| /* | 
 |  * This file is part of the Chelsio FCoE driver for Linux. | 
 |  * | 
 |  * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved. | 
 |  * | 
 |  * This software is available to you under a choice of one of two | 
 |  * licenses.  You may choose to be licensed under the terms of the GNU | 
 |  * General Public License (GPL) Version 2, available from the file | 
 |  * COPYING in the main directory of this source tree, or the | 
 |  * OpenIB.org BSD license below: | 
 |  * | 
 |  *     Redistribution and use in source and binary forms, with or | 
 |  *     without modification, are permitted provided that the following | 
 |  *     conditions are met: | 
 |  * | 
 |  *      - Redistributions of source code must retain the above | 
 |  *        copyright notice, this list of conditions and the following | 
 |  *        disclaimer. | 
 |  * | 
 |  *      - Redistributions in binary form must reproduce the above | 
 |  *        copyright notice, this list of conditions and the following | 
 |  *        disclaimer in the documentation and/or other materials | 
 |  *        provided with the distribution. | 
 |  * | 
 |  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
 |  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | 
 |  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
 |  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | 
 |  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | 
 |  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | 
 |  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
 |  * SOFTWARE. | 
 |  */ | 
 |  | 
 | #include <linux/pci.h> | 
 | #include <linux/pci_regs.h> | 
 | #include <linux/firmware.h> | 
 | #include <linux/stddef.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/string.h> | 
 | #include <linux/compiler.h> | 
 | #include <linux/jiffies.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/log2.h> | 
 |  | 
 | #include "csio_hw.h" | 
 | #include "csio_lnode.h" | 
 | #include "csio_rnode.h" | 
 |  | 
 | int csio_dbg_level = 0xFEFF; | 
 | unsigned int csio_port_mask = 0xf; | 
 |  | 
 | /* Default FW event queue entries. */ | 
 | static uint32_t csio_evtq_sz = CSIO_EVTQ_SIZE; | 
 |  | 
 | /* Default MSI param level */ | 
 | int csio_msi = 2; | 
 |  | 
 | /* FCoE function instances */ | 
 | static int dev_num; | 
 |  | 
 | /* FCoE Adapter types & its description */ | 
 | static const struct csio_adap_desc csio_t5_fcoe_adapters[] = { | 
 | 	{"T580-Dbg 10G", "Chelsio T580-Dbg 10G [FCoE]"}, | 
 | 	{"T520-CR 10G", "Chelsio T520-CR 10G [FCoE]"}, | 
 | 	{"T522-CR 10G/1G", "Chelsio T522-CR 10G/1G [FCoE]"}, | 
 | 	{"T540-CR 10G", "Chelsio T540-CR 10G [FCoE]"}, | 
 | 	{"T520-BCH 10G", "Chelsio T520-BCH 10G [FCoE]"}, | 
 | 	{"T540-BCH 10G", "Chelsio T540-BCH 10G [FCoE]"}, | 
 | 	{"T540-CH 10G", "Chelsio T540-CH 10G [FCoE]"}, | 
 | 	{"T520-SO 10G", "Chelsio T520-SO 10G [FCoE]"}, | 
 | 	{"T520-CX4 10G", "Chelsio T520-CX4 10G [FCoE]"}, | 
 | 	{"T520-BT 10G", "Chelsio T520-BT 10G [FCoE]"}, | 
 | 	{"T504-BT 1G", "Chelsio T504-BT 1G [FCoE]"}, | 
 | 	{"B520-SR 10G", "Chelsio B520-SR 10G [FCoE]"}, | 
 | 	{"B504-BT 1G", "Chelsio B504-BT 1G [FCoE]"}, | 
 | 	{"T580-CR 10G", "Chelsio T580-CR 10G [FCoE]"}, | 
 | 	{"T540-LP-CR 10G", "Chelsio T540-LP-CR 10G [FCoE]"}, | 
 | 	{"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"}, | 
 | 	{"T580-LP-CR 40G", "Chelsio T580-LP-CR 40G [FCoE]"}, | 
 | 	{"T520-LL-CR 10G", "Chelsio T520-LL-CR 10G [FCoE]"}, | 
 | 	{"T560-CR 40G", "Chelsio T560-CR 40G [FCoE]"}, | 
 | 	{"T580-CR 40G", "Chelsio T580-CR 40G [FCoE]"}, | 
 | 	{"T580-SO 40G", "Chelsio T580-SO 40G [FCoE]"}, | 
 | 	{"T502-BT 1G", "Chelsio T502-BT 1G [FCoE]"} | 
 | }; | 
 |  | 
 | static void csio_mgmtm_cleanup(struct csio_mgmtm *); | 
 | static void csio_hw_mbm_cleanup(struct csio_hw *); | 
 |  | 
 | /* State machine forward declarations */ | 
 | static void csio_hws_uninit(struct csio_hw *, enum csio_hw_ev); | 
 | static void csio_hws_configuring(struct csio_hw *, enum csio_hw_ev); | 
 | static void csio_hws_initializing(struct csio_hw *, enum csio_hw_ev); | 
 | static void csio_hws_ready(struct csio_hw *, enum csio_hw_ev); | 
 | static void csio_hws_quiescing(struct csio_hw *, enum csio_hw_ev); | 
 | static void csio_hws_quiesced(struct csio_hw *, enum csio_hw_ev); | 
 | static void csio_hws_resetting(struct csio_hw *, enum csio_hw_ev); | 
 | static void csio_hws_removing(struct csio_hw *, enum csio_hw_ev); | 
 | static void csio_hws_pcierr(struct csio_hw *, enum csio_hw_ev); | 
 |  | 
 | static void csio_hw_initialize(struct csio_hw *hw); | 
 | static void csio_evtq_stop(struct csio_hw *hw); | 
 | static void csio_evtq_start(struct csio_hw *hw); | 
 |  | 
 | int csio_is_hw_ready(struct csio_hw *hw) | 
 | { | 
 | 	return csio_match_state(hw, csio_hws_ready); | 
 | } | 
 |  | 
 | int csio_is_hw_removing(struct csio_hw *hw) | 
 | { | 
 | 	return csio_match_state(hw, csio_hws_removing); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  *	csio_hw_wait_op_done_val - wait until an operation is completed | 
 |  *	@hw: the HW module | 
 |  *	@reg: the register to check for completion | 
 |  *	@mask: a single-bit field within @reg that indicates completion | 
 |  *	@polarity: the value of the field when the operation is completed | 
 |  *	@attempts: number of check iterations | 
 |  *	@delay: delay in usecs between iterations | 
 |  *	@valp: where to store the value of the register at completion time | 
 |  * | 
 |  *	Wait until an operation is completed by checking a bit in a register | 
 |  *	up to @attempts times.  If @valp is not NULL the value of the register | 
 |  *	at the time it indicated completion is stored there.  Returns 0 if the | 
 |  *	operation completes and	-EAGAIN	otherwise. | 
 |  */ | 
 | int | 
 | csio_hw_wait_op_done_val(struct csio_hw *hw, int reg, uint32_t mask, | 
 | 			 int polarity, int attempts, int delay, uint32_t *valp) | 
 | { | 
 | 	uint32_t val; | 
 | 	while (1) { | 
 | 		val = csio_rd_reg32(hw, reg); | 
 |  | 
 | 		if (!!(val & mask) == polarity) { | 
 | 			if (valp) | 
 | 				*valp = val; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		if (--attempts == 0) | 
 | 			return -EAGAIN; | 
 | 		if (delay) | 
 | 			udelay(delay); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  *	csio_hw_tp_wr_bits_indirect - set/clear bits in an indirect TP register | 
 |  *	@hw: the adapter | 
 |  *	@addr: the indirect TP register address | 
 |  *	@mask: specifies the field within the register to modify | 
 |  *	@val: new value for the field | 
 |  * | 
 |  *	Sets a field of an indirect TP register to the given value. | 
 |  */ | 
 | void | 
 | csio_hw_tp_wr_bits_indirect(struct csio_hw *hw, unsigned int addr, | 
 | 			unsigned int mask, unsigned int val) | 
 | { | 
 | 	csio_wr_reg32(hw, addr, TP_PIO_ADDR_A); | 
 | 	val |= csio_rd_reg32(hw, TP_PIO_DATA_A) & ~mask; | 
 | 	csio_wr_reg32(hw, val, TP_PIO_DATA_A); | 
 | } | 
 |  | 
 | void | 
 | csio_set_reg_field(struct csio_hw *hw, uint32_t reg, uint32_t mask, | 
 | 		   uint32_t value) | 
 | { | 
 | 	uint32_t val = csio_rd_reg32(hw, reg) & ~mask; | 
 |  | 
 | 	csio_wr_reg32(hw, val | value, reg); | 
 | 	/* Flush */ | 
 | 	csio_rd_reg32(hw, reg); | 
 |  | 
 | } | 
 |  | 
 | static int | 
 | csio_memory_write(struct csio_hw *hw, int mtype, u32 addr, u32 len, u32 *buf) | 
 | { | 
 | 	return hw->chip_ops->chip_memory_rw(hw, MEMWIN_CSIOSTOR, mtype, | 
 | 					    addr, len, buf, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms. | 
 |  */ | 
 | #define EEPROM_MAX_RD_POLL	40 | 
 | #define EEPROM_MAX_WR_POLL	6 | 
 | #define EEPROM_STAT_ADDR	0x7bfc | 
 | #define VPD_BASE		0x400 | 
 | #define VPD_BASE_OLD		0 | 
 | #define VPD_LEN			1024 | 
 | #define VPD_INFO_FLD_HDR_SIZE	3 | 
 |  | 
 | /* | 
 |  *	csio_hw_seeprom_read - read a serial EEPROM location | 
 |  *	@hw: hw to read | 
 |  *	@addr: EEPROM virtual address | 
 |  *	@data: where to store the read data | 
 |  * | 
 |  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI | 
 |  *	VPD capability.  Note that this function must be called with a virtual | 
 |  *	address. | 
 |  */ | 
 | static int | 
 | csio_hw_seeprom_read(struct csio_hw *hw, uint32_t addr, uint32_t *data) | 
 | { | 
 | 	uint16_t val = 0; | 
 | 	int attempts = EEPROM_MAX_RD_POLL; | 
 | 	uint32_t base = hw->params.pci.vpd_cap_addr; | 
 |  | 
 | 	if (addr >= EEPROMVSIZE || (addr & 3)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	pci_write_config_word(hw->pdev, base + PCI_VPD_ADDR, (uint16_t)addr); | 
 |  | 
 | 	do { | 
 | 		udelay(10); | 
 | 		pci_read_config_word(hw->pdev, base + PCI_VPD_ADDR, &val); | 
 | 	} while (!(val & PCI_VPD_ADDR_F) && --attempts); | 
 |  | 
 | 	if (!(val & PCI_VPD_ADDR_F)) { | 
 | 		csio_err(hw, "reading EEPROM address 0x%x failed\n", addr); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	pci_read_config_dword(hw->pdev, base + PCI_VPD_DATA, data); | 
 | 	*data = le32_to_cpu(*(__le32 *)data); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Partial EEPROM Vital Product Data structure.  Includes only the ID and | 
 |  * VPD-R sections. | 
 |  */ | 
 | struct t4_vpd_hdr { | 
 | 	u8  id_tag; | 
 | 	u8  id_len[2]; | 
 | 	u8  id_data[ID_LEN]; | 
 | 	u8  vpdr_tag; | 
 | 	u8  vpdr_len[2]; | 
 | }; | 
 |  | 
 | /* | 
 |  *	csio_hw_get_vpd_keyword_val - Locates an information field keyword in | 
 |  *				      the VPD | 
 |  *	@v: Pointer to buffered vpd data structure | 
 |  *	@kw: The keyword to search for | 
 |  * | 
 |  *	Returns the value of the information field keyword or | 
 |  *	-EINVAL otherwise. | 
 |  */ | 
 | static int | 
 | csio_hw_get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw) | 
 | { | 
 | 	int32_t i; | 
 | 	int32_t offset , len; | 
 | 	const uint8_t *buf = &v->id_tag; | 
 | 	const uint8_t *vpdr_len = &v->vpdr_tag; | 
 | 	offset = sizeof(struct t4_vpd_hdr); | 
 | 	len =  (uint16_t)vpdr_len[1] + ((uint16_t)vpdr_len[2] << 8); | 
 |  | 
 | 	if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN) | 
 | 		return -EINVAL; | 
 |  | 
 | 	for (i = offset; (i + VPD_INFO_FLD_HDR_SIZE) <= (offset + len);) { | 
 | 		if (memcmp(buf + i , kw, 2) == 0) { | 
 | 			i += VPD_INFO_FLD_HDR_SIZE; | 
 | 			return i; | 
 | 		} | 
 |  | 
 | 		i += VPD_INFO_FLD_HDR_SIZE + buf[i+2]; | 
 | 	} | 
 |  | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static int | 
 | csio_pci_capability(struct pci_dev *pdev, int cap, int *pos) | 
 | { | 
 | 	*pos = pci_find_capability(pdev, cap); | 
 | 	if (*pos) | 
 | 		return 0; | 
 |  | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* | 
 |  *	csio_hw_get_vpd_params - read VPD parameters from VPD EEPROM | 
 |  *	@hw: HW module | 
 |  *	@p: where to store the parameters | 
 |  * | 
 |  *	Reads card parameters stored in VPD EEPROM. | 
 |  */ | 
 | static int | 
 | csio_hw_get_vpd_params(struct csio_hw *hw, struct csio_vpd *p) | 
 | { | 
 | 	int i, ret, ec, sn, addr; | 
 | 	uint8_t *vpd, csum; | 
 | 	const struct t4_vpd_hdr *v; | 
 | 	/* To get around compilation warning from strstrip */ | 
 | 	char *s; | 
 |  | 
 | 	if (csio_is_valid_vpd(hw)) | 
 | 		return 0; | 
 |  | 
 | 	ret = csio_pci_capability(hw->pdev, PCI_CAP_ID_VPD, | 
 | 				  &hw->params.pci.vpd_cap_addr); | 
 | 	if (ret) | 
 | 		return -EINVAL; | 
 |  | 
 | 	vpd = kzalloc(VPD_LEN, GFP_ATOMIC); | 
 | 	if (vpd == NULL) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* | 
 | 	 * Card information normally starts at VPD_BASE but early cards had | 
 | 	 * it at 0. | 
 | 	 */ | 
 | 	ret = csio_hw_seeprom_read(hw, VPD_BASE, (uint32_t *)(vpd)); | 
 | 	addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD; | 
 |  | 
 | 	for (i = 0; i < VPD_LEN; i += 4) { | 
 | 		ret = csio_hw_seeprom_read(hw, addr + i, (uint32_t *)(vpd + i)); | 
 | 		if (ret) { | 
 | 			kfree(vpd); | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Reset the VPD flag! */ | 
 | 	hw->flags &= (~CSIO_HWF_VPD_VALID); | 
 |  | 
 | 	v = (const struct t4_vpd_hdr *)vpd; | 
 |  | 
 | #define FIND_VPD_KW(var, name) do { \ | 
 | 	var = csio_hw_get_vpd_keyword_val(v, name); \ | 
 | 	if (var < 0) { \ | 
 | 		csio_err(hw, "missing VPD keyword " name "\n"); \ | 
 | 		kfree(vpd); \ | 
 | 		return -EINVAL; \ | 
 | 	} \ | 
 | } while (0) | 
 |  | 
 | 	FIND_VPD_KW(i, "RV"); | 
 | 	for (csum = 0; i >= 0; i--) | 
 | 		csum += vpd[i]; | 
 |  | 
 | 	if (csum) { | 
 | 		csio_err(hw, "corrupted VPD EEPROM, actual csum %u\n", csum); | 
 | 		kfree(vpd); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	FIND_VPD_KW(ec, "EC"); | 
 | 	FIND_VPD_KW(sn, "SN"); | 
 | #undef FIND_VPD_KW | 
 |  | 
 | 	memcpy(p->id, v->id_data, ID_LEN); | 
 | 	s = strstrip(p->id); | 
 | 	memcpy(p->ec, vpd + ec, EC_LEN); | 
 | 	s = strstrip(p->ec); | 
 | 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2]; | 
 | 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); | 
 | 	s = strstrip(p->sn); | 
 |  | 
 | 	csio_valid_vpd_copied(hw); | 
 |  | 
 | 	kfree(vpd); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  *	csio_hw_sf1_read - read data from the serial flash | 
 |  *	@hw: the HW module | 
 |  *	@byte_cnt: number of bytes to read | 
 |  *	@cont: whether another operation will be chained | 
 |  *      @lock: whether to lock SF for PL access only | 
 |  *	@valp: where to store the read data | 
 |  * | 
 |  *	Reads up to 4 bytes of data from the serial flash.  The location of | 
 |  *	the read needs to be specified prior to calling this by issuing the | 
 |  *	appropriate commands to the serial flash. | 
 |  */ | 
 | static int | 
 | csio_hw_sf1_read(struct csio_hw *hw, uint32_t byte_cnt, int32_t cont, | 
 | 		 int32_t lock, uint32_t *valp) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (!byte_cnt || byte_cnt > 4) | 
 | 		return -EINVAL; | 
 | 	if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F) | 
 | 		return -EBUSY; | 
 |  | 
 | 	csio_wr_reg32(hw,  SF_LOCK_V(lock) | SF_CONT_V(cont) | | 
 | 		      BYTECNT_V(byte_cnt - 1), SF_OP_A); | 
 | 	ret = csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, | 
 | 				       10, NULL); | 
 | 	if (!ret) | 
 | 		*valp = csio_rd_reg32(hw, SF_DATA_A); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  *	csio_hw_sf1_write - write data to the serial flash | 
 |  *	@hw: the HW module | 
 |  *	@byte_cnt: number of bytes to write | 
 |  *	@cont: whether another operation will be chained | 
 |  *      @lock: whether to lock SF for PL access only | 
 |  *	@val: value to write | 
 |  * | 
 |  *	Writes up to 4 bytes of data to the serial flash.  The location of | 
 |  *	the write needs to be specified prior to calling this by issuing the | 
 |  *	appropriate commands to the serial flash. | 
 |  */ | 
 | static int | 
 | csio_hw_sf1_write(struct csio_hw *hw, uint32_t byte_cnt, uint32_t cont, | 
 | 		  int32_t lock, uint32_t val) | 
 | { | 
 | 	if (!byte_cnt || byte_cnt > 4) | 
 | 		return -EINVAL; | 
 | 	if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F) | 
 | 		return -EBUSY; | 
 |  | 
 | 	csio_wr_reg32(hw, val, SF_DATA_A); | 
 | 	csio_wr_reg32(hw, SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | | 
 | 		      OP_V(1) | SF_LOCK_V(lock), SF_OP_A); | 
 |  | 
 | 	return csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, | 
 | 					10, NULL); | 
 | } | 
 |  | 
 | /* | 
 |  *	csio_hw_flash_wait_op - wait for a flash operation to complete | 
 |  *	@hw: the HW module | 
 |  *	@attempts: max number of polls of the status register | 
 |  *	@delay: delay between polls in ms | 
 |  * | 
 |  *	Wait for a flash operation to complete by polling the status register. | 
 |  */ | 
 | static int | 
 | csio_hw_flash_wait_op(struct csio_hw *hw, int32_t attempts, int32_t delay) | 
 | { | 
 | 	int ret; | 
 | 	uint32_t status; | 
 |  | 
 | 	while (1) { | 
 | 		ret = csio_hw_sf1_write(hw, 1, 1, 1, SF_RD_STATUS); | 
 | 		if (ret != 0) | 
 | 			return ret; | 
 |  | 
 | 		ret = csio_hw_sf1_read(hw, 1, 0, 1, &status); | 
 | 		if (ret != 0) | 
 | 			return ret; | 
 |  | 
 | 		if (!(status & 1)) | 
 | 			return 0; | 
 | 		if (--attempts == 0) | 
 | 			return -EAGAIN; | 
 | 		if (delay) | 
 | 			msleep(delay); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  *	csio_hw_read_flash - read words from serial flash | 
 |  *	@hw: the HW module | 
 |  *	@addr: the start address for the read | 
 |  *	@nwords: how many 32-bit words to read | 
 |  *	@data: where to store the read data | 
 |  *	@byte_oriented: whether to store data as bytes or as words | 
 |  * | 
 |  *	Read the specified number of 32-bit words from the serial flash. | 
 |  *	If @byte_oriented is set the read data is stored as a byte array | 
 |  *	(i.e., big-endian), otherwise as 32-bit words in the platform's | 
 |  *	natural endianess. | 
 |  */ | 
 | static int | 
 | csio_hw_read_flash(struct csio_hw *hw, uint32_t addr, uint32_t nwords, | 
 | 		  uint32_t *data, int32_t byte_oriented) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (addr + nwords * sizeof(uint32_t) > hw->params.sf_size || (addr & 3)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	addr = swab32(addr) | SF_RD_DATA_FAST; | 
 |  | 
 | 	ret = csio_hw_sf1_write(hw, 4, 1, 0, addr); | 
 | 	if (ret != 0) | 
 | 		return ret; | 
 |  | 
 | 	ret = csio_hw_sf1_read(hw, 1, 1, 0, data); | 
 | 	if (ret != 0) | 
 | 		return ret; | 
 |  | 
 | 	for ( ; nwords; nwords--, data++) { | 
 | 		ret = csio_hw_sf1_read(hw, 4, nwords > 1, nwords == 1, data); | 
 | 		if (nwords == 1) | 
 | 			csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */ | 
 | 		if (ret) | 
 | 			return ret; | 
 | 		if (byte_oriented) | 
 | 			*data = (__force __u32) htonl(*data); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  *	csio_hw_write_flash - write up to a page of data to the serial flash | 
 |  *	@hw: the hw | 
 |  *	@addr: the start address to write | 
 |  *	@n: length of data to write in bytes | 
 |  *	@data: the data to write | 
 |  * | 
 |  *	Writes up to a page of data (256 bytes) to the serial flash starting | 
 |  *	at the given address.  All the data must be written to the same page. | 
 |  */ | 
 | static int | 
 | csio_hw_write_flash(struct csio_hw *hw, uint32_t addr, | 
 | 		    uint32_t n, const uint8_t *data) | 
 | { | 
 | 	int ret = -EINVAL; | 
 | 	uint32_t buf[64]; | 
 | 	uint32_t i, c, left, val, offset = addr & 0xff; | 
 |  | 
 | 	if (addr >= hw->params.sf_size || offset + n > SF_PAGE_SIZE) | 
 | 		return -EINVAL; | 
 |  | 
 | 	val = swab32(addr) | SF_PROG_PAGE; | 
 |  | 
 | 	ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE); | 
 | 	if (ret != 0) | 
 | 		goto unlock; | 
 |  | 
 | 	ret = csio_hw_sf1_write(hw, 4, 1, 1, val); | 
 | 	if (ret != 0) | 
 | 		goto unlock; | 
 |  | 
 | 	for (left = n; left; left -= c) { | 
 | 		c = min(left, 4U); | 
 | 		for (val = 0, i = 0; i < c; ++i) | 
 | 			val = (val << 8) + *data++; | 
 |  | 
 | 		ret = csio_hw_sf1_write(hw, c, c != left, 1, val); | 
 | 		if (ret) | 
 | 			goto unlock; | 
 | 	} | 
 | 	ret = csio_hw_flash_wait_op(hw, 8, 1); | 
 | 	if (ret) | 
 | 		goto unlock; | 
 |  | 
 | 	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */ | 
 |  | 
 | 	/* Read the page to verify the write succeeded */ | 
 | 	ret = csio_hw_read_flash(hw, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (memcmp(data - n, (uint8_t *)buf + offset, n)) { | 
 | 		csio_err(hw, | 
 | 			 "failed to correctly write the flash page at %#x\n", | 
 | 			 addr); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | unlock: | 
 | 	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */ | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  *	csio_hw_flash_erase_sectors - erase a range of flash sectors | 
 |  *	@hw: the HW module | 
 |  *	@start: the first sector to erase | 
 |  *	@end: the last sector to erase | 
 |  * | 
 |  *	Erases the sectors in the given inclusive range. | 
 |  */ | 
 | static int | 
 | csio_hw_flash_erase_sectors(struct csio_hw *hw, int32_t start, int32_t end) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	while (start <= end) { | 
 |  | 
 | 		ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE); | 
 | 		if (ret != 0) | 
 | 			goto out; | 
 |  | 
 | 		ret = csio_hw_sf1_write(hw, 4, 0, 1, | 
 | 					SF_ERASE_SECTOR | (start << 8)); | 
 | 		if (ret != 0) | 
 | 			goto out; | 
 |  | 
 | 		ret = csio_hw_flash_wait_op(hw, 14, 500); | 
 | 		if (ret != 0) | 
 | 			goto out; | 
 |  | 
 | 		start++; | 
 | 	} | 
 | out: | 
 | 	if (ret) | 
 | 		csio_err(hw, "erase of flash sector %d failed, error %d\n", | 
 | 			 start, ret); | 
 | 	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | csio_hw_print_fw_version(struct csio_hw *hw, char *str) | 
 | { | 
 | 	csio_info(hw, "%s: %u.%u.%u.%u\n", str, | 
 | 		    FW_HDR_FW_VER_MAJOR_G(hw->fwrev), | 
 | 		    FW_HDR_FW_VER_MINOR_G(hw->fwrev), | 
 | 		    FW_HDR_FW_VER_MICRO_G(hw->fwrev), | 
 | 		    FW_HDR_FW_VER_BUILD_G(hw->fwrev)); | 
 | } | 
 |  | 
 | /* | 
 |  * csio_hw_get_fw_version - read the firmware version | 
 |  * @hw: HW module | 
 |  * @vers: where to place the version | 
 |  * | 
 |  * Reads the FW version from flash. | 
 |  */ | 
 | static int | 
 | csio_hw_get_fw_version(struct csio_hw *hw, uint32_t *vers) | 
 | { | 
 | 	return csio_hw_read_flash(hw, FLASH_FW_START + | 
 | 				  offsetof(struct fw_hdr, fw_ver), 1, | 
 | 				  vers, 0); | 
 | } | 
 |  | 
 | /* | 
 |  *	csio_hw_get_tp_version - read the TP microcode version | 
 |  *	@hw: HW module | 
 |  *	@vers: where to place the version | 
 |  * | 
 |  *	Reads the TP microcode version from flash. | 
 |  */ | 
 | static int | 
 | csio_hw_get_tp_version(struct csio_hw *hw, u32 *vers) | 
 | { | 
 | 	return csio_hw_read_flash(hw, FLASH_FW_START + | 
 | 			offsetof(struct fw_hdr, tp_microcode_ver), 1, | 
 | 			vers, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * csio_hw_fw_dload - download firmware. | 
 |  * @hw: HW module | 
 |  * @fw_data: firmware image to write. | 
 |  * @size: image size | 
 |  * | 
 |  * Write the supplied firmware image to the card's serial flash. | 
 |  */ | 
 | static int | 
 | csio_hw_fw_dload(struct csio_hw *hw, uint8_t *fw_data, uint32_t size) | 
 | { | 
 | 	uint32_t csum; | 
 | 	int32_t addr; | 
 | 	int ret; | 
 | 	uint32_t i; | 
 | 	uint8_t first_page[SF_PAGE_SIZE]; | 
 | 	const __be32 *p = (const __be32 *)fw_data; | 
 | 	struct fw_hdr *hdr = (struct fw_hdr *)fw_data; | 
 | 	uint32_t sf_sec_size; | 
 |  | 
 | 	if ((!hw->params.sf_size) || (!hw->params.sf_nsec)) { | 
 | 		csio_err(hw, "Serial Flash data invalid\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (!size) { | 
 | 		csio_err(hw, "FW image has no data\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (size & 511) { | 
 | 		csio_err(hw, "FW image size not multiple of 512 bytes\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (ntohs(hdr->len512) * 512 != size) { | 
 | 		csio_err(hw, "FW image size differs from size in FW header\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (size > FLASH_FW_MAX_SIZE) { | 
 | 		csio_err(hw, "FW image too large, max is %u bytes\n", | 
 | 			    FLASH_FW_MAX_SIZE); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	for (csum = 0, i = 0; i < size / sizeof(csum); i++) | 
 | 		csum += ntohl(p[i]); | 
 |  | 
 | 	if (csum != 0xffffffff) { | 
 | 		csio_err(hw, "corrupted firmware image, checksum %#x\n", csum); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	sf_sec_size = hw->params.sf_size / hw->params.sf_nsec; | 
 | 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */ | 
 |  | 
 | 	csio_dbg(hw, "Erasing sectors... start:%d end:%d\n", | 
 | 			  FLASH_FW_START_SEC, FLASH_FW_START_SEC + i - 1); | 
 |  | 
 | 	ret = csio_hw_flash_erase_sectors(hw, FLASH_FW_START_SEC, | 
 | 					  FLASH_FW_START_SEC + i - 1); | 
 | 	if (ret) { | 
 | 		csio_err(hw, "Flash Erase failed\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We write the correct version at the end so the driver can see a bad | 
 | 	 * version if the FW write fails.  Start by writing a copy of the | 
 | 	 * first page with a bad version. | 
 | 	 */ | 
 | 	memcpy(first_page, fw_data, SF_PAGE_SIZE); | 
 | 	((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff); | 
 | 	ret = csio_hw_write_flash(hw, FLASH_FW_START, SF_PAGE_SIZE, first_page); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	csio_dbg(hw, "Writing Flash .. start:%d end:%d\n", | 
 | 		    FW_IMG_START, FW_IMG_START + size); | 
 |  | 
 | 	addr = FLASH_FW_START; | 
 | 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { | 
 | 		addr += SF_PAGE_SIZE; | 
 | 		fw_data += SF_PAGE_SIZE; | 
 | 		ret = csio_hw_write_flash(hw, addr, SF_PAGE_SIZE, fw_data); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	ret = csio_hw_write_flash(hw, | 
 | 				  FLASH_FW_START + | 
 | 					offsetof(struct fw_hdr, fw_ver), | 
 | 				  sizeof(hdr->fw_ver), | 
 | 				  (const uint8_t *)&hdr->fw_ver); | 
 |  | 
 | out: | 
 | 	if (ret) | 
 | 		csio_err(hw, "firmware download failed, error %d\n", ret); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int | 
 | csio_hw_get_flash_params(struct csio_hw *hw) | 
 | { | 
 | 	/* Table for non-Numonix supported flash parts.  Numonix parts are left | 
 | 	 * to the preexisting code.  All flash parts have 64KB sectors. | 
 | 	 */ | 
 | 	static struct flash_desc { | 
 | 		u32 vendor_and_model_id; | 
 | 		u32 size_mb; | 
 | 	} supported_flash[] = { | 
 | 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */ | 
 | 	}; | 
 |  | 
 | 	u32 part, manufacturer; | 
 | 	u32 density, size = 0; | 
 | 	u32 flashid = 0; | 
 | 	int ret; | 
 |  | 
 | 	ret = csio_hw_sf1_write(hw, 1, 1, 0, SF_RD_ID); | 
 | 	if (!ret) | 
 | 		ret = csio_hw_sf1_read(hw, 3, 0, 1, &flashid); | 
 | 	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */ | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* Check to see if it's one of our non-standard supported Flash parts. | 
 | 	 */ | 
 | 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++) | 
 | 		if (supported_flash[part].vendor_and_model_id == flashid) { | 
 | 			hw->params.sf_size = supported_flash[part].size_mb; | 
 | 			hw->params.sf_nsec = | 
 | 				hw->params.sf_size / SF_SEC_SIZE; | 
 | 			goto found; | 
 | 		} | 
 |  | 
 | 	/* Decode Flash part size.  The code below looks repetitive with | 
 | 	 * common encodings, but that's not guaranteed in the JEDEC | 
 | 	 * specification for the Read JEDEC ID command.  The only thing that | 
 | 	 * we're guaranteed by the JEDEC specification is where the | 
 | 	 * Manufacturer ID is in the returned result.  After that each | 
 | 	 * Manufacturer ~could~ encode things completely differently. | 
 | 	 * Note, all Flash parts must have 64KB sectors. | 
 | 	 */ | 
 | 	manufacturer = flashid & 0xff; | 
 | 	switch (manufacturer) { | 
 | 	case 0x20: { /* Micron/Numonix */ | 
 | 		/* This Density -> Size decoding table is taken from Micron | 
 | 		 * Data Sheets. | 
 | 		 */ | 
 | 		density = (flashid >> 16) & 0xff; | 
 | 		switch (density) { | 
 | 		case 0x14 ... 0x19: /* 1MB - 32MB */ | 
 | 			size = 1 << density; | 
 | 			break; | 
 | 		case 0x20: /* 64MB */ | 
 | 			size = 1 << 26; | 
 | 			break; | 
 | 		case 0x21: /* 128MB */ | 
 | 			size = 1 << 27; | 
 | 			break; | 
 | 		case 0x22: /* 256MB */ | 
 | 			size = 1 << 28; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 | 	case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */ | 
 | 		/* This Density -> Size decoding table is taken from ISSI | 
 | 		 * Data Sheets. | 
 | 		 */ | 
 | 		density = (flashid >> 16) & 0xff; | 
 | 		switch (density) { | 
 | 		case 0x16: /* 32 MB */ | 
 | 			size = 1 << 25; | 
 | 			break; | 
 | 		case 0x17: /* 64MB */ | 
 | 			size = 1 << 26; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 | 	case 0xc2: /* Macronix */ | 
 | 	case 0xef: /* Winbond */ { | 
 | 		/* This Density -> Size decoding table is taken from | 
 | 		 * Macronix and Winbond Data Sheets. | 
 | 		 */ | 
 | 		density = (flashid >> 16) & 0xff; | 
 | 		switch (density) { | 
 | 		case 0x17: /* 8MB */ | 
 | 		case 0x18: /* 16MB */ | 
 | 			size = 1 << density; | 
 | 		} | 
 | 	} | 
 | 	} | 
 |  | 
 | 	/* If we didn't recognize the FLASH part, that's no real issue: the | 
 | 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_ | 
 | 	 * use a FLASH part which is at least 4MB in size and has 64KB | 
 | 	 * sectors.  The unrecognized FLASH part is likely to be much larger | 
 | 	 * than 4MB, but that's all we really need. | 
 | 	 */ | 
 | 	if (size == 0) { | 
 | 		csio_warn(hw, "Unknown Flash Part, ID = %#x, assuming 4MB\n", | 
 | 			  flashid); | 
 | 		size = 1 << 22; | 
 | 	} | 
 |  | 
 | 	/* Store decoded Flash size */ | 
 | 	hw->params.sf_size = size; | 
 | 	hw->params.sf_nsec = size / SF_SEC_SIZE; | 
 |  | 
 | found: | 
 | 	if (hw->params.sf_size < FLASH_MIN_SIZE) | 
 | 		csio_warn(hw, "WARNING: Flash Part ID %#x, size %#x < %#x\n", | 
 | 			  flashid, hw->params.sf_size, FLASH_MIN_SIZE); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /*****************************************************************************/ | 
 | /* HW State machine assists                                                  */ | 
 | /*****************************************************************************/ | 
 |  | 
 | static int | 
 | csio_hw_dev_ready(struct csio_hw *hw) | 
 | { | 
 | 	uint32_t reg; | 
 | 	int cnt = 6; | 
 | 	int src_pf; | 
 |  | 
 | 	while (((reg = csio_rd_reg32(hw, PL_WHOAMI_A)) == 0xFFFFFFFF) && | 
 | 	       (--cnt != 0)) | 
 | 		mdelay(100); | 
 |  | 
 | 	if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK)) | 
 | 		src_pf = SOURCEPF_G(reg); | 
 | 	else | 
 | 		src_pf = T6_SOURCEPF_G(reg); | 
 |  | 
 | 	if ((cnt == 0) && (((int32_t)(src_pf) < 0) || | 
 | 			   (src_pf >= CSIO_MAX_PFN))) { | 
 | 		csio_err(hw, "PL_WHOAMI returned 0x%x, cnt:%d\n", reg, cnt); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	hw->pfn = src_pf; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * csio_do_hello - Perform the HELLO FW Mailbox command and process response. | 
 |  * @hw: HW module | 
 |  * @state: Device state | 
 |  * | 
 |  * FW_HELLO_CMD has to be polled for completion. | 
 |  */ | 
 | static int | 
 | csio_do_hello(struct csio_hw *hw, enum csio_dev_state *state) | 
 | { | 
 | 	struct csio_mb	*mbp; | 
 | 	int	rv = 0; | 
 | 	enum fw_retval retval; | 
 | 	uint8_t mpfn; | 
 | 	char state_str[16]; | 
 | 	int retries = FW_CMD_HELLO_RETRIES; | 
 |  | 
 | 	memset(state_str, 0, sizeof(state_str)); | 
 |  | 
 | 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); | 
 | 	if (!mbp) { | 
 | 		rv = -ENOMEM; | 
 | 		CSIO_INC_STATS(hw, n_err_nomem); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | retry: | 
 | 	csio_mb_hello(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, | 
 | 		      hw->pfn, CSIO_MASTER_MAY, NULL); | 
 |  | 
 | 	rv = csio_mb_issue(hw, mbp); | 
 | 	if (rv) { | 
 | 		csio_err(hw, "failed to issue HELLO cmd. ret:%d.\n", rv); | 
 | 		goto out_free_mb; | 
 | 	} | 
 |  | 
 | 	csio_mb_process_hello_rsp(hw, mbp, &retval, state, &mpfn); | 
 | 	if (retval != FW_SUCCESS) { | 
 | 		csio_err(hw, "HELLO cmd failed with ret: %d\n", retval); | 
 | 		rv = -EINVAL; | 
 | 		goto out_free_mb; | 
 | 	} | 
 |  | 
 | 	/* Firmware has designated us to be master */ | 
 | 	if (hw->pfn == mpfn) { | 
 | 		hw->flags |= CSIO_HWF_MASTER; | 
 | 	} else if (*state == CSIO_DEV_STATE_UNINIT) { | 
 | 		/* | 
 | 		 * If we're not the Master PF then we need to wait around for | 
 | 		 * the Master PF Driver to finish setting up the adapter. | 
 | 		 * | 
 | 		 * Note that we also do this wait if we're a non-Master-capable | 
 | 		 * PF and there is no current Master PF; a Master PF may show up | 
 | 		 * momentarily and we wouldn't want to fail pointlessly.  (This | 
 | 		 * can happen when an OS loads lots of different drivers rapidly | 
 | 		 * at the same time). In this case, the Master PF returned by | 
 | 		 * the firmware will be PCIE_FW_MASTER_MASK so the test below | 
 | 		 * will work ... | 
 | 		 */ | 
 |  | 
 | 		int waiting = FW_CMD_HELLO_TIMEOUT; | 
 |  | 
 | 		/* | 
 | 		 * Wait for the firmware to either indicate an error or | 
 | 		 * initialized state.  If we see either of these we bail out | 
 | 		 * and report the issue to the caller.  If we exhaust the | 
 | 		 * "hello timeout" and we haven't exhausted our retries, try | 
 | 		 * again.  Otherwise bail with a timeout error. | 
 | 		 */ | 
 | 		for (;;) { | 
 | 			uint32_t pcie_fw; | 
 |  | 
 | 			spin_unlock_irq(&hw->lock); | 
 | 			msleep(50); | 
 | 			spin_lock_irq(&hw->lock); | 
 | 			waiting -= 50; | 
 |  | 
 | 			/* | 
 | 			 * If neither Error nor Initialized are indicated | 
 | 			 * by the firmware keep waiting till we exhaust our | 
 | 			 * timeout ... and then retry if we haven't exhausted | 
 | 			 * our retries ... | 
 | 			 */ | 
 | 			pcie_fw = csio_rd_reg32(hw, PCIE_FW_A); | 
 | 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { | 
 | 				if (waiting <= 0) { | 
 | 					if (retries-- > 0) | 
 | 						goto retry; | 
 |  | 
 | 					rv = -ETIMEDOUT; | 
 | 					break; | 
 | 				} | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * We either have an Error or Initialized condition | 
 | 			 * report errors preferentially. | 
 | 			 */ | 
 | 			if (state) { | 
 | 				if (pcie_fw & PCIE_FW_ERR_F) { | 
 | 					*state = CSIO_DEV_STATE_ERR; | 
 | 					rv = -ETIMEDOUT; | 
 | 				} else if (pcie_fw & PCIE_FW_INIT_F) | 
 | 					*state = CSIO_DEV_STATE_INIT; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * If we arrived before a Master PF was selected and | 
 | 			 * there's not a valid Master PF, grab its identity | 
 | 			 * for our caller. | 
 | 			 */ | 
 | 			if (mpfn == PCIE_FW_MASTER_M && | 
 | 			    (pcie_fw & PCIE_FW_MASTER_VLD_F)) | 
 | 				mpfn = PCIE_FW_MASTER_G(pcie_fw); | 
 | 			break; | 
 | 		} | 
 | 		hw->flags &= ~CSIO_HWF_MASTER; | 
 | 	} | 
 |  | 
 | 	switch (*state) { | 
 | 	case CSIO_DEV_STATE_UNINIT: | 
 | 		strcpy(state_str, "Initializing"); | 
 | 		break; | 
 | 	case CSIO_DEV_STATE_INIT: | 
 | 		strcpy(state_str, "Initialized"); | 
 | 		break; | 
 | 	case CSIO_DEV_STATE_ERR: | 
 | 		strcpy(state_str, "Error"); | 
 | 		break; | 
 | 	default: | 
 | 		strcpy(state_str, "Unknown"); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (hw->pfn == mpfn) | 
 | 		csio_info(hw, "PF: %d, Coming up as MASTER, HW state: %s\n", | 
 | 			hw->pfn, state_str); | 
 | 	else | 
 | 		csio_info(hw, | 
 | 		    "PF: %d, Coming up as SLAVE, Master PF: %d, HW state: %s\n", | 
 | 		    hw->pfn, mpfn, state_str); | 
 |  | 
 | out_free_mb: | 
 | 	mempool_free(mbp, hw->mb_mempool); | 
 | out: | 
 | 	return rv; | 
 | } | 
 |  | 
 | /* | 
 |  * csio_do_bye - Perform the BYE FW Mailbox command and process response. | 
 |  * @hw: HW module | 
 |  * | 
 |  */ | 
 | static int | 
 | csio_do_bye(struct csio_hw *hw) | 
 | { | 
 | 	struct csio_mb	*mbp; | 
 | 	enum fw_retval retval; | 
 |  | 
 | 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); | 
 | 	if (!mbp) { | 
 | 		CSIO_INC_STATS(hw, n_err_nomem); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	csio_mb_bye(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL); | 
 |  | 
 | 	if (csio_mb_issue(hw, mbp)) { | 
 | 		csio_err(hw, "Issue of BYE command failed\n"); | 
 | 		mempool_free(mbp, hw->mb_mempool); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	retval = csio_mb_fw_retval(mbp); | 
 | 	if (retval != FW_SUCCESS) { | 
 | 		mempool_free(mbp, hw->mb_mempool); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	mempool_free(mbp, hw->mb_mempool); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * csio_do_reset- Perform the device reset. | 
 |  * @hw: HW module | 
 |  * @fw_rst: FW reset | 
 |  * | 
 |  * If fw_rst is set, issues FW reset mbox cmd otherwise | 
 |  * does PIO reset. | 
 |  * Performs reset of the function. | 
 |  */ | 
 | static int | 
 | csio_do_reset(struct csio_hw *hw, bool fw_rst) | 
 | { | 
 | 	struct csio_mb	*mbp; | 
 | 	enum fw_retval retval; | 
 |  | 
 | 	if (!fw_rst) { | 
 | 		/* PIO reset */ | 
 | 		csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A); | 
 | 		mdelay(2000); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); | 
 | 	if (!mbp) { | 
 | 		CSIO_INC_STATS(hw, n_err_nomem); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO, | 
 | 		      PIORSTMODE_F | PIORST_F, 0, NULL); | 
 |  | 
 | 	if (csio_mb_issue(hw, mbp)) { | 
 | 		csio_err(hw, "Issue of RESET command failed.n"); | 
 | 		mempool_free(mbp, hw->mb_mempool); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	retval = csio_mb_fw_retval(mbp); | 
 | 	if (retval != FW_SUCCESS) { | 
 | 		csio_err(hw, "RESET cmd failed with ret:0x%x.\n", retval); | 
 | 		mempool_free(mbp, hw->mb_mempool); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	mempool_free(mbp, hw->mb_mempool); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | csio_hw_validate_caps(struct csio_hw *hw, struct csio_mb *mbp) | 
 | { | 
 | 	struct fw_caps_config_cmd *rsp = (struct fw_caps_config_cmd *)mbp->mb; | 
 | 	uint16_t caps; | 
 |  | 
 | 	caps = ntohs(rsp->fcoecaps); | 
 |  | 
 | 	if (!(caps & FW_CAPS_CONFIG_FCOE_INITIATOR)) { | 
 | 		csio_err(hw, "No FCoE Initiator capability in the firmware.\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (!(caps & FW_CAPS_CONFIG_FCOE_CTRL_OFLD)) { | 
 | 		csio_err(hw, "No FCoE Control Offload capability\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  *	csio_hw_fw_halt - issue a reset/halt to FW and put uP into RESET | 
 |  *	@hw: the HW module | 
 |  *	@mbox: mailbox to use for the FW RESET command (if desired) | 
 |  *	@force: force uP into RESET even if FW RESET command fails | 
 |  * | 
 |  *	Issues a RESET command to firmware (if desired) with a HALT indication | 
 |  *	and then puts the microprocessor into RESET state.  The RESET command | 
 |  *	will only be issued if a legitimate mailbox is provided (mbox <= | 
 |  *	PCIE_FW_MASTER_MASK). | 
 |  * | 
 |  *	This is generally used in order for the host to safely manipulate the | 
 |  *	adapter without fear of conflicting with whatever the firmware might | 
 |  *	be doing.  The only way out of this state is to RESTART the firmware | 
 |  *	... | 
 |  */ | 
 | static int | 
 | csio_hw_fw_halt(struct csio_hw *hw, uint32_t mbox, int32_t force) | 
 | { | 
 | 	enum fw_retval retval = 0; | 
 |  | 
 | 	/* | 
 | 	 * If a legitimate mailbox is provided, issue a RESET command | 
 | 	 * with a HALT indication. | 
 | 	 */ | 
 | 	if (mbox <= PCIE_FW_MASTER_M) { | 
 | 		struct csio_mb	*mbp; | 
 |  | 
 | 		mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); | 
 | 		if (!mbp) { | 
 | 			CSIO_INC_STATS(hw, n_err_nomem); | 
 | 			return -ENOMEM; | 
 | 		} | 
 |  | 
 | 		csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO, | 
 | 			      PIORSTMODE_F | PIORST_F, FW_RESET_CMD_HALT_F, | 
 | 			      NULL); | 
 |  | 
 | 		if (csio_mb_issue(hw, mbp)) { | 
 | 			csio_err(hw, "Issue of RESET command failed!\n"); | 
 | 			mempool_free(mbp, hw->mb_mempool); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		retval = csio_mb_fw_retval(mbp); | 
 | 		mempool_free(mbp, hw->mb_mempool); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Normally we won't complete the operation if the firmware RESET | 
 | 	 * command fails but if our caller insists we'll go ahead and put the | 
 | 	 * uP into RESET.  This can be useful if the firmware is hung or even | 
 | 	 * missing ...  We'll have to take the risk of putting the uP into | 
 | 	 * RESET without the cooperation of firmware in that case. | 
 | 	 * | 
 | 	 * We also force the firmware's HALT flag to be on in case we bypassed | 
 | 	 * the firmware RESET command above or we're dealing with old firmware | 
 | 	 * which doesn't have the HALT capability.  This will serve as a flag | 
 | 	 * for the incoming firmware to know that it's coming out of a HALT | 
 | 	 * rather than a RESET ... if it's new enough to understand that ... | 
 | 	 */ | 
 | 	if (retval == 0 || force) { | 
 | 		csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); | 
 | 		csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F, | 
 | 				   PCIE_FW_HALT_F); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * And we always return the result of the firmware RESET command | 
 | 	 * even when we force the uP into RESET ... | 
 | 	 */ | 
 | 	return retval ? -EINVAL : 0; | 
 | } | 
 |  | 
 | /* | 
 |  *	csio_hw_fw_restart - restart the firmware by taking the uP out of RESET | 
 |  *	@hw: the HW module | 
 |  *	@reset: if we want to do a RESET to restart things | 
 |  * | 
 |  *	Restart firmware previously halted by csio_hw_fw_halt().  On successful | 
 |  *	return the previous PF Master remains as the new PF Master and there | 
 |  *	is no need to issue a new HELLO command, etc. | 
 |  * | 
 |  *	We do this in two ways: | 
 |  * | 
 |  *	 1. If we're dealing with newer firmware we'll simply want to take | 
 |  *	    the chip's microprocessor out of RESET.  This will cause the | 
 |  *	    firmware to start up from its start vector.  And then we'll loop | 
 |  *	    until the firmware indicates it's started again (PCIE_FW.HALT | 
 |  *	    reset to 0) or we timeout. | 
 |  * | 
 |  *	 2. If we're dealing with older firmware then we'll need to RESET | 
 |  *	    the chip since older firmware won't recognize the PCIE_FW.HALT | 
 |  *	    flag and automatically RESET itself on startup. | 
 |  */ | 
 | static int | 
 | csio_hw_fw_restart(struct csio_hw *hw, uint32_t mbox, int32_t reset) | 
 | { | 
 | 	if (reset) { | 
 | 		/* | 
 | 		 * Since we're directing the RESET instead of the firmware | 
 | 		 * doing it automatically, we need to clear the PCIE_FW.HALT | 
 | 		 * bit. | 
 | 		 */ | 
 | 		csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F, 0); | 
 |  | 
 | 		/* | 
 | 		 * If we've been given a valid mailbox, first try to get the | 
 | 		 * firmware to do the RESET.  If that works, great and we can | 
 | 		 * return success.  Otherwise, if we haven't been given a | 
 | 		 * valid mailbox or the RESET command failed, fall back to | 
 | 		 * hitting the chip with a hammer. | 
 | 		 */ | 
 | 		if (mbox <= PCIE_FW_MASTER_M) { | 
 | 			csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0); | 
 | 			msleep(100); | 
 | 			if (csio_do_reset(hw, true) == 0) | 
 | 				return 0; | 
 | 		} | 
 |  | 
 | 		csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A); | 
 | 		msleep(2000); | 
 | 	} else { | 
 | 		int ms; | 
 |  | 
 | 		csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0); | 
 | 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { | 
 | 			if (!(csio_rd_reg32(hw, PCIE_FW_A) & PCIE_FW_HALT_F)) | 
 | 				return 0; | 
 | 			msleep(100); | 
 | 			ms += 100; | 
 | 		} | 
 | 		return -ETIMEDOUT; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  *	csio_hw_fw_upgrade - perform all of the steps necessary to upgrade FW | 
 |  *	@hw: the HW module | 
 |  *	@mbox: mailbox to use for the FW RESET command (if desired) | 
 |  *	@fw_data: the firmware image to write | 
 |  *	@size: image size | 
 |  *	@force: force upgrade even if firmware doesn't cooperate | 
 |  * | 
 |  *	Perform all of the steps necessary for upgrading an adapter's | 
 |  *	firmware image.  Normally this requires the cooperation of the | 
 |  *	existing firmware in order to halt all existing activities | 
 |  *	but if an invalid mailbox token is passed in we skip that step | 
 |  *	(though we'll still put the adapter microprocessor into RESET in | 
 |  *	that case). | 
 |  * | 
 |  *	On successful return the new firmware will have been loaded and | 
 |  *	the adapter will have been fully RESET losing all previous setup | 
 |  *	state.  On unsuccessful return the adapter may be completely hosed ... | 
 |  *	positive errno indicates that the adapter is ~probably~ intact, a | 
 |  *	negative errno indicates that things are looking bad ... | 
 |  */ | 
 | static int | 
 | csio_hw_fw_upgrade(struct csio_hw *hw, uint32_t mbox, | 
 | 		  const u8 *fw_data, uint32_t size, int32_t force) | 
 | { | 
 | 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; | 
 | 	int reset, ret; | 
 |  | 
 | 	ret = csio_hw_fw_halt(hw, mbox, force); | 
 | 	if (ret != 0 && !force) | 
 | 		return ret; | 
 |  | 
 | 	ret = csio_hw_fw_dload(hw, (uint8_t *) fw_data, size); | 
 | 	if (ret != 0) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * Older versions of the firmware don't understand the new | 
 | 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they | 
 | 	 * restart.  So for newly loaded older firmware we'll have to do the | 
 | 	 * RESET for it so it starts up on a clean slate.  We can tell if | 
 | 	 * the newly loaded firmware will handle this right by checking | 
 | 	 * its header flags to see if it advertises the capability. | 
 | 	 */ | 
 | 	reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); | 
 | 	return csio_hw_fw_restart(hw, mbox, reset); | 
 | } | 
 |  | 
 | /* | 
 |  * csio_get_device_params - Get device parameters. | 
 |  * @hw: HW module | 
 |  * | 
 |  */ | 
 | static int | 
 | csio_get_device_params(struct csio_hw *hw) | 
 | { | 
 | 	struct csio_wrm *wrm	= csio_hw_to_wrm(hw); | 
 | 	struct csio_mb	*mbp; | 
 | 	enum fw_retval retval; | 
 | 	u32 param[6]; | 
 | 	int i, j = 0; | 
 |  | 
 | 	/* Initialize portids to -1 */ | 
 | 	for (i = 0; i < CSIO_MAX_PPORTS; i++) | 
 | 		hw->pport[i].portid = -1; | 
 |  | 
 | 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); | 
 | 	if (!mbp) { | 
 | 		CSIO_INC_STATS(hw, n_err_nomem); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* Get port vec information. */ | 
 | 	param[0] = FW_PARAM_DEV(PORTVEC); | 
 |  | 
 | 	/* Get Core clock. */ | 
 | 	param[1] = FW_PARAM_DEV(CCLK); | 
 |  | 
 | 	/* Get EQ id start and end. */ | 
 | 	param[2] = FW_PARAM_PFVF(EQ_START); | 
 | 	param[3] = FW_PARAM_PFVF(EQ_END); | 
 |  | 
 | 	/* Get IQ id start and end. */ | 
 | 	param[4] = FW_PARAM_PFVF(IQFLINT_START); | 
 | 	param[5] = FW_PARAM_PFVF(IQFLINT_END); | 
 |  | 
 | 	csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0, | 
 | 		       ARRAY_SIZE(param), param, NULL, false, NULL); | 
 | 	if (csio_mb_issue(hw, mbp)) { | 
 | 		csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n"); | 
 | 		mempool_free(mbp, hw->mb_mempool); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	csio_mb_process_read_params_rsp(hw, mbp, &retval, | 
 | 			ARRAY_SIZE(param), param); | 
 | 	if (retval != FW_SUCCESS) { | 
 | 		csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n", | 
 | 				retval); | 
 | 		mempool_free(mbp, hw->mb_mempool); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* cache the information. */ | 
 | 	hw->port_vec = param[0]; | 
 | 	hw->vpd.cclk = param[1]; | 
 | 	wrm->fw_eq_start = param[2]; | 
 | 	wrm->fw_iq_start = param[4]; | 
 |  | 
 | 	/* Using FW configured max iqs & eqs */ | 
 | 	if ((hw->flags & CSIO_HWF_USING_SOFT_PARAMS) || | 
 | 		!csio_is_hw_master(hw)) { | 
 | 		hw->cfg_niq = param[5] - param[4] + 1; | 
 | 		hw->cfg_neq = param[3] - param[2] + 1; | 
 | 		csio_dbg(hw, "Using fwconfig max niqs %d neqs %d\n", | 
 | 			hw->cfg_niq, hw->cfg_neq); | 
 | 	} | 
 |  | 
 | 	hw->port_vec &= csio_port_mask; | 
 |  | 
 | 	hw->num_pports	= hweight32(hw->port_vec); | 
 |  | 
 | 	csio_dbg(hw, "Port vector: 0x%x, #ports: %d\n", | 
 | 		    hw->port_vec, hw->num_pports); | 
 |  | 
 | 	for (i = 0; i < hw->num_pports; i++) { | 
 | 		while ((hw->port_vec & (1 << j)) == 0) | 
 | 			j++; | 
 | 		hw->pport[i].portid = j++; | 
 | 		csio_dbg(hw, "Found Port:%d\n", hw->pport[i].portid); | 
 | 	} | 
 | 	mempool_free(mbp, hw->mb_mempool); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * csio_config_device_caps - Get and set device capabilities. | 
 |  * @hw: HW module | 
 |  * | 
 |  */ | 
 | static int | 
 | csio_config_device_caps(struct csio_hw *hw) | 
 | { | 
 | 	struct csio_mb	*mbp; | 
 | 	enum fw_retval retval; | 
 | 	int rv = -EINVAL; | 
 |  | 
 | 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); | 
 | 	if (!mbp) { | 
 | 		CSIO_INC_STATS(hw, n_err_nomem); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* Get device capabilities */ | 
 | 	csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, 0, 0, 0, 0, NULL); | 
 |  | 
 | 	if (csio_mb_issue(hw, mbp)) { | 
 | 		csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(r) failed!\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	retval = csio_mb_fw_retval(mbp); | 
 | 	if (retval != FW_SUCCESS) { | 
 | 		csio_err(hw, "FW_CAPS_CONFIG_CMD(r) returned %d!\n", retval); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Validate device capabilities */ | 
 | 	rv = csio_hw_validate_caps(hw, mbp); | 
 | 	if (rv != 0) | 
 | 		goto out; | 
 |  | 
 | 	/* Don't config device capabilities if already configured */ | 
 | 	if (hw->fw_state == CSIO_DEV_STATE_INIT) { | 
 | 		rv = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Write back desired device capabilities */ | 
 | 	csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, true, true, | 
 | 			    false, true, NULL); | 
 |  | 
 | 	if (csio_mb_issue(hw, mbp)) { | 
 | 		csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(w) failed!\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	retval = csio_mb_fw_retval(mbp); | 
 | 	if (retval != FW_SUCCESS) { | 
 | 		csio_err(hw, "FW_CAPS_CONFIG_CMD(w) returned %d!\n", retval); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	rv = 0; | 
 | out: | 
 | 	mempool_free(mbp, hw->mb_mempool); | 
 | 	return rv; | 
 | } | 
 |  | 
 | static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec) | 
 | { | 
 | 	enum cc_fec cc_fec = 0; | 
 |  | 
 | 	if (fw_fec & FW_PORT_CAP32_FEC_RS) | 
 | 		cc_fec |= FEC_RS; | 
 | 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) | 
 | 		cc_fec |= FEC_BASER_RS; | 
 |  | 
 | 	return cc_fec; | 
 | } | 
 |  | 
 | static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause) | 
 | { | 
 | 	fw_port_cap32_t fw_pause = 0; | 
 |  | 
 | 	if (cc_pause & PAUSE_RX) | 
 | 		fw_pause |= FW_PORT_CAP32_FC_RX; | 
 | 	if (cc_pause & PAUSE_TX) | 
 | 		fw_pause |= FW_PORT_CAP32_FC_TX; | 
 |  | 
 | 	return fw_pause; | 
 | } | 
 |  | 
 | static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec) | 
 | { | 
 | 	fw_port_cap32_t fw_fec = 0; | 
 |  | 
 | 	if (cc_fec & FEC_RS) | 
 | 		fw_fec |= FW_PORT_CAP32_FEC_RS; | 
 | 	if (cc_fec & FEC_BASER_RS) | 
 | 		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS; | 
 |  | 
 | 	return fw_fec; | 
 | } | 
 |  | 
 | /** | 
 |  * fwcap_to_fwspeed - return highest speed in Port Capabilities | 
 |  * @acaps: advertised Port Capabilities | 
 |  * | 
 |  * Get the highest speed for the port from the advertised Port | 
 |  * Capabilities. | 
 |  */ | 
 | fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps) | 
 | { | 
 | 	#define TEST_SPEED_RETURN(__caps_speed) \ | 
 | 		do { \ | 
 | 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \ | 
 | 				return FW_PORT_CAP32_SPEED_##__caps_speed; \ | 
 | 		} while (0) | 
 |  | 
 | 	TEST_SPEED_RETURN(400G); | 
 | 	TEST_SPEED_RETURN(200G); | 
 | 	TEST_SPEED_RETURN(100G); | 
 | 	TEST_SPEED_RETURN(50G); | 
 | 	TEST_SPEED_RETURN(40G); | 
 | 	TEST_SPEED_RETURN(25G); | 
 | 	TEST_SPEED_RETURN(10G); | 
 | 	TEST_SPEED_RETURN(1G); | 
 | 	TEST_SPEED_RETURN(100M); | 
 |  | 
 | 	#undef TEST_SPEED_RETURN | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits | 
 |  *      @caps16: a 16-bit Port Capabilities value | 
 |  * | 
 |  *      Returns the equivalent 32-bit Port Capabilities value. | 
 |  */ | 
 | fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16) | 
 | { | 
 | 	fw_port_cap32_t caps32 = 0; | 
 |  | 
 | 	#define CAP16_TO_CAP32(__cap) \ | 
 | 		do { \ | 
 | 			if (caps16 & FW_PORT_CAP_##__cap) \ | 
 | 				caps32 |= FW_PORT_CAP32_##__cap; \ | 
 | 		} while (0) | 
 |  | 
 | 	CAP16_TO_CAP32(SPEED_100M); | 
 | 	CAP16_TO_CAP32(SPEED_1G); | 
 | 	CAP16_TO_CAP32(SPEED_25G); | 
 | 	CAP16_TO_CAP32(SPEED_10G); | 
 | 	CAP16_TO_CAP32(SPEED_40G); | 
 | 	CAP16_TO_CAP32(SPEED_100G); | 
 | 	CAP16_TO_CAP32(FC_RX); | 
 | 	CAP16_TO_CAP32(FC_TX); | 
 | 	CAP16_TO_CAP32(ANEG); | 
 | 	CAP16_TO_CAP32(MDIAUTO); | 
 | 	CAP16_TO_CAP32(MDISTRAIGHT); | 
 | 	CAP16_TO_CAP32(FEC_RS); | 
 | 	CAP16_TO_CAP32(FEC_BASER_RS); | 
 | 	CAP16_TO_CAP32(802_3_PAUSE); | 
 | 	CAP16_TO_CAP32(802_3_ASM_DIR); | 
 |  | 
 | 	#undef CAP16_TO_CAP32 | 
 |  | 
 | 	return caps32; | 
 | } | 
 |  | 
 | /** | 
 |  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits | 
 |  *	@caps32: a 32-bit Port Capabilities value | 
 |  * | 
 |  *	Returns the equivalent 16-bit Port Capabilities value.  Note that | 
 |  *	not all 32-bit Port Capabilities can be represented in the 16-bit | 
 |  *	Port Capabilities and some fields/values may not make it. | 
 |  */ | 
 | fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32) | 
 | { | 
 | 	fw_port_cap16_t caps16 = 0; | 
 |  | 
 | 	#define CAP32_TO_CAP16(__cap) \ | 
 | 		do { \ | 
 | 			if (caps32 & FW_PORT_CAP32_##__cap) \ | 
 | 				caps16 |= FW_PORT_CAP_##__cap; \ | 
 | 		} while (0) | 
 |  | 
 | 	CAP32_TO_CAP16(SPEED_100M); | 
 | 	CAP32_TO_CAP16(SPEED_1G); | 
 | 	CAP32_TO_CAP16(SPEED_10G); | 
 | 	CAP32_TO_CAP16(SPEED_25G); | 
 | 	CAP32_TO_CAP16(SPEED_40G); | 
 | 	CAP32_TO_CAP16(SPEED_100G); | 
 | 	CAP32_TO_CAP16(FC_RX); | 
 | 	CAP32_TO_CAP16(FC_TX); | 
 | 	CAP32_TO_CAP16(802_3_PAUSE); | 
 | 	CAP32_TO_CAP16(802_3_ASM_DIR); | 
 | 	CAP32_TO_CAP16(ANEG); | 
 | 	CAP32_TO_CAP16(FORCE_PAUSE); | 
 | 	CAP32_TO_CAP16(MDIAUTO); | 
 | 	CAP32_TO_CAP16(MDISTRAIGHT); | 
 | 	CAP32_TO_CAP16(FEC_RS); | 
 | 	CAP32_TO_CAP16(FEC_BASER_RS); | 
 |  | 
 | 	#undef CAP32_TO_CAP16 | 
 |  | 
 | 	return caps16; | 
 | } | 
 |  | 
 | /** | 
 |  *      lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities | 
 |  *      @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value | 
 |  * | 
 |  *      Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new | 
 |  *      32-bit Port Capabilities value. | 
 |  */ | 
 | fw_port_cap32_t lstatus_to_fwcap(u32 lstatus) | 
 | { | 
 | 	fw_port_cap32_t linkattr = 0; | 
 |  | 
 | 	/* The format of the Link Status in the old | 
 | 	 * 16-bit Port Information message isn't the same as the | 
 | 	 * 16-bit Port Capabilities bitfield used everywhere else. | 
 | 	 */ | 
 | 	if (lstatus & FW_PORT_CMD_RXPAUSE_F) | 
 | 		linkattr |= FW_PORT_CAP32_FC_RX; | 
 | 	if (lstatus & FW_PORT_CMD_TXPAUSE_F) | 
 | 		linkattr |= FW_PORT_CAP32_FC_TX; | 
 | 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) | 
 | 		linkattr |= FW_PORT_CAP32_SPEED_100M; | 
 | 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) | 
 | 		linkattr |= FW_PORT_CAP32_SPEED_1G; | 
 | 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) | 
 | 		linkattr |= FW_PORT_CAP32_SPEED_10G; | 
 | 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) | 
 | 		linkattr |= FW_PORT_CAP32_SPEED_25G; | 
 | 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) | 
 | 		linkattr |= FW_PORT_CAP32_SPEED_40G; | 
 | 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) | 
 | 		linkattr |= FW_PORT_CAP32_SPEED_100G; | 
 |  | 
 | 	return linkattr; | 
 | } | 
 |  | 
 | /** | 
 |  *      csio_init_link_config - initialize a link's SW state | 
 |  *      @lc: pointer to structure holding the link state | 
 |  *      @pcaps: link Port Capabilities | 
 |  *      @acaps: link current Advertised Port Capabilities | 
 |  * | 
 |  *      Initializes the SW state maintained for each link, including the link's | 
 |  *      capabilities and default speed/flow-control/autonegotiation settings. | 
 |  */ | 
 | static void csio_init_link_config(struct link_config *lc, fw_port_cap32_t pcaps, | 
 | 				  fw_port_cap32_t acaps) | 
 | { | 
 | 	lc->pcaps = pcaps; | 
 | 	lc->def_acaps = acaps; | 
 | 	lc->lpacaps = 0; | 
 | 	lc->speed_caps = 0; | 
 | 	lc->speed = 0; | 
 | 	lc->requested_fc = PAUSE_RX | PAUSE_TX; | 
 | 	lc->fc = lc->requested_fc; | 
 |  | 
 | 	/* | 
 | 	 * For Forward Error Control, we default to whatever the Firmware | 
 | 	 * tells us the Link is currently advertising. | 
 | 	 */ | 
 | 	lc->requested_fec = FEC_AUTO; | 
 | 	lc->fec = fwcap_to_cc_fec(lc->def_acaps); | 
 |  | 
 | 	/* If the Port is capable of Auto-Negtotiation, initialize it as | 
 | 	 * "enabled" and copy over all of the Physical Port Capabilities | 
 | 	 * to the Advertised Port Capabilities.  Otherwise mark it as | 
 | 	 * Auto-Negotiate disabled and select the highest supported speed | 
 | 	 * for the link.  Note parallel structure in t4_link_l1cfg_core() | 
 | 	 * and t4_handle_get_port_info(). | 
 | 	 */ | 
 | 	if (lc->pcaps & FW_PORT_CAP32_ANEG) { | 
 | 		lc->acaps = lc->pcaps & ADVERT_MASK; | 
 | 		lc->autoneg = AUTONEG_ENABLE; | 
 | 		lc->requested_fc |= PAUSE_AUTONEG; | 
 | 	} else { | 
 | 		lc->acaps = 0; | 
 | 		lc->autoneg = AUTONEG_DISABLE; | 
 | 	} | 
 | } | 
 |  | 
 | static void csio_link_l1cfg(struct link_config *lc, uint16_t fw_caps, | 
 | 			    uint32_t *rcaps) | 
 | { | 
 | 	unsigned int fw_mdi = FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO); | 
 | 	fw_port_cap32_t fw_fc, cc_fec, fw_fec, lrcap; | 
 |  | 
 | 	lc->link_ok = 0; | 
 |  | 
 | 	/* | 
 | 	 * Convert driver coding of Pause Frame Flow Control settings into the | 
 | 	 * Firmware's API. | 
 | 	 */ | 
 | 	fw_fc = cc_to_fwcap_pause(lc->requested_fc); | 
 |  | 
 | 	/* | 
 | 	 * Convert Common Code Forward Error Control settings into the | 
 | 	 * Firmware's API.  If the current Requested FEC has "Automatic" | 
 | 	 * (IEEE 802.3) specified, then we use whatever the Firmware | 
 | 	 * sent us as part of it's IEEE 802.3-based interpretation of | 
 | 	 * the Transceiver Module EPROM FEC parameters.  Otherwise we | 
 | 	 * use whatever is in the current Requested FEC settings. | 
 | 	 */ | 
 | 	if (lc->requested_fec & FEC_AUTO) | 
 | 		cc_fec = fwcap_to_cc_fec(lc->def_acaps); | 
 | 	else | 
 | 		cc_fec = lc->requested_fec; | 
 | 	fw_fec = cc_to_fwcap_fec(cc_fec); | 
 |  | 
 | 	/* Figure out what our Requested Port Capabilities are going to be. | 
 | 	 * Note parallel structure in t4_handle_get_port_info() and | 
 | 	 * init_link_config(). | 
 | 	 */ | 
 | 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { | 
 | 		lrcap = (lc->pcaps & ADVERT_MASK) | fw_fc | fw_fec; | 
 | 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; | 
 | 		lc->fec = cc_fec; | 
 | 	} else if (lc->autoneg == AUTONEG_DISABLE) { | 
 | 		lrcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi; | 
 | 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; | 
 | 		lc->fec = cc_fec; | 
 | 	} else { | 
 | 		lrcap = lc->acaps | fw_fc | fw_fec | fw_mdi; | 
 | 	} | 
 |  | 
 | 	*rcaps = lrcap; | 
 | } | 
 |  | 
 | /* | 
 |  * csio_enable_ports - Bring up all available ports. | 
 |  * @hw: HW module. | 
 |  * | 
 |  */ | 
 | static int | 
 | csio_enable_ports(struct csio_hw *hw) | 
 | { | 
 | 	struct csio_mb  *mbp; | 
 | 	u16 fw_caps = FW_CAPS_UNKNOWN; | 
 | 	enum fw_retval retval; | 
 | 	uint8_t portid; | 
 | 	fw_port_cap32_t pcaps, acaps, rcaps; | 
 | 	int i; | 
 |  | 
 | 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); | 
 | 	if (!mbp) { | 
 | 		CSIO_INC_STATS(hw, n_err_nomem); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < hw->num_pports; i++) { | 
 | 		portid = hw->pport[i].portid; | 
 |  | 
 | 		if (fw_caps == FW_CAPS_UNKNOWN) { | 
 | 			u32 param, val; | 
 |  | 
 | 			param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | | 
 | 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32)); | 
 | 			val = 1; | 
 |  | 
 | 			csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, | 
 | 				       hw->pfn, 0, 1, ¶m, &val, true, | 
 | 				       NULL); | 
 |  | 
 | 			if (csio_mb_issue(hw, mbp)) { | 
 | 				csio_err(hw, "failed to issue FW_PARAMS_CMD(r) port:%d\n", | 
 | 					 portid); | 
 | 				mempool_free(mbp, hw->mb_mempool); | 
 | 				return -EINVAL; | 
 | 			} | 
 |  | 
 | 			csio_mb_process_read_params_rsp(hw, mbp, &retval, | 
 | 							0, NULL); | 
 | 			fw_caps = retval ? FW_CAPS16 : FW_CAPS32; | 
 | 		} | 
 |  | 
 | 		/* Read PORT information */ | 
 | 		csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid, | 
 | 			     false, 0, fw_caps, NULL); | 
 |  | 
 | 		if (csio_mb_issue(hw, mbp)) { | 
 | 			csio_err(hw, "failed to issue FW_PORT_CMD(r) port:%d\n", | 
 | 				 portid); | 
 | 			mempool_free(mbp, hw->mb_mempool); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		csio_mb_process_read_port_rsp(hw, mbp, &retval, fw_caps, | 
 | 					      &pcaps, &acaps); | 
 | 		if (retval != FW_SUCCESS) { | 
 | 			csio_err(hw, "FW_PORT_CMD(r) port:%d failed: 0x%x\n", | 
 | 				 portid, retval); | 
 | 			mempool_free(mbp, hw->mb_mempool); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		csio_init_link_config(&hw->pport[i].link_cfg, pcaps, acaps); | 
 |  | 
 | 		csio_link_l1cfg(&hw->pport[i].link_cfg, fw_caps, &rcaps); | 
 |  | 
 | 		/* Write back PORT information */ | 
 | 		csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid, | 
 | 			     true, rcaps, fw_caps, NULL); | 
 |  | 
 | 		if (csio_mb_issue(hw, mbp)) { | 
 | 			csio_err(hw, "failed to issue FW_PORT_CMD(w) port:%d\n", | 
 | 				 portid); | 
 | 			mempool_free(mbp, hw->mb_mempool); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		retval = csio_mb_fw_retval(mbp); | 
 | 		if (retval != FW_SUCCESS) { | 
 | 			csio_err(hw, "FW_PORT_CMD(w) port:%d failed :0x%x\n", | 
 | 				 portid, retval); | 
 | 			mempool_free(mbp, hw->mb_mempool); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 	} /* For all ports */ | 
 |  | 
 | 	mempool_free(mbp, hw->mb_mempool); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * csio_get_fcoe_resinfo - Read fcoe fw resource info. | 
 |  * @hw: HW module | 
 |  * Issued with lock held. | 
 |  */ | 
 | static int | 
 | csio_get_fcoe_resinfo(struct csio_hw *hw) | 
 | { | 
 | 	struct csio_fcoe_res_info *res_info = &hw->fres_info; | 
 | 	struct fw_fcoe_res_info_cmd *rsp; | 
 | 	struct csio_mb  *mbp; | 
 | 	enum fw_retval retval; | 
 |  | 
 | 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); | 
 | 	if (!mbp) { | 
 | 		CSIO_INC_STATS(hw, n_err_nomem); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* Get FCoE FW resource information */ | 
 | 	csio_fcoe_read_res_info_init_mb(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL); | 
 |  | 
 | 	if (csio_mb_issue(hw, mbp)) { | 
 | 		csio_err(hw, "failed to issue FW_FCOE_RES_INFO_CMD\n"); | 
 | 		mempool_free(mbp, hw->mb_mempool); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	rsp = (struct fw_fcoe_res_info_cmd *)(mbp->mb); | 
 | 	retval = FW_CMD_RETVAL_G(ntohl(rsp->retval_len16)); | 
 | 	if (retval != FW_SUCCESS) { | 
 | 		csio_err(hw, "FW_FCOE_RES_INFO_CMD failed with ret x%x\n", | 
 | 			 retval); | 
 | 		mempool_free(mbp, hw->mb_mempool); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	res_info->e_d_tov = ntohs(rsp->e_d_tov); | 
 | 	res_info->r_a_tov_seq = ntohs(rsp->r_a_tov_seq); | 
 | 	res_info->r_a_tov_els = ntohs(rsp->r_a_tov_els); | 
 | 	res_info->r_r_tov = ntohs(rsp->r_r_tov); | 
 | 	res_info->max_xchgs = ntohl(rsp->max_xchgs); | 
 | 	res_info->max_ssns = ntohl(rsp->max_ssns); | 
 | 	res_info->used_xchgs = ntohl(rsp->used_xchgs); | 
 | 	res_info->used_ssns = ntohl(rsp->used_ssns); | 
 | 	res_info->max_fcfs = ntohl(rsp->max_fcfs); | 
 | 	res_info->max_vnps = ntohl(rsp->max_vnps); | 
 | 	res_info->used_fcfs = ntohl(rsp->used_fcfs); | 
 | 	res_info->used_vnps = ntohl(rsp->used_vnps); | 
 |  | 
 | 	csio_dbg(hw, "max ssns:%d max xchgs:%d\n", res_info->max_ssns, | 
 | 						  res_info->max_xchgs); | 
 | 	mempool_free(mbp, hw->mb_mempool); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | csio_hw_check_fwconfig(struct csio_hw *hw, u32 *param) | 
 | { | 
 | 	struct csio_mb	*mbp; | 
 | 	enum fw_retval retval; | 
 | 	u32 _param[1]; | 
 |  | 
 | 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); | 
 | 	if (!mbp) { | 
 | 		CSIO_INC_STATS(hw, n_err_nomem); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Find out whether we're dealing with a version of | 
 | 	 * the firmware which has configuration file support. | 
 | 	 */ | 
 | 	_param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | | 
 | 		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); | 
 |  | 
 | 	csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0, | 
 | 		       ARRAY_SIZE(_param), _param, NULL, false, NULL); | 
 | 	if (csio_mb_issue(hw, mbp)) { | 
 | 		csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n"); | 
 | 		mempool_free(mbp, hw->mb_mempool); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	csio_mb_process_read_params_rsp(hw, mbp, &retval, | 
 | 			ARRAY_SIZE(_param), _param); | 
 | 	if (retval != FW_SUCCESS) { | 
 | 		csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n", | 
 | 				retval); | 
 | 		mempool_free(mbp, hw->mb_mempool); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	mempool_free(mbp, hw->mb_mempool); | 
 | 	*param = _param[0]; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | csio_hw_flash_config(struct csio_hw *hw, u32 *fw_cfg_param, char *path) | 
 | { | 
 | 	int ret = 0; | 
 | 	const struct firmware *cf; | 
 | 	struct pci_dev *pci_dev = hw->pdev; | 
 | 	struct device *dev = &pci_dev->dev; | 
 | 	unsigned int mtype = 0, maddr = 0; | 
 | 	uint32_t *cfg_data; | 
 | 	int value_to_add = 0; | 
 | 	const char *fw_cfg_file; | 
 |  | 
 | 	if (csio_is_t5(pci_dev->device & CSIO_HW_CHIP_MASK)) | 
 | 		fw_cfg_file = FW_CFG_NAME_T5; | 
 | 	else | 
 | 		fw_cfg_file = FW_CFG_NAME_T6; | 
 |  | 
 | 	if (request_firmware(&cf, fw_cfg_file, dev) < 0) { | 
 | 		csio_err(hw, "could not find config file %s, err: %d\n", | 
 | 			 fw_cfg_file, ret); | 
 | 		return -ENOENT; | 
 | 	} | 
 |  | 
 | 	if (cf->size%4 != 0) | 
 | 		value_to_add = 4 - (cf->size % 4); | 
 |  | 
 | 	cfg_data = kzalloc(cf->size+value_to_add, GFP_KERNEL); | 
 | 	if (cfg_data == NULL) { | 
 | 		ret = -ENOMEM; | 
 | 		goto leave; | 
 | 	} | 
 |  | 
 | 	memcpy((void *)cfg_data, (const void *)cf->data, cf->size); | 
 | 	if (csio_hw_check_fwconfig(hw, fw_cfg_param) != 0) { | 
 | 		ret = -EINVAL; | 
 | 		goto leave; | 
 | 	} | 
 |  | 
 | 	mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param); | 
 | 	maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16; | 
 |  | 
 | 	ret = csio_memory_write(hw, mtype, maddr, | 
 | 				cf->size + value_to_add, cfg_data); | 
 |  | 
 | 	if ((ret == 0) && (value_to_add != 0)) { | 
 | 		union { | 
 | 			u32 word; | 
 | 			char buf[4]; | 
 | 		} last; | 
 | 		size_t size = cf->size & ~0x3; | 
 | 		int i; | 
 |  | 
 | 		last.word = cfg_data[size >> 2]; | 
 | 		for (i = value_to_add; i < 4; i++) | 
 | 			last.buf[i] = 0; | 
 | 		ret = csio_memory_write(hw, mtype, maddr + size, 4, &last.word); | 
 | 	} | 
 | 	if (ret == 0) { | 
 | 		csio_info(hw, "config file upgraded to %s\n", fw_cfg_file); | 
 | 		snprintf(path, 64, "%s%s", "/lib/firmware/", fw_cfg_file); | 
 | 	} | 
 |  | 
 | leave: | 
 | 	kfree(cfg_data); | 
 | 	release_firmware(cf); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * HW initialization: contact FW, obtain config, perform basic init. | 
 |  * | 
 |  * If the firmware we're dealing with has Configuration File support, then | 
 |  * we use that to perform all configuration -- either using the configuration | 
 |  * file stored in flash on the adapter or using a filesystem-local file | 
 |  * if available. | 
 |  * | 
 |  * If we don't have configuration file support in the firmware, then we'll | 
 |  * have to set things up the old fashioned way with hard-coded register | 
 |  * writes and firmware commands ... | 
 |  */ | 
 |  | 
 | /* | 
 |  * Attempt to initialize the HW via a Firmware Configuration File. | 
 |  */ | 
 | static int | 
 | csio_hw_use_fwconfig(struct csio_hw *hw, int reset, u32 *fw_cfg_param) | 
 | { | 
 | 	struct csio_mb	*mbp = NULL; | 
 | 	struct fw_caps_config_cmd *caps_cmd; | 
 | 	unsigned int mtype, maddr; | 
 | 	int rv = -EINVAL; | 
 | 	uint32_t finiver = 0, finicsum = 0, cfcsum = 0; | 
 | 	char path[64]; | 
 | 	char *config_name = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Reset device if necessary | 
 | 	 */ | 
 | 	if (reset) { | 
 | 		rv = csio_do_reset(hw, true); | 
 | 		if (rv != 0) | 
 | 			goto bye; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we have a configuration file in host , | 
 | 	 * then use that.  Otherwise, use the configuration file stored | 
 | 	 * in the HW flash ... | 
 | 	 */ | 
 | 	spin_unlock_irq(&hw->lock); | 
 | 	rv = csio_hw_flash_config(hw, fw_cfg_param, path); | 
 | 	spin_lock_irq(&hw->lock); | 
 | 	if (rv != 0) { | 
 | 		/* | 
 | 		 * config file was not found. Use default | 
 | 		 * config file from flash. | 
 | 		 */ | 
 | 		config_name = "On FLASH"; | 
 | 		mtype = FW_MEMTYPE_CF_FLASH; | 
 | 		maddr = hw->chip_ops->chip_flash_cfg_addr(hw); | 
 | 	} else { | 
 | 		config_name = path; | 
 | 		mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param); | 
 | 		maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16; | 
 | 	} | 
 |  | 
 | 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); | 
 | 	if (!mbp) { | 
 | 		CSIO_INC_STATS(hw, n_err_nomem); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	/* | 
 | 	 * Tell the firmware to process the indicated Configuration File. | 
 | 	 * If there are no errors and the caller has provided return value | 
 | 	 * pointers for the [fini] section version, checksum and computed | 
 | 	 * checksum, pass those back to the caller. | 
 | 	 */ | 
 | 	caps_cmd = (struct fw_caps_config_cmd *)(mbp->mb); | 
 | 	CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1); | 
 | 	caps_cmd->op_to_write = | 
 | 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | | 
 | 		      FW_CMD_REQUEST_F | | 
 | 		      FW_CMD_READ_F); | 
 | 	caps_cmd->cfvalid_to_len16 = | 
 | 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | | 
 | 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | | 
 | 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | | 
 | 		      FW_LEN16(*caps_cmd)); | 
 |  | 
 | 	if (csio_mb_issue(hw, mbp)) { | 
 | 		rv = -EINVAL; | 
 | 		goto bye; | 
 | 	} | 
 |  | 
 | 	rv = csio_mb_fw_retval(mbp); | 
 | 	 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware | 
 | 	  * Configuration File in FLASH), our last gasp effort is to use the | 
 | 	  * Firmware Configuration File which is embedded in the | 
 | 	  * firmware.  A very few early versions of the firmware didn't | 
 | 	  * have one embedded but we can ignore those. | 
 | 	  */ | 
 | 	if (rv == ENOENT) { | 
 | 		CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1); | 
 | 		caps_cmd->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | | 
 | 					      FW_CMD_REQUEST_F | | 
 | 					      FW_CMD_READ_F); | 
 | 		caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd)); | 
 |  | 
 | 		if (csio_mb_issue(hw, mbp)) { | 
 | 			rv = -EINVAL; | 
 | 			goto bye; | 
 | 		} | 
 |  | 
 | 		rv = csio_mb_fw_retval(mbp); | 
 | 		config_name = "Firmware Default"; | 
 | 	} | 
 | 	if (rv != FW_SUCCESS) | 
 | 		goto bye; | 
 |  | 
 | 	finiver = ntohl(caps_cmd->finiver); | 
 | 	finicsum = ntohl(caps_cmd->finicsum); | 
 | 	cfcsum = ntohl(caps_cmd->cfcsum); | 
 |  | 
 | 	/* | 
 | 	 * And now tell the firmware to use the configuration we just loaded. | 
 | 	 */ | 
 | 	caps_cmd->op_to_write = | 
 | 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | | 
 | 		      FW_CMD_REQUEST_F | | 
 | 		      FW_CMD_WRITE_F); | 
 | 	caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd)); | 
 |  | 
 | 	if (csio_mb_issue(hw, mbp)) { | 
 | 		rv = -EINVAL; | 
 | 		goto bye; | 
 | 	} | 
 |  | 
 | 	rv = csio_mb_fw_retval(mbp); | 
 | 	if (rv != FW_SUCCESS) { | 
 | 		csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv); | 
 | 		goto bye; | 
 | 	} | 
 |  | 
 | 	if (finicsum != cfcsum) { | 
 | 		csio_warn(hw, | 
 | 		      "Config File checksum mismatch: csum=%#x, computed=%#x\n", | 
 | 		      finicsum, cfcsum); | 
 | 	} | 
 |  | 
 | 	/* Validate device capabilities */ | 
 | 	rv = csio_hw_validate_caps(hw, mbp); | 
 | 	if (rv != 0) | 
 | 		goto bye; | 
 |  | 
 | 	mempool_free(mbp, hw->mb_mempool); | 
 | 	mbp = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Note that we're operating with parameters | 
 | 	 * not supplied by the driver, rather than from hard-wired | 
 | 	 * initialization constants buried in the driver. | 
 | 	 */ | 
 | 	hw->flags |= CSIO_HWF_USING_SOFT_PARAMS; | 
 |  | 
 | 	/* device parameters */ | 
 | 	rv = csio_get_device_params(hw); | 
 | 	if (rv != 0) | 
 | 		goto bye; | 
 |  | 
 | 	/* Configure SGE */ | 
 | 	csio_wr_sge_init(hw); | 
 |  | 
 | 	/* | 
 | 	 * And finally tell the firmware to initialize itself using the | 
 | 	 * parameters from the Configuration File. | 
 | 	 */ | 
 | 	/* Post event to notify completion of configuration */ | 
 | 	csio_post_event(&hw->sm, CSIO_HWE_INIT); | 
 |  | 
 | 	csio_info(hw, "Successfully configure using Firmware " | 
 | 		  "Configuration File %s, version %#x, computed checksum %#x\n", | 
 | 		  config_name, finiver, cfcsum); | 
 | 	return 0; | 
 |  | 
 | 	/* | 
 | 	 * Something bad happened.  Return the error ... | 
 | 	 */ | 
 | bye: | 
 | 	if (mbp) | 
 | 		mempool_free(mbp, hw->mb_mempool); | 
 | 	hw->flags &= ~CSIO_HWF_USING_SOFT_PARAMS; | 
 | 	csio_warn(hw, "Configuration file error %d\n", rv); | 
 | 	return rv; | 
 | } | 
 |  | 
 | /* Is the given firmware API compatible with the one the driver was compiled | 
 |  * with? | 
 |  */ | 
 | static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) | 
 | { | 
 |  | 
 | 	/* short circuit if it's the exact same firmware version */ | 
 | 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) | 
 | 		return 1; | 
 |  | 
 | #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) | 
 | 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && | 
 | 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) | 
 | 		return 1; | 
 | #undef SAME_INTF | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* The firmware in the filesystem is usable, but should it be installed? | 
 |  * This routine explains itself in detail if it indicates the filesystem | 
 |  * firmware should be installed. | 
 |  */ | 
 | static int csio_should_install_fs_fw(struct csio_hw *hw, int card_fw_usable, | 
 | 				int k, int c) | 
 | { | 
 | 	const char *reason; | 
 |  | 
 | 	if (!card_fw_usable) { | 
 | 		reason = "incompatible or unusable"; | 
 | 		goto install; | 
 | 	} | 
 |  | 
 | 	if (k > c) { | 
 | 		reason = "older than the version supported with this driver"; | 
 | 		goto install; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | install: | 
 | 	csio_err(hw, "firmware on card (%u.%u.%u.%u) is %s, " | 
 | 		"installing firmware %u.%u.%u.%u on card.\n", | 
 | 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), | 
 | 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, | 
 | 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), | 
 | 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static struct fw_info fw_info_array[] = { | 
 | 	{ | 
 | 		.chip = CHELSIO_T5, | 
 | 		.fs_name = FW_CFG_NAME_T5, | 
 | 		.fw_mod_name = FW_FNAME_T5, | 
 | 		.fw_hdr = { | 
 | 			.chip = FW_HDR_CHIP_T5, | 
 | 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)), | 
 | 			.intfver_nic = FW_INTFVER(T5, NIC), | 
 | 			.intfver_vnic = FW_INTFVER(T5, VNIC), | 
 | 			.intfver_ri = FW_INTFVER(T5, RI), | 
 | 			.intfver_iscsi = FW_INTFVER(T5, ISCSI), | 
 | 			.intfver_fcoe = FW_INTFVER(T5, FCOE), | 
 | 		}, | 
 | 	}, { | 
 | 		.chip = CHELSIO_T6, | 
 | 		.fs_name = FW_CFG_NAME_T6, | 
 | 		.fw_mod_name = FW_FNAME_T6, | 
 | 		.fw_hdr = { | 
 | 			.chip = FW_HDR_CHIP_T6, | 
 | 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)), | 
 | 			.intfver_nic = FW_INTFVER(T6, NIC), | 
 | 			.intfver_vnic = FW_INTFVER(T6, VNIC), | 
 | 			.intfver_ri = FW_INTFVER(T6, RI), | 
 | 			.intfver_iscsi = FW_INTFVER(T6, ISCSI), | 
 | 			.intfver_fcoe = FW_INTFVER(T6, FCOE), | 
 | 		}, | 
 | 	} | 
 | }; | 
 |  | 
 | static struct fw_info *find_fw_info(int chip) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { | 
 | 		if (fw_info_array[i].chip == chip) | 
 | 			return &fw_info_array[i]; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static int csio_hw_prep_fw(struct csio_hw *hw, struct fw_info *fw_info, | 
 | 	       const u8 *fw_data, unsigned int fw_size, | 
 | 	       struct fw_hdr *card_fw, enum csio_dev_state state, | 
 | 	       int *reset) | 
 | { | 
 | 	int ret, card_fw_usable, fs_fw_usable; | 
 | 	const struct fw_hdr *fs_fw; | 
 | 	const struct fw_hdr *drv_fw; | 
 |  | 
 | 	drv_fw = &fw_info->fw_hdr; | 
 |  | 
 | 	/* Read the header of the firmware on the card */ | 
 | 	ret = csio_hw_read_flash(hw, FLASH_FW_START, | 
 | 			    sizeof(*card_fw) / sizeof(uint32_t), | 
 | 			    (uint32_t *)card_fw, 1); | 
 | 	if (ret == 0) { | 
 | 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); | 
 | 	} else { | 
 | 		csio_err(hw, | 
 | 			"Unable to read card's firmware header: %d\n", ret); | 
 | 		card_fw_usable = 0; | 
 | 	} | 
 |  | 
 | 	if (fw_data != NULL) { | 
 | 		fs_fw = (const void *)fw_data; | 
 | 		fs_fw_usable = fw_compatible(drv_fw, fs_fw); | 
 | 	} else { | 
 | 		fs_fw = NULL; | 
 | 		fs_fw_usable = 0; | 
 | 	} | 
 |  | 
 | 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && | 
 | 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { | 
 | 		/* Common case: the firmware on the card is an exact match and | 
 | 		 * the filesystem one is an exact match too, or the filesystem | 
 | 		 * one is absent/incompatible. | 
 | 		 */ | 
 | 	} else if (fs_fw_usable && state == CSIO_DEV_STATE_UNINIT && | 
 | 		   csio_should_install_fs_fw(hw, card_fw_usable, | 
 | 					be32_to_cpu(fs_fw->fw_ver), | 
 | 					be32_to_cpu(card_fw->fw_ver))) { | 
 | 		ret = csio_hw_fw_upgrade(hw, hw->pfn, fw_data, | 
 | 				     fw_size, 0); | 
 | 		if (ret != 0) { | 
 | 			csio_err(hw, | 
 | 				"failed to install firmware: %d\n", ret); | 
 | 			goto bye; | 
 | 		} | 
 |  | 
 | 		/* Installed successfully, update the cached header too. */ | 
 | 		memcpy(card_fw, fs_fw, sizeof(*card_fw)); | 
 | 		card_fw_usable = 1; | 
 | 		*reset = 0;	/* already reset as part of load_fw */ | 
 | 	} | 
 |  | 
 | 	if (!card_fw_usable) { | 
 | 		uint32_t d, c, k; | 
 |  | 
 | 		d = be32_to_cpu(drv_fw->fw_ver); | 
 | 		c = be32_to_cpu(card_fw->fw_ver); | 
 | 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; | 
 |  | 
 | 		csio_err(hw, "Cannot find a usable firmware: " | 
 | 			"chip state %d, " | 
 | 			"driver compiled with %d.%d.%d.%d, " | 
 | 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", | 
 | 			state, | 
 | 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), | 
 | 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), | 
 | 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), | 
 | 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), | 
 | 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), | 
 | 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); | 
 | 		ret = EINVAL; | 
 | 		goto bye; | 
 | 	} | 
 |  | 
 | 	/* We're using whatever's on the card and it's known to be good. */ | 
 | 	hw->fwrev = be32_to_cpu(card_fw->fw_ver); | 
 | 	hw->tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); | 
 |  | 
 | bye: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns -EINVAL if attempts to flash the firmware failed, | 
 |  * -ENOMEM if memory allocation failed else returns 0, | 
 |  * if flashing was not attempted because the card had the | 
 |  * latest firmware ECANCELED is returned | 
 |  */ | 
 | static int | 
 | csio_hw_flash_fw(struct csio_hw *hw, int *reset) | 
 | { | 
 | 	int ret = -ECANCELED; | 
 | 	const struct firmware *fw; | 
 | 	struct fw_info *fw_info; | 
 | 	struct fw_hdr *card_fw; | 
 | 	struct pci_dev *pci_dev = hw->pdev; | 
 | 	struct device *dev = &pci_dev->dev ; | 
 | 	const u8 *fw_data = NULL; | 
 | 	unsigned int fw_size = 0; | 
 | 	const char *fw_bin_file; | 
 |  | 
 | 	/* This is the firmware whose headers the driver was compiled | 
 | 	 * against | 
 | 	 */ | 
 | 	fw_info = find_fw_info(CHELSIO_CHIP_VERSION(hw->chip_id)); | 
 | 	if (fw_info == NULL) { | 
 | 		csio_err(hw, | 
 | 			"unable to get firmware info for chip %d.\n", | 
 | 			CHELSIO_CHIP_VERSION(hw->chip_id)); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* allocate memory to read the header of the firmware on the | 
 | 	 * card | 
 | 	 */ | 
 | 	card_fw = kmalloc(sizeof(*card_fw), GFP_KERNEL); | 
 | 	if (!card_fw) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (csio_is_t5(pci_dev->device & CSIO_HW_CHIP_MASK)) | 
 | 		fw_bin_file = FW_FNAME_T5; | 
 | 	else | 
 | 		fw_bin_file = FW_FNAME_T6; | 
 |  | 
 | 	if (request_firmware(&fw, fw_bin_file, dev) < 0) { | 
 | 		csio_err(hw, "could not find firmware image %s, err: %d\n", | 
 | 			 fw_bin_file, ret); | 
 | 	} else { | 
 | 		fw_data = fw->data; | 
 | 		fw_size = fw->size; | 
 | 	} | 
 |  | 
 | 	/* upgrade FW logic */ | 
 | 	ret = csio_hw_prep_fw(hw, fw_info, fw_data, fw_size, card_fw, | 
 | 			 hw->fw_state, reset); | 
 |  | 
 | 	/* Cleaning up */ | 
 | 	if (fw != NULL) | 
 | 		release_firmware(fw); | 
 | 	kfree(card_fw); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int csio_hw_check_fwver(struct csio_hw *hw) | 
 | { | 
 | 	if (csio_is_t6(hw->pdev->device & CSIO_HW_CHIP_MASK) && | 
 | 	    (hw->fwrev < CSIO_MIN_T6_FW)) { | 
 | 		csio_hw_print_fw_version(hw, "T6 unsupported fw"); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * csio_hw_configure - Configure HW | 
 |  * @hw - HW module | 
 |  * | 
 |  */ | 
 | static void | 
 | csio_hw_configure(struct csio_hw *hw) | 
 | { | 
 | 	int reset = 1; | 
 | 	int rv; | 
 | 	u32 param[1]; | 
 |  | 
 | 	rv = csio_hw_dev_ready(hw); | 
 | 	if (rv != 0) { | 
 | 		CSIO_INC_STATS(hw, n_err_fatal); | 
 | 		csio_post_event(&hw->sm, CSIO_HWE_FATAL); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* HW version */ | 
 | 	hw->chip_ver = (char)csio_rd_reg32(hw, PL_REV_A); | 
 |  | 
 | 	/* Needed for FW download */ | 
 | 	rv = csio_hw_get_flash_params(hw); | 
 | 	if (rv != 0) { | 
 | 		csio_err(hw, "Failed to get serial flash params rv:%d\n", rv); | 
 | 		csio_post_event(&hw->sm, CSIO_HWE_FATAL); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Set PCIe completion timeout to 4 seconds */ | 
 | 	if (pci_is_pcie(hw->pdev)) | 
 | 		pcie_capability_clear_and_set_word(hw->pdev, PCI_EXP_DEVCTL2, | 
 | 				PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd); | 
 |  | 
 | 	hw->chip_ops->chip_set_mem_win(hw, MEMWIN_CSIOSTOR); | 
 |  | 
 | 	rv = csio_hw_get_fw_version(hw, &hw->fwrev); | 
 | 	if (rv != 0) | 
 | 		goto out; | 
 |  | 
 | 	csio_hw_print_fw_version(hw, "Firmware revision"); | 
 |  | 
 | 	rv = csio_do_hello(hw, &hw->fw_state); | 
 | 	if (rv != 0) { | 
 | 		CSIO_INC_STATS(hw, n_err_fatal); | 
 | 		csio_post_event(&hw->sm, CSIO_HWE_FATAL); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Read vpd */ | 
 | 	rv = csio_hw_get_vpd_params(hw, &hw->vpd); | 
 | 	if (rv != 0) | 
 | 		goto out; | 
 |  | 
 | 	csio_hw_get_fw_version(hw, &hw->fwrev); | 
 | 	csio_hw_get_tp_version(hw, &hw->tp_vers); | 
 | 	if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) { | 
 |  | 
 | 			/* Do firmware update */ | 
 | 		spin_unlock_irq(&hw->lock); | 
 | 		rv = csio_hw_flash_fw(hw, &reset); | 
 | 		spin_lock_irq(&hw->lock); | 
 |  | 
 | 		if (rv != 0) | 
 | 			goto out; | 
 |  | 
 | 		rv = csio_hw_check_fwver(hw); | 
 | 		if (rv < 0) | 
 | 			goto out; | 
 |  | 
 | 		/* If the firmware doesn't support Configuration Files, | 
 | 		 * return an error. | 
 | 		 */ | 
 | 		rv = csio_hw_check_fwconfig(hw, param); | 
 | 		if (rv != 0) { | 
 | 			csio_info(hw, "Firmware doesn't support " | 
 | 				  "Firmware Configuration files\n"); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* The firmware provides us with a memory buffer where we can | 
 | 		 * load a Configuration File from the host if we want to | 
 | 		 * override the Configuration File in flash. | 
 | 		 */ | 
 | 		rv = csio_hw_use_fwconfig(hw, reset, param); | 
 | 		if (rv == -ENOENT) { | 
 | 			csio_info(hw, "Could not initialize " | 
 | 				  "adapter, error%d\n", rv); | 
 | 			goto out; | 
 | 		} | 
 | 		if (rv != 0) { | 
 | 			csio_info(hw, "Could not initialize " | 
 | 				  "adapter, error%d\n", rv); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 	} else { | 
 | 		rv = csio_hw_check_fwver(hw); | 
 | 		if (rv < 0) | 
 | 			goto out; | 
 |  | 
 | 		if (hw->fw_state == CSIO_DEV_STATE_INIT) { | 
 |  | 
 | 			hw->flags |= CSIO_HWF_USING_SOFT_PARAMS; | 
 |  | 
 | 			/* device parameters */ | 
 | 			rv = csio_get_device_params(hw); | 
 | 			if (rv != 0) | 
 | 				goto out; | 
 |  | 
 | 			/* Get device capabilities */ | 
 | 			rv = csio_config_device_caps(hw); | 
 | 			if (rv != 0) | 
 | 				goto out; | 
 |  | 
 | 			/* Configure SGE */ | 
 | 			csio_wr_sge_init(hw); | 
 |  | 
 | 			/* Post event to notify completion of configuration */ | 
 | 			csio_post_event(&hw->sm, CSIO_HWE_INIT); | 
 | 			goto out; | 
 | 		} | 
 | 	} /* if not master */ | 
 |  | 
 | out: | 
 | 	return; | 
 | } | 
 |  | 
 | /* | 
 |  * csio_hw_initialize - Initialize HW | 
 |  * @hw - HW module | 
 |  * | 
 |  */ | 
 | static void | 
 | csio_hw_initialize(struct csio_hw *hw) | 
 | { | 
 | 	struct csio_mb	*mbp; | 
 | 	enum fw_retval retval; | 
 | 	int rv; | 
 | 	int i; | 
 |  | 
 | 	if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) { | 
 | 		mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); | 
 | 		if (!mbp) | 
 | 			goto out; | 
 |  | 
 | 		csio_mb_initialize(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL); | 
 |  | 
 | 		if (csio_mb_issue(hw, mbp)) { | 
 | 			csio_err(hw, "Issue of FW_INITIALIZE_CMD failed!\n"); | 
 | 			goto free_and_out; | 
 | 		} | 
 |  | 
 | 		retval = csio_mb_fw_retval(mbp); | 
 | 		if (retval != FW_SUCCESS) { | 
 | 			csio_err(hw, "FW_INITIALIZE_CMD returned 0x%x!\n", | 
 | 				 retval); | 
 | 			goto free_and_out; | 
 | 		} | 
 |  | 
 | 		mempool_free(mbp, hw->mb_mempool); | 
 | 	} | 
 |  | 
 | 	rv = csio_get_fcoe_resinfo(hw); | 
 | 	if (rv != 0) { | 
 | 		csio_err(hw, "Failed to read fcoe resource info: %d\n", rv); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	spin_unlock_irq(&hw->lock); | 
 | 	rv = csio_config_queues(hw); | 
 | 	spin_lock_irq(&hw->lock); | 
 |  | 
 | 	if (rv != 0) { | 
 | 		csio_err(hw, "Config of queues failed!: %d\n", rv); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < hw->num_pports; i++) | 
 | 		hw->pport[i].mod_type = FW_PORT_MOD_TYPE_NA; | 
 |  | 
 | 	if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) { | 
 | 		rv = csio_enable_ports(hw); | 
 | 		if (rv != 0) { | 
 | 			csio_err(hw, "Failed to enable ports: %d\n", rv); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	csio_post_event(&hw->sm, CSIO_HWE_INIT_DONE); | 
 | 	return; | 
 |  | 
 | free_and_out: | 
 | 	mempool_free(mbp, hw->mb_mempool); | 
 | out: | 
 | 	return; | 
 | } | 
 |  | 
 | #define PF_INTR_MASK (PFSW_F | PFCIM_F) | 
 |  | 
 | /* | 
 |  * csio_hw_intr_enable - Enable HW interrupts | 
 |  * @hw: Pointer to HW module. | 
 |  * | 
 |  * Enable interrupts in HW registers. | 
 |  */ | 
 | static void | 
 | csio_hw_intr_enable(struct csio_hw *hw) | 
 | { | 
 | 	uint16_t vec = (uint16_t)csio_get_mb_intr_idx(csio_hw_to_mbm(hw)); | 
 | 	u32 pf = 0; | 
 | 	uint32_t pl = csio_rd_reg32(hw, PL_INT_ENABLE_A); | 
 |  | 
 | 	if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK)) | 
 | 		pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A)); | 
 | 	else | 
 | 		pf = T6_SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A)); | 
 |  | 
 | 	/* | 
 | 	 * Set aivec for MSI/MSIX. PCIE_PF_CFG.INTXType is set up | 
 | 	 * by FW, so do nothing for INTX. | 
 | 	 */ | 
 | 	if (hw->intr_mode == CSIO_IM_MSIX) | 
 | 		csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A), | 
 | 				   AIVEC_V(AIVEC_M), vec); | 
 | 	else if (hw->intr_mode == CSIO_IM_MSI) | 
 | 		csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A), | 
 | 				   AIVEC_V(AIVEC_M), 0); | 
 |  | 
 | 	csio_wr_reg32(hw, PF_INTR_MASK, MYPF_REG(PL_PF_INT_ENABLE_A)); | 
 |  | 
 | 	/* Turn on MB interrupts - this will internally flush PIO as well */ | 
 | 	csio_mb_intr_enable(hw); | 
 |  | 
 | 	/* These are common registers - only a master can modify them */ | 
 | 	if (csio_is_hw_master(hw)) { | 
 | 		/* | 
 | 		 * Disable the Serial FLASH interrupt, if enabled! | 
 | 		 */ | 
 | 		pl &= (~SF_F); | 
 | 		csio_wr_reg32(hw, pl, PL_INT_ENABLE_A); | 
 |  | 
 | 		csio_wr_reg32(hw, ERR_CPL_EXCEED_IQE_SIZE_F | | 
 | 			      EGRESS_SIZE_ERR_F | ERR_INVALID_CIDX_INC_F | | 
 | 			      ERR_CPL_OPCODE_0_F | ERR_DROPPED_DB_F | | 
 | 			      ERR_DATA_CPL_ON_HIGH_QID1_F | | 
 | 			      ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | | 
 | 			      ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | | 
 | 			      ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | | 
 | 			      ERR_EGR_CTXT_PRIO_F | INGRESS_SIZE_ERR_F, | 
 | 			      SGE_INT_ENABLE3_A); | 
 | 		csio_set_reg_field(hw, PL_INT_MAP0_A, 0, 1 << pf); | 
 | 	} | 
 |  | 
 | 	hw->flags |= CSIO_HWF_HW_INTR_ENABLED; | 
 |  | 
 | } | 
 |  | 
 | /* | 
 |  * csio_hw_intr_disable - Disable HW interrupts | 
 |  * @hw: Pointer to HW module. | 
 |  * | 
 |  * Turn off Mailbox and PCI_PF_CFG interrupts. | 
 |  */ | 
 | void | 
 | csio_hw_intr_disable(struct csio_hw *hw) | 
 | { | 
 | 	u32 pf = 0; | 
 |  | 
 | 	if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK)) | 
 | 		pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A)); | 
 | 	else | 
 | 		pf = T6_SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A)); | 
 |  | 
 | 	if (!(hw->flags & CSIO_HWF_HW_INTR_ENABLED)) | 
 | 		return; | 
 |  | 
 | 	hw->flags &= ~CSIO_HWF_HW_INTR_ENABLED; | 
 |  | 
 | 	csio_wr_reg32(hw, 0, MYPF_REG(PL_PF_INT_ENABLE_A)); | 
 | 	if (csio_is_hw_master(hw)) | 
 | 		csio_set_reg_field(hw, PL_INT_MAP0_A, 1 << pf, 0); | 
 |  | 
 | 	/* Turn off MB interrupts */ | 
 | 	csio_mb_intr_disable(hw); | 
 |  | 
 | } | 
 |  | 
 | void | 
 | csio_hw_fatal_err(struct csio_hw *hw) | 
 | { | 
 | 	csio_set_reg_field(hw, SGE_CONTROL_A, GLOBALENABLE_F, 0); | 
 | 	csio_hw_intr_disable(hw); | 
 |  | 
 | 	/* Do not reset HW, we may need FW state for debugging */ | 
 | 	csio_fatal(hw, "HW Fatal error encountered!\n"); | 
 | } | 
 |  | 
 | /*****************************************************************************/ | 
 | /* START: HW SM                                                              */ | 
 | /*****************************************************************************/ | 
 | /* | 
 |  * csio_hws_uninit - Uninit state | 
 |  * @hw - HW module | 
 |  * @evt - Event | 
 |  * | 
 |  */ | 
 | static void | 
 | csio_hws_uninit(struct csio_hw *hw, enum csio_hw_ev evt) | 
 | { | 
 | 	hw->prev_evt = hw->cur_evt; | 
 | 	hw->cur_evt = evt; | 
 | 	CSIO_INC_STATS(hw, n_evt_sm[evt]); | 
 |  | 
 | 	switch (evt) { | 
 | 	case CSIO_HWE_CFG: | 
 | 		csio_set_state(&hw->sm, csio_hws_configuring); | 
 | 		csio_hw_configure(hw); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		CSIO_INC_STATS(hw, n_evt_unexp); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * csio_hws_configuring - Configuring state | 
 |  * @hw - HW module | 
 |  * @evt - Event | 
 |  * | 
 |  */ | 
 | static void | 
 | csio_hws_configuring(struct csio_hw *hw, enum csio_hw_ev evt) | 
 | { | 
 | 	hw->prev_evt = hw->cur_evt; | 
 | 	hw->cur_evt = evt; | 
 | 	CSIO_INC_STATS(hw, n_evt_sm[evt]); | 
 |  | 
 | 	switch (evt) { | 
 | 	case CSIO_HWE_INIT: | 
 | 		csio_set_state(&hw->sm, csio_hws_initializing); | 
 | 		csio_hw_initialize(hw); | 
 | 		break; | 
 |  | 
 | 	case CSIO_HWE_INIT_DONE: | 
 | 		csio_set_state(&hw->sm, csio_hws_ready); | 
 | 		/* Fan out event to all lnode SMs */ | 
 | 		csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY); | 
 | 		break; | 
 |  | 
 | 	case CSIO_HWE_FATAL: | 
 | 		csio_set_state(&hw->sm, csio_hws_uninit); | 
 | 		break; | 
 |  | 
 | 	case CSIO_HWE_PCI_REMOVE: | 
 | 		csio_do_bye(hw); | 
 | 		break; | 
 | 	default: | 
 | 		CSIO_INC_STATS(hw, n_evt_unexp); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * csio_hws_initializing - Initializing state | 
 |  * @hw - HW module | 
 |  * @evt - Event | 
 |  * | 
 |  */ | 
 | static void | 
 | csio_hws_initializing(struct csio_hw *hw, enum csio_hw_ev evt) | 
 | { | 
 | 	hw->prev_evt = hw->cur_evt; | 
 | 	hw->cur_evt = evt; | 
 | 	CSIO_INC_STATS(hw, n_evt_sm[evt]); | 
 |  | 
 | 	switch (evt) { | 
 | 	case CSIO_HWE_INIT_DONE: | 
 | 		csio_set_state(&hw->sm, csio_hws_ready); | 
 |  | 
 | 		/* Fan out event to all lnode SMs */ | 
 | 		csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY); | 
 |  | 
 | 		/* Enable interrupts */ | 
 | 		csio_hw_intr_enable(hw); | 
 | 		break; | 
 |  | 
 | 	case CSIO_HWE_FATAL: | 
 | 		csio_set_state(&hw->sm, csio_hws_uninit); | 
 | 		break; | 
 |  | 
 | 	case CSIO_HWE_PCI_REMOVE: | 
 | 		csio_do_bye(hw); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		CSIO_INC_STATS(hw, n_evt_unexp); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * csio_hws_ready - Ready state | 
 |  * @hw - HW module | 
 |  * @evt - Event | 
 |  * | 
 |  */ | 
 | static void | 
 | csio_hws_ready(struct csio_hw *hw, enum csio_hw_ev evt) | 
 | { | 
 | 	/* Remember the event */ | 
 | 	hw->evtflag = evt; | 
 |  | 
 | 	hw->prev_evt = hw->cur_evt; | 
 | 	hw->cur_evt = evt; | 
 | 	CSIO_INC_STATS(hw, n_evt_sm[evt]); | 
 |  | 
 | 	switch (evt) { | 
 | 	case CSIO_HWE_HBA_RESET: | 
 | 	case CSIO_HWE_FW_DLOAD: | 
 | 	case CSIO_HWE_SUSPEND: | 
 | 	case CSIO_HWE_PCI_REMOVE: | 
 | 	case CSIO_HWE_PCIERR_DETECTED: | 
 | 		csio_set_state(&hw->sm, csio_hws_quiescing); | 
 | 		/* cleanup all outstanding cmds */ | 
 | 		if (evt == CSIO_HWE_HBA_RESET || | 
 | 		    evt == CSIO_HWE_PCIERR_DETECTED) | 
 | 			csio_scsim_cleanup_io(csio_hw_to_scsim(hw), false); | 
 | 		else | 
 | 			csio_scsim_cleanup_io(csio_hw_to_scsim(hw), true); | 
 |  | 
 | 		csio_hw_intr_disable(hw); | 
 | 		csio_hw_mbm_cleanup(hw); | 
 | 		csio_evtq_stop(hw); | 
 | 		csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWSTOP); | 
 | 		csio_evtq_flush(hw); | 
 | 		csio_mgmtm_cleanup(csio_hw_to_mgmtm(hw)); | 
 | 		csio_post_event(&hw->sm, CSIO_HWE_QUIESCED); | 
 | 		break; | 
 |  | 
 | 	case CSIO_HWE_FATAL: | 
 | 		csio_set_state(&hw->sm, csio_hws_uninit); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		CSIO_INC_STATS(hw, n_evt_unexp); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * csio_hws_quiescing - Quiescing state | 
 |  * @hw - HW module | 
 |  * @evt - Event | 
 |  * | 
 |  */ | 
 | static void | 
 | csio_hws_quiescing(struct csio_hw *hw, enum csio_hw_ev evt) | 
 | { | 
 | 	hw->prev_evt = hw->cur_evt; | 
 | 	hw->cur_evt = evt; | 
 | 	CSIO_INC_STATS(hw, n_evt_sm[evt]); | 
 |  | 
 | 	switch (evt) { | 
 | 	case CSIO_HWE_QUIESCED: | 
 | 		switch (hw->evtflag) { | 
 | 		case CSIO_HWE_FW_DLOAD: | 
 | 			csio_set_state(&hw->sm, csio_hws_resetting); | 
 | 			/* Download firmware */ | 
 | 			/* Fall through */ | 
 |  | 
 | 		case CSIO_HWE_HBA_RESET: | 
 | 			csio_set_state(&hw->sm, csio_hws_resetting); | 
 | 			/* Start reset of the HBA */ | 
 | 			csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWRESET); | 
 | 			csio_wr_destroy_queues(hw, false); | 
 | 			csio_do_reset(hw, false); | 
 | 			csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET_DONE); | 
 | 			break; | 
 |  | 
 | 		case CSIO_HWE_PCI_REMOVE: | 
 | 			csio_set_state(&hw->sm, csio_hws_removing); | 
 | 			csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREMOVE); | 
 | 			csio_wr_destroy_queues(hw, true); | 
 | 			/* Now send the bye command */ | 
 | 			csio_do_bye(hw); | 
 | 			break; | 
 |  | 
 | 		case CSIO_HWE_SUSPEND: | 
 | 			csio_set_state(&hw->sm, csio_hws_quiesced); | 
 | 			break; | 
 |  | 
 | 		case CSIO_HWE_PCIERR_DETECTED: | 
 | 			csio_set_state(&hw->sm, csio_hws_pcierr); | 
 | 			csio_wr_destroy_queues(hw, false); | 
 | 			break; | 
 |  | 
 | 		default: | 
 | 			CSIO_INC_STATS(hw, n_evt_unexp); | 
 | 			break; | 
 |  | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		CSIO_INC_STATS(hw, n_evt_unexp); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * csio_hws_quiesced - Quiesced state | 
 |  * @hw - HW module | 
 |  * @evt - Event | 
 |  * | 
 |  */ | 
 | static void | 
 | csio_hws_quiesced(struct csio_hw *hw, enum csio_hw_ev evt) | 
 | { | 
 | 	hw->prev_evt = hw->cur_evt; | 
 | 	hw->cur_evt = evt; | 
 | 	CSIO_INC_STATS(hw, n_evt_sm[evt]); | 
 |  | 
 | 	switch (evt) { | 
 | 	case CSIO_HWE_RESUME: | 
 | 		csio_set_state(&hw->sm, csio_hws_configuring); | 
 | 		csio_hw_configure(hw); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		CSIO_INC_STATS(hw, n_evt_unexp); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * csio_hws_resetting - HW Resetting state | 
 |  * @hw - HW module | 
 |  * @evt - Event | 
 |  * | 
 |  */ | 
 | static void | 
 | csio_hws_resetting(struct csio_hw *hw, enum csio_hw_ev evt) | 
 | { | 
 | 	hw->prev_evt = hw->cur_evt; | 
 | 	hw->cur_evt = evt; | 
 | 	CSIO_INC_STATS(hw, n_evt_sm[evt]); | 
 |  | 
 | 	switch (evt) { | 
 | 	case CSIO_HWE_HBA_RESET_DONE: | 
 | 		csio_evtq_start(hw); | 
 | 		csio_set_state(&hw->sm, csio_hws_configuring); | 
 | 		csio_hw_configure(hw); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		CSIO_INC_STATS(hw, n_evt_unexp); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * csio_hws_removing - PCI Hotplug removing state | 
 |  * @hw - HW module | 
 |  * @evt - Event | 
 |  * | 
 |  */ | 
 | static void | 
 | csio_hws_removing(struct csio_hw *hw, enum csio_hw_ev evt) | 
 | { | 
 | 	hw->prev_evt = hw->cur_evt; | 
 | 	hw->cur_evt = evt; | 
 | 	CSIO_INC_STATS(hw, n_evt_sm[evt]); | 
 |  | 
 | 	switch (evt) { | 
 | 	case CSIO_HWE_HBA_RESET: | 
 | 		if (!csio_is_hw_master(hw)) | 
 | 			break; | 
 | 		/* | 
 | 		 * The BYE should have already been issued, so we can't | 
 | 		 * use the mailbox interface. Hence we use the PL_RST | 
 | 		 * register directly. | 
 | 		 */ | 
 | 		csio_err(hw, "Resetting HW and waiting 2 seconds...\n"); | 
 | 		csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A); | 
 | 		mdelay(2000); | 
 | 		break; | 
 |  | 
 | 	/* Should never receive any new events */ | 
 | 	default: | 
 | 		CSIO_INC_STATS(hw, n_evt_unexp); | 
 | 		break; | 
 |  | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * csio_hws_pcierr - PCI Error state | 
 |  * @hw - HW module | 
 |  * @evt - Event | 
 |  * | 
 |  */ | 
 | static void | 
 | csio_hws_pcierr(struct csio_hw *hw, enum csio_hw_ev evt) | 
 | { | 
 | 	hw->prev_evt = hw->cur_evt; | 
 | 	hw->cur_evt = evt; | 
 | 	CSIO_INC_STATS(hw, n_evt_sm[evt]); | 
 |  | 
 | 	switch (evt) { | 
 | 	case CSIO_HWE_PCIERR_SLOT_RESET: | 
 | 		csio_evtq_start(hw); | 
 | 		csio_set_state(&hw->sm, csio_hws_configuring); | 
 | 		csio_hw_configure(hw); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		CSIO_INC_STATS(hw, n_evt_unexp); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /*****************************************************************************/ | 
 | /* END: HW SM                                                                */ | 
 | /*****************************************************************************/ | 
 |  | 
 | /* | 
 |  *	csio_handle_intr_status - table driven interrupt handler | 
 |  *	@hw: HW instance | 
 |  *	@reg: the interrupt status register to process | 
 |  *	@acts: table of interrupt actions | 
 |  * | 
 |  *	A table driven interrupt handler that applies a set of masks to an | 
 |  *	interrupt status word and performs the corresponding actions if the | 
 |  *	interrupts described by the mask have occurred.  The actions include | 
 |  *	optionally emitting a warning or alert message. The table is terminated | 
 |  *	by an entry specifying mask 0.  Returns the number of fatal interrupt | 
 |  *	conditions. | 
 |  */ | 
 | int | 
 | csio_handle_intr_status(struct csio_hw *hw, unsigned int reg, | 
 | 				 const struct intr_info *acts) | 
 | { | 
 | 	int fatal = 0; | 
 | 	unsigned int mask = 0; | 
 | 	unsigned int status = csio_rd_reg32(hw, reg); | 
 |  | 
 | 	for ( ; acts->mask; ++acts) { | 
 | 		if (!(status & acts->mask)) | 
 | 			continue; | 
 | 		if (acts->fatal) { | 
 | 			fatal++; | 
 | 			csio_fatal(hw, "Fatal %s (0x%x)\n", | 
 | 				    acts->msg, status & acts->mask); | 
 | 		} else if (acts->msg) | 
 | 			csio_info(hw, "%s (0x%x)\n", | 
 | 				    acts->msg, status & acts->mask); | 
 | 		mask |= acts->mask; | 
 | 	} | 
 | 	status &= mask; | 
 | 	if (status)                           /* clear processed interrupts */ | 
 | 		csio_wr_reg32(hw, status, reg); | 
 | 	return fatal; | 
 | } | 
 |  | 
 | /* | 
 |  * TP interrupt handler. | 
 |  */ | 
 | static void csio_tp_intr_handler(struct csio_hw *hw) | 
 | { | 
 | 	static struct intr_info tp_intr_info[] = { | 
 | 		{ 0x3fffffff, "TP parity error", -1, 1 }, | 
 | 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, | 
 | 		{ 0, NULL, 0, 0 } | 
 | 	}; | 
 |  | 
 | 	if (csio_handle_intr_status(hw, TP_INT_CAUSE_A, tp_intr_info)) | 
 | 		csio_hw_fatal_err(hw); | 
 | } | 
 |  | 
 | /* | 
 |  * SGE interrupt handler. | 
 |  */ | 
 | static void csio_sge_intr_handler(struct csio_hw *hw) | 
 | { | 
 | 	uint64_t v; | 
 |  | 
 | 	static struct intr_info sge_intr_info[] = { | 
 | 		{ ERR_CPL_EXCEED_IQE_SIZE_F, | 
 | 		  "SGE received CPL exceeding IQE size", -1, 1 }, | 
 | 		{ ERR_INVALID_CIDX_INC_F, | 
 | 		  "SGE GTS CIDX increment too large", -1, 0 }, | 
 | 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, | 
 | 		{ ERR_DROPPED_DB_F, "SGE doorbell dropped", -1, 0 }, | 
 | 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, | 
 | 		  "SGE IQID > 1023 received CPL for FL", -1, 0 }, | 
 | 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, | 
 | 		  0 }, | 
 | 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, | 
 | 		  0 }, | 
 | 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, | 
 | 		  0 }, | 
 | 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, | 
 | 		  0 }, | 
 | 		{ ERR_ING_CTXT_PRIO_F, | 
 | 		  "SGE too many priority ingress contexts", -1, 0 }, | 
 | 		{ ERR_EGR_CTXT_PRIO_F, | 
 | 		  "SGE too many priority egress contexts", -1, 0 }, | 
 | 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, | 
 | 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, | 
 | 		{ 0, NULL, 0, 0 } | 
 | 	}; | 
 |  | 
 | 	v = (uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE1_A) | | 
 | 	    ((uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE2_A) << 32); | 
 | 	if (v) { | 
 | 		csio_fatal(hw, "SGE parity error (%#llx)\n", | 
 | 			    (unsigned long long)v); | 
 | 		csio_wr_reg32(hw, (uint32_t)(v & 0xFFFFFFFF), | 
 | 						SGE_INT_CAUSE1_A); | 
 | 		csio_wr_reg32(hw, (uint32_t)(v >> 32), SGE_INT_CAUSE2_A); | 
 | 	} | 
 |  | 
 | 	v |= csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info); | 
 |  | 
 | 	if (csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info) || | 
 | 	    v != 0) | 
 | 		csio_hw_fatal_err(hw); | 
 | } | 
 |  | 
 | #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ | 
 | 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) | 
 | #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ | 
 | 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) | 
 |  | 
 | /* | 
 |  * CIM interrupt handler. | 
 |  */ | 
 | static void csio_cim_intr_handler(struct csio_hw *hw) | 
 | { | 
 | 	static struct intr_info cim_intr_info[] = { | 
 | 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, | 
 | 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, | 
 | 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, | 
 | 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, | 
 | 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, | 
 | 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, | 
 | 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, | 
 | 		{ 0, NULL, 0, 0 } | 
 | 	}; | 
 | 	static struct intr_info cim_upintr_info[] = { | 
 | 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, | 
 | 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, | 
 | 		{ ILLWRINT_F, "CIM illegal write", -1, 1 }, | 
 | 		{ ILLRDINT_F, "CIM illegal read", -1, 1 }, | 
 | 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, | 
 | 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, | 
 | 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, | 
 | 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, | 
 | 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, | 
 | 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, | 
 | 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, | 
 | 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, | 
 | 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, | 
 | 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, | 
 | 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, | 
 | 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, | 
 | 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, | 
 | 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, | 
 | 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, | 
 | 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, | 
 | 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, | 
 | 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, | 
 | 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, | 
 | 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, | 
 | 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, | 
 | 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, | 
 | 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, | 
 | 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, | 
 | 		{ 0, NULL, 0, 0 } | 
 | 	}; | 
 |  | 
 | 	int fat; | 
 |  | 
 | 	fat = csio_handle_intr_status(hw, CIM_HOST_INT_CAUSE_A, | 
 | 				      cim_intr_info) + | 
 | 	      csio_handle_intr_status(hw, CIM_HOST_UPACC_INT_CAUSE_A, | 
 | 				      cim_upintr_info); | 
 | 	if (fat) | 
 | 		csio_hw_fatal_err(hw); | 
 | } | 
 |  | 
 | /* | 
 |  * ULP RX interrupt handler. | 
 |  */ | 
 | static void csio_ulprx_intr_handler(struct csio_hw *hw) | 
 | { | 
 | 	static struct intr_info ulprx_intr_info[] = { | 
 | 		{ 0x1800000, "ULPRX context error", -1, 1 }, | 
 | 		{ 0x7fffff, "ULPRX parity error", -1, 1 }, | 
 | 		{ 0, NULL, 0, 0 } | 
 | 	}; | 
 |  | 
 | 	if (csio_handle_intr_status(hw, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) | 
 | 		csio_hw_fatal_err(hw); | 
 | } | 
 |  | 
 | /* | 
 |  * ULP TX interrupt handler. | 
 |  */ | 
 | static void csio_ulptx_intr_handler(struct csio_hw *hw) | 
 | { | 
 | 	static struct intr_info ulptx_intr_info[] = { | 
 | 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, | 
 | 		  0 }, | 
 | 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, | 
 | 		  0 }, | 
 | 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, | 
 | 		  0 }, | 
 | 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, | 
 | 		  0 }, | 
 | 		{ 0xfffffff, "ULPTX parity error", -1, 1 }, | 
 | 		{ 0, NULL, 0, 0 } | 
 | 	}; | 
 |  | 
 | 	if (csio_handle_intr_status(hw, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) | 
 | 		csio_hw_fatal_err(hw); | 
 | } | 
 |  | 
 | /* | 
 |  * PM TX interrupt handler. | 
 |  */ | 
 | static void csio_pmtx_intr_handler(struct csio_hw *hw) | 
 | { | 
 | 	static struct intr_info pmtx_intr_info[] = { | 
 | 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, | 
 | 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, | 
 | 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, | 
 | 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, | 
 | 		{ 0xffffff0, "PMTX framing error", -1, 1 }, | 
 | 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, | 
 | 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", -1, | 
 | 		  1 }, | 
 | 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, | 
 | 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, | 
 | 		{ 0, NULL, 0, 0 } | 
 | 	}; | 
 |  | 
 | 	if (csio_handle_intr_status(hw, PM_TX_INT_CAUSE_A, pmtx_intr_info)) | 
 | 		csio_hw_fatal_err(hw); | 
 | } | 
 |  | 
 | /* | 
 |  * PM RX interrupt handler. | 
 |  */ | 
 | static void csio_pmrx_intr_handler(struct csio_hw *hw) | 
 | { | 
 | 	static struct intr_info pmrx_intr_info[] = { | 
 | 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, | 
 | 		{ 0x3ffff0, "PMRX framing error", -1, 1 }, | 
 | 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, | 
 | 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", -1, | 
 | 		  1 }, | 
 | 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, | 
 | 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, | 
 | 		{ 0, NULL, 0, 0 } | 
 | 	}; | 
 |  | 
 | 	if (csio_handle_intr_status(hw, PM_RX_INT_CAUSE_A, pmrx_intr_info)) | 
 | 		csio_hw_fatal_err(hw); | 
 | } | 
 |  | 
 | /* | 
 |  * CPL switch interrupt handler. | 
 |  */ | 
 | static void csio_cplsw_intr_handler(struct csio_hw *hw) | 
 | { | 
 | 	static struct intr_info cplsw_intr_info[] = { | 
 | 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, | 
 | 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, | 
 | 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, | 
 | 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, | 
 | 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, | 
 | 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, | 
 | 		{ 0, NULL, 0, 0 } | 
 | 	}; | 
 |  | 
 | 	if (csio_handle_intr_status(hw, CPL_INTR_CAUSE_A, cplsw_intr_info)) | 
 | 		csio_hw_fatal_err(hw); | 
 | } | 
 |  | 
 | /* | 
 |  * LE interrupt handler. | 
 |  */ | 
 | static void csio_le_intr_handler(struct csio_hw *hw) | 
 | { | 
 | 	enum chip_type chip = CHELSIO_CHIP_VERSION(hw->chip_id); | 
 |  | 
 | 	static struct intr_info le_intr_info[] = { | 
 | 		{ LIPMISS_F, "LE LIP miss", -1, 0 }, | 
 | 		{ LIP0_F, "LE 0 LIP error", -1, 0 }, | 
 | 		{ PARITYERR_F, "LE parity error", -1, 1 }, | 
 | 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 }, | 
 | 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 }, | 
 | 		{ 0, NULL, 0, 0 } | 
 | 	}; | 
 |  | 
 | 	static struct intr_info t6_le_intr_info[] = { | 
 | 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 }, | 
 | 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 }, | 
 | 		{ TCAMINTPERR_F, "LE parity error", -1, 1 }, | 
 | 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 }, | 
 | 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 }, | 
 | 		{ 0, NULL, 0, 0 } | 
 | 	}; | 
 |  | 
 | 	if (csio_handle_intr_status(hw, LE_DB_INT_CAUSE_A, | 
 | 				    (chip == CHELSIO_T5) ? | 
 | 				    le_intr_info : t6_le_intr_info)) | 
 | 		csio_hw_fatal_err(hw); | 
 | } | 
 |  | 
 | /* | 
 |  * MPS interrupt handler. | 
 |  */ | 
 | static void csio_mps_intr_handler(struct csio_hw *hw) | 
 | { | 
 | 	static struct intr_info mps_rx_intr_info[] = { | 
 | 		{ 0xffffff, "MPS Rx parity error", -1, 1 }, | 
 | 		{ 0, NULL, 0, 0 } | 
 | 	}; | 
 | 	static struct intr_info mps_tx_intr_info[] = { | 
 | 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, | 
 | 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, | 
 | 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", | 
 | 		  -1, 1 }, | 
 | 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", | 
 | 		  -1, 1 }, | 
 | 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 }, | 
 | 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, | 
 | 		{ FRMERR_F, "MPS Tx framing error", -1, 1 }, | 
 | 		{ 0, NULL, 0, 0 } | 
 | 	}; | 
 | 	static struct intr_info mps_trc_intr_info[] = { | 
 | 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, | 
 | 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", | 
 | 		  -1, 1 }, | 
 | 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, | 
 | 		{ 0, NULL, 0, 0 } | 
 | 	}; | 
 | 	static struct intr_info mps_stat_sram_intr_info[] = { | 
 | 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, | 
 | 		{ 0, NULL, 0, 0 } | 
 | 	}; | 
 | 	static struct intr_info mps_stat_tx_intr_info[] = { | 
 | 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, | 
 | 		{ 0, NULL, 0, 0 } | 
 | 	}; | 
 | 	static struct intr_info mps_stat_rx_intr_info[] = { | 
 | 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, | 
 | 		{ 0, NULL, 0, 0 } | 
 | 	}; | 
 | 	static struct intr_info mps_cls_intr_info[] = { | 
 | 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, | 
 | 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, | 
 | 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, | 
 | 		{ 0, NULL, 0, 0 } | 
 | 	}; | 
 |  | 
 | 	int fat; | 
 |  | 
 | 	fat = csio_handle_intr_status(hw, MPS_RX_PERR_INT_CAUSE_A, | 
 | 				      mps_rx_intr_info) + | 
 | 	      csio_handle_intr_status(hw, MPS_TX_INT_CAUSE_A, | 
 | 				      mps_tx_intr_info) + | 
 | 	      csio_handle_intr_status(hw, MPS_TRC_INT_CAUSE_A, | 
 | 				      mps_trc_intr_info) + | 
 | 	      csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_SRAM_A, | 
 | 				      mps_stat_sram_intr_info) + | 
 | 	      csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, | 
 | 				      mps_stat_tx_intr_info) + | 
 | 	      csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, | 
 | 				      mps_stat_rx_intr_info) + | 
 | 	      csio_handle_intr_status(hw, MPS_CLS_INT_CAUSE_A, | 
 | 				      mps_cls_intr_info); | 
 |  | 
 | 	csio_wr_reg32(hw, 0, MPS_INT_CAUSE_A); | 
 | 	csio_rd_reg32(hw, MPS_INT_CAUSE_A);                    /* flush */ | 
 | 	if (fat) | 
 | 		csio_hw_fatal_err(hw); | 
 | } | 
 |  | 
 | #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ | 
 | 		      ECC_UE_INT_CAUSE_F) | 
 |  | 
 | /* | 
 |  * EDC/MC interrupt handler. | 
 |  */ | 
 | static void csio_mem_intr_handler(struct csio_hw *hw, int idx) | 
 | { | 
 | 	static const char name[3][5] = { "EDC0", "EDC1", "MC" }; | 
 |  | 
 | 	unsigned int addr, cnt_addr, v; | 
 |  | 
 | 	if (idx <= MEM_EDC1) { | 
 | 		addr = EDC_REG(EDC_INT_CAUSE_A, idx); | 
 | 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); | 
 | 	} else { | 
 | 		addr = MC_INT_CAUSE_A; | 
 | 		cnt_addr = MC_ECC_STATUS_A; | 
 | 	} | 
 |  | 
 | 	v = csio_rd_reg32(hw, addr) & MEM_INT_MASK; | 
 | 	if (v & PERR_INT_CAUSE_F) | 
 | 		csio_fatal(hw, "%s FIFO parity error\n", name[idx]); | 
 | 	if (v & ECC_CE_INT_CAUSE_F) { | 
 | 		uint32_t cnt = ECC_CECNT_G(csio_rd_reg32(hw, cnt_addr)); | 
 |  | 
 | 		csio_wr_reg32(hw, ECC_CECNT_V(ECC_CECNT_M), cnt_addr); | 
 | 		csio_warn(hw, "%u %s correctable ECC data error%s\n", | 
 | 			    cnt, name[idx], cnt > 1 ? "s" : ""); | 
 | 	} | 
 | 	if (v & ECC_UE_INT_CAUSE_F) | 
 | 		csio_fatal(hw, "%s uncorrectable ECC data error\n", name[idx]); | 
 |  | 
 | 	csio_wr_reg32(hw, v, addr); | 
 | 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) | 
 | 		csio_hw_fatal_err(hw); | 
 | } | 
 |  | 
 | /* | 
 |  * MA interrupt handler. | 
 |  */ | 
 | static void csio_ma_intr_handler(struct csio_hw *hw) | 
 | { | 
 | 	uint32_t v, status = csio_rd_reg32(hw, MA_INT_CAUSE_A); | 
 |  | 
 | 	if (status & MEM_PERR_INT_CAUSE_F) | 
 | 		csio_fatal(hw, "MA parity error, parity status %#x\n", | 
 | 			    csio_rd_reg32(hw, MA_PARITY_ERROR_STATUS_A)); | 
 | 	if (status & MEM_WRAP_INT_CAUSE_F) { | 
 | 		v = csio_rd_reg32(hw, MA_INT_WRAP_STATUS_A); | 
 | 		csio_fatal(hw, | 
 | 		   "MA address wrap-around error by client %u to address %#x\n", | 
 | 		   MEM_WRAP_CLIENT_NUM_G(v), MEM_WRAP_ADDRESS_G(v) << 4); | 
 | 	} | 
 | 	csio_wr_reg32(hw, status, MA_INT_CAUSE_A); | 
 | 	csio_hw_fatal_err(hw); | 
 | } | 
 |  | 
 | /* | 
 |  * SMB interrupt handler. | 
 |  */ | 
 | static void csio_smb_intr_handler(struct csio_hw *hw) | 
 | { | 
 | 	static struct intr_info smb_intr_info[] = { | 
 | 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, | 
 | 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, | 
 | 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, | 
 | 		{ 0, NULL, 0, 0 } | 
 | 	}; | 
 |  | 
 | 	if (csio_handle_intr_status(hw, SMB_INT_CAUSE_A, smb_intr_info)) | 
 | 		csio_hw_fatal_err(hw); | 
 | } | 
 |  | 
 | /* | 
 |  * NC-SI interrupt handler. | 
 |  */ | 
 | static void csio_ncsi_intr_handler(struct csio_hw *hw) | 
 | { | 
 | 	static struct intr_info ncsi_intr_info[] = { | 
 | 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, | 
 | 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, | 
 | 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, | 
 | 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, | 
 | 		{ 0, NULL, 0, 0 } | 
 | 	}; | 
 |  | 
 | 	if (csio_handle_intr_status(hw, NCSI_INT_CAUSE_A, ncsi_intr_info)) | 
 | 		csio_hw_fatal_err(hw); | 
 | } | 
 |  | 
 | /* | 
 |  * XGMAC interrupt handler. | 
 |  */ | 
 | static void csio_xgmac_intr_handler(struct csio_hw *hw, int port) | 
 | { | 
 | 	uint32_t v = csio_rd_reg32(hw, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A)); | 
 |  | 
 | 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; | 
 | 	if (!v) | 
 | 		return; | 
 |  | 
 | 	if (v & TXFIFO_PRTY_ERR_F) | 
 | 		csio_fatal(hw, "XGMAC %d Tx FIFO parity error\n", port); | 
 | 	if (v & RXFIFO_PRTY_ERR_F) | 
 | 		csio_fatal(hw, "XGMAC %d Rx FIFO parity error\n", port); | 
 | 	csio_wr_reg32(hw, v, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A)); | 
 | 	csio_hw_fatal_err(hw); | 
 | } | 
 |  | 
 | /* | 
 |  * PL interrupt handler. | 
 |  */ | 
 | static void csio_pl_intr_handler(struct csio_hw *hw) | 
 | { | 
 | 	static struct intr_info pl_intr_info[] = { | 
 | 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 }, | 
 | 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, | 
 | 		{ 0, NULL, 0, 0 } | 
 | 	}; | 
 |  | 
 | 	if (csio_handle_intr_status(hw, PL_PL_INT_CAUSE_A, pl_intr_info)) | 
 | 		csio_hw_fatal_err(hw); | 
 | } | 
 |  | 
 | /* | 
 |  *	csio_hw_slow_intr_handler - control path interrupt handler | 
 |  *	@hw: HW module | 
 |  * | 
 |  *	Interrupt handler for non-data global interrupt events, e.g., errors. | 
 |  *	The designation 'slow' is because it involves register reads, while | 
 |  *	data interrupts typically don't involve any MMIOs. | 
 |  */ | 
 | int | 
 | csio_hw_slow_intr_handler(struct csio_hw *hw) | 
 | { | 
 | 	uint32_t cause = csio_rd_reg32(hw, PL_INT_CAUSE_A); | 
 |  | 
 | 	if (!(cause & CSIO_GLBL_INTR_MASK)) { | 
 | 		CSIO_INC_STATS(hw, n_plint_unexp); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	csio_dbg(hw, "Slow interrupt! cause: 0x%x\n", cause); | 
 |  | 
 | 	CSIO_INC_STATS(hw, n_plint_cnt); | 
 |  | 
 | 	if (cause & CIM_F) | 
 | 		csio_cim_intr_handler(hw); | 
 |  | 
 | 	if (cause & MPS_F) | 
 | 		csio_mps_intr_handler(hw); | 
 |  | 
 | 	if (cause & NCSI_F) | 
 | 		csio_ncsi_intr_handler(hw); | 
 |  | 
 | 	if (cause & PL_F) | 
 | 		csio_pl_intr_handler(hw); | 
 |  | 
 | 	if (cause & SMB_F) | 
 | 		csio_smb_intr_handler(hw); | 
 |  | 
 | 	if (cause & XGMAC0_F) | 
 | 		csio_xgmac_intr_handler(hw, 0); | 
 |  | 
 | 	if (cause & XGMAC1_F) | 
 | 		csio_xgmac_intr_handler(hw, 1); | 
 |  | 
 | 	if (cause & XGMAC_KR0_F) | 
 | 		csio_xgmac_intr_handler(hw, 2); | 
 |  | 
 | 	if (cause & XGMAC_KR1_F) | 
 | 		csio_xgmac_intr_handler(hw, 3); | 
 |  | 
 | 	if (cause & PCIE_F) | 
 | 		hw->chip_ops->chip_pcie_intr_handler(hw); | 
 |  | 
 | 	if (cause & MC_F) | 
 | 		csio_mem_intr_handler(hw, MEM_MC); | 
 |  | 
 | 	if (cause & EDC0_F) | 
 | 		csio_mem_intr_handler(hw, MEM_EDC0); | 
 |  | 
 | 	if (cause & EDC1_F) | 
 | 		csio_mem_intr_handler(hw, MEM_EDC1); | 
 |  | 
 | 	if (cause & LE_F) | 
 | 		csio_le_intr_handler(hw); | 
 |  | 
 | 	if (cause & TP_F) | 
 | 		csio_tp_intr_handler(hw); | 
 |  | 
 | 	if (cause & MA_F) | 
 | 		csio_ma_intr_handler(hw); | 
 |  | 
 | 	if (cause & PM_TX_F) | 
 | 		csio_pmtx_intr_handler(hw); | 
 |  | 
 | 	if (cause & PM_RX_F) | 
 | 		csio_pmrx_intr_handler(hw); | 
 |  | 
 | 	if (cause & ULP_RX_F) | 
 | 		csio_ulprx_intr_handler(hw); | 
 |  | 
 | 	if (cause & CPL_SWITCH_F) | 
 | 		csio_cplsw_intr_handler(hw); | 
 |  | 
 | 	if (cause & SGE_F) | 
 | 		csio_sge_intr_handler(hw); | 
 |  | 
 | 	if (cause & ULP_TX_F) | 
 | 		csio_ulptx_intr_handler(hw); | 
 |  | 
 | 	/* Clear the interrupts just processed for which we are the master. */ | 
 | 	csio_wr_reg32(hw, cause & CSIO_GLBL_INTR_MASK, PL_INT_CAUSE_A); | 
 | 	csio_rd_reg32(hw, PL_INT_CAUSE_A); /* flush */ | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /***************************************************************************** | 
 |  * HW <--> mailbox interfacing routines. | 
 |  ****************************************************************************/ | 
 | /* | 
 |  * csio_mberr_worker - Worker thread (dpc) for mailbox/error completions | 
 |  * | 
 |  * @data: Private data pointer. | 
 |  * | 
 |  * Called from worker thread context. | 
 |  */ | 
 | static void | 
 | csio_mberr_worker(void *data) | 
 | { | 
 | 	struct csio_hw *hw = (struct csio_hw *)data; | 
 | 	struct csio_mbm *mbm = &hw->mbm; | 
 | 	LIST_HEAD(cbfn_q); | 
 | 	struct csio_mb *mbp_next; | 
 | 	int rv; | 
 |  | 
 | 	del_timer_sync(&mbm->timer); | 
 |  | 
 | 	spin_lock_irq(&hw->lock); | 
 | 	if (list_empty(&mbm->cbfn_q)) { | 
 | 		spin_unlock_irq(&hw->lock); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	list_splice_tail_init(&mbm->cbfn_q, &cbfn_q); | 
 | 	mbm->stats.n_cbfnq = 0; | 
 |  | 
 | 	/* Try to start waiting mailboxes */ | 
 | 	if (!list_empty(&mbm->req_q)) { | 
 | 		mbp_next = list_first_entry(&mbm->req_q, struct csio_mb, list); | 
 | 		list_del_init(&mbp_next->list); | 
 |  | 
 | 		rv = csio_mb_issue(hw, mbp_next); | 
 | 		if (rv != 0) | 
 | 			list_add_tail(&mbp_next->list, &mbm->req_q); | 
 | 		else | 
 | 			CSIO_DEC_STATS(mbm, n_activeq); | 
 | 	} | 
 | 	spin_unlock_irq(&hw->lock); | 
 |  | 
 | 	/* Now callback completions */ | 
 | 	csio_mb_completions(hw, &cbfn_q); | 
 | } | 
 |  | 
 | /* | 
 |  * csio_hw_mb_timer - Top-level Mailbox timeout handler. | 
 |  * | 
 |  * @data: private data pointer | 
 |  * | 
 |  **/ | 
 | static void | 
 | csio_hw_mb_timer(struct timer_list *t) | 
 | { | 
 | 	struct csio_mbm *mbm = from_timer(mbm, t, timer); | 
 | 	struct csio_hw *hw = mbm->hw; | 
 | 	struct csio_mb *mbp = NULL; | 
 |  | 
 | 	spin_lock_irq(&hw->lock); | 
 | 	mbp = csio_mb_tmo_handler(hw); | 
 | 	spin_unlock_irq(&hw->lock); | 
 |  | 
 | 	/* Call back the function for the timed-out Mailbox */ | 
 | 	if (mbp) | 
 | 		mbp->mb_cbfn(hw, mbp); | 
 |  | 
 | } | 
 |  | 
 | /* | 
 |  * csio_hw_mbm_cleanup - Cleanup Mailbox module. | 
 |  * @hw: HW module | 
 |  * | 
 |  * Called with lock held, should exit with lock held. | 
 |  * Cancels outstanding mailboxes (waiting, in-flight) and gathers them | 
 |  * into a local queue. Drops lock and calls the completions. Holds | 
 |  * lock and returns. | 
 |  */ | 
 | static void | 
 | csio_hw_mbm_cleanup(struct csio_hw *hw) | 
 | { | 
 | 	LIST_HEAD(cbfn_q); | 
 |  | 
 | 	csio_mb_cancel_all(hw, &cbfn_q); | 
 |  | 
 | 	spin_unlock_irq(&hw->lock); | 
 | 	csio_mb_completions(hw, &cbfn_q); | 
 | 	spin_lock_irq(&hw->lock); | 
 | } | 
 |  | 
 | /***************************************************************************** | 
 |  * Event handling | 
 |  ****************************************************************************/ | 
 | int | 
 | csio_enqueue_evt(struct csio_hw *hw, enum csio_evt type, void *evt_msg, | 
 | 			uint16_t len) | 
 | { | 
 | 	struct csio_evt_msg *evt_entry = NULL; | 
 |  | 
 | 	if (type >= CSIO_EVT_MAX) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (len > CSIO_EVT_MSG_SIZE) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (hw->flags & CSIO_HWF_FWEVT_STOP) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (list_empty(&hw->evt_free_q)) { | 
 | 		csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n", | 
 | 			 type, len); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	evt_entry = list_first_entry(&hw->evt_free_q, | 
 | 				     struct csio_evt_msg, list); | 
 | 	list_del_init(&evt_entry->list); | 
 |  | 
 | 	/* copy event msg and queue the event */ | 
 | 	evt_entry->type = type; | 
 | 	memcpy((void *)evt_entry->data, evt_msg, len); | 
 | 	list_add_tail(&evt_entry->list, &hw->evt_active_q); | 
 |  | 
 | 	CSIO_DEC_STATS(hw, n_evt_freeq); | 
 | 	CSIO_INC_STATS(hw, n_evt_activeq); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | csio_enqueue_evt_lock(struct csio_hw *hw, enum csio_evt type, void *evt_msg, | 
 | 			uint16_t len, bool msg_sg) | 
 | { | 
 | 	struct csio_evt_msg *evt_entry = NULL; | 
 | 	struct csio_fl_dma_buf *fl_sg; | 
 | 	uint32_t off = 0; | 
 | 	unsigned long flags; | 
 | 	int n, ret = 0; | 
 |  | 
 | 	if (type >= CSIO_EVT_MAX) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (len > CSIO_EVT_MSG_SIZE) | 
 | 		return -EINVAL; | 
 |  | 
 | 	spin_lock_irqsave(&hw->lock, flags); | 
 | 	if (hw->flags & CSIO_HWF_FWEVT_STOP) { | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (list_empty(&hw->evt_free_q)) { | 
 | 		csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n", | 
 | 			 type, len); | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	evt_entry = list_first_entry(&hw->evt_free_q, | 
 | 				     struct csio_evt_msg, list); | 
 | 	list_del_init(&evt_entry->list); | 
 |  | 
 | 	/* copy event msg and queue the event */ | 
 | 	evt_entry->type = type; | 
 |  | 
 | 	/* If Payload in SG list*/ | 
 | 	if (msg_sg) { | 
 | 		fl_sg = (struct csio_fl_dma_buf *) evt_msg; | 
 | 		for (n = 0; (n < CSIO_MAX_FLBUF_PER_IQWR && off < len); n++) { | 
 | 			memcpy((void *)((uintptr_t)evt_entry->data + off), | 
 | 				fl_sg->flbufs[n].vaddr, | 
 | 				fl_sg->flbufs[n].len); | 
 | 			off += fl_sg->flbufs[n].len; | 
 | 		} | 
 | 	} else | 
 | 		memcpy((void *)evt_entry->data, evt_msg, len); | 
 |  | 
 | 	list_add_tail(&evt_entry->list, &hw->evt_active_q); | 
 | 	CSIO_DEC_STATS(hw, n_evt_freeq); | 
 | 	CSIO_INC_STATS(hw, n_evt_activeq); | 
 | out: | 
 | 	spin_unlock_irqrestore(&hw->lock, flags); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void | 
 | csio_free_evt(struct csio_hw *hw, struct csio_evt_msg *evt_entry) | 
 | { | 
 | 	if (evt_entry) { | 
 | 		spin_lock_irq(&hw->lock); | 
 | 		list_del_init(&evt_entry->list); | 
 | 		list_add_tail(&evt_entry->list, &hw->evt_free_q); | 
 | 		CSIO_DEC_STATS(hw, n_evt_activeq); | 
 | 		CSIO_INC_STATS(hw, n_evt_freeq); | 
 | 		spin_unlock_irq(&hw->lock); | 
 | 	} | 
 | } | 
 |  | 
 | void | 
 | csio_evtq_flush(struct csio_hw *hw) | 
 | { | 
 | 	uint32_t count; | 
 | 	count = 30; | 
 | 	while (hw->flags & CSIO_HWF_FWEVT_PENDING && count--) { | 
 | 		spin_unlock_irq(&hw->lock); | 
 | 		msleep(2000); | 
 | 		spin_lock_irq(&hw->lock); | 
 | 	} | 
 |  | 
 | 	CSIO_DB_ASSERT(!(hw->flags & CSIO_HWF_FWEVT_PENDING)); | 
 | } | 
 |  | 
 | static void | 
 | csio_evtq_stop(struct csio_hw *hw) | 
 | { | 
 | 	hw->flags |= CSIO_HWF_FWEVT_STOP; | 
 | } | 
 |  | 
 | static void | 
 | csio_evtq_start(struct csio_hw *hw) | 
 | { | 
 | 	hw->flags &= ~CSIO_HWF_FWEVT_STOP; | 
 | } | 
 |  | 
 | static void | 
 | csio_evtq_cleanup(struct csio_hw *hw) | 
 | { | 
 | 	struct list_head *evt_entry, *next_entry; | 
 |  | 
 | 	/* Release outstanding events from activeq to freeq*/ | 
 | 	if (!list_empty(&hw->evt_active_q)) | 
 | 		list_splice_tail_init(&hw->evt_active_q, &hw->evt_free_q); | 
 |  | 
 | 	hw->stats.n_evt_activeq = 0; | 
 | 	hw->flags &= ~CSIO_HWF_FWEVT_PENDING; | 
 |  | 
 | 	/* Freeup event entry */ | 
 | 	list_for_each_safe(evt_entry, next_entry, &hw->evt_free_q) { | 
 | 		kfree(evt_entry); | 
 | 		CSIO_DEC_STATS(hw, n_evt_freeq); | 
 | 	} | 
 |  | 
 | 	hw->stats.n_evt_freeq = 0; | 
 | } | 
 |  | 
 |  | 
 | static void | 
 | csio_process_fwevtq_entry(struct csio_hw *hw, void *wr, uint32_t len, | 
 | 			  struct csio_fl_dma_buf *flb, void *priv) | 
 | { | 
 | 	__u8 op; | 
 | 	void *msg = NULL; | 
 | 	uint32_t msg_len = 0; | 
 | 	bool msg_sg = 0; | 
 |  | 
 | 	op = ((struct rss_header *) wr)->opcode; | 
 | 	if (op == CPL_FW6_PLD) { | 
 | 		CSIO_INC_STATS(hw, n_cpl_fw6_pld); | 
 | 		if (!flb || !flb->totlen) { | 
 | 			CSIO_INC_STATS(hw, n_cpl_unexp); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		msg = (void *) flb; | 
 | 		msg_len = flb->totlen; | 
 | 		msg_sg = 1; | 
 | 	} else if (op == CPL_FW6_MSG || op == CPL_FW4_MSG) { | 
 |  | 
 | 		CSIO_INC_STATS(hw, n_cpl_fw6_msg); | 
 | 		/* skip RSS header */ | 
 | 		msg = (void *)((uintptr_t)wr + sizeof(__be64)); | 
 | 		msg_len = (op == CPL_FW6_MSG) ? sizeof(struct cpl_fw6_msg) : | 
 | 			   sizeof(struct cpl_fw4_msg); | 
 | 	} else { | 
 | 		csio_warn(hw, "unexpected CPL %#x on FW event queue\n", op); | 
 | 		CSIO_INC_STATS(hw, n_cpl_unexp); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Enqueue event to EventQ. Events processing happens | 
 | 	 * in Event worker thread context | 
 | 	 */ | 
 | 	if (csio_enqueue_evt_lock(hw, CSIO_EVT_FW, msg, | 
 | 				  (uint16_t)msg_len, msg_sg)) | 
 | 		CSIO_INC_STATS(hw, n_evt_drop); | 
 | } | 
 |  | 
 | void | 
 | csio_evtq_worker(struct work_struct *work) | 
 | { | 
 | 	struct csio_hw *hw = container_of(work, struct csio_hw, evtq_work); | 
 | 	struct list_head *evt_entry, *next_entry; | 
 | 	LIST_HEAD(evt_q); | 
 | 	struct csio_evt_msg	*evt_msg; | 
 | 	struct cpl_fw6_msg *msg; | 
 | 	struct csio_rnode *rn; | 
 | 	int rv = 0; | 
 | 	uint8_t evtq_stop = 0; | 
 |  | 
 | 	csio_dbg(hw, "event worker thread active evts#%d\n", | 
 | 		 hw->stats.n_evt_activeq); | 
 |  | 
 | 	spin_lock_irq(&hw->lock); | 
 | 	while (!list_empty(&hw->evt_active_q)) { | 
 | 		list_splice_tail_init(&hw->evt_active_q, &evt_q); | 
 | 		spin_unlock_irq(&hw->lock); | 
 |  | 
 | 		list_for_each_safe(evt_entry, next_entry, &evt_q) { | 
 | 			evt_msg = (struct csio_evt_msg *) evt_entry; | 
 |  | 
 | 			/* Drop events if queue is STOPPED */ | 
 | 			spin_lock_irq(&hw->lock); | 
 | 			if (hw->flags & CSIO_HWF_FWEVT_STOP) | 
 | 				evtq_stop = 1; | 
 | 			spin_unlock_irq(&hw->lock); | 
 | 			if (evtq_stop) { | 
 | 				CSIO_INC_STATS(hw, n_evt_drop); | 
 | 				goto free_evt; | 
 | 			} | 
 |  | 
 | 			switch (evt_msg->type) { | 
 | 			case CSIO_EVT_FW: | 
 | 				msg = (struct cpl_fw6_msg *)(evt_msg->data); | 
 |  | 
 | 				if ((msg->opcode == CPL_FW6_MSG || | 
 | 				     msg->opcode == CPL_FW4_MSG) && | 
 | 				    !msg->type) { | 
 | 					rv = csio_mb_fwevt_handler(hw, | 
 | 								msg->data); | 
 | 					if (!rv) | 
 | 						break; | 
 | 					/* Handle any remaining fw events */ | 
 | 					csio_fcoe_fwevt_handler(hw, | 
 | 							msg->opcode, msg->data); | 
 | 				} else if (msg->opcode == CPL_FW6_PLD) { | 
 |  | 
 | 					csio_fcoe_fwevt_handler(hw, | 
 | 							msg->opcode, msg->data); | 
 | 				} else { | 
 | 					csio_warn(hw, | 
 | 					     "Unhandled FW msg op %x type %x\n", | 
 | 						  msg->opcode, msg->type); | 
 | 					CSIO_INC_STATS(hw, n_evt_drop); | 
 | 				} | 
 | 				break; | 
 |  | 
 | 			case CSIO_EVT_MBX: | 
 | 				csio_mberr_worker(hw); | 
 | 				break; | 
 |  | 
 | 			case CSIO_EVT_DEV_LOSS: | 
 | 				memcpy(&rn, evt_msg->data, sizeof(rn)); | 
 | 				csio_rnode_devloss_handler(rn); | 
 | 				break; | 
 |  | 
 | 			default: | 
 | 				csio_warn(hw, "Unhandled event %x on evtq\n", | 
 | 					  evt_msg->type); | 
 | 				CSIO_INC_STATS(hw, n_evt_unexp); | 
 | 				break; | 
 | 			} | 
 | free_evt: | 
 | 			csio_free_evt(hw, evt_msg); | 
 | 		} | 
 |  | 
 | 		spin_lock_irq(&hw->lock); | 
 | 	} | 
 | 	hw->flags &= ~CSIO_HWF_FWEVT_PENDING; | 
 | 	spin_unlock_irq(&hw->lock); | 
 | } | 
 |  | 
 | int | 
 | csio_fwevtq_handler(struct csio_hw *hw) | 
 | { | 
 | 	int rv; | 
 |  | 
 | 	if (csio_q_iqid(hw, hw->fwevt_iq_idx) == CSIO_MAX_QID) { | 
 | 		CSIO_INC_STATS(hw, n_int_stray); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	rv = csio_wr_process_iq_idx(hw, hw->fwevt_iq_idx, | 
 | 			   csio_process_fwevtq_entry, NULL); | 
 | 	return rv; | 
 | } | 
 |  | 
 | /**************************************************************************** | 
 |  * Entry points | 
 |  ****************************************************************************/ | 
 |  | 
 | /* Management module */ | 
 | /* | 
 |  * csio_mgmt_req_lookup - Lookup the given IO req exist in Active Q. | 
 |  * mgmt - mgmt module | 
 |  * @io_req - io request | 
 |  * | 
 |  * Return - 0:if given IO Req exists in active Q. | 
 |  *          -EINVAL  :if lookup fails. | 
 |  */ | 
 | int | 
 | csio_mgmt_req_lookup(struct csio_mgmtm *mgmtm, struct csio_ioreq *io_req) | 
 | { | 
 | 	struct list_head *tmp; | 
 |  | 
 | 	/* Lookup ioreq in the ACTIVEQ */ | 
 | 	list_for_each(tmp, &mgmtm->active_q) { | 
 | 		if (io_req == (struct csio_ioreq *)tmp) | 
 | 			return 0; | 
 | 	} | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | #define	ECM_MIN_TMO	1000	/* Minimum timeout value for req */ | 
 |  | 
 | /* | 
 |  * csio_mgmts_tmo_handler - MGMT IO Timeout handler. | 
 |  * @data - Event data. | 
 |  * | 
 |  * Return - none. | 
 |  */ | 
 | static void | 
 | csio_mgmt_tmo_handler(struct timer_list *t) | 
 | { | 
 | 	struct csio_mgmtm *mgmtm = from_timer(mgmtm, t, mgmt_timer); | 
 | 	struct list_head *tmp; | 
 | 	struct csio_ioreq *io_req; | 
 |  | 
 | 	csio_dbg(mgmtm->hw, "Mgmt timer invoked!\n"); | 
 |  | 
 | 	spin_lock_irq(&mgmtm->hw->lock); | 
 |  | 
 | 	list_for_each(tmp, &mgmtm->active_q) { | 
 | 		io_req = (struct csio_ioreq *) tmp; | 
 | 		io_req->tmo -= min_t(uint32_t, io_req->tmo, ECM_MIN_TMO); | 
 |  | 
 | 		if (!io_req->tmo) { | 
 | 			/* Dequeue the request from retry Q. */ | 
 | 			tmp = csio_list_prev(tmp); | 
 | 			list_del_init(&io_req->sm.sm_list); | 
 | 			if (io_req->io_cbfn) { | 
 | 				/* io_req will be freed by completion handler */ | 
 | 				io_req->wr_status = -ETIMEDOUT; | 
 | 				io_req->io_cbfn(mgmtm->hw, io_req); | 
 | 			} else { | 
 | 				CSIO_DB_ASSERT(0); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* If retry queue is not empty, re-arm timer */ | 
 | 	if (!list_empty(&mgmtm->active_q)) | 
 | 		mod_timer(&mgmtm->mgmt_timer, | 
 | 			  jiffies + msecs_to_jiffies(ECM_MIN_TMO)); | 
 | 	spin_unlock_irq(&mgmtm->hw->lock); | 
 | } | 
 |  | 
 | static void | 
 | csio_mgmtm_cleanup(struct csio_mgmtm *mgmtm) | 
 | { | 
 | 	struct csio_hw *hw = mgmtm->hw; | 
 | 	struct csio_ioreq *io_req; | 
 | 	struct list_head *tmp; | 
 | 	uint32_t count; | 
 |  | 
 | 	count = 30; | 
 | 	/* Wait for all outstanding req to complete gracefully */ | 
 | 	while ((!list_empty(&mgmtm->active_q)) && count--) { | 
 | 		spin_unlock_irq(&hw->lock); | 
 | 		msleep(2000); | 
 | 		spin_lock_irq(&hw->lock); | 
 | 	} | 
 |  | 
 | 	/* release outstanding req from ACTIVEQ */ | 
 | 	list_for_each(tmp, &mgmtm->active_q) { | 
 | 		io_req = (struct csio_ioreq *) tmp; | 
 | 		tmp = csio_list_prev(tmp); | 
 | 		list_del_init(&io_req->sm.sm_list); | 
 | 		mgmtm->stats.n_active--; | 
 | 		if (io_req->io_cbfn) { | 
 | 			/* io_req will be freed by completion handler */ | 
 | 			io_req->wr_status = -ETIMEDOUT; | 
 | 			io_req->io_cbfn(mgmtm->hw, io_req); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * csio_mgmt_init - Mgmt module init entry point | 
 |  * @mgmtsm - mgmt module | 
 |  * @hw	 - HW module | 
 |  * | 
 |  * Initialize mgmt timer, resource wait queue, active queue, | 
 |  * completion q. Allocate Egress and Ingress | 
 |  * WR queues and save off the queue index returned by the WR | 
 |  * module for future use. Allocate and save off mgmt reqs in the | 
 |  * mgmt_req_freelist for future use. Make sure their SM is initialized | 
 |  * to uninit state. | 
 |  * Returns: 0 - on success | 
 |  *          -ENOMEM   - on error. | 
 |  */ | 
 | static int | 
 | csio_mgmtm_init(struct csio_mgmtm *mgmtm, struct csio_hw *hw) | 
 | { | 
 | 	timer_setup(&mgmtm->mgmt_timer, csio_mgmt_tmo_handler, 0); | 
 |  | 
 | 	INIT_LIST_HEAD(&mgmtm->active_q); | 
 | 	INIT_LIST_HEAD(&mgmtm->cbfn_q); | 
 |  | 
 | 	mgmtm->hw = hw; | 
 | 	/*mgmtm->iq_idx = hw->fwevt_iq_idx;*/ | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * csio_mgmtm_exit - MGMT module exit entry point | 
 |  * @mgmtsm - mgmt module | 
 |  * | 
 |  * This function called during MGMT module uninit. | 
 |  * Stop timers, free ioreqs allocated. | 
 |  * Returns: None | 
 |  * | 
 |  */ | 
 | static void | 
 | csio_mgmtm_exit(struct csio_mgmtm *mgmtm) | 
 | { | 
 | 	del_timer_sync(&mgmtm->mgmt_timer); | 
 | } | 
 |  | 
 |  | 
 | /** | 
 |  * csio_hw_start - Kicks off the HW State machine | 
 |  * @hw:		Pointer to HW module. | 
 |  * | 
 |  * It is assumed that the initialization is a synchronous operation. | 
 |  * So when we return after posting the event, the HW SM should be in | 
 |  * the ready state, if there were no errors during init. | 
 |  */ | 
 | int | 
 | csio_hw_start(struct csio_hw *hw) | 
 | { | 
 | 	spin_lock_irq(&hw->lock); | 
 | 	csio_post_event(&hw->sm, CSIO_HWE_CFG); | 
 | 	spin_unlock_irq(&hw->lock); | 
 |  | 
 | 	if (csio_is_hw_ready(hw)) | 
 | 		return 0; | 
 | 	else if (csio_match_state(hw, csio_hws_uninit)) | 
 | 		return -EINVAL; | 
 | 	else | 
 | 		return -ENODEV; | 
 | } | 
 |  | 
 | int | 
 | csio_hw_stop(struct csio_hw *hw) | 
 | { | 
 | 	csio_post_event(&hw->sm, CSIO_HWE_PCI_REMOVE); | 
 |  | 
 | 	if (csio_is_hw_removing(hw)) | 
 | 		return 0; | 
 | 	else | 
 | 		return -EINVAL; | 
 | } | 
 |  | 
 | /* Max reset retries */ | 
 | #define CSIO_MAX_RESET_RETRIES	3 | 
 |  | 
 | /** | 
 |  * csio_hw_reset - Reset the hardware | 
 |  * @hw:		HW module. | 
 |  * | 
 |  * Caller should hold lock across this function. | 
 |  */ | 
 | int | 
 | csio_hw_reset(struct csio_hw *hw) | 
 | { | 
 | 	if (!csio_is_hw_master(hw)) | 
 | 		return -EPERM; | 
 |  | 
 | 	if (hw->rst_retries >= CSIO_MAX_RESET_RETRIES) { | 
 | 		csio_dbg(hw, "Max hw reset attempts reached.."); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	hw->rst_retries++; | 
 | 	csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET); | 
 |  | 
 | 	if (csio_is_hw_ready(hw)) { | 
 | 		hw->rst_retries = 0; | 
 | 		hw->stats.n_reset_start = jiffies_to_msecs(jiffies); | 
 | 		return 0; | 
 | 	} else | 
 | 		return -EINVAL; | 
 | } | 
 |  | 
 | /* | 
 |  * csio_hw_get_device_id - Caches the Adapter's vendor & device id. | 
 |  * @hw: HW module. | 
 |  */ | 
 | static void | 
 | csio_hw_get_device_id(struct csio_hw *hw) | 
 | { | 
 | 	/* Is the adapter device id cached already ?*/ | 
 | 	if (csio_is_dev_id_cached(hw)) | 
 | 		return; | 
 |  | 
 | 	/* Get the PCI vendor & device id */ | 
 | 	pci_read_config_word(hw->pdev, PCI_VENDOR_ID, | 
 | 			     &hw->params.pci.vendor_id); | 
 | 	pci_read_config_word(hw->pdev, PCI_DEVICE_ID, | 
 | 			     &hw->params.pci.device_id); | 
 |  | 
 | 	csio_dev_id_cached(hw); | 
 | 	hw->chip_id = (hw->params.pci.device_id & CSIO_HW_CHIP_MASK); | 
 |  | 
 | } /* csio_hw_get_device_id */ | 
 |  | 
 | /* | 
 |  * csio_hw_set_description - Set the model, description of the hw. | 
 |  * @hw: HW module. | 
 |  * @ven_id: PCI Vendor ID | 
 |  * @dev_id: PCI Device ID | 
 |  */ | 
 | static void | 
 | csio_hw_set_description(struct csio_hw *hw, uint16_t ven_id, uint16_t dev_id) | 
 | { | 
 | 	uint32_t adap_type, prot_type; | 
 |  | 
 | 	if (ven_id == CSIO_VENDOR_ID) { | 
 | 		prot_type = (dev_id & CSIO_ASIC_DEVID_PROTO_MASK); | 
 | 		adap_type = (dev_id & CSIO_ASIC_DEVID_TYPE_MASK); | 
 |  | 
 | 		if (prot_type == CSIO_T5_FCOE_ASIC) { | 
 | 			memcpy(hw->hw_ver, | 
 | 			       csio_t5_fcoe_adapters[adap_type].model_no, 16); | 
 | 			memcpy(hw->model_desc, | 
 | 			       csio_t5_fcoe_adapters[adap_type].description, | 
 | 			       32); | 
 | 		} else { | 
 | 			char tempName[32] = "Chelsio FCoE Controller"; | 
 | 			memcpy(hw->model_desc, tempName, 32); | 
 | 		} | 
 | 	} | 
 | } /* csio_hw_set_description */ | 
 |  | 
 | /** | 
 |  * csio_hw_init - Initialize HW module. | 
 |  * @hw:		Pointer to HW module. | 
 |  * | 
 |  * Initialize the members of the HW module. | 
 |  */ | 
 | int | 
 | csio_hw_init(struct csio_hw *hw) | 
 | { | 
 | 	int rv = -EINVAL; | 
 | 	uint32_t i; | 
 | 	uint16_t ven_id, dev_id; | 
 | 	struct csio_evt_msg	*evt_entry; | 
 |  | 
 | 	INIT_LIST_HEAD(&hw->sm.sm_list); | 
 | 	csio_init_state(&hw->sm, csio_hws_uninit); | 
 | 	spin_lock_init(&hw->lock); | 
 | 	INIT_LIST_HEAD(&hw->sln_head); | 
 |  | 
 | 	/* Get the PCI vendor & device id */ | 
 | 	csio_hw_get_device_id(hw); | 
 |  | 
 | 	strcpy(hw->name, CSIO_HW_NAME); | 
 |  | 
 | 	/* Initialize the HW chip ops T5 specific ops */ | 
 | 	hw->chip_ops = &t5_ops; | 
 |  | 
 | 	/* Set the model & its description */ | 
 |  | 
 | 	ven_id = hw->params.pci.vendor_id; | 
 | 	dev_id = hw->params.pci.device_id; | 
 |  | 
 | 	csio_hw_set_description(hw, ven_id, dev_id); | 
 |  | 
 | 	/* Initialize default log level */ | 
 | 	hw->params.log_level = (uint32_t) csio_dbg_level; | 
 |  | 
 | 	csio_set_fwevt_intr_idx(hw, -1); | 
 | 	csio_set_nondata_intr_idx(hw, -1); | 
 |  | 
 | 	/* Init all the modules: Mailbox, WorkRequest and Transport */ | 
 | 	if (csio_mbm_init(csio_hw_to_mbm(hw), hw, csio_hw_mb_timer)) | 
 | 		goto err; | 
 |  | 
 | 	rv = csio_wrm_init(csio_hw_to_wrm(hw), hw); | 
 | 	if (rv) | 
 | 		goto err_mbm_exit; | 
 |  | 
 | 	rv = csio_scsim_init(csio_hw_to_scsim(hw), hw); | 
 | 	if (rv) | 
 | 		goto err_wrm_exit; | 
 |  | 
 | 	rv = csio_mgmtm_init(csio_hw_to_mgmtm(hw), hw); | 
 | 	if (rv) | 
 | 		goto err_scsim_exit; | 
 | 	/* Pre-allocate evtq and initialize them */ | 
 | 	INIT_LIST_HEAD(&hw->evt_active_q); | 
 | 	INIT_LIST_HEAD(&hw->evt_free_q); | 
 | 	for (i = 0; i < csio_evtq_sz; i++) { | 
 |  | 
 | 		evt_entry = kzalloc(sizeof(struct csio_evt_msg), GFP_KERNEL); | 
 | 		if (!evt_entry) { | 
 | 			rv = -ENOMEM; | 
 | 			csio_err(hw, "Failed to initialize eventq"); | 
 | 			goto err_evtq_cleanup; | 
 | 		} | 
 |  | 
 | 		list_add_tail(&evt_entry->list, &hw->evt_free_q); | 
 | 		CSIO_INC_STATS(hw, n_evt_freeq); | 
 | 	} | 
 |  | 
 | 	hw->dev_num = dev_num; | 
 | 	dev_num++; | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_evtq_cleanup: | 
 | 	csio_evtq_cleanup(hw); | 
 | 	csio_mgmtm_exit(csio_hw_to_mgmtm(hw)); | 
 | err_scsim_exit: | 
 | 	csio_scsim_exit(csio_hw_to_scsim(hw)); | 
 | err_wrm_exit: | 
 | 	csio_wrm_exit(csio_hw_to_wrm(hw), hw); | 
 | err_mbm_exit: | 
 | 	csio_mbm_exit(csio_hw_to_mbm(hw)); | 
 | err: | 
 | 	return rv; | 
 | } | 
 |  | 
 | /** | 
 |  * csio_hw_exit - Un-initialize HW module. | 
 |  * @hw:		Pointer to HW module. | 
 |  * | 
 |  */ | 
 | void | 
 | csio_hw_exit(struct csio_hw *hw) | 
 | { | 
 | 	csio_evtq_cleanup(hw); | 
 | 	csio_mgmtm_exit(csio_hw_to_mgmtm(hw)); | 
 | 	csio_scsim_exit(csio_hw_to_scsim(hw)); | 
 | 	csio_wrm_exit(csio_hw_to_wrm(hw), hw); | 
 | 	csio_mbm_exit(csio_hw_to_mbm(hw)); | 
 | } |