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_64BIT | 
|  | #define MAX_MEM         (~0UL) | 
|  | #else /* !CONFIG_64BIT */ | 
|  | #define MAX_MEM         (3584U*1024U*1024U) | 
|  | #endif /* !CONFIG_64BIT */ | 
|  |  | 
|  | static unsigned long mem_limit __read_mostly = MAX_MEM; | 
|  |  | 
|  | static void __init mem_limit_func(void) | 
|  | { | 
|  | char *cp, *end; | 
|  | unsigned long limit; | 
|  |  | 
|  | /* We need this before __setup() functions are called */ | 
|  |  | 
|  | limit = MAX_MEM; | 
|  | for (cp = boot_command_line; *cp; ) { | 
|  | if (memcmp(cp, "mem=", 4) == 0) { | 
|  | cp += 4; | 
|  | limit = memparse(cp, &end); | 
|  | if (end != cp) | 
|  | break; | 
|  | cp = end; | 
|  | } else { | 
|  | while (*cp != ' ' && *cp) | 
|  | ++cp; | 
|  | while (*cp == ' ') | 
|  | ++cp; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (limit < mem_limit) | 
|  | mem_limit = limit; | 
|  | } | 
|  |  | 
|  | #define MAX_GAP (0x40000000UL >> PAGE_SHIFT) | 
|  |  | 
|  | static void __init setup_bootmem(void) | 
|  | { | 
|  | unsigned long mem_max; | 
|  | #ifndef CONFIG_DISCONTIGMEM | 
|  | physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1]; | 
|  | int npmem_holes; | 
|  | #endif | 
|  | int i, sysram_resource_count; | 
|  |  | 
|  | disable_sr_hashing(); /* Turn off space register hashing */ | 
|  |  | 
|  | /* | 
|  | * Sort the ranges. Since the number of ranges is typically | 
|  | * small, and performance is not an issue here, just do | 
|  | * a simple insertion sort. | 
|  | */ | 
|  |  | 
|  | for (i = 1; i < npmem_ranges; i++) { | 
|  | int j; | 
|  |  | 
|  | for (j = i; j > 0; j--) { | 
|  | unsigned long tmp; | 
|  |  | 
|  | if (pmem_ranges[j-1].start_pfn < | 
|  | pmem_ranges[j].start_pfn) { | 
|  |  | 
|  | break; | 
|  | } | 
|  | tmp = pmem_ranges[j-1].start_pfn; | 
|  | pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn; | 
|  | pmem_ranges[j].start_pfn = tmp; | 
|  | tmp = pmem_ranges[j-1].pages; | 
|  | pmem_ranges[j-1].pages = pmem_ranges[j].pages; | 
|  | pmem_ranges[j].pages = tmp; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_DISCONTIGMEM | 
|  | /* | 
|  | * Throw out ranges that are too far apart (controlled by | 
|  | * MAX_GAP). | 
|  | */ | 
|  |  | 
|  | for (i = 1; i < npmem_ranges; i++) { | 
|  | if (pmem_ranges[i].start_pfn - | 
|  | (pmem_ranges[i-1].start_pfn + | 
|  | pmem_ranges[i-1].pages) > MAX_GAP) { | 
|  | npmem_ranges = i; | 
|  | printk("Large gap in memory detected (%ld pages). " | 
|  | "Consider turning on CONFIG_DISCONTIGMEM\n", | 
|  | pmem_ranges[i].start_pfn - | 
|  | (pmem_ranges[i-1].start_pfn + | 
|  | pmem_ranges[i-1].pages)); | 
|  | break; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Print the memory ranges */ | 
|  | pr_info("Memory Ranges:\n"); | 
|  |  | 
|  | for (i = 0; i < npmem_ranges; i++) { | 
|  | struct resource *res = &sysram_resources[i]; | 
|  | unsigned long start; | 
|  | unsigned long size; | 
|  |  | 
|  | size = (pmem_ranges[i].pages << PAGE_SHIFT); | 
|  | start = (pmem_ranges[i].start_pfn << PAGE_SHIFT); | 
|  | pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n", | 
|  | i, start, start + (size - 1), size >> 20); | 
|  |  | 
|  | /* request memory resource */ | 
|  | res->name = "System RAM"; | 
|  | res->start = start; | 
|  | res->end = start + size - 1; | 
|  | res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; | 
|  | request_resource(&iomem_resource, res); | 
|  | } | 
|  |  | 
|  | sysram_resource_count = npmem_ranges; | 
|  |  | 
|  | /* | 
|  | * For 32 bit kernels we limit the amount of memory we can | 
|  | * support, in order to preserve enough kernel address space | 
|  | * for other purposes. For 64 bit kernels we don't normally | 
|  | * limit the memory, but this mechanism can be used to | 
|  | * artificially limit the amount of memory (and it is written | 
|  | * to work with multiple memory ranges). | 
|  | */ | 
|  |  | 
|  | mem_limit_func();       /* check for "mem=" argument */ | 
|  |  | 
|  | mem_max = 0; | 
|  | for (i = 0; i < npmem_ranges; i++) { | 
|  | unsigned long rsize; | 
|  |  | 
|  | rsize = pmem_ranges[i].pages << PAGE_SHIFT; | 
|  | if ((mem_max + rsize) > mem_limit) { | 
|  | printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20); | 
|  | if (mem_max == mem_limit) | 
|  | npmem_ranges = i; | 
|  | else { | 
|  | pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT) | 
|  | - (mem_max >> PAGE_SHIFT); | 
|  | npmem_ranges = i + 1; | 
|  | mem_max = mem_limit; | 
|  | } | 
|  | break; | 
|  | } | 
|  | mem_max += rsize; | 
|  | } | 
|  |  | 
|  | printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20); | 
|  |  | 
|  | #ifndef CONFIG_DISCONTIGMEM | 
|  | /* Merge the ranges, keeping track of the holes */ | 
|  |  | 
|  | { | 
|  | unsigned long end_pfn; | 
|  | unsigned long hole_pages; | 
|  |  | 
|  | npmem_holes = 0; | 
|  | end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages; | 
|  | for (i = 1; i < npmem_ranges; i++) { | 
|  |  | 
|  | hole_pages = pmem_ranges[i].start_pfn - end_pfn; | 
|  | if (hole_pages) { | 
|  | pmem_holes[npmem_holes].start_pfn = end_pfn; | 
|  | pmem_holes[npmem_holes++].pages = hole_pages; | 
|  | end_pfn += hole_pages; | 
|  | } | 
|  | end_pfn += pmem_ranges[i].pages; | 
|  | } | 
|  |  | 
|  | pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn; | 
|  | npmem_ranges = 1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_DISCONTIGMEM | 
|  | for (i = 0; i < MAX_PHYSMEM_RANGES; i++) { | 
|  | memset(NODE_DATA(i), 0, sizeof(pg_data_t)); | 
|  | } | 
|  | memset(pfnnid_map, 0xff, sizeof(pfnnid_map)); | 
|  |  | 
|  | for (i = 0; i < npmem_ranges; i++) { | 
|  | node_set_state(i, N_NORMAL_MEMORY); | 
|  | node_set_online(i); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Initialize and free the full range of memory in each range. | 
|  | */ | 
|  |  | 
|  | max_pfn = 0; | 
|  | for (i = 0; i < npmem_ranges; i++) { | 
|  | unsigned long start_pfn; | 
|  | unsigned long npages; | 
|  | unsigned long start; | 
|  | unsigned long size; | 
|  |  | 
|  | start_pfn = pmem_ranges[i].start_pfn; | 
|  | npages = pmem_ranges[i].pages; | 
|  |  | 
|  | start = start_pfn << PAGE_SHIFT; | 
|  | size = npages << PAGE_SHIFT; | 
|  |  | 
|  | /* add system RAM memblock */ | 
|  | memblock_add(start, size); | 
|  |  | 
|  | if ((start_pfn + npages) > max_pfn) | 
|  | max_pfn = start_pfn + npages; | 
|  | } | 
|  |  | 
|  | /* IOMMU is always used to access "high mem" on those boxes | 
|  | * that can support enough mem that a PCI device couldn't | 
|  | * directly DMA to any physical addresses. | 
|  | * ISA DMA support will need to revisit this. | 
|  | */ | 
|  | max_low_pfn = max_pfn; | 
|  |  | 
|  | /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */ | 
|  |  | 
|  | #define PDC_CONSOLE_IO_IODC_SIZE 32768 | 
|  |  | 
|  | memblock_reserve(0UL, (unsigned long)(PAGE0->mem_free + | 
|  | PDC_CONSOLE_IO_IODC_SIZE)); | 
|  | memblock_reserve(__pa(KERNEL_BINARY_TEXT_START), | 
|  | (unsigned long)(_end - KERNEL_BINARY_TEXT_START)); | 
|  |  | 
|  | #ifndef CONFIG_DISCONTIGMEM | 
|  |  | 
|  | /* reserve the holes */ | 
|  |  | 
|  | for (i = 0; i < npmem_holes; i++) { | 
|  | memblock_reserve((pmem_holes[i].start_pfn << PAGE_SHIFT), | 
|  | (pmem_holes[i].pages << PAGE_SHIFT)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_BLK_DEV_INITRD | 
|  | if (initrd_start) { | 
|  | printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end); | 
|  | if (__pa(initrd_start) < mem_max) { | 
|  | unsigned long initrd_reserve; | 
|  |  | 
|  | if (__pa(initrd_end) > mem_max) { | 
|  | initrd_reserve = mem_max - __pa(initrd_start); | 
|  | } else { | 
|  | initrd_reserve = initrd_end - initrd_start; | 
|  | } | 
|  | initrd_below_start_ok = 1; | 
|  | printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max); | 
|  |  | 
|  | memblock_reserve(__pa(initrd_start), initrd_reserve); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | data_resource.start =  virt_to_phys(&data_start); | 
|  | data_resource.end = virt_to_phys(_end) - 1; | 
|  | code_resource.start = virt_to_phys(_text); | 
|  | code_resource.end = virt_to_phys(&data_start)-1; | 
|  |  | 
|  | /* We don't know which region the kernel will be in, so try | 
|  | * all of them. | 
|  | */ | 
|  | for (i = 0; i < sysram_resource_count; i++) { | 
|  | struct resource *res = &sysram_resources[i]; | 
|  | request_resource(res, &code_resource); | 
|  | request_resource(res, &data_resource); | 
|  | } | 
|  | request_resource(&sysram_resources[0], &pdcdata_resource); | 
|  | } | 
|  |  | 
|  | static int __init parisc_text_address(unsigned long vaddr) | 
|  | { | 
|  | static unsigned long head_ptr __initdata; | 
|  |  | 
|  | if (!head_ptr) | 
|  | head_ptr = PAGE_MASK & (unsigned long) | 
|  | dereference_function_descriptor(&parisc_kernel_start); | 
|  |  | 
|  | return core_kernel_text(vaddr) || vaddr == head_ptr; | 
|  | } | 
|  |  | 
|  | static void __init map_pages(unsigned long start_vaddr, | 
|  | unsigned long start_paddr, unsigned long size, | 
|  | pgprot_t pgprot, int force) | 
|  | { | 
|  | pgd_t *pg_dir; | 
|  | pmd_t *pmd; | 
|  | pte_t *pg_table; | 
|  | unsigned long end_paddr; | 
|  | unsigned long start_pmd; | 
|  | unsigned long start_pte; | 
|  | unsigned long tmp1; | 
|  | unsigned long tmp2; | 
|  | unsigned long address; | 
|  | unsigned long vaddr; | 
|  | unsigned long ro_start; | 
|  | unsigned long ro_end; | 
|  | unsigned long kernel_end; | 
|  |  | 
|  | ro_start = __pa((unsigned long)_text); | 
|  | ro_end   = __pa((unsigned long)&data_start); | 
|  | kernel_end  = __pa((unsigned long)&_end); | 
|  |  | 
|  | end_paddr = start_paddr + size; | 
|  |  | 
|  | pg_dir = pgd_offset_k(start_vaddr); | 
|  |  | 
|  | #if PTRS_PER_PMD == 1 | 
|  | start_pmd = 0; | 
|  | #else | 
|  | start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); | 
|  | #endif | 
|  | start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); | 
|  |  | 
|  | address = start_paddr; | 
|  | vaddr = start_vaddr; | 
|  | while (address < end_paddr) { | 
|  | #if PTRS_PER_PMD == 1 | 
|  | pmd = (pmd_t *)__pa(pg_dir); | 
|  | #else | 
|  | pmd = (pmd_t *)pgd_address(*pg_dir); | 
|  |  | 
|  | /* | 
|  | * pmd is physical at this point | 
|  | */ | 
|  |  | 
|  | if (!pmd) { | 
|  | pmd = (pmd_t *) get_memblock(PAGE_SIZE << PMD_ORDER); | 
|  | pmd = (pmd_t *) __pa(pmd); | 
|  | } | 
|  |  | 
|  | pgd_populate(NULL, pg_dir, __va(pmd)); | 
|  | #endif | 
|  | pg_dir++; | 
|  |  | 
|  | /* now change pmd to kernel virtual addresses */ | 
|  |  | 
|  | pmd = (pmd_t *)__va(pmd) + start_pmd; | 
|  | for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) { | 
|  |  | 
|  | /* | 
|  | * pg_table is physical at this point | 
|  | */ | 
|  |  | 
|  | pg_table = (pte_t *)pmd_address(*pmd); | 
|  | if (!pg_table) { | 
|  | pg_table = (pte_t *) get_memblock(PAGE_SIZE); | 
|  | pg_table = (pte_t *) __pa(pg_table); | 
|  | } | 
|  |  | 
|  | pmd_populate_kernel(NULL, pmd, __va(pg_table)); | 
|  |  | 
|  | /* now change pg_table to kernel virtual addresses */ | 
|  |  | 
|  | pg_table = (pte_t *) __va(pg_table) + start_pte; | 
|  | for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) { | 
|  | pte_t pte; | 
|  |  | 
|  | if (force) | 
|  | pte =  __mk_pte(address, pgprot); | 
|  | else if (parisc_text_address(vaddr)) { | 
|  | pte = __mk_pte(address, PAGE_KERNEL_EXEC); | 
|  | if (address >= ro_start && address < kernel_end) | 
|  | pte = pte_mkhuge(pte); | 
|  | } | 
|  | else | 
|  | #if defined(CONFIG_PARISC_PAGE_SIZE_4KB) | 
|  | if (address >= ro_start && address < ro_end) { | 
|  | pte = __mk_pte(address, PAGE_KERNEL_EXEC); | 
|  | pte = pte_mkhuge(pte); | 
|  | } else | 
|  | #endif | 
|  | { | 
|  | pte = __mk_pte(address, pgprot); | 
|  | if (address >= ro_start && address < kernel_end) | 
|  | pte = pte_mkhuge(pte); | 
|  | } | 
|  |  | 
|  | if (address >= end_paddr) { | 
|  | if (force) | 
|  | break; | 
|  | else | 
|  | pte_val(pte) = 0; | 
|  | } | 
|  |  | 
|  | set_pte(pg_table, pte); | 
|  |  | 
|  | address += PAGE_SIZE; | 
|  | vaddr += PAGE_SIZE; | 
|  | } | 
|  | start_pte = 0; | 
|  |  | 
|  | if (address >= end_paddr) | 
|  | break; | 
|  | } | 
|  | start_pmd = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | void free_initmem(void) | 
|  | { | 
|  | unsigned long init_begin = (unsigned long)__init_begin; | 
|  | unsigned long init_end = (unsigned long)__init_end; | 
|  |  | 
|  | /* The init text pages are marked R-X.  We have to | 
|  | * flush the icache and mark them RW- | 
|  | * | 
|  | * This is tricky, because map_pages is in the init section. | 
|  | * Do a dummy remap of the data section first (the data | 
|  | * section is already PAGE_KERNEL) to pull in the TLB entries | 
|  | * for map_kernel */ | 
|  | map_pages(init_begin, __pa(init_begin), init_end - init_begin, | 
|  | PAGE_KERNEL_RWX, 1); | 
|  | /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute | 
|  | * map_pages */ | 
|  | map_pages(init_begin, __pa(init_begin), init_end - init_begin, | 
|  | PAGE_KERNEL, 1); | 
|  |  | 
|  | /* force the kernel to see the new TLB entries */ | 
|  | __flush_tlb_range(0, init_begin, init_end); | 
|  |  | 
|  | /* finally dump all the instructions which were cached, since the | 
|  | * pages are no-longer executable */ | 
|  | flush_icache_range(init_begin, init_end); | 
|  |  | 
|  | free_initmem_default(POISON_FREE_INITMEM); | 
|  |  | 
|  | /* set up a new led state on systems shipped LED State panel */ | 
|  | pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE); | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_RODATA | 
|  | void mark_rodata_ro(void) | 
|  | { | 
|  | /* rodata memory was already mapped with KERNEL_RO access rights by | 
|  | pagetable_init() and map_pages(). No need to do additional stuff here */ | 
|  | printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n", | 
|  | (unsigned long)(__end_rodata - __start_rodata) >> 10); | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Just an arbitrary offset to serve as a "hole" between mapping areas | 
|  | * (between top of physical memory and a potential pcxl dma mapping | 
|  | * area, and below the vmalloc mapping area). | 
|  | * | 
|  | * The current 32K value just means that there will be a 32K "hole" | 
|  | * between mapping areas. That means that  any out-of-bounds memory | 
|  | * accesses will hopefully be caught. The vmalloc() routines leaves | 
|  | * a hole of 4kB between each vmalloced area for the same reason. | 
|  | */ | 
|  |  | 
|  | /* Leave room for gateway page expansion */ | 
|  | #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE | 
|  | #error KERNEL_MAP_START is in gateway reserved region | 
|  | #endif | 
|  | #define MAP_START (KERNEL_MAP_START) | 
|  |  | 
|  | #define VM_MAP_OFFSET  (32*1024) | 
|  | #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \ | 
|  | & ~(VM_MAP_OFFSET-1))) | 
|  |  | 
|  | void *parisc_vmalloc_start __read_mostly; | 
|  | EXPORT_SYMBOL(parisc_vmalloc_start); | 
|  |  | 
|  | #ifdef CONFIG_PA11 | 
|  | unsigned long pcxl_dma_start __read_mostly; | 
|  | #endif | 
|  |  | 
|  | void __init mem_init(void) | 
|  | { | 
|  | /* Do sanity checks on IPC (compat) structures */ | 
|  | BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48); | 
|  | #ifndef CONFIG_64BIT | 
|  | BUILD_BUG_ON(sizeof(struct semid64_ds) != 80); | 
|  | BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104); | 
|  | BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104); | 
|  | #endif | 
|  | #ifdef CONFIG_COMPAT | 
|  | BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm)); | 
|  | BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80); | 
|  | BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104); | 
|  | BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104); | 
|  | #endif | 
|  |  | 
|  | /* Do sanity checks on page table constants */ | 
|  | BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t)); | 
|  | BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t)); | 
|  | BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t)); | 
|  | BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD | 
|  | > BITS_PER_LONG); | 
|  |  | 
|  | high_memory = __va((max_pfn << PAGE_SHIFT)); | 
|  | set_max_mapnr(page_to_pfn(virt_to_page(high_memory - 1)) + 1); | 
|  | free_all_bootmem(); | 
|  |  | 
|  | #ifdef CONFIG_PA11 | 
|  | if (hppa_dma_ops == &pcxl_dma_ops) { | 
|  | pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START); | 
|  | parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start | 
|  | + PCXL_DMA_MAP_SIZE); | 
|  | } else { | 
|  | pcxl_dma_start = 0; | 
|  | parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START); | 
|  | } | 
|  | #else | 
|  | parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START); | 
|  | #endif | 
|  |  | 
|  | mem_init_print_info(NULL); | 
|  | #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */ | 
|  | printk("virtual kernel memory layout:\n" | 
|  | "    vmalloc : 0x%p - 0x%p   (%4ld MB)\n" | 
|  | "    memory  : 0x%p - 0x%p   (%4ld MB)\n" | 
|  | "      .init : 0x%p - 0x%p   (%4ld kB)\n" | 
|  | "      .data : 0x%p - 0x%p   (%4ld kB)\n" | 
|  | "      .text : 0x%p - 0x%p   (%4ld kB)\n", | 
|  |  | 
|  | (void*)VMALLOC_START, (void*)VMALLOC_END, | 
|  | (VMALLOC_END - VMALLOC_START) >> 20, | 
|  |  | 
|  | __va(0), high_memory, | 
|  | ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20, | 
|  |  | 
|  | __init_begin, __init_end, | 
|  | ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10, | 
|  |  | 
|  | _etext, _edata, | 
|  | ((unsigned long)_edata - (unsigned long)_etext) >> 10, | 
|  |  | 
|  | _text, _etext, | 
|  | ((unsigned long)_etext - (unsigned long)_text) >> 10); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | unsigned long *empty_zero_page __read_mostly; | 
|  | EXPORT_SYMBOL(empty_zero_page); | 
|  |  | 
|  | void show_mem(unsigned int filter) | 
|  | { | 
|  | int total = 0,reserved = 0; | 
|  | pg_data_t *pgdat; | 
|  |  | 
|  | printk(KERN_INFO "Mem-info:\n"); | 
|  | show_free_areas(filter); | 
|  |  | 
|  | for_each_online_pgdat(pgdat) { | 
|  | unsigned long flags; | 
|  | int zoneid; | 
|  |  | 
|  | pgdat_resize_lock(pgdat, &flags); | 
|  | for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { | 
|  | struct zone *zone = &pgdat->node_zones[zoneid]; | 
|  | if (!populated_zone(zone)) | 
|  | continue; | 
|  |  | 
|  | total += zone->present_pages; | 
|  | reserved = zone->present_pages - zone->managed_pages; | 
|  | } | 
|  | pgdat_resize_unlock(pgdat, &flags); | 
|  | } | 
|  |  | 
|  | printk(KERN_INFO "%d pages of RAM\n", total); | 
|  | printk(KERN_INFO "%d reserved pages\n", reserved); | 
|  |  | 
|  | #ifdef CONFIG_DISCONTIGMEM | 
|  | { | 
|  | struct zonelist *zl; | 
|  | int i, j; | 
|  |  | 
|  | for (i = 0; i < npmem_ranges; i++) { | 
|  | zl = node_zonelist(i, 0); | 
|  | for (j = 0; j < MAX_NR_ZONES; j++) { | 
|  | struct zoneref *z; | 
|  | struct zone *zone; | 
|  |  | 
|  | printk("Zone list for zone %d on node %d: ", j, i); | 
|  | for_each_zone_zonelist(zone, z, zl, j) | 
|  | printk("[%d/%s] ", zone_to_nid(zone), | 
|  | zone->name); | 
|  | printk("\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pagetable_init() sets up the page tables | 
|  | * | 
|  | * Note that gateway_init() places the Linux gateway page at page 0. | 
|  | * Since gateway pages cannot be dereferenced this has the desirable | 
|  | * side effect of trapping those pesky NULL-reference errors in the | 
|  | * kernel. | 
|  | */ | 
|  | static void __init pagetable_init(void) | 
|  | { | 
|  | int range; | 
|  |  | 
|  | /* Map each physical memory range to its kernel vaddr */ | 
|  |  | 
|  | for (range = 0; range < npmem_ranges; range++) { | 
|  | unsigned long start_paddr; | 
|  | unsigned long end_paddr; | 
|  | unsigned long size; | 
|  |  | 
|  | start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT; | 
|  | size = pmem_ranges[range].pages << PAGE_SHIFT; | 
|  | end_paddr = start_paddr + size; | 
|  |  | 
|  | map_pages((unsigned long)__va(start_paddr), start_paddr, | 
|  | size, PAGE_KERNEL, 0); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_BLK_DEV_INITRD | 
|  | if (initrd_end && initrd_end > mem_limit) { | 
|  | printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end); | 
|  | map_pages(initrd_start, __pa(initrd_start), | 
|  | initrd_end - initrd_start, PAGE_KERNEL, 0); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | empty_zero_page = get_memblock(PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | static void __init gateway_init(void) | 
|  | { | 
|  | unsigned long linux_gateway_page_addr; | 
|  | /* FIXME: This is 'const' in order to trick the compiler | 
|  | into not treating it as DP-relative data. */ | 
|  | extern void * const linux_gateway_page; | 
|  |  | 
|  | linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK; | 
|  |  | 
|  | /* | 
|  | * Setup Linux Gateway page. | 
|  | * | 
|  | * The Linux gateway page will reside in kernel space (on virtual | 
|  | * page 0), so it doesn't need to be aliased into user space. | 
|  | */ | 
|  |  | 
|  | map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page), | 
|  | PAGE_SIZE, PAGE_GATEWAY, 1); | 
|  | } | 
|  |  | 
|  | void __init paging_init(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | setup_bootmem(); | 
|  | pagetable_init(); | 
|  | gateway_init(); | 
|  | flush_cache_all_local(); /* start with known state */ | 
|  | flush_tlb_all_local(NULL); | 
|  |  | 
|  | for (i = 0; i < npmem_ranges; i++) { | 
|  | unsigned long zones_size[MAX_NR_ZONES] = { 0, }; | 
|  |  | 
|  | zones_size[ZONE_NORMAL] = pmem_ranges[i].pages; | 
|  |  | 
|  | #ifdef CONFIG_DISCONTIGMEM | 
|  | /* Need to initialize the pfnnid_map before we can initialize | 
|  | the zone */ | 
|  | { | 
|  | int j; | 
|  | for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT); | 
|  | j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT); | 
|  | j++) { | 
|  | pfnnid_map[j] = i; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | free_area_init_node(i, zones_size, | 
|  | pmem_ranges[i].start_pfn, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PA20 | 
|  |  | 
|  | /* | 
|  | * Currently, all PA20 chips have 18 bit protection IDs, which is the | 
|  | * limiting factor (space ids are 32 bits). | 
|  | */ | 
|  |  | 
|  | #define NR_SPACE_IDS 262144 | 
|  |  | 
|  | #else | 
|  |  | 
|  | /* | 
|  | * Currently we have a one-to-one relationship between space IDs and | 
|  | * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only | 
|  | * support 15 bit protection IDs, so that is the limiting factor. | 
|  | * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's | 
|  | * probably not worth the effort for a special case here. | 
|  | */ | 
|  |  | 
|  | #define NR_SPACE_IDS 32768 | 
|  |  | 
|  | #endif  /* !CONFIG_PA20 */ | 
|  |  | 
|  | #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2) | 
|  | #define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long))) | 
|  |  | 
|  | static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */ | 
|  | static unsigned long dirty_space_id[SID_ARRAY_SIZE]; | 
|  | static unsigned long space_id_index; | 
|  | static unsigned long free_space_ids = NR_SPACE_IDS - 1; | 
|  | static unsigned long dirty_space_ids = 0; | 
|  |  | 
|  | static DEFINE_SPINLOCK(sid_lock); | 
|  |  | 
|  | unsigned long alloc_sid(void) | 
|  | { | 
|  | unsigned long index; | 
|  |  | 
|  | spin_lock(&sid_lock); | 
|  |  | 
|  | if (free_space_ids == 0) { | 
|  | if (dirty_space_ids != 0) { | 
|  | spin_unlock(&sid_lock); | 
|  | flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */ | 
|  | spin_lock(&sid_lock); | 
|  | } | 
|  | BUG_ON(free_space_ids == 0); | 
|  | } | 
|  |  | 
|  | free_space_ids--; | 
|  |  | 
|  | index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index); | 
|  | space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1))); | 
|  | space_id_index = index; | 
|  |  | 
|  | spin_unlock(&sid_lock); | 
|  |  | 
|  | return index << SPACEID_SHIFT; | 
|  | } | 
|  |  | 
|  | void free_sid(unsigned long spaceid) | 
|  | { | 
|  | unsigned long index = spaceid >> SPACEID_SHIFT; | 
|  | unsigned long *dirty_space_offset; | 
|  |  | 
|  | dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG); | 
|  | index &= (BITS_PER_LONG - 1); | 
|  |  | 
|  | spin_lock(&sid_lock); | 
|  |  | 
|  | BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */ | 
|  |  | 
|  | *dirty_space_offset |= (1L << index); | 
|  | dirty_space_ids++; | 
|  |  | 
|  | spin_unlock(&sid_lock); | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* NOTE: sid_lock must be held upon entry */ | 
|  |  | 
|  | *ndirtyptr = dirty_space_ids; | 
|  | if (dirty_space_ids != 0) { | 
|  | for (i = 0; i < SID_ARRAY_SIZE; i++) { | 
|  | dirty_array[i] = dirty_space_id[i]; | 
|  | dirty_space_id[i] = 0; | 
|  | } | 
|  | dirty_space_ids = 0; | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* NOTE: sid_lock must be held upon entry */ | 
|  |  | 
|  | if (ndirty != 0) { | 
|  | for (i = 0; i < SID_ARRAY_SIZE; i++) { | 
|  | space_id[i] ^= dirty_array[i]; | 
|  | } | 
|  |  | 
|  | free_space_ids += ndirty; | 
|  | space_id_index = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_SMP */ | 
|  |  | 
|  | static void recycle_sids(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* NOTE: sid_lock must be held upon entry */ | 
|  |  | 
|  | if (dirty_space_ids != 0) { | 
|  | for (i = 0; i < SID_ARRAY_SIZE; i++) { | 
|  | space_id[i] ^= dirty_space_id[i]; | 
|  | dirty_space_id[i] = 0; | 
|  | } | 
|  |  | 
|  | free_space_ids += dirty_space_ids; | 
|  | dirty_space_ids = 0; | 
|  | space_id_index = 0; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is | 
|  | * purged, we can safely reuse the space ids that were released but | 
|  | * not flushed from the tlb. | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | static unsigned long recycle_ndirty; | 
|  | static unsigned long recycle_dirty_array[SID_ARRAY_SIZE]; | 
|  | static unsigned int recycle_inuse; | 
|  |  | 
|  | void flush_tlb_all(void) | 
|  | { | 
|  | int do_recycle; | 
|  |  | 
|  | __inc_irq_stat(irq_tlb_count); | 
|  | do_recycle = 0; | 
|  | spin_lock(&sid_lock); | 
|  | if (dirty_space_ids > RECYCLE_THRESHOLD) { | 
|  | BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */ | 
|  | get_dirty_sids(&recycle_ndirty,recycle_dirty_array); | 
|  | recycle_inuse++; | 
|  | do_recycle++; | 
|  | } | 
|  | spin_unlock(&sid_lock); | 
|  | on_each_cpu(flush_tlb_all_local, NULL, 1); | 
|  | if (do_recycle) { | 
|  | spin_lock(&sid_lock); | 
|  | recycle_sids(recycle_ndirty,recycle_dirty_array); | 
|  | recycle_inuse = 0; | 
|  | spin_unlock(&sid_lock); | 
|  | } | 
|  | } | 
|  | #else | 
|  | void flush_tlb_all(void) | 
|  | { | 
|  | __inc_irq_stat(irq_tlb_count); | 
|  | spin_lock(&sid_lock); | 
|  | flush_tlb_all_local(NULL); | 
|  | recycle_sids(); | 
|  | spin_unlock(&sid_lock); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_BLK_DEV_INITRD | 
|  | void free_initrd_mem(unsigned long start, unsigned long end) | 
|  | { | 
|  | free_reserved_area((void *)start, (void *)end, -1, "initrd"); | 
|  | } | 
|  | #endif |