| /* | 
 |  * hfcmulti.c  low level driver for hfc-4s/hfc-8s/hfc-e1 based cards | 
 |  * | 
 |  * Author	Andreas Eversberg (jolly@eversberg.eu) | 
 |  * ported to mqueue mechanism: | 
 |  *		Peter Sprenger (sprengermoving-bytes.de) | 
 |  * | 
 |  * inspired by existing hfc-pci driver: | 
 |  * Copyright 1999  by Werner Cornelius (werner@isdn-development.de) | 
 |  * Copyright 2008  by Karsten Keil (kkeil@suse.de) | 
 |  * Copyright 2008  by Andreas Eversberg (jolly@eversberg.eu) | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2, or (at your option) | 
 |  * any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
 |  * | 
 |  * | 
 |  * Thanks to Cologne Chip AG for this great controller! | 
 |  */ | 
 |  | 
 | /* | 
 |  * module parameters: | 
 |  * type: | 
 |  *	By default (0), the card is automatically detected. | 
 |  *	Or use the following combinations: | 
 |  *	Bit 0-7   = 0x00001 = HFC-E1 (1 port) | 
 |  * or	Bit 0-7   = 0x00004 = HFC-4S (4 ports) | 
 |  * or	Bit 0-7   = 0x00008 = HFC-8S (8 ports) | 
 |  *	Bit 8     = 0x00100 = uLaw (instead of aLaw) | 
 |  *	Bit 9     = 0x00200 = Disable DTMF detect on all B-channels via hardware | 
 |  *	Bit 10    = spare | 
 |  *	Bit 11    = 0x00800 = Force PCM bus into slave mode. (otherwhise auto) | 
 |  * or   Bit 12    = 0x01000 = Force PCM bus into master mode. (otherwhise auto) | 
 |  *	Bit 13	  = spare | 
 |  *	Bit 14    = 0x04000 = Use external ram (128K) | 
 |  *	Bit 15    = 0x08000 = Use external ram (512K) | 
 |  *	Bit 16    = 0x10000 = Use 64 timeslots instead of 32 | 
 |  * or	Bit 17    = 0x20000 = Use 128 timeslots instead of anything else | 
 |  *	Bit 18    = spare | 
 |  *	Bit 19    = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog) | 
 |  * (all other bits are reserved and shall be 0) | 
 |  *	example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM | 
 |  *		 bus (PCM master) | 
 |  * | 
 |  * port: (optional or required for all ports on all installed cards) | 
 |  *	HFC-4S/HFC-8S only bits: | 
 |  *	Bit 0	  = 0x001 = Use master clock for this S/T interface | 
 |  *			    (ony once per chip). | 
 |  *	Bit 1     = 0x002 = transmitter line setup (non capacitive mode) | 
 |  *			    Don't use this unless you know what you are doing! | 
 |  *	Bit 2     = 0x004 = Disable E-channel. (No E-channel processing) | 
 |  *	example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock | 
 |  *		 received from port 1 | 
 |  * | 
 |  *	HFC-E1 only bits: | 
 |  *	Bit 0     = 0x0001 = interface: 0=copper, 1=optical | 
 |  *	Bit 1     = 0x0002 = reserved (later for 32 B-channels transparent mode) | 
 |  *	Bit 2     = 0x0004 = Report LOS | 
 |  *	Bit 3     = 0x0008 = Report AIS | 
 |  *	Bit 4     = 0x0010 = Report SLIP | 
 |  *	Bit 5     = 0x0020 = Report RDI | 
 |  *	Bit 8     = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame | 
 |  *			     mode instead. | 
 |  *	Bit 9	  = 0x0200 = Force get clock from interface, even in NT mode. | 
 |  * or	Bit 10	  = 0x0400 = Force put clock to interface, even in TE mode. | 
 |  *	Bit 11    = 0x0800 = Use direct RX clock for PCM sync rather than PLL. | 
 |  *			     (E1 only) | 
 |  *	Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0 | 
 |  *			     for default. | 
 |  * (all other bits are reserved and shall be 0) | 
 |  * | 
 |  * debug: | 
 |  *	NOTE: only one debug value must be given for all cards | 
 |  *	enable debugging (see hfc_multi.h for debug options) | 
 |  * | 
 |  * poll: | 
 |  *	NOTE: only one poll value must be given for all cards | 
 |  *	Give the number of samples for each fifo process. | 
 |  *	By default 128 is used. Decrease to reduce delay, increase to | 
 |  *	reduce cpu load. If unsure, don't mess with it! | 
 |  *	Valid is 8, 16, 32, 64, 128, 256. | 
 |  * | 
 |  * pcm: | 
 |  *	NOTE: only one pcm value must be given for every card. | 
 |  *	The PCM bus id tells the mISDNdsp module about the connected PCM bus. | 
 |  *	By default (0), the PCM bus id is 100 for the card that is PCM master. | 
 |  *	If multiple cards are PCM master (because they are not interconnected), | 
 |  *	each card with PCM master will have increasing PCM id. | 
 |  *	All PCM busses with the same ID are expected to be connected and have | 
 |  *	common time slots slots. | 
 |  *	Only one chip of the PCM bus must be master, the others slave. | 
 |  *	-1 means no support of PCM bus not even. | 
 |  *	Omit this value, if all cards are interconnected or none is connected. | 
 |  *	If unsure, don't give this parameter. | 
 |  * | 
 |  * dmask and bmask: | 
 |  *	NOTE: One dmask value must be given for every HFC-E1 card. | 
 |  *	If omitted, the E1 card has D-channel on time slot 16, which is default. | 
 |  *	dmask is a 32 bit mask. The bit must be set for an alternate time slot. | 
 |  *	If multiple bits are set, multiple virtual card fragments are created. | 
 |  *	For each bit set, a bmask value must be given. Each bit on the bmask | 
 |  *	value stands for a B-channel. The bmask may not overlap with dmask or | 
 |  *	with other bmask values for that card. | 
 |  *	Example: dmask=0x00020002 bmask=0x0000fffc,0xfffc0000 | 
 |  *		This will create one fragment with D-channel on slot 1 with | 
 |  *		B-channels on slots 2..15, and a second fragment with D-channel | 
 |  *		on slot 17 with B-channels on slot 18..31. Slot 16 is unused. | 
 |  *	If bit 0 is set (dmask=0x00000001) the D-channel is on slot 0 and will | 
 |  *	not function. | 
 |  *	Example: dmask=0x00000001 bmask=0xfffffffe | 
 |  *		This will create a port with all 31 usable timeslots as | 
 |  *		B-channels. | 
 |  *	If no bits are set on bmask, no B-channel is created for that fragment. | 
 |  *	Example: dmask=0xfffffffe bmask=0,0,0,0.... (31 0-values for bmask) | 
 |  *		This will create 31 ports with one D-channel only. | 
 |  *	If you don't know how to use it, you don't need it! | 
 |  * | 
 |  * iomode: | 
 |  *	NOTE: only one mode value must be given for every card. | 
 |  *	-> See hfc_multi.h for HFC_IO_MODE_* values | 
 |  *	By default, the IO mode is pci memory IO (MEMIO). | 
 |  *	Some cards require specific IO mode, so it cannot be changed. | 
 |  *	It may be useful to set IO mode to register io (REGIO) to solve | 
 |  *	PCI bridge problems. | 
 |  *	If unsure, don't give this parameter. | 
 |  * | 
 |  * clockdelay_nt: | 
 |  *	NOTE: only one clockdelay_nt value must be given once for all cards. | 
 |  *	Give the value of the clock control register (A_ST_CLK_DLY) | 
 |  *	of the S/T interfaces in NT mode. | 
 |  *	This register is needed for the TBR3 certification, so don't change it. | 
 |  * | 
 |  * clockdelay_te: | 
 |  *	NOTE: only one clockdelay_te value must be given once | 
 |  *	Give the value of the clock control register (A_ST_CLK_DLY) | 
 |  *	of the S/T interfaces in TE mode. | 
 |  *	This register is needed for the TBR3 certification, so don't change it. | 
 |  * | 
 |  * clock: | 
 |  *	NOTE: only one clock value must be given once | 
 |  *	Selects interface with clock source for mISDN and applications. | 
 |  *	Set to card number starting with 1. Set to -1 to disable. | 
 |  *	By default, the first card is used as clock source. | 
 |  * | 
 |  * hwid: | 
 |  *	NOTE: only one hwid value must be given once | 
 |  *	Enable special embedded devices with XHFC controllers. | 
 |  */ | 
 |  | 
 | /* | 
 |  * debug register access (never use this, it will flood your system log) | 
 |  * #define HFC_REGISTER_DEBUG | 
 |  */ | 
 |  | 
 | #define HFC_MULTI_VERSION	"2.03" | 
 |  | 
 | #include <linux/interrupt.h> | 
 | #include <linux/module.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/mISDNhw.h> | 
 | #include <linux/mISDNdsp.h> | 
 |  | 
 | /* | 
 |   #define IRQCOUNT_DEBUG | 
 |   #define IRQ_DEBUG | 
 | */ | 
 |  | 
 | #include "hfc_multi.h" | 
 | #ifdef ECHOPREP | 
 | #include "gaintab.h" | 
 | #endif | 
 |  | 
 | #define	MAX_CARDS	8 | 
 | #define	MAX_PORTS	(8 * MAX_CARDS) | 
 | #define	MAX_FRAGS	(32 * MAX_CARDS) | 
 |  | 
 | static LIST_HEAD(HFClist); | 
 | static spinlock_t HFClock; /* global hfc list lock */ | 
 |  | 
 | static void ph_state_change(struct dchannel *); | 
 |  | 
 | static struct hfc_multi *syncmaster; | 
 | static int plxsd_master; /* if we have a master card (yet) */ | 
 | static spinlock_t plx_lock; /* may not acquire other lock inside */ | 
 |  | 
 | #define	TYP_E1		1 | 
 | #define	TYP_4S		4 | 
 | #define TYP_8S		8 | 
 |  | 
 | static int poll_timer = 6;	/* default = 128 samples = 16ms */ | 
 | /* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */ | 
 | static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30  }; | 
 | #define	CLKDEL_TE	0x0f	/* CLKDEL in TE mode */ | 
 | #define	CLKDEL_NT	0x6c	/* CLKDEL in NT mode | 
 | 				   (0x60 MUST be included!) */ | 
 |  | 
 | #define	DIP_4S	0x1		/* DIP Switches for Beronet 1S/2S/4S cards */ | 
 | #define	DIP_8S	0x2		/* DIP Switches for Beronet 8S+ cards */ | 
 | #define	DIP_E1	0x3		/* DIP Switches for Beronet E1 cards */ | 
 |  | 
 | /* | 
 |  * module stuff | 
 |  */ | 
 |  | 
 | static uint	type[MAX_CARDS]; | 
 | static int	pcm[MAX_CARDS]; | 
 | static uint	dmask[MAX_CARDS]; | 
 | static uint	bmask[MAX_FRAGS]; | 
 | static uint	iomode[MAX_CARDS]; | 
 | static uint	port[MAX_PORTS]; | 
 | static uint	debug; | 
 | static uint	poll; | 
 | static int	clock; | 
 | static uint	timer; | 
 | static uint	clockdelay_te = CLKDEL_TE; | 
 | static uint	clockdelay_nt = CLKDEL_NT; | 
 | #define HWID_NONE	0 | 
 | #define HWID_MINIP4	1 | 
 | #define HWID_MINIP8	2 | 
 | #define HWID_MINIP16	3 | 
 | static uint	hwid = HWID_NONE; | 
 |  | 
 | static int	HFC_cnt, E1_cnt, bmask_cnt, Port_cnt, PCM_cnt = 99; | 
 |  | 
 | MODULE_AUTHOR("Andreas Eversberg"); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_VERSION(HFC_MULTI_VERSION); | 
 | module_param(debug, uint, S_IRUGO | S_IWUSR); | 
 | module_param(poll, uint, S_IRUGO | S_IWUSR); | 
 | module_param(clock, int, S_IRUGO | S_IWUSR); | 
 | module_param(timer, uint, S_IRUGO | S_IWUSR); | 
 | module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR); | 
 | module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR); | 
 | module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR); | 
 | module_param_array(pcm, int, NULL, S_IRUGO | S_IWUSR); | 
 | module_param_array(dmask, uint, NULL, S_IRUGO | S_IWUSR); | 
 | module_param_array(bmask, uint, NULL, S_IRUGO | S_IWUSR); | 
 | module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR); | 
 | module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR); | 
 | module_param(hwid, uint, S_IRUGO | S_IWUSR); /* The hardware ID */ | 
 |  | 
 | #ifdef HFC_REGISTER_DEBUG | 
 | #define HFC_outb(hc, reg, val)					\ | 
 | 	(hc->HFC_outb(hc, reg, val, __func__, __LINE__)) | 
 | #define HFC_outb_nodebug(hc, reg, val)					\ | 
 | 	(hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__)) | 
 | #define HFC_inb(hc, reg)				\ | 
 | 	(hc->HFC_inb(hc, reg, __func__, __LINE__)) | 
 | #define HFC_inb_nodebug(hc, reg)				\ | 
 | 	(hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__)) | 
 | #define HFC_inw(hc, reg)				\ | 
 | 	(hc->HFC_inw(hc, reg, __func__, __LINE__)) | 
 | #define HFC_inw_nodebug(hc, reg)				\ | 
 | 	(hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__)) | 
 | #define HFC_wait(hc)				\ | 
 | 	(hc->HFC_wait(hc, __func__, __LINE__)) | 
 | #define HFC_wait_nodebug(hc)				\ | 
 | 	(hc->HFC_wait_nodebug(hc, __func__, __LINE__)) | 
 | #else | 
 | #define HFC_outb(hc, reg, val)		(hc->HFC_outb(hc, reg, val)) | 
 | #define HFC_outb_nodebug(hc, reg, val)	(hc->HFC_outb_nodebug(hc, reg, val)) | 
 | #define HFC_inb(hc, reg)		(hc->HFC_inb(hc, reg)) | 
 | #define HFC_inb_nodebug(hc, reg)	(hc->HFC_inb_nodebug(hc, reg)) | 
 | #define HFC_inw(hc, reg)		(hc->HFC_inw(hc, reg)) | 
 | #define HFC_inw_nodebug(hc, reg)	(hc->HFC_inw_nodebug(hc, reg)) | 
 | #define HFC_wait(hc)			(hc->HFC_wait(hc)) | 
 | #define HFC_wait_nodebug(hc)		(hc->HFC_wait_nodebug(hc)) | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_MISDN_HFCMULTI_8xx | 
 | #include "hfc_multi_8xx.h" | 
 | #endif | 
 |  | 
 | /* HFC_IO_MODE_PCIMEM */ | 
 | static void | 
 | #ifdef HFC_REGISTER_DEBUG | 
 | HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val, | 
 | 		const char *function, int line) | 
 | #else | 
 | 	HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val) | 
 | #endif | 
 | { | 
 | 	writeb(val, hc->pci_membase + reg); | 
 | } | 
 | static u_char | 
 | #ifdef HFC_REGISTER_DEBUG | 
 | HFC_inb_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line) | 
 | #else | 
 | 	HFC_inb_pcimem(struct hfc_multi *hc, u_char reg) | 
 | #endif | 
 | { | 
 | 	return readb(hc->pci_membase + reg); | 
 | } | 
 | static u_short | 
 | #ifdef HFC_REGISTER_DEBUG | 
 | HFC_inw_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line) | 
 | #else | 
 | 	HFC_inw_pcimem(struct hfc_multi *hc, u_char reg) | 
 | #endif | 
 | { | 
 | 	return readw(hc->pci_membase + reg); | 
 | } | 
 | static void | 
 | #ifdef HFC_REGISTER_DEBUG | 
 | HFC_wait_pcimem(struct hfc_multi *hc, const char *function, int line) | 
 | #else | 
 | 	HFC_wait_pcimem(struct hfc_multi *hc) | 
 | #endif | 
 | { | 
 | 	while (readb(hc->pci_membase + R_STATUS) & V_BUSY) | 
 | 		cpu_relax(); | 
 | } | 
 |  | 
 | /* HFC_IO_MODE_REGIO */ | 
 | static void | 
 | #ifdef HFC_REGISTER_DEBUG | 
 | HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val, | 
 | 	       const char *function, int line) | 
 | #else | 
 | 	HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val) | 
 | #endif | 
 | { | 
 | 	outb(reg, hc->pci_iobase + 4); | 
 | 	outb(val, hc->pci_iobase); | 
 | } | 
 | static u_char | 
 | #ifdef HFC_REGISTER_DEBUG | 
 | HFC_inb_regio(struct hfc_multi *hc, u_char reg, const char *function, int line) | 
 | #else | 
 | 	HFC_inb_regio(struct hfc_multi *hc, u_char reg) | 
 | #endif | 
 | { | 
 | 	outb(reg, hc->pci_iobase + 4); | 
 | 	return inb(hc->pci_iobase); | 
 | } | 
 | static u_short | 
 | #ifdef HFC_REGISTER_DEBUG | 
 | HFC_inw_regio(struct hfc_multi *hc, u_char reg, const char *function, int line) | 
 | #else | 
 | 	HFC_inw_regio(struct hfc_multi *hc, u_char reg) | 
 | #endif | 
 | { | 
 | 	outb(reg, hc->pci_iobase + 4); | 
 | 	return inw(hc->pci_iobase); | 
 | } | 
 | static void | 
 | #ifdef HFC_REGISTER_DEBUG | 
 | HFC_wait_regio(struct hfc_multi *hc, const char *function, int line) | 
 | #else | 
 | 	HFC_wait_regio(struct hfc_multi *hc) | 
 | #endif | 
 | { | 
 | 	outb(R_STATUS, hc->pci_iobase + 4); | 
 | 	while (inb(hc->pci_iobase) & V_BUSY) | 
 | 		cpu_relax(); | 
 | } | 
 |  | 
 | #ifdef HFC_REGISTER_DEBUG | 
 | static void | 
 | HFC_outb_debug(struct hfc_multi *hc, u_char reg, u_char val, | 
 | 	       const char *function, int line) | 
 | { | 
 | 	char regname[256] = "", bits[9] = "xxxxxxxx"; | 
 | 	int i; | 
 |  | 
 | 	i = -1; | 
 | 	while (hfc_register_names[++i].name) { | 
 | 		if (hfc_register_names[i].reg == reg) | 
 | 			strcat(regname, hfc_register_names[i].name); | 
 | 	} | 
 | 	if (regname[0] == '\0') | 
 | 		strcpy(regname, "register"); | 
 |  | 
 | 	bits[7] = '0' + (!!(val & 1)); | 
 | 	bits[6] = '0' + (!!(val & 2)); | 
 | 	bits[5] = '0' + (!!(val & 4)); | 
 | 	bits[4] = '0' + (!!(val & 8)); | 
 | 	bits[3] = '0' + (!!(val & 16)); | 
 | 	bits[2] = '0' + (!!(val & 32)); | 
 | 	bits[1] = '0' + (!!(val & 64)); | 
 | 	bits[0] = '0' + (!!(val & 128)); | 
 | 	printk(KERN_DEBUG | 
 | 	       "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n", | 
 | 	       hc->id, reg, regname, val, bits, function, line); | 
 | 	HFC_outb_nodebug(hc, reg, val); | 
 | } | 
 | static u_char | 
 | HFC_inb_debug(struct hfc_multi *hc, u_char reg, const char *function, int line) | 
 | { | 
 | 	char regname[256] = "", bits[9] = "xxxxxxxx"; | 
 | 	u_char val = HFC_inb_nodebug(hc, reg); | 
 | 	int i; | 
 |  | 
 | 	i = 0; | 
 | 	while (hfc_register_names[i++].name) | 
 | 		; | 
 | 	while (hfc_register_names[++i].name) { | 
 | 		if (hfc_register_names[i].reg == reg) | 
 | 			strcat(regname, hfc_register_names[i].name); | 
 | 	} | 
 | 	if (regname[0] == '\0') | 
 | 		strcpy(regname, "register"); | 
 |  | 
 | 	bits[7] = '0' + (!!(val & 1)); | 
 | 	bits[6] = '0' + (!!(val & 2)); | 
 | 	bits[5] = '0' + (!!(val & 4)); | 
 | 	bits[4] = '0' + (!!(val & 8)); | 
 | 	bits[3] = '0' + (!!(val & 16)); | 
 | 	bits[2] = '0' + (!!(val & 32)); | 
 | 	bits[1] = '0' + (!!(val & 64)); | 
 | 	bits[0] = '0' + (!!(val & 128)); | 
 | 	printk(KERN_DEBUG | 
 | 	       "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n", | 
 | 	       hc->id, reg, regname, val, bits, function, line); | 
 | 	return val; | 
 | } | 
 | static u_short | 
 | HFC_inw_debug(struct hfc_multi *hc, u_char reg, const char *function, int line) | 
 | { | 
 | 	char regname[256] = ""; | 
 | 	u_short val = HFC_inw_nodebug(hc, reg); | 
 | 	int i; | 
 |  | 
 | 	i = 0; | 
 | 	while (hfc_register_names[i++].name) | 
 | 		; | 
 | 	while (hfc_register_names[++i].name) { | 
 | 		if (hfc_register_names[i].reg == reg) | 
 | 			strcat(regname, hfc_register_names[i].name); | 
 | 	} | 
 | 	if (regname[0] == '\0') | 
 | 		strcpy(regname, "register"); | 
 |  | 
 | 	printk(KERN_DEBUG | 
 | 	       "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n", | 
 | 	       hc->id, reg, regname, val, function, line); | 
 | 	return val; | 
 | } | 
 | static void | 
 | HFC_wait_debug(struct hfc_multi *hc, const char *function, int line) | 
 | { | 
 | 	printk(KERN_DEBUG "HFC_wait(chip %d); in %s() line %d\n", | 
 | 	       hc->id, function, line); | 
 | 	HFC_wait_nodebug(hc); | 
 | } | 
 | #endif | 
 |  | 
 | /* write fifo data (REGIO) */ | 
 | static void | 
 | write_fifo_regio(struct hfc_multi *hc, u_char *data, int len) | 
 | { | 
 | 	outb(A_FIFO_DATA0, (hc->pci_iobase) + 4); | 
 | 	while (len >> 2) { | 
 | 		outl(cpu_to_le32(*(u32 *)data), hc->pci_iobase); | 
 | 		data += 4; | 
 | 		len -= 4; | 
 | 	} | 
 | 	while (len >> 1) { | 
 | 		outw(cpu_to_le16(*(u16 *)data), hc->pci_iobase); | 
 | 		data += 2; | 
 | 		len -= 2; | 
 | 	} | 
 | 	while (len) { | 
 | 		outb(*data, hc->pci_iobase); | 
 | 		data++; | 
 | 		len--; | 
 | 	} | 
 | } | 
 | /* write fifo data (PCIMEM) */ | 
 | static void | 
 | write_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len) | 
 | { | 
 | 	while (len >> 2) { | 
 | 		writel(cpu_to_le32(*(u32 *)data), | 
 | 		       hc->pci_membase + A_FIFO_DATA0); | 
 | 		data += 4; | 
 | 		len -= 4; | 
 | 	} | 
 | 	while (len >> 1) { | 
 | 		writew(cpu_to_le16(*(u16 *)data), | 
 | 		       hc->pci_membase + A_FIFO_DATA0); | 
 | 		data += 2; | 
 | 		len -= 2; | 
 | 	} | 
 | 	while (len) { | 
 | 		writeb(*data, hc->pci_membase + A_FIFO_DATA0); | 
 | 		data++; | 
 | 		len--; | 
 | 	} | 
 | } | 
 |  | 
 | /* read fifo data (REGIO) */ | 
 | static void | 
 | read_fifo_regio(struct hfc_multi *hc, u_char *data, int len) | 
 | { | 
 | 	outb(A_FIFO_DATA0, (hc->pci_iobase) + 4); | 
 | 	while (len >> 2) { | 
 | 		*(u32 *)data = le32_to_cpu(inl(hc->pci_iobase)); | 
 | 		data += 4; | 
 | 		len -= 4; | 
 | 	} | 
 | 	while (len >> 1) { | 
 | 		*(u16 *)data = le16_to_cpu(inw(hc->pci_iobase)); | 
 | 		data += 2; | 
 | 		len -= 2; | 
 | 	} | 
 | 	while (len) { | 
 | 		*data = inb(hc->pci_iobase); | 
 | 		data++; | 
 | 		len--; | 
 | 	} | 
 | } | 
 |  | 
 | /* read fifo data (PCIMEM) */ | 
 | static void | 
 | read_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len) | 
 | { | 
 | 	while (len >> 2) { | 
 | 		*(u32 *)data = | 
 | 			le32_to_cpu(readl(hc->pci_membase + A_FIFO_DATA0)); | 
 | 		data += 4; | 
 | 		len -= 4; | 
 | 	} | 
 | 	while (len >> 1) { | 
 | 		*(u16 *)data = | 
 | 			le16_to_cpu(readw(hc->pci_membase + A_FIFO_DATA0)); | 
 | 		data += 2; | 
 | 		len -= 2; | 
 | 	} | 
 | 	while (len) { | 
 | 		*data = readb(hc->pci_membase + A_FIFO_DATA0); | 
 | 		data++; | 
 | 		len--; | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | enable_hwirq(struct hfc_multi *hc) | 
 | { | 
 | 	hc->hw.r_irq_ctrl |= V_GLOB_IRQ_EN; | 
 | 	HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl); | 
 | } | 
 |  | 
 | static void | 
 | disable_hwirq(struct hfc_multi *hc) | 
 | { | 
 | 	hc->hw.r_irq_ctrl &= ~((u_char)V_GLOB_IRQ_EN); | 
 | 	HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl); | 
 | } | 
 |  | 
 | #define	NUM_EC 2 | 
 | #define	MAX_TDM_CHAN 32 | 
 |  | 
 |  | 
 | static inline void | 
 | enablepcibridge(struct hfc_multi *c) | 
 | { | 
 | 	HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); /* was _io before */ | 
 | } | 
 |  | 
 | static inline void | 
 | disablepcibridge(struct hfc_multi *c) | 
 | { | 
 | 	HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x2); /* was _io before */ | 
 | } | 
 |  | 
 | static inline unsigned char | 
 | readpcibridge(struct hfc_multi *hc, unsigned char address) | 
 | { | 
 | 	unsigned short cipv; | 
 | 	unsigned char data; | 
 |  | 
 | 	if (!hc->pci_iobase) | 
 | 		return 0; | 
 |  | 
 | 	/* slow down a PCI read access by 1 PCI clock cycle */ | 
 | 	HFC_outb(hc, R_CTRL, 0x4); /*was _io before*/ | 
 |  | 
 | 	if (address == 0) | 
 | 		cipv = 0x4000; | 
 | 	else | 
 | 		cipv = 0x5800; | 
 |  | 
 | 	/* select local bridge port address by writing to CIP port */ | 
 | 	/* data = HFC_inb(c, cipv); * was _io before */ | 
 | 	outw(cipv, hc->pci_iobase + 4); | 
 | 	data = inb(hc->pci_iobase); | 
 |  | 
 | 	/* restore R_CTRL for normal PCI read cycle speed */ | 
 | 	HFC_outb(hc, R_CTRL, 0x0); /* was _io before */ | 
 |  | 
 | 	return data; | 
 | } | 
 |  | 
 | static inline void | 
 | writepcibridge(struct hfc_multi *hc, unsigned char address, unsigned char data) | 
 | { | 
 | 	unsigned short cipv; | 
 | 	unsigned int datav; | 
 |  | 
 | 	if (!hc->pci_iobase) | 
 | 		return; | 
 |  | 
 | 	if (address == 0) | 
 | 		cipv = 0x4000; | 
 | 	else | 
 | 		cipv = 0x5800; | 
 |  | 
 | 	/* select local bridge port address by writing to CIP port */ | 
 | 	outw(cipv, hc->pci_iobase + 4); | 
 | 	/* define a 32 bit dword with 4 identical bytes for write sequence */ | 
 | 	datav = data | ((__u32) data << 8) | ((__u32) data << 16) | | 
 | 		((__u32) data << 24); | 
 |  | 
 | 	/* | 
 | 	 * write this 32 bit dword to the bridge data port | 
 | 	 * this will initiate a write sequence of up to 4 writes to the same | 
 | 	 * address on the local bus interface the number of write accesses | 
 | 	 * is undefined but >=1 and depends on the next PCI transaction | 
 | 	 * during write sequence on the local bus | 
 | 	 */ | 
 | 	outl(datav, hc->pci_iobase); | 
 | } | 
 |  | 
 | static inline void | 
 | cpld_set_reg(struct hfc_multi *hc, unsigned char reg) | 
 | { | 
 | 	/* Do data pin read low byte */ | 
 | 	HFC_outb(hc, R_GPIO_OUT1, reg); | 
 | } | 
 |  | 
 | static inline void | 
 | cpld_write_reg(struct hfc_multi *hc, unsigned char reg, unsigned char val) | 
 | { | 
 | 	cpld_set_reg(hc, reg); | 
 |  | 
 | 	enablepcibridge(hc); | 
 | 	writepcibridge(hc, 1, val); | 
 | 	disablepcibridge(hc); | 
 |  | 
 | 	return; | 
 | } | 
 |  | 
 | static inline unsigned char | 
 | cpld_read_reg(struct hfc_multi *hc, unsigned char reg) | 
 | { | 
 | 	unsigned char bytein; | 
 |  | 
 | 	cpld_set_reg(hc, reg); | 
 |  | 
 | 	/* Do data pin read low byte */ | 
 | 	HFC_outb(hc, R_GPIO_OUT1, reg); | 
 |  | 
 | 	enablepcibridge(hc); | 
 | 	bytein = readpcibridge(hc, 1); | 
 | 	disablepcibridge(hc); | 
 |  | 
 | 	return bytein; | 
 | } | 
 |  | 
 | static inline void | 
 | vpm_write_address(struct hfc_multi *hc, unsigned short addr) | 
 | { | 
 | 	cpld_write_reg(hc, 0, 0xff & addr); | 
 | 	cpld_write_reg(hc, 1, 0x01 & (addr >> 8)); | 
 | } | 
 |  | 
 | static inline unsigned short | 
 | vpm_read_address(struct hfc_multi *c) | 
 | { | 
 | 	unsigned short addr; | 
 | 	unsigned short highbit; | 
 |  | 
 | 	addr = cpld_read_reg(c, 0); | 
 | 	highbit = cpld_read_reg(c, 1); | 
 |  | 
 | 	addr = addr | (highbit << 8); | 
 |  | 
 | 	return addr & 0x1ff; | 
 | } | 
 |  | 
 | static inline unsigned char | 
 | vpm_in(struct hfc_multi *c, int which, unsigned short addr) | 
 | { | 
 | 	unsigned char res; | 
 |  | 
 | 	vpm_write_address(c, addr); | 
 |  | 
 | 	if (!which) | 
 | 		cpld_set_reg(c, 2); | 
 | 	else | 
 | 		cpld_set_reg(c, 3); | 
 |  | 
 | 	enablepcibridge(c); | 
 | 	res = readpcibridge(c, 1); | 
 | 	disablepcibridge(c); | 
 |  | 
 | 	cpld_set_reg(c, 0); | 
 |  | 
 | 	return res; | 
 | } | 
 |  | 
 | static inline void | 
 | vpm_out(struct hfc_multi *c, int which, unsigned short addr, | 
 | 	unsigned char data) | 
 | { | 
 | 	vpm_write_address(c, addr); | 
 |  | 
 | 	enablepcibridge(c); | 
 |  | 
 | 	if (!which) | 
 | 		cpld_set_reg(c, 2); | 
 | 	else | 
 | 		cpld_set_reg(c, 3); | 
 |  | 
 | 	writepcibridge(c, 1, data); | 
 |  | 
 | 	cpld_set_reg(c, 0); | 
 |  | 
 | 	disablepcibridge(c); | 
 |  | 
 | 	{ | 
 | 		unsigned char regin; | 
 | 		regin = vpm_in(c, which, addr); | 
 | 		if (regin != data) | 
 | 			printk(KERN_DEBUG "Wrote 0x%x to register 0x%x but got back " | 
 | 			       "0x%x\n", data, addr, regin); | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 |  | 
 | static void | 
 | vpm_init(struct hfc_multi *wc) | 
 | { | 
 | 	unsigned char reg; | 
 | 	unsigned int mask; | 
 | 	unsigned int i, x, y; | 
 | 	unsigned int ver; | 
 |  | 
 | 	for (x = 0; x < NUM_EC; x++) { | 
 | 		/* Setup GPIO's */ | 
 | 		if (!x) { | 
 | 			ver = vpm_in(wc, x, 0x1a0); | 
 | 			printk(KERN_DEBUG "VPM: Chip %d: ver %02x\n", x, ver); | 
 | 		} | 
 |  | 
 | 		for (y = 0; y < 4; y++) { | 
 | 			vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */ | 
 | 			vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */ | 
 | 			vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */ | 
 | 		} | 
 |  | 
 | 		/* Setup TDM path - sets fsync and tdm_clk as inputs */ | 
 | 		reg = vpm_in(wc, x, 0x1a3); /* misc_con */ | 
 | 		vpm_out(wc, x, 0x1a3, reg & ~2); | 
 |  | 
 | 		/* Setup Echo length (256 taps) */ | 
 | 		vpm_out(wc, x, 0x022, 1); | 
 | 		vpm_out(wc, x, 0x023, 0xff); | 
 |  | 
 | 		/* Setup timeslots */ | 
 | 		vpm_out(wc, x, 0x02f, 0x00); | 
 | 		mask = 0x02020202 << (x * 4); | 
 |  | 
 | 		/* Setup the tdm channel masks for all chips */ | 
 | 		for (i = 0; i < 4; i++) | 
 | 			vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff); | 
 |  | 
 | 		/* Setup convergence rate */ | 
 | 		printk(KERN_DEBUG "VPM: A-law mode\n"); | 
 | 		reg = 0x00 | 0x10 | 0x01; | 
 | 		vpm_out(wc, x, 0x20, reg); | 
 | 		printk(KERN_DEBUG "VPM reg 0x20 is %x\n", reg); | 
 | 		/*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */ | 
 |  | 
 | 		vpm_out(wc, x, 0x24, 0x02); | 
 | 		reg = vpm_in(wc, x, 0x24); | 
 | 		printk(KERN_DEBUG "NLP Thresh is set to %d (0x%x)\n", reg, reg); | 
 |  | 
 | 		/* Initialize echo cans */ | 
 | 		for (i = 0; i < MAX_TDM_CHAN; i++) { | 
 | 			if (mask & (0x00000001 << i)) | 
 | 				vpm_out(wc, x, i, 0x00); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * ARM arch at least disallows a udelay of | 
 | 		 * more than 2ms... it gives a fake "__bad_udelay" | 
 | 		 * reference at link-time. | 
 | 		 * long delays in kernel code are pretty sucky anyway | 
 | 		 * for now work around it using 5 x 2ms instead of 1 x 10ms | 
 | 		 */ | 
 |  | 
 | 		udelay(2000); | 
 | 		udelay(2000); | 
 | 		udelay(2000); | 
 | 		udelay(2000); | 
 | 		udelay(2000); | 
 |  | 
 | 		/* Put in bypass mode */ | 
 | 		for (i = 0; i < MAX_TDM_CHAN; i++) { | 
 | 			if (mask & (0x00000001 << i)) | 
 | 				vpm_out(wc, x, i, 0x01); | 
 | 		} | 
 |  | 
 | 		/* Enable bypass */ | 
 | 		for (i = 0; i < MAX_TDM_CHAN; i++) { | 
 | 			if (mask & (0x00000001 << i)) | 
 | 				vpm_out(wc, x, 0x78 + i, 0x01); | 
 | 		} | 
 |  | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef UNUSED | 
 | static void | 
 | vpm_check(struct hfc_multi *hctmp) | 
 | { | 
 | 	unsigned char gpi2; | 
 |  | 
 | 	gpi2 = HFC_inb(hctmp, R_GPI_IN2); | 
 |  | 
 | 	if ((gpi2 & 0x3) != 0x3) | 
 | 		printk(KERN_DEBUG "Got interrupt 0x%x from VPM!\n", gpi2); | 
 | } | 
 | #endif /* UNUSED */ | 
 |  | 
 |  | 
 | /* | 
 |  * Interface to enable/disable the HW Echocan | 
 |  * | 
 |  * these functions are called within a spin_lock_irqsave on | 
 |  * the channel instance lock, so we are not disturbed by irqs | 
 |  * | 
 |  * we can later easily change the interface to make  other | 
 |  * things configurable, for now we configure the taps | 
 |  * | 
 |  */ | 
 |  | 
 | static void | 
 | vpm_echocan_on(struct hfc_multi *hc, int ch, int taps) | 
 | { | 
 | 	unsigned int timeslot; | 
 | 	unsigned int unit; | 
 | 	struct bchannel *bch = hc->chan[ch].bch; | 
 | #ifdef TXADJ | 
 | 	int txadj = -4; | 
 | 	struct sk_buff *skb; | 
 | #endif | 
 | 	if (hc->chan[ch].protocol != ISDN_P_B_RAW) | 
 | 		return; | 
 |  | 
 | 	if (!bch) | 
 | 		return; | 
 |  | 
 | #ifdef TXADJ | 
 | 	skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX, | 
 | 			       sizeof(int), &txadj, GFP_ATOMIC); | 
 | 	if (skb) | 
 | 		recv_Bchannel_skb(bch, skb); | 
 | #endif | 
 |  | 
 | 	timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1; | 
 | 	unit = ch % 4; | 
 |  | 
 | 	printk(KERN_NOTICE "vpm_echocan_on called taps [%d] on timeslot %d\n", | 
 | 	       taps, timeslot); | 
 |  | 
 | 	vpm_out(hc, unit, timeslot, 0x7e); | 
 | } | 
 |  | 
 | static void | 
 | vpm_echocan_off(struct hfc_multi *hc, int ch) | 
 | { | 
 | 	unsigned int timeslot; | 
 | 	unsigned int unit; | 
 | 	struct bchannel *bch = hc->chan[ch].bch; | 
 | #ifdef TXADJ | 
 | 	int txadj = 0; | 
 | 	struct sk_buff *skb; | 
 | #endif | 
 |  | 
 | 	if (hc->chan[ch].protocol != ISDN_P_B_RAW) | 
 | 		return; | 
 |  | 
 | 	if (!bch) | 
 | 		return; | 
 |  | 
 | #ifdef TXADJ | 
 | 	skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX, | 
 | 			       sizeof(int), &txadj, GFP_ATOMIC); | 
 | 	if (skb) | 
 | 		recv_Bchannel_skb(bch, skb); | 
 | #endif | 
 |  | 
 | 	timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1; | 
 | 	unit = ch % 4; | 
 |  | 
 | 	printk(KERN_NOTICE "vpm_echocan_off called on timeslot %d\n", | 
 | 	       timeslot); | 
 | 	/* FILLME */ | 
 | 	vpm_out(hc, unit, timeslot, 0x01); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Speech Design resync feature | 
 |  * NOTE: This is called sometimes outside interrupt handler. | 
 |  * We must lock irqsave, so no other interrupt (other card) will occur! | 
 |  * Also multiple interrupts may nest, so must lock each access (lists, card)! | 
 |  */ | 
 | static inline void | 
 | hfcmulti_resync(struct hfc_multi *locked, struct hfc_multi *newmaster, int rm) | 
 | { | 
 | 	struct hfc_multi *hc, *next, *pcmmaster = NULL; | 
 | 	void __iomem *plx_acc_32; | 
 | 	u_int pv; | 
 | 	u_long flags; | 
 |  | 
 | 	spin_lock_irqsave(&HFClock, flags); | 
 | 	spin_lock(&plx_lock); /* must be locked inside other locks */ | 
 |  | 
 | 	if (debug & DEBUG_HFCMULTI_PLXSD) | 
 | 		printk(KERN_DEBUG "%s: RESYNC(syncmaster=0x%p)\n", | 
 | 		       __func__, syncmaster); | 
 |  | 
 | 	/* select new master */ | 
 | 	if (newmaster) { | 
 | 		if (debug & DEBUG_HFCMULTI_PLXSD) | 
 | 			printk(KERN_DEBUG "using provided controller\n"); | 
 | 	} else { | 
 | 		list_for_each_entry_safe(hc, next, &HFClist, list) { | 
 | 			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { | 
 | 				if (hc->syncronized) { | 
 | 					newmaster = hc; | 
 | 					break; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Disable sync of all cards */ | 
 | 	list_for_each_entry_safe(hc, next, &HFClist, list) { | 
 | 		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { | 
 | 			plx_acc_32 = hc->plx_membase + PLX_GPIOC; | 
 | 			pv = readl(plx_acc_32); | 
 | 			pv &= ~PLX_SYNC_O_EN; | 
 | 			writel(pv, plx_acc_32); | 
 | 			if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) { | 
 | 				pcmmaster = hc; | 
 | 				if (hc->ctype == HFC_TYPE_E1) { | 
 | 					if (debug & DEBUG_HFCMULTI_PLXSD) | 
 | 						printk(KERN_DEBUG | 
 | 						       "Schedule SYNC_I\n"); | 
 | 					hc->e1_resync |= 1; /* get SYNC_I */ | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (newmaster) { | 
 | 		hc = newmaster; | 
 | 		if (debug & DEBUG_HFCMULTI_PLXSD) | 
 | 			printk(KERN_DEBUG "id=%d (0x%p) = syncronized with " | 
 | 			       "interface.\n", hc->id, hc); | 
 | 		/* Enable new sync master */ | 
 | 		plx_acc_32 = hc->plx_membase + PLX_GPIOC; | 
 | 		pv = readl(plx_acc_32); | 
 | 		pv |= PLX_SYNC_O_EN; | 
 | 		writel(pv, plx_acc_32); | 
 | 		/* switch to jatt PLL, if not disabled by RX_SYNC */ | 
 | 		if (hc->ctype == HFC_TYPE_E1 | 
 | 		    && !test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) { | 
 | 			if (debug & DEBUG_HFCMULTI_PLXSD) | 
 | 				printk(KERN_DEBUG "Schedule jatt PLL\n"); | 
 | 			hc->e1_resync |= 2; /* switch to jatt */ | 
 | 		} | 
 | 	} else { | 
 | 		if (pcmmaster) { | 
 | 			hc = pcmmaster; | 
 | 			if (debug & DEBUG_HFCMULTI_PLXSD) | 
 | 				printk(KERN_DEBUG | 
 | 				       "id=%d (0x%p) = PCM master syncronized " | 
 | 				       "with QUARTZ\n", hc->id, hc); | 
 | 			if (hc->ctype == HFC_TYPE_E1) { | 
 | 				/* Use the crystal clock for the PCM | 
 | 				   master card */ | 
 | 				if (debug & DEBUG_HFCMULTI_PLXSD) | 
 | 					printk(KERN_DEBUG | 
 | 					       "Schedule QUARTZ for HFC-E1\n"); | 
 | 				hc->e1_resync |= 4; /* switch quartz */ | 
 | 			} else { | 
 | 				if (debug & DEBUG_HFCMULTI_PLXSD) | 
 | 					printk(KERN_DEBUG | 
 | 					       "QUARTZ is automatically " | 
 | 					       "enabled by HFC-%dS\n", hc->ctype); | 
 | 			} | 
 | 			plx_acc_32 = hc->plx_membase + PLX_GPIOC; | 
 | 			pv = readl(plx_acc_32); | 
 | 			pv |= PLX_SYNC_O_EN; | 
 | 			writel(pv, plx_acc_32); | 
 | 		} else | 
 | 			if (!rm) | 
 | 				printk(KERN_ERR "%s no pcm master, this MUST " | 
 | 				       "not happen!\n", __func__); | 
 | 	} | 
 | 	syncmaster = newmaster; | 
 |  | 
 | 	spin_unlock(&plx_lock); | 
 | 	spin_unlock_irqrestore(&HFClock, flags); | 
 | } | 
 |  | 
 | /* This must be called AND hc must be locked irqsave!!! */ | 
 | static inline void | 
 | plxsd_checksync(struct hfc_multi *hc, int rm) | 
 | { | 
 | 	if (hc->syncronized) { | 
 | 		if (syncmaster == NULL) { | 
 | 			if (debug & DEBUG_HFCMULTI_PLXSD) | 
 | 				printk(KERN_DEBUG "%s: GOT sync on card %d" | 
 | 				       " (id=%d)\n", __func__, hc->id + 1, | 
 | 				       hc->id); | 
 | 			hfcmulti_resync(hc, hc, rm); | 
 | 		} | 
 | 	} else { | 
 | 		if (syncmaster == hc) { | 
 | 			if (debug & DEBUG_HFCMULTI_PLXSD) | 
 | 				printk(KERN_DEBUG "%s: LOST sync on card %d" | 
 | 				       " (id=%d)\n", __func__, hc->id + 1, | 
 | 				       hc->id); | 
 | 			hfcmulti_resync(hc, NULL, rm); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * free hardware resources used by driver | 
 |  */ | 
 | static void | 
 | release_io_hfcmulti(struct hfc_multi *hc) | 
 | { | 
 | 	void __iomem *plx_acc_32; | 
 | 	u_int	pv; | 
 | 	u_long	plx_flags; | 
 |  | 
 | 	if (debug & DEBUG_HFCMULTI_INIT) | 
 | 		printk(KERN_DEBUG "%s: entered\n", __func__); | 
 |  | 
 | 	/* soft reset also masks all interrupts */ | 
 | 	hc->hw.r_cirm |= V_SRES; | 
 | 	HFC_outb(hc, R_CIRM, hc->hw.r_cirm); | 
 | 	udelay(1000); | 
 | 	hc->hw.r_cirm &= ~V_SRES; | 
 | 	HFC_outb(hc, R_CIRM, hc->hw.r_cirm); | 
 | 	udelay(1000); /* instead of 'wait' that may cause locking */ | 
 |  | 
 | 	/* release Speech Design card, if PLX was initialized */ | 
 | 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && hc->plx_membase) { | 
 | 		if (debug & DEBUG_HFCMULTI_PLXSD) | 
 | 			printk(KERN_DEBUG "%s: release PLXSD card %d\n", | 
 | 			       __func__, hc->id + 1); | 
 | 		spin_lock_irqsave(&plx_lock, plx_flags); | 
 | 		plx_acc_32 = hc->plx_membase + PLX_GPIOC; | 
 | 		writel(PLX_GPIOC_INIT, plx_acc_32); | 
 | 		pv = readl(plx_acc_32); | 
 | 		/* Termination off */ | 
 | 		pv &= ~PLX_TERM_ON; | 
 | 		/* Disconnect the PCM */ | 
 | 		pv |= PLX_SLAVE_EN_N; | 
 | 		pv &= ~PLX_MASTER_EN; | 
 | 		pv &= ~PLX_SYNC_O_EN; | 
 | 		/* Put the DSP in Reset */ | 
 | 		pv &= ~PLX_DSP_RES_N; | 
 | 		writel(pv, plx_acc_32); | 
 | 		if (debug & DEBUG_HFCMULTI_INIT) | 
 | 			printk(KERN_DEBUG "%s: PCM off: PLX_GPIO=%x\n", | 
 | 			       __func__, pv); | 
 | 		spin_unlock_irqrestore(&plx_lock, plx_flags); | 
 | 	} | 
 |  | 
 | 	/* disable memory mapped ports / io ports */ | 
 | 	test_and_clear_bit(HFC_CHIP_PLXSD, &hc->chip); /* prevent resync */ | 
 | 	if (hc->pci_dev) | 
 | 		pci_write_config_word(hc->pci_dev, PCI_COMMAND, 0); | 
 | 	if (hc->pci_membase) | 
 | 		iounmap(hc->pci_membase); | 
 | 	if (hc->plx_membase) | 
 | 		iounmap(hc->plx_membase); | 
 | 	if (hc->pci_iobase) | 
 | 		release_region(hc->pci_iobase, 8); | 
 | 	if (hc->xhfc_membase) | 
 | 		iounmap((void *)hc->xhfc_membase); | 
 |  | 
 | 	if (hc->pci_dev) { | 
 | 		pci_disable_device(hc->pci_dev); | 
 | 		pci_set_drvdata(hc->pci_dev, NULL); | 
 | 	} | 
 | 	if (debug & DEBUG_HFCMULTI_INIT) | 
 | 		printk(KERN_DEBUG "%s: done\n", __func__); | 
 | } | 
 |  | 
 | /* | 
 |  * function called to reset the HFC chip. A complete software reset of chip | 
 |  * and fifos is done. All configuration of the chip is done. | 
 |  */ | 
 |  | 
 | static int | 
 | init_chip(struct hfc_multi *hc) | 
 | { | 
 | 	u_long			flags, val, val2 = 0, rev; | 
 | 	int			i, err = 0; | 
 | 	u_char			r_conf_en, rval; | 
 | 	void __iomem		*plx_acc_32; | 
 | 	u_int			pv; | 
 | 	u_long			plx_flags, hfc_flags; | 
 | 	int			plx_count; | 
 | 	struct hfc_multi	*pos, *next, *plx_last_hc; | 
 |  | 
 | 	spin_lock_irqsave(&hc->lock, flags); | 
 | 	/* reset all registers */ | 
 | 	memset(&hc->hw, 0, sizeof(struct hfcm_hw)); | 
 |  | 
 | 	/* revision check */ | 
 | 	if (debug & DEBUG_HFCMULTI_INIT) | 
 | 		printk(KERN_DEBUG "%s: entered\n", __func__); | 
 | 	val = HFC_inb(hc, R_CHIP_ID); | 
 | 	if ((val >> 4) != 0x8 && (val >> 4) != 0xc && (val >> 4) != 0xe && | 
 | 	    (val >> 1) != 0x31) { | 
 | 		printk(KERN_INFO "HFC_multi: unknown CHIP_ID:%x\n", (u_int)val); | 
 | 		err = -EIO; | 
 | 		goto out; | 
 | 	} | 
 | 	rev = HFC_inb(hc, R_CHIP_RV); | 
 | 	printk(KERN_INFO | 
 | 	       "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n", | 
 | 	       val, rev, (rev == 0 && (hc->ctype != HFC_TYPE_XHFC)) ? | 
 | 	       " (old FIFO handling)" : ""); | 
 | 	if (hc->ctype != HFC_TYPE_XHFC && rev == 0) { | 
 | 		test_and_set_bit(HFC_CHIP_REVISION0, &hc->chip); | 
 | 		printk(KERN_WARNING | 
 | 		       "HFC_multi: NOTE: Your chip is revision 0, " | 
 | 		       "ask Cologne Chip for update. Newer chips " | 
 | 		       "have a better FIFO handling. Old chips " | 
 | 		       "still work but may have slightly lower " | 
 | 		       "HDLC transmit performance.\n"); | 
 | 	} | 
 | 	if (rev > 1) { | 
 | 		printk(KERN_WARNING "HFC_multi: WARNING: This driver doesn't " | 
 | 		       "consider chip revision = %ld. The chip / " | 
 | 		       "bridge may not work.\n", rev); | 
 | 	} | 
 |  | 
 | 	/* set s-ram size */ | 
 | 	hc->Flen = 0x10; | 
 | 	hc->Zmin = 0x80; | 
 | 	hc->Zlen = 384; | 
 | 	hc->DTMFbase = 0x1000; | 
 | 	if (test_bit(HFC_CHIP_EXRAM_128, &hc->chip)) { | 
 | 		if (debug & DEBUG_HFCMULTI_INIT) | 
 | 			printk(KERN_DEBUG "%s: changing to 128K external RAM\n", | 
 | 			       __func__); | 
 | 		hc->hw.r_ctrl |= V_EXT_RAM; | 
 | 		hc->hw.r_ram_sz = 1; | 
 | 		hc->Flen = 0x20; | 
 | 		hc->Zmin = 0xc0; | 
 | 		hc->Zlen = 1856; | 
 | 		hc->DTMFbase = 0x2000; | 
 | 	} | 
 | 	if (test_bit(HFC_CHIP_EXRAM_512, &hc->chip)) { | 
 | 		if (debug & DEBUG_HFCMULTI_INIT) | 
 | 			printk(KERN_DEBUG "%s: changing to 512K external RAM\n", | 
 | 			       __func__); | 
 | 		hc->hw.r_ctrl |= V_EXT_RAM; | 
 | 		hc->hw.r_ram_sz = 2; | 
 | 		hc->Flen = 0x20; | 
 | 		hc->Zmin = 0xc0; | 
 | 		hc->Zlen = 8000; | 
 | 		hc->DTMFbase = 0x2000; | 
 | 	} | 
 | 	if (hc->ctype == HFC_TYPE_XHFC) { | 
 | 		hc->Flen = 0x8; | 
 | 		hc->Zmin = 0x0; | 
 | 		hc->Zlen = 64; | 
 | 		hc->DTMFbase = 0x0; | 
 | 	} | 
 | 	hc->max_trans = poll << 1; | 
 | 	if (hc->max_trans > hc->Zlen) | 
 | 		hc->max_trans = hc->Zlen; | 
 |  | 
 | 	/* Speech Design PLX bridge */ | 
 | 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { | 
 | 		if (debug & DEBUG_HFCMULTI_PLXSD) | 
 | 			printk(KERN_DEBUG "%s: initializing PLXSD card %d\n", | 
 | 			       __func__, hc->id + 1); | 
 | 		spin_lock_irqsave(&plx_lock, plx_flags); | 
 | 		plx_acc_32 = hc->plx_membase + PLX_GPIOC; | 
 | 		writel(PLX_GPIOC_INIT, plx_acc_32); | 
 | 		pv = readl(plx_acc_32); | 
 | 		/* The first and the last cards are terminating the PCM bus */ | 
 | 		pv |= PLX_TERM_ON; /* hc is currently the last */ | 
 | 		/* Disconnect the PCM */ | 
 | 		pv |= PLX_SLAVE_EN_N; | 
 | 		pv &= ~PLX_MASTER_EN; | 
 | 		pv &= ~PLX_SYNC_O_EN; | 
 | 		/* Put the DSP in Reset */ | 
 | 		pv &= ~PLX_DSP_RES_N; | 
 | 		writel(pv, plx_acc_32); | 
 | 		spin_unlock_irqrestore(&plx_lock, plx_flags); | 
 | 		if (debug & DEBUG_HFCMULTI_INIT) | 
 | 			printk(KERN_DEBUG "%s: slave/term: PLX_GPIO=%x\n", | 
 | 			       __func__, pv); | 
 | 		/* | 
 | 		 * If we are the 3rd PLXSD card or higher, we must turn | 
 | 		 * termination of last PLXSD card off. | 
 | 		 */ | 
 | 		spin_lock_irqsave(&HFClock, hfc_flags); | 
 | 		plx_count = 0; | 
 | 		plx_last_hc = NULL; | 
 | 		list_for_each_entry_safe(pos, next, &HFClist, list) { | 
 | 			if (test_bit(HFC_CHIP_PLXSD, &pos->chip)) { | 
 | 				plx_count++; | 
 | 				if (pos != hc) | 
 | 					plx_last_hc = pos; | 
 | 			} | 
 | 		} | 
 | 		if (plx_count >= 3) { | 
 | 			if (debug & DEBUG_HFCMULTI_PLXSD) | 
 | 				printk(KERN_DEBUG "%s: card %d is between, so " | 
 | 				       "we disable termination\n", | 
 | 				       __func__, plx_last_hc->id + 1); | 
 | 			spin_lock_irqsave(&plx_lock, plx_flags); | 
 | 			plx_acc_32 = plx_last_hc->plx_membase + PLX_GPIOC; | 
 | 			pv = readl(plx_acc_32); | 
 | 			pv &= ~PLX_TERM_ON; | 
 | 			writel(pv, plx_acc_32); | 
 | 			spin_unlock_irqrestore(&plx_lock, plx_flags); | 
 | 			if (debug & DEBUG_HFCMULTI_INIT) | 
 | 				printk(KERN_DEBUG | 
 | 				       "%s: term off: PLX_GPIO=%x\n", | 
 | 				       __func__, pv); | 
 | 		} | 
 | 		spin_unlock_irqrestore(&HFClock, hfc_flags); | 
 | 		hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */ | 
 | 	} | 
 |  | 
 | 	if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) | 
 | 		hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */ | 
 |  | 
 | 	/* we only want the real Z2 read-pointer for revision > 0 */ | 
 | 	if (!test_bit(HFC_CHIP_REVISION0, &hc->chip)) | 
 | 		hc->hw.r_ram_sz |= V_FZ_MD; | 
 |  | 
 | 	/* select pcm mode */ | 
 | 	if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) { | 
 | 		if (debug & DEBUG_HFCMULTI_INIT) | 
 | 			printk(KERN_DEBUG "%s: setting PCM into slave mode\n", | 
 | 			       __func__); | 
 | 	} else | 
 | 		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) && !plxsd_master) { | 
 | 			if (debug & DEBUG_HFCMULTI_INIT) | 
 | 				printk(KERN_DEBUG "%s: setting PCM into master mode\n", | 
 | 				       __func__); | 
 | 			hc->hw.r_pcm_md0 |= V_PCM_MD; | 
 | 		} else { | 
 | 			if (debug & DEBUG_HFCMULTI_INIT) | 
 | 				printk(KERN_DEBUG "%s: performing PCM auto detect\n", | 
 | 				       __func__); | 
 | 		} | 
 |  | 
 | 	/* soft reset */ | 
 | 	HFC_outb(hc, R_CTRL, hc->hw.r_ctrl); | 
 | 	if (hc->ctype == HFC_TYPE_XHFC) | 
 | 		HFC_outb(hc, 0x0C /* R_FIFO_THRES */, | 
 | 			 0x11 /* 16 Bytes TX/RX */); | 
 | 	else | 
 | 		HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz); | 
 | 	HFC_outb(hc, R_FIFO_MD, 0); | 
 | 	if (hc->ctype == HFC_TYPE_XHFC) | 
 | 		hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES; | 
 | 	else | 
 | 		hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES | 
 | 			| V_RLD_EPR; | 
 | 	HFC_outb(hc, R_CIRM, hc->hw.r_cirm); | 
 | 	udelay(100); | 
 | 	hc->hw.r_cirm = 0; | 
 | 	HFC_outb(hc, R_CIRM, hc->hw.r_cirm); | 
 | 	udelay(100); | 
 | 	if (hc->ctype != HFC_TYPE_XHFC) | 
 | 		HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz); | 
 |  | 
 | 	/* Speech Design PLX bridge pcm and sync mode */ | 
 | 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { | 
 | 		spin_lock_irqsave(&plx_lock, plx_flags); | 
 | 		plx_acc_32 = hc->plx_membase + PLX_GPIOC; | 
 | 		pv = readl(plx_acc_32); | 
 | 		/* Connect PCM */ | 
 | 		if (hc->hw.r_pcm_md0 & V_PCM_MD) { | 
 | 			pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N; | 
 | 			pv |= PLX_SYNC_O_EN; | 
 | 			if (debug & DEBUG_HFCMULTI_INIT) | 
 | 				printk(KERN_DEBUG "%s: master: PLX_GPIO=%x\n", | 
 | 				       __func__, pv); | 
 | 		} else { | 
 | 			pv &= ~(PLX_MASTER_EN | PLX_SLAVE_EN_N); | 
 | 			pv &= ~PLX_SYNC_O_EN; | 
 | 			if (debug & DEBUG_HFCMULTI_INIT) | 
 | 				printk(KERN_DEBUG "%s: slave: PLX_GPIO=%x\n", | 
 | 				       __func__, pv); | 
 | 		} | 
 | 		writel(pv, plx_acc_32); | 
 | 		spin_unlock_irqrestore(&plx_lock, plx_flags); | 
 | 	} | 
 |  | 
 | 	/* PCM setup */ | 
 | 	HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x90); | 
 | 	if (hc->slots == 32) | 
 | 		HFC_outb(hc, R_PCM_MD1, 0x00); | 
 | 	if (hc->slots == 64) | 
 | 		HFC_outb(hc, R_PCM_MD1, 0x10); | 
 | 	if (hc->slots == 128) | 
 | 		HFC_outb(hc, R_PCM_MD1, 0x20); | 
 | 	HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0xa0); | 
 | 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) | 
 | 		HFC_outb(hc, R_PCM_MD2, V_SYNC_SRC); /* sync via SYNC_I / O */ | 
 | 	else if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) | 
 | 		HFC_outb(hc, R_PCM_MD2, 0x10); /* V_C2O_EN */ | 
 | 	else | 
 | 		HFC_outb(hc, R_PCM_MD2, 0x00); /* sync from interface */ | 
 | 	HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00); | 
 | 	for (i = 0; i < 256; i++) { | 
 | 		HFC_outb_nodebug(hc, R_SLOT, i); | 
 | 		HFC_outb_nodebug(hc, A_SL_CFG, 0); | 
 | 		if (hc->ctype != HFC_TYPE_XHFC) | 
 | 			HFC_outb_nodebug(hc, A_CONF, 0); | 
 | 		hc->slot_owner[i] = -1; | 
 | 	} | 
 |  | 
 | 	/* set clock speed */ | 
 | 	if (test_bit(HFC_CHIP_CLOCK2, &hc->chip)) { | 
 | 		if (debug & DEBUG_HFCMULTI_INIT) | 
 | 			printk(KERN_DEBUG | 
 | 			       "%s: setting double clock\n", __func__); | 
 | 		HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK); | 
 | 	} | 
 |  | 
 | 	if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) | 
 | 		HFC_outb(hc, 0x02 /* R_CLK_CFG */, 0x40 /* V_CLKO_OFF */); | 
 |  | 
 | 	/* B410P GPIO */ | 
 | 	if (test_bit(HFC_CHIP_B410P, &hc->chip)) { | 
 | 		printk(KERN_NOTICE "Setting GPIOs\n"); | 
 | 		HFC_outb(hc, R_GPIO_SEL, 0x30); | 
 | 		HFC_outb(hc, R_GPIO_EN1, 0x3); | 
 | 		udelay(1000); | 
 | 		printk(KERN_NOTICE "calling vpm_init\n"); | 
 | 		vpm_init(hc); | 
 | 	} | 
 |  | 
 | 	/* check if R_F0_CNT counts (8 kHz frame count) */ | 
 | 	val = HFC_inb(hc, R_F0_CNTL); | 
 | 	val += HFC_inb(hc, R_F0_CNTH) << 8; | 
 | 	if (debug & DEBUG_HFCMULTI_INIT) | 
 | 		printk(KERN_DEBUG | 
 | 		       "HFC_multi F0_CNT %ld after reset\n", val); | 
 | 	spin_unlock_irqrestore(&hc->lock, flags); | 
 | 	set_current_state(TASK_UNINTERRUPTIBLE); | 
 | 	schedule_timeout((HZ / 100) ? : 1); /* Timeout minimum 10ms */ | 
 | 	spin_lock_irqsave(&hc->lock, flags); | 
 | 	val2 = HFC_inb(hc, R_F0_CNTL); | 
 | 	val2 += HFC_inb(hc, R_F0_CNTH) << 8; | 
 | 	if (debug & DEBUG_HFCMULTI_INIT) | 
 | 		printk(KERN_DEBUG | 
 | 		       "HFC_multi F0_CNT %ld after 10 ms (1st try)\n", | 
 | 		       val2); | 
 | 	if (val2 >= val + 8) { /* 1 ms */ | 
 | 		/* it counts, so we keep the pcm mode */ | 
 | 		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) | 
 | 			printk(KERN_INFO "controller is PCM bus MASTER\n"); | 
 | 		else | 
 | 			if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) | 
 | 				printk(KERN_INFO "controller is PCM bus SLAVE\n"); | 
 | 			else { | 
 | 				test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip); | 
 | 				printk(KERN_INFO "controller is PCM bus SLAVE " | 
 | 				       "(auto detected)\n"); | 
 | 			} | 
 | 	} else { | 
 | 		/* does not count */ | 
 | 		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) { | 
 | 		controller_fail: | 
 | 			printk(KERN_ERR "HFC_multi ERROR, getting no 125us " | 
 | 			       "pulse. Seems that controller fails.\n"); | 
 | 			err = -EIO; | 
 | 			goto out; | 
 | 		} | 
 | 		if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) { | 
 | 			printk(KERN_INFO "controller is PCM bus SLAVE " | 
 | 			       "(ignoring missing PCM clock)\n"); | 
 | 		} else { | 
 | 			/* only one pcm master */ | 
 | 			if (test_bit(HFC_CHIP_PLXSD, &hc->chip) | 
 | 			    && plxsd_master) { | 
 | 				printk(KERN_ERR "HFC_multi ERROR, no clock " | 
 | 				       "on another Speech Design card found. " | 
 | 				       "Please be sure to connect PCM cable.\n"); | 
 | 				err = -EIO; | 
 | 				goto out; | 
 | 			} | 
 | 			/* retry with master clock */ | 
 | 			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { | 
 | 				spin_lock_irqsave(&plx_lock, plx_flags); | 
 | 				plx_acc_32 = hc->plx_membase + PLX_GPIOC; | 
 | 				pv = readl(plx_acc_32); | 
 | 				pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N; | 
 | 				pv |= PLX_SYNC_O_EN; | 
 | 				writel(pv, plx_acc_32); | 
 | 				spin_unlock_irqrestore(&plx_lock, plx_flags); | 
 | 				if (debug & DEBUG_HFCMULTI_INIT) | 
 | 					printk(KERN_DEBUG "%s: master: " | 
 | 					       "PLX_GPIO=%x\n", __func__, pv); | 
 | 			} | 
 | 			hc->hw.r_pcm_md0 |= V_PCM_MD; | 
 | 			HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00); | 
 | 			spin_unlock_irqrestore(&hc->lock, flags); | 
 | 			set_current_state(TASK_UNINTERRUPTIBLE); | 
 | 			schedule_timeout((HZ / 100) ?: 1); /* Timeout min. 10ms */ | 
 | 			spin_lock_irqsave(&hc->lock, flags); | 
 | 			val2 = HFC_inb(hc, R_F0_CNTL); | 
 | 			val2 += HFC_inb(hc, R_F0_CNTH) << 8; | 
 | 			if (debug & DEBUG_HFCMULTI_INIT) | 
 | 				printk(KERN_DEBUG "HFC_multi F0_CNT %ld after " | 
 | 				       "10 ms (2nd try)\n", val2); | 
 | 			if (val2 >= val + 8) { /* 1 ms */ | 
 | 				test_and_set_bit(HFC_CHIP_PCM_MASTER, | 
 | 						 &hc->chip); | 
 | 				printk(KERN_INFO "controller is PCM bus MASTER " | 
 | 				       "(auto detected)\n"); | 
 | 			} else | 
 | 				goto controller_fail; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Release the DSP Reset */ | 
 | 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { | 
 | 		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) | 
 | 			plxsd_master = 1; | 
 | 		spin_lock_irqsave(&plx_lock, plx_flags); | 
 | 		plx_acc_32 = hc->plx_membase + PLX_GPIOC; | 
 | 		pv = readl(plx_acc_32); | 
 | 		pv |=  PLX_DSP_RES_N; | 
 | 		writel(pv, plx_acc_32); | 
 | 		spin_unlock_irqrestore(&plx_lock, plx_flags); | 
 | 		if (debug & DEBUG_HFCMULTI_INIT) | 
 | 			printk(KERN_DEBUG "%s: reset off: PLX_GPIO=%x\n", | 
 | 			       __func__, pv); | 
 | 	} | 
 |  | 
 | 	/* pcm id */ | 
 | 	if (hc->pcm) | 
 | 		printk(KERN_INFO "controller has given PCM BUS ID %d\n", | 
 | 		       hc->pcm); | 
 | 	else { | 
 | 		if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) | 
 | 		    || test_bit(HFC_CHIP_PLXSD, &hc->chip)) { | 
 | 			PCM_cnt++; /* SD has proprietary bridging */ | 
 | 		} | 
 | 		hc->pcm = PCM_cnt; | 
 | 		printk(KERN_INFO "controller has PCM BUS ID %d " | 
 | 		       "(auto selected)\n", hc->pcm); | 
 | 	} | 
 |  | 
 | 	/* set up timer */ | 
 | 	HFC_outb(hc, R_TI_WD, poll_timer); | 
 | 	hc->hw.r_irqmsk_misc |= V_TI_IRQMSK; | 
 |  | 
 | 	/* set E1 state machine IRQ */ | 
 | 	if (hc->ctype == HFC_TYPE_E1) | 
 | 		hc->hw.r_irqmsk_misc |= V_STA_IRQMSK; | 
 |  | 
 | 	/* set DTMF detection */ | 
 | 	if (test_bit(HFC_CHIP_DTMF, &hc->chip)) { | 
 | 		if (debug & DEBUG_HFCMULTI_INIT) | 
 | 			printk(KERN_DEBUG "%s: enabling DTMF detection " | 
 | 			       "for all B-channel\n", __func__); | 
 | 		hc->hw.r_dtmf = V_DTMF_EN | V_DTMF_STOP; | 
 | 		if (test_bit(HFC_CHIP_ULAW, &hc->chip)) | 
 | 			hc->hw.r_dtmf |= V_ULAW_SEL; | 
 | 		HFC_outb(hc, R_DTMF_N, 102 - 1); | 
 | 		hc->hw.r_irqmsk_misc |= V_DTMF_IRQMSK; | 
 | 	} | 
 |  | 
 | 	/* conference engine */ | 
 | 	if (test_bit(HFC_CHIP_ULAW, &hc->chip)) | 
 | 		r_conf_en = V_CONF_EN | V_ULAW; | 
 | 	else | 
 | 		r_conf_en = V_CONF_EN; | 
 | 	if (hc->ctype != HFC_TYPE_XHFC) | 
 | 		HFC_outb(hc, R_CONF_EN, r_conf_en); | 
 |  | 
 | 	/* setting leds */ | 
 | 	switch (hc->leds) { | 
 | 	case 1: /* HFC-E1 OEM */ | 
 | 		if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip)) | 
 | 			HFC_outb(hc, R_GPIO_SEL, 0x32); | 
 | 		else | 
 | 			HFC_outb(hc, R_GPIO_SEL, 0x30); | 
 |  | 
 | 		HFC_outb(hc, R_GPIO_EN1, 0x0f); | 
 | 		HFC_outb(hc, R_GPIO_OUT1, 0x00); | 
 |  | 
 | 		HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3); | 
 | 		break; | 
 |  | 
 | 	case 2: /* HFC-4S OEM */ | 
 | 	case 3: | 
 | 		HFC_outb(hc, R_GPIO_SEL, 0xf0); | 
 | 		HFC_outb(hc, R_GPIO_EN1, 0xff); | 
 | 		HFC_outb(hc, R_GPIO_OUT1, 0x00); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) { | 
 | 		hc->hw.r_st_sync = 0x10; /* V_AUTO_SYNCI */ | 
 | 		HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync); | 
 | 	} | 
 |  | 
 | 	/* set master clock */ | 
 | 	if (hc->masterclk >= 0) { | 
 | 		if (debug & DEBUG_HFCMULTI_INIT) | 
 | 			printk(KERN_DEBUG "%s: setting ST master clock " | 
 | 			       "to port %d (0..%d)\n", | 
 | 			       __func__, hc->masterclk, hc->ports - 1); | 
 | 		hc->hw.r_st_sync |= (hc->masterclk | V_AUTO_SYNC); | 
 | 		HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync); | 
 | 	} | 
 |  | 
 |  | 
 |  | 
 | 	/* setting misc irq */ | 
 | 	HFC_outb(hc, R_IRQMSK_MISC, hc->hw.r_irqmsk_misc); | 
 | 	if (debug & DEBUG_HFCMULTI_INIT) | 
 | 		printk(KERN_DEBUG "r_irqmsk_misc.2: 0x%x\n", | 
 | 		       hc->hw.r_irqmsk_misc); | 
 |  | 
 | 	/* RAM access test */ | 
 | 	HFC_outb(hc, R_RAM_ADDR0, 0); | 
 | 	HFC_outb(hc, R_RAM_ADDR1, 0); | 
 | 	HFC_outb(hc, R_RAM_ADDR2, 0); | 
 | 	for (i = 0; i < 256; i++) { | 
 | 		HFC_outb_nodebug(hc, R_RAM_ADDR0, i); | 
 | 		HFC_outb_nodebug(hc, R_RAM_DATA, ((i * 3) & 0xff)); | 
 | 	} | 
 | 	for (i = 0; i < 256; i++) { | 
 | 		HFC_outb_nodebug(hc, R_RAM_ADDR0, i); | 
 | 		HFC_inb_nodebug(hc, R_RAM_DATA); | 
 | 		rval = HFC_inb_nodebug(hc, R_INT_DATA); | 
 | 		if (rval != ((i * 3) & 0xff)) { | 
 | 			printk(KERN_DEBUG | 
 | 			       "addr:%x val:%x should:%x\n", i, rval, | 
 | 			       (i * 3) & 0xff); | 
 | 			err++; | 
 | 		} | 
 | 	} | 
 | 	if (err) { | 
 | 		printk(KERN_DEBUG "aborting - %d RAM access errors\n", err); | 
 | 		err = -EIO; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (debug & DEBUG_HFCMULTI_INIT) | 
 | 		printk(KERN_DEBUG "%s: done\n", __func__); | 
 | out: | 
 | 	spin_unlock_irqrestore(&hc->lock, flags); | 
 | 	return err; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * control the watchdog | 
 |  */ | 
 | static void | 
 | hfcmulti_watchdog(struct hfc_multi *hc) | 
 | { | 
 | 	hc->wdcount++; | 
 |  | 
 | 	if (hc->wdcount > 10) { | 
 | 		hc->wdcount = 0; | 
 | 		hc->wdbyte = hc->wdbyte == V_GPIO_OUT2 ? | 
 | 			V_GPIO_OUT3 : V_GPIO_OUT2; | 
 |  | 
 | 		/* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */ | 
 | 		HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3); | 
 | 		HFC_outb(hc, R_GPIO_OUT0, hc->wdbyte); | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 |  | 
 | /* | 
 |  * output leds | 
 |  */ | 
 | static void | 
 | hfcmulti_leds(struct hfc_multi *hc) | 
 | { | 
 | 	unsigned long lled; | 
 | 	unsigned long leddw; | 
 | 	int i, state, active, leds; | 
 | 	struct dchannel *dch; | 
 | 	int led[4]; | 
 |  | 
 | 	switch (hc->leds) { | 
 | 	case 1: /* HFC-E1 OEM */ | 
 | 		/* 2 red steady:       LOS | 
 | 		 * 1 red steady:       L1 not active | 
 | 		 * 2 green steady:     L1 active | 
 | 		 * 1st green flashing: activity on TX | 
 | 		 * 2nd green flashing: activity on RX | 
 | 		 */ | 
 | 		led[0] = 0; | 
 | 		led[1] = 0; | 
 | 		led[2] = 0; | 
 | 		led[3] = 0; | 
 | 		dch = hc->chan[hc->dnum[0]].dch; | 
 | 		if (dch) { | 
 | 			if (hc->chan[hc->dnum[0]].los) | 
 | 				led[1] = 1; | 
 | 			if (hc->e1_state != 1) { | 
 | 				led[0] = 1; | 
 | 				hc->flash[2] = 0; | 
 | 				hc->flash[3] = 0; | 
 | 			} else { | 
 | 				led[2] = 1; | 
 | 				led[3] = 1; | 
 | 				if (!hc->flash[2] && hc->activity_tx) | 
 | 					hc->flash[2] = poll; | 
 | 				if (!hc->flash[3] && hc->activity_rx) | 
 | 					hc->flash[3] = poll; | 
 | 				if (hc->flash[2] && hc->flash[2] < 1024) | 
 | 					led[2] = 0; | 
 | 				if (hc->flash[3] && hc->flash[3] < 1024) | 
 | 					led[3] = 0; | 
 | 				if (hc->flash[2] >= 2048) | 
 | 					hc->flash[2] = 0; | 
 | 				if (hc->flash[3] >= 2048) | 
 | 					hc->flash[3] = 0; | 
 | 				if (hc->flash[2]) | 
 | 					hc->flash[2] += poll; | 
 | 				if (hc->flash[3]) | 
 | 					hc->flash[3] += poll; | 
 | 			} | 
 | 		} | 
 | 		leds = (led[0] | (led[1]<<2) | (led[2]<<1) | (led[3]<<3))^0xF; | 
 | 		/* leds are inverted */ | 
 | 		if (leds != (int)hc->ledstate) { | 
 | 			HFC_outb_nodebug(hc, R_GPIO_OUT1, leds); | 
 | 			hc->ledstate = leds; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case 2: /* HFC-4S OEM */ | 
 | 		/* red steady:     PH_DEACTIVATE | 
 | 		 * green steady:   PH_ACTIVATE | 
 | 		 * green flashing: activity on TX | 
 | 		 */ | 
 | 		for (i = 0; i < 4; i++) { | 
 | 			state = 0; | 
 | 			active = -1; | 
 | 			dch = hc->chan[(i << 2) | 2].dch; | 
 | 			if (dch) { | 
 | 				state = dch->state; | 
 | 				if (dch->dev.D.protocol == ISDN_P_NT_S0) | 
 | 					active = 3; | 
 | 				else | 
 | 					active = 7; | 
 | 			} | 
 | 			if (state) { | 
 | 				if (state == active) { | 
 | 					led[i] = 1; /* led green */ | 
 | 					hc->activity_tx |= hc->activity_rx; | 
 | 					if (!hc->flash[i] && | 
 | 						(hc->activity_tx & (1 << i))) | 
 | 							hc->flash[i] = poll; | 
 | 					if (hc->flash[i] && hc->flash[i] < 1024) | 
 | 						led[i] = 0; /* led off */ | 
 | 					if (hc->flash[i] >= 2048) | 
 | 						hc->flash[i] = 0; | 
 | 					if (hc->flash[i]) | 
 | 						hc->flash[i] += poll; | 
 | 				} else { | 
 | 					led[i] = 2; /* led red */ | 
 | 					hc->flash[i] = 0; | 
 | 				} | 
 | 			} else | 
 | 				led[i] = 0; /* led off */ | 
 | 		} | 
 | 		if (test_bit(HFC_CHIP_B410P, &hc->chip)) { | 
 | 			leds = 0; | 
 | 			for (i = 0; i < 4; i++) { | 
 | 				if (led[i] == 1) { | 
 | 					/*green*/ | 
 | 					leds |= (0x2 << (i * 2)); | 
 | 				} else if (led[i] == 2) { | 
 | 					/*red*/ | 
 | 					leds |= (0x1 << (i * 2)); | 
 | 				} | 
 | 			} | 
 | 			if (leds != (int)hc->ledstate) { | 
 | 				vpm_out(hc, 0, 0x1a8 + 3, leds); | 
 | 				hc->ledstate = leds; | 
 | 			} | 
 | 		} else { | 
 | 			leds = ((led[3] > 0) << 0) | ((led[1] > 0) << 1) | | 
 | 				((led[0] > 0) << 2) | ((led[2] > 0) << 3) | | 
 | 				((led[3] & 1) << 4) | ((led[1] & 1) << 5) | | 
 | 				((led[0] & 1) << 6) | ((led[2] & 1) << 7); | 
 | 			if (leds != (int)hc->ledstate) { | 
 | 				HFC_outb_nodebug(hc, R_GPIO_EN1, leds & 0x0F); | 
 | 				HFC_outb_nodebug(hc, R_GPIO_OUT1, leds >> 4); | 
 | 				hc->ledstate = leds; | 
 | 			} | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case 3: /* HFC 1S/2S Beronet */ | 
 | 		/* red steady:     PH_DEACTIVATE | 
 | 		 * green steady:   PH_ACTIVATE | 
 | 		 * green flashing: activity on TX | 
 | 		 */ | 
 | 		for (i = 0; i < 2; i++) { | 
 | 			state = 0; | 
 | 			active = -1; | 
 | 			dch = hc->chan[(i << 2) | 2].dch; | 
 | 			if (dch) { | 
 | 				state = dch->state; | 
 | 				if (dch->dev.D.protocol == ISDN_P_NT_S0) | 
 | 					active = 3; | 
 | 				else | 
 | 					active = 7; | 
 | 			} | 
 | 			if (state) { | 
 | 				if (state == active) { | 
 | 					led[i] = 1; /* led green */ | 
 | 					hc->activity_tx |= hc->activity_rx; | 
 | 					if (!hc->flash[i] && | 
 | 						(hc->activity_tx & (1 << i))) | 
 | 							hc->flash[i] = poll; | 
 | 					if (hc->flash[i] < 1024) | 
 | 						led[i] = 0; /* led off */ | 
 | 					if (hc->flash[i] >= 2048) | 
 | 						hc->flash[i] = 0; | 
 | 					if (hc->flash[i]) | 
 | 						hc->flash[i] += poll; | 
 | 				} else { | 
 | 					led[i] = 2; /* led red */ | 
 | 					hc->flash[i] = 0; | 
 | 				} | 
 | 			} else | 
 | 				led[i] = 0; /* led off */ | 
 | 		} | 
 | 		leds = (led[0] > 0) | ((led[1] > 0) << 1) | ((led[0]&1) << 2) | 
 | 			| ((led[1]&1) << 3); | 
 | 		if (leds != (int)hc->ledstate) { | 
 | 			HFC_outb_nodebug(hc, R_GPIO_EN1, | 
 | 					 ((led[0] > 0) << 2) | ((led[1] > 0) << 3)); | 
 | 			HFC_outb_nodebug(hc, R_GPIO_OUT1, | 
 | 					 ((led[0] & 1) << 2) | ((led[1] & 1) << 3)); | 
 | 			hc->ledstate = leds; | 
 | 		} | 
 | 		break; | 
 | 	case 8: /* HFC 8S+ Beronet */ | 
 | 		/* off:      PH_DEACTIVATE | 
 | 		 * steady:   PH_ACTIVATE | 
 | 		 * flashing: activity on TX | 
 | 		 */ | 
 | 		lled = 0xff; /* leds off */ | 
 | 		for (i = 0; i < 8; i++) { | 
 | 			state = 0; | 
 | 			active = -1; | 
 | 			dch = hc->chan[(i << 2) | 2].dch; | 
 | 			if (dch) { | 
 | 				state = dch->state; | 
 | 				if (dch->dev.D.protocol == ISDN_P_NT_S0) | 
 | 					active = 3; | 
 | 				else | 
 | 					active = 7; | 
 | 			} | 
 | 			if (state) { | 
 | 				if (state == active) { | 
 | 					lled &= ~(1 << i); /* led on */ | 
 | 					hc->activity_tx |= hc->activity_rx; | 
 | 					if (!hc->flash[i] && | 
 | 						(hc->activity_tx & (1 << i))) | 
 | 							hc->flash[i] = poll; | 
 | 					if (hc->flash[i] < 1024) | 
 | 						lled |= 1 << i; /* led off */ | 
 | 					if (hc->flash[i] >= 2048) | 
 | 						hc->flash[i] = 0; | 
 | 					if (hc->flash[i]) | 
 | 						hc->flash[i] += poll; | 
 | 				} else | 
 | 					hc->flash[i] = 0; | 
 | 			} | 
 | 		} | 
 | 		leddw = lled << 24 | lled << 16 | lled << 8 | lled; | 
 | 		if (leddw != hc->ledstate) { | 
 | 			/* HFC_outb(hc, R_BRG_PCM_CFG, 1); | 
 | 			   HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */ | 
 | 			/* was _io before */ | 
 | 			HFC_outb_nodebug(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK); | 
 | 			outw(0x4000, hc->pci_iobase + 4); | 
 | 			outl(leddw, hc->pci_iobase); | 
 | 			HFC_outb_nodebug(hc, R_BRG_PCM_CFG, V_PCM_CLK); | 
 | 			hc->ledstate = leddw; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 | 	hc->activity_tx = 0; | 
 | 	hc->activity_rx = 0; | 
 | } | 
 | /* | 
 |  * read dtmf coefficients | 
 |  */ | 
 |  | 
 | static void | 
 | hfcmulti_dtmf(struct hfc_multi *hc) | 
 | { | 
 | 	s32		*coeff; | 
 | 	u_int		mantissa; | 
 | 	int		co, ch; | 
 | 	struct bchannel	*bch = NULL; | 
 | 	u8		exponent; | 
 | 	int		dtmf = 0; | 
 | 	int		addr; | 
 | 	u16		w_float; | 
 | 	struct sk_buff	*skb; | 
 | 	struct mISDNhead *hh; | 
 |  | 
 | 	if (debug & DEBUG_HFCMULTI_DTMF) | 
 | 		printk(KERN_DEBUG "%s: dtmf detection irq\n", __func__); | 
 | 	for (ch = 0; ch <= 31; ch++) { | 
 | 		/* only process enabled B-channels */ | 
 | 		bch = hc->chan[ch].bch; | 
 | 		if (!bch) | 
 | 			continue; | 
 | 		if (!hc->created[hc->chan[ch].port]) | 
 | 			continue; | 
 | 		if (!test_bit(FLG_TRANSPARENT, &bch->Flags)) | 
 | 			continue; | 
 | 		if (debug & DEBUG_HFCMULTI_DTMF) | 
 | 			printk(KERN_DEBUG "%s: dtmf channel %d:", | 
 | 			       __func__, ch); | 
 | 		coeff = &(hc->chan[ch].coeff[hc->chan[ch].coeff_count * 16]); | 
 | 		dtmf = 1; | 
 | 		for (co = 0; co < 8; co++) { | 
 | 			/* read W(n-1) coefficient */ | 
 | 			addr = hc->DTMFbase + ((co << 7) | (ch << 2)); | 
 | 			HFC_outb_nodebug(hc, R_RAM_ADDR0, addr); | 
 | 			HFC_outb_nodebug(hc, R_RAM_ADDR1, addr >> 8); | 
 | 			HFC_outb_nodebug(hc, R_RAM_ADDR2, (addr >> 16) | 
 | 					 | V_ADDR_INC); | 
 | 			w_float = HFC_inb_nodebug(hc, R_RAM_DATA); | 
 | 			w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8); | 
 | 			if (debug & DEBUG_HFCMULTI_DTMF) | 
 | 				printk(" %04x", w_float); | 
 |  | 
 | 			/* decode float (see chip doc) */ | 
 | 			mantissa = w_float & 0x0fff; | 
 | 			if (w_float & 0x8000) | 
 | 				mantissa |= 0xfffff000; | 
 | 			exponent = (w_float >> 12) & 0x7; | 
 | 			if (exponent) { | 
 | 				mantissa ^= 0x1000; | 
 | 				mantissa <<= (exponent - 1); | 
 | 			} | 
 |  | 
 | 			/* store coefficient */ | 
 | 			coeff[co << 1] = mantissa; | 
 |  | 
 | 			/* read W(n) coefficient */ | 
 | 			w_float = HFC_inb_nodebug(hc, R_RAM_DATA); | 
 | 			w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8); | 
 | 			if (debug & DEBUG_HFCMULTI_DTMF) | 
 | 				printk(" %04x", w_float); | 
 |  | 
 | 			/* decode float (see chip doc) */ | 
 | 			mantissa = w_float & 0x0fff; | 
 | 			if (w_float & 0x8000) | 
 | 				mantissa |= 0xfffff000; | 
 | 			exponent = (w_float >> 12) & 0x7; | 
 | 			if (exponent) { | 
 | 				mantissa ^= 0x1000; | 
 | 				mantissa <<= (exponent - 1); | 
 | 			} | 
 |  | 
 | 			/* store coefficient */ | 
 | 			coeff[(co << 1) | 1] = mantissa; | 
 | 		} | 
 | 		if (debug & DEBUG_HFCMULTI_DTMF) | 
 | 			printk(" DTMF ready %08x %08x %08x %08x " | 
 | 			       "%08x %08x %08x %08x\n", | 
 | 			       coeff[0], coeff[1], coeff[2], coeff[3], | 
 | 			       coeff[4], coeff[5], coeff[6], coeff[7]); | 
 | 		hc->chan[ch].coeff_count++; | 
 | 		if (hc->chan[ch].coeff_count == 8) { | 
 | 			hc->chan[ch].coeff_count = 0; | 
 | 			skb = mI_alloc_skb(512, GFP_ATOMIC); | 
 | 			if (!skb) { | 
 | 				printk(KERN_DEBUG "%s: No memory for skb\n", | 
 | 				       __func__); | 
 | 				continue; | 
 | 			} | 
 | 			hh = mISDN_HEAD_P(skb); | 
 | 			hh->prim = PH_CONTROL_IND; | 
 | 			hh->id = DTMF_HFC_COEF; | 
 | 			skb_put_data(skb, hc->chan[ch].coeff, 512); | 
 | 			recv_Bchannel_skb(bch, skb); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* restart DTMF processing */ | 
 | 	hc->dtmf = dtmf; | 
 | 	if (dtmf) | 
 | 		HFC_outb_nodebug(hc, R_DTMF, hc->hw.r_dtmf | V_RST_DTMF); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * fill fifo as much as possible | 
 |  */ | 
 |  | 
 | static void | 
 | hfcmulti_tx(struct hfc_multi *hc, int ch) | 
 | { | 
 | 	int i, ii, temp, len = 0; | 
 | 	int Zspace, z1, z2; /* must be int for calculation */ | 
 | 	int Fspace, f1, f2; | 
 | 	u_char *d; | 
 | 	int *txpending, slot_tx; | 
 | 	struct	bchannel *bch; | 
 | 	struct  dchannel *dch; | 
 | 	struct  sk_buff **sp = NULL; | 
 | 	int *idxp; | 
 |  | 
 | 	bch = hc->chan[ch].bch; | 
 | 	dch = hc->chan[ch].dch; | 
 | 	if ((!dch) && (!bch)) | 
 | 		return; | 
 |  | 
 | 	txpending = &hc->chan[ch].txpending; | 
 | 	slot_tx = hc->chan[ch].slot_tx; | 
 | 	if (dch) { | 
 | 		if (!test_bit(FLG_ACTIVE, &dch->Flags)) | 
 | 			return; | 
 | 		sp = &dch->tx_skb; | 
 | 		idxp = &dch->tx_idx; | 
 | 	} else { | 
 | 		if (!test_bit(FLG_ACTIVE, &bch->Flags)) | 
 | 			return; | 
 | 		sp = &bch->tx_skb; | 
 | 		idxp = &bch->tx_idx; | 
 | 	} | 
 | 	if (*sp) | 
 | 		len = (*sp)->len; | 
 |  | 
 | 	if ((!len) && *txpending != 1) | 
 | 		return; /* no data */ | 
 |  | 
 | 	if (test_bit(HFC_CHIP_B410P, &hc->chip) && | 
 | 	    (hc->chan[ch].protocol == ISDN_P_B_RAW) && | 
 | 	    (hc->chan[ch].slot_rx < 0) && | 
 | 	    (hc->chan[ch].slot_tx < 0)) | 
 | 		HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1)); | 
 | 	else | 
 | 		HFC_outb_nodebug(hc, R_FIFO, ch << 1); | 
 | 	HFC_wait_nodebug(hc); | 
 |  | 
 | 	if (*txpending == 2) { | 
 | 		/* reset fifo */ | 
 | 		HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F); | 
 | 		HFC_wait_nodebug(hc); | 
 | 		HFC_outb(hc, A_SUBCH_CFG, 0); | 
 | 		*txpending = 1; | 
 | 	} | 
 | next_frame: | 
 | 	if (dch || test_bit(FLG_HDLC, &bch->Flags)) { | 
 | 		f1 = HFC_inb_nodebug(hc, A_F1); | 
 | 		f2 = HFC_inb_nodebug(hc, A_F2); | 
 | 		while (f2 != (temp = HFC_inb_nodebug(hc, A_F2))) { | 
 | 			if (debug & DEBUG_HFCMULTI_FIFO) | 
 | 				printk(KERN_DEBUG | 
 | 				       "%s(card %d): reread f2 because %d!=%d\n", | 
 | 				       __func__, hc->id + 1, temp, f2); | 
 | 			f2 = temp; /* repeat until F2 is equal */ | 
 | 		} | 
 | 		Fspace = f2 - f1 - 1; | 
 | 		if (Fspace < 0) | 
 | 			Fspace += hc->Flen; | 
 | 		/* | 
 | 		 * Old FIFO handling doesn't give us the current Z2 read | 
 | 		 * pointer, so we cannot send the next frame before the fifo | 
 | 		 * is empty. It makes no difference except for a slightly | 
 | 		 * lower performance. | 
 | 		 */ | 
 | 		if (test_bit(HFC_CHIP_REVISION0, &hc->chip)) { | 
 | 			if (f1 != f2) | 
 | 				Fspace = 0; | 
 | 			else | 
 | 				Fspace = 1; | 
 | 		} | 
 | 		/* one frame only for ST D-channels, to allow resending */ | 
 | 		if (hc->ctype != HFC_TYPE_E1 && dch) { | 
 | 			if (f1 != f2) | 
 | 				Fspace = 0; | 
 | 		} | 
 | 		/* F-counter full condition */ | 
 | 		if (Fspace == 0) | 
 | 			return; | 
 | 	} | 
 | 	z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin; | 
 | 	z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin; | 
 | 	while (z2 != (temp = (HFC_inw_nodebug(hc, A_Z2) - hc->Zmin))) { | 
 | 		if (debug & DEBUG_HFCMULTI_FIFO) | 
 | 			printk(KERN_DEBUG "%s(card %d): reread z2 because " | 
 | 			       "%d!=%d\n", __func__, hc->id + 1, temp, z2); | 
 | 		z2 = temp; /* repeat unti Z2 is equal */ | 
 | 	} | 
 | 	hc->chan[ch].Zfill = z1 - z2; | 
 | 	if (hc->chan[ch].Zfill < 0) | 
 | 		hc->chan[ch].Zfill += hc->Zlen; | 
 | 	Zspace = z2 - z1; | 
 | 	if (Zspace <= 0) | 
 | 		Zspace += hc->Zlen; | 
 | 	Zspace -= 4; /* keep not too full, so pointers will not overrun */ | 
 | 	/* fill transparent data only to maxinum transparent load (minus 4) */ | 
 | 	if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags)) | 
 | 		Zspace = Zspace - hc->Zlen + hc->max_trans; | 
 | 	if (Zspace <= 0) /* no space of 4 bytes */ | 
 | 		return; | 
 |  | 
 | 	/* if no data */ | 
 | 	if (!len) { | 
 | 		if (z1 == z2) { /* empty */ | 
 | 			/* if done with FIFO audio data during PCM connection */ | 
 | 			if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && | 
 | 			    *txpending && slot_tx >= 0) { | 
 | 				if (debug & DEBUG_HFCMULTI_MODE) | 
 | 					printk(KERN_DEBUG | 
 | 					       "%s: reconnecting PCM due to no " | 
 | 					       "more FIFO data: channel %d " | 
 | 					       "slot_tx %d\n", | 
 | 					       __func__, ch, slot_tx); | 
 | 				/* connect slot */ | 
 | 				if (hc->ctype == HFC_TYPE_XHFC) | 
 | 					HFC_outb(hc, A_CON_HDLC, 0xc0 | 
 | 						 | 0x07 << 2 | V_HDLC_TRP | V_IFF); | 
 | 				/* Enable FIFO, no interrupt */ | 
 | 				else | 
 | 					HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 | | 
 | 						 V_HDLC_TRP | V_IFF); | 
 | 				HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1); | 
 | 				HFC_wait_nodebug(hc); | 
 | 				if (hc->ctype == HFC_TYPE_XHFC) | 
 | 					HFC_outb(hc, A_CON_HDLC, 0xc0 | 
 | 						 | 0x07 << 2 | V_HDLC_TRP | V_IFF); | 
 | 				/* Enable FIFO, no interrupt */ | 
 | 				else | 
 | 					HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 | | 
 | 						 V_HDLC_TRP | V_IFF); | 
 | 				HFC_outb_nodebug(hc, R_FIFO, ch << 1); | 
 | 				HFC_wait_nodebug(hc); | 
 | 			} | 
 | 			*txpending = 0; | 
 | 		} | 
 | 		return; /* no data */ | 
 | 	} | 
 |  | 
 | 	/* "fill fifo if empty" feature */ | 
 | 	if (bch && test_bit(FLG_FILLEMPTY, &bch->Flags) | 
 | 	    && !test_bit(FLG_HDLC, &bch->Flags) && z2 == z1) { | 
 | 		if (debug & DEBUG_HFCMULTI_FILL) | 
 | 			printk(KERN_DEBUG "%s: buffer empty, so we have " | 
 | 			       "underrun\n", __func__); | 
 | 		/* fill buffer, to prevent future underrun */ | 
 | 		hc->write_fifo(hc, hc->silence_data, poll >> 1); | 
 | 		Zspace -= (poll >> 1); | 
 | 	} | 
 |  | 
 | 	/* if audio data and connected slot */ | 
 | 	if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending) | 
 | 	    && slot_tx >= 0) { | 
 | 		if (debug & DEBUG_HFCMULTI_MODE) | 
 | 			printk(KERN_DEBUG "%s: disconnecting PCM due to " | 
 | 			       "FIFO data: channel %d slot_tx %d\n", | 
 | 			       __func__, ch, slot_tx); | 
 | 		/* disconnect slot */ | 
 | 		if (hc->ctype == HFC_TYPE_XHFC) | 
 | 			HFC_outb(hc, A_CON_HDLC, 0x80 | 
 | 				 | 0x07 << 2 | V_HDLC_TRP | V_IFF); | 
 | 		/* Enable FIFO, no interrupt */ | 
 | 		else | 
 | 			HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 | | 
 | 				 V_HDLC_TRP | V_IFF); | 
 | 		HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1); | 
 | 		HFC_wait_nodebug(hc); | 
 | 		if (hc->ctype == HFC_TYPE_XHFC) | 
 | 			HFC_outb(hc, A_CON_HDLC, 0x80 | 
 | 				 | 0x07 << 2 | V_HDLC_TRP | V_IFF); | 
 | 		/* Enable FIFO, no interrupt */ | 
 | 		else | 
 | 			HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 | | 
 | 				 V_HDLC_TRP | V_IFF); | 
 | 		HFC_outb_nodebug(hc, R_FIFO, ch << 1); | 
 | 		HFC_wait_nodebug(hc); | 
 | 	} | 
 | 	*txpending = 1; | 
 |  | 
 | 	/* show activity */ | 
 | 	if (dch) | 
 | 		hc->activity_tx |= 1 << hc->chan[ch].port; | 
 |  | 
 | 	/* fill fifo to what we have left */ | 
 | 	ii = len; | 
 | 	if (dch || test_bit(FLG_HDLC, &bch->Flags)) | 
 | 		temp = 1; | 
 | 	else | 
 | 		temp = 0; | 
 | 	i = *idxp; | 
 | 	d = (*sp)->data + i; | 
 | 	if (ii - i > Zspace) | 
 | 		ii = Zspace + i; | 
 | 	if (debug & DEBUG_HFCMULTI_FIFO) | 
 | 		printk(KERN_DEBUG "%s(card %d): fifo(%d) has %d bytes space " | 
 | 		       "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n", | 
 | 		       __func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i, | 
 | 		       temp ? "HDLC" : "TRANS"); | 
 |  | 
 | 	/* Have to prep the audio data */ | 
 | 	hc->write_fifo(hc, d, ii - i); | 
 | 	hc->chan[ch].Zfill += ii - i; | 
 | 	*idxp = ii; | 
 |  | 
 | 	/* if not all data has been written */ | 
 | 	if (ii != len) { | 
 | 		/* NOTE: fifo is started by the calling function */ | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* if all data has been written, terminate frame */ | 
 | 	if (dch || test_bit(FLG_HDLC, &bch->Flags)) { | 
 | 		/* increment f-counter */ | 
 | 		HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F); | 
 | 		HFC_wait_nodebug(hc); | 
 | 	} | 
 |  | 
 | 	dev_kfree_skb(*sp); | 
 | 	/* check for next frame */ | 
 | 	if (bch && get_next_bframe(bch)) { | 
 | 		len = (*sp)->len; | 
 | 		goto next_frame; | 
 | 	} | 
 | 	if (dch && get_next_dframe(dch)) { | 
 | 		len = (*sp)->len; | 
 | 		goto next_frame; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * now we have no more data, so in case of transparent, | 
 | 	 * we set the last byte in fifo to 'silence' in case we will get | 
 | 	 * no more data at all. this prevents sending an undefined value. | 
 | 	 */ | 
 | 	if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags)) | 
 | 		HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence); | 
 | } | 
 |  | 
 |  | 
 | /* NOTE: only called if E1 card is in active state */ | 
 | static void | 
 | hfcmulti_rx(struct hfc_multi *hc, int ch) | 
 | { | 
 | 	int temp; | 
 | 	int Zsize, z1, z2 = 0; /* = 0, to make GCC happy */ | 
 | 	int f1 = 0, f2 = 0; /* = 0, to make GCC happy */ | 
 | 	int again = 0; | 
 | 	struct	bchannel *bch; | 
 | 	struct  dchannel *dch = NULL; | 
 | 	struct sk_buff	*skb, **sp = NULL; | 
 | 	int	maxlen; | 
 |  | 
 | 	bch = hc->chan[ch].bch; | 
 | 	if (bch) { | 
 | 		if (!test_bit(FLG_ACTIVE, &bch->Flags)) | 
 | 			return; | 
 | 	} else if (hc->chan[ch].dch) { | 
 | 		dch = hc->chan[ch].dch; | 
 | 		if (!test_bit(FLG_ACTIVE, &dch->Flags)) | 
 | 			return; | 
 | 	} else { | 
 | 		return; | 
 | 	} | 
 | next_frame: | 
 | 	/* on first AND before getting next valid frame, R_FIFO must be written | 
 | 	   to. */ | 
 | 	if (test_bit(HFC_CHIP_B410P, &hc->chip) && | 
 | 	    (hc->chan[ch].protocol == ISDN_P_B_RAW) && | 
 | 	    (hc->chan[ch].slot_rx < 0) && | 
 | 	    (hc->chan[ch].slot_tx < 0)) | 
 | 		HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1) | 1); | 
 | 	else | 
 | 		HFC_outb_nodebug(hc, R_FIFO, (ch << 1) | 1); | 
 | 	HFC_wait_nodebug(hc); | 
 |  | 
 | 	/* ignore if rx is off BUT change fifo (above) to start pending TX */ | 
 | 	if (hc->chan[ch].rx_off) { | 
 | 		if (bch) | 
 | 			bch->dropcnt += poll; /* not exact but fair enough */ | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (dch || test_bit(FLG_HDLC, &bch->Flags)) { | 
 | 		f1 = HFC_inb_nodebug(hc, A_F1); | 
 | 		while (f1 != (temp = HFC_inb_nodebug(hc, A_F1))) { | 
 | 			if (debug & DEBUG_HFCMULTI_FIFO) | 
 | 				printk(KERN_DEBUG | 
 | 				       "%s(card %d): reread f1 because %d!=%d\n", | 
 | 				       __func__, hc->id + 1, temp, f1); | 
 | 			f1 = temp; /* repeat until F1 is equal */ | 
 | 		} | 
 | 		f2 = HFC_inb_nodebug(hc, A_F2); | 
 | 	} | 
 | 	z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin; | 
 | 	while (z1 != (temp = (HFC_inw_nodebug(hc, A_Z1) - hc->Zmin))) { | 
 | 		if (debug & DEBUG_HFCMULTI_FIFO) | 
 | 			printk(KERN_DEBUG "%s(card %d): reread z2 because " | 
 | 			       "%d!=%d\n", __func__, hc->id + 1, temp, z2); | 
 | 		z1 = temp; /* repeat until Z1 is equal */ | 
 | 	} | 
 | 	z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin; | 
 | 	Zsize = z1 - z2; | 
 | 	if ((dch || test_bit(FLG_HDLC, &bch->Flags)) && f1 != f2) | 
 | 		/* complete hdlc frame */ | 
 | 		Zsize++; | 
 | 	if (Zsize < 0) | 
 | 		Zsize += hc->Zlen; | 
 | 	/* if buffer is empty */ | 
 | 	if (Zsize <= 0) | 
 | 		return; | 
 |  | 
 | 	if (bch) { | 
 | 		maxlen = bchannel_get_rxbuf(bch, Zsize); | 
 | 		if (maxlen < 0) { | 
 | 			pr_warning("card%d.B%d: No bufferspace for %d bytes\n", | 
 | 				   hc->id + 1, bch->nr, Zsize); | 
 | 			return; | 
 | 		} | 
 | 		sp = &bch->rx_skb; | 
 | 		maxlen = bch->maxlen; | 
 | 	} else { /* Dchannel */ | 
 | 		sp = &dch->rx_skb; | 
 | 		maxlen = dch->maxlen + 3; | 
 | 		if (*sp == NULL) { | 
 | 			*sp = mI_alloc_skb(maxlen, GFP_ATOMIC); | 
 | 			if (*sp == NULL) { | 
 | 				pr_warning("card%d: No mem for dch rx_skb\n", | 
 | 					   hc->id + 1); | 
 | 				return; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	/* show activity */ | 
 | 	if (dch) | 
 | 		hc->activity_rx |= 1 << hc->chan[ch].port; | 
 |  | 
 | 	/* empty fifo with what we have */ | 
 | 	if (dch || test_bit(FLG_HDLC, &bch->Flags)) { | 
 | 		if (debug & DEBUG_HFCMULTI_FIFO) | 
 | 			printk(KERN_DEBUG "%s(card %d): fifo(%d) reading %d " | 
 | 			       "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) " | 
 | 			       "got=%d (again %d)\n", __func__, hc->id + 1, ch, | 
 | 			       Zsize, z1, z2, (f1 == f2) ? "fragment" : "COMPLETE", | 
 | 			       f1, f2, Zsize + (*sp)->len, again); | 
 | 		/* HDLC */ | 
 | 		if ((Zsize + (*sp)->len) > maxlen) { | 
 | 			if (debug & DEBUG_HFCMULTI_FIFO) | 
 | 				printk(KERN_DEBUG | 
 | 				       "%s(card %d): hdlc-frame too large.\n", | 
 | 				       __func__, hc->id + 1); | 
 | 			skb_trim(*sp, 0); | 
 | 			HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F); | 
 | 			HFC_wait_nodebug(hc); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize); | 
 |  | 
 | 		if (f1 != f2) { | 
 | 			/* increment Z2,F2-counter */ | 
 | 			HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F); | 
 | 			HFC_wait_nodebug(hc); | 
 | 			/* check size */ | 
 | 			if ((*sp)->len < 4) { | 
 | 				if (debug & DEBUG_HFCMULTI_FIFO) | 
 | 					printk(KERN_DEBUG | 
 | 					       "%s(card %d): Frame below minimum " | 
 | 					       "size\n", __func__, hc->id + 1); | 
 | 				skb_trim(*sp, 0); | 
 | 				goto next_frame; | 
 | 			} | 
 | 			/* there is at least one complete frame, check crc */ | 
 | 			if ((*sp)->data[(*sp)->len - 1]) { | 
 | 				if (debug & DEBUG_HFCMULTI_CRC) | 
 | 					printk(KERN_DEBUG | 
 | 					       "%s: CRC-error\n", __func__); | 
 | 				skb_trim(*sp, 0); | 
 | 				goto next_frame; | 
 | 			} | 
 | 			skb_trim(*sp, (*sp)->len - 3); | 
 | 			if ((*sp)->len < MISDN_COPY_SIZE) { | 
 | 				skb = *sp; | 
 | 				*sp = mI_alloc_skb(skb->len, GFP_ATOMIC); | 
 | 				if (*sp) { | 
 | 					skb_put_data(*sp, skb->data, skb->len); | 
 | 					skb_trim(skb, 0); | 
 | 				} else { | 
 | 					printk(KERN_DEBUG "%s: No mem\n", | 
 | 					       __func__); | 
 | 					*sp = skb; | 
 | 					skb = NULL; | 
 | 				} | 
 | 			} else { | 
 | 				skb = NULL; | 
 | 			} | 
 | 			if (debug & DEBUG_HFCMULTI_FIFO) { | 
 | 				printk(KERN_DEBUG "%s(card %d):", | 
 | 				       __func__, hc->id + 1); | 
 | 				temp = 0; | 
 | 				while (temp < (*sp)->len) | 
 | 					printk(" %02x", (*sp)->data[temp++]); | 
 | 				printk("\n"); | 
 | 			} | 
 | 			if (dch) | 
 | 				recv_Dchannel(dch); | 
 | 			else | 
 | 				recv_Bchannel(bch, MISDN_ID_ANY, false); | 
 | 			*sp = skb; | 
 | 			again++; | 
 | 			goto next_frame; | 
 | 		} | 
 | 		/* there is an incomplete frame */ | 
 | 	} else { | 
 | 		/* transparent */ | 
 | 		hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize); | 
 | 		if (debug & DEBUG_HFCMULTI_FIFO) | 
 | 			printk(KERN_DEBUG | 
 | 			       "%s(card %d): fifo(%d) reading %d bytes " | 
 | 			       "(z1=%04x, z2=%04x) TRANS\n", | 
 | 			       __func__, hc->id + 1, ch, Zsize, z1, z2); | 
 | 		/* only bch is transparent */ | 
 | 		recv_Bchannel(bch, hc->chan[ch].Zfill, false); | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Interrupt handler | 
 |  */ | 
 | static void | 
 | signal_state_up(struct dchannel *dch, int info, char *msg) | 
 | { | 
 | 	struct sk_buff	*skb; | 
 | 	int		id, data = info; | 
 |  | 
 | 	if (debug & DEBUG_HFCMULTI_STATE) | 
 | 		printk(KERN_DEBUG "%s: %s\n", __func__, msg); | 
 |  | 
 | 	id = TEI_SAPI | (GROUP_TEI << 8); /* manager address */ | 
 |  | 
 | 	skb = _alloc_mISDN_skb(MPH_INFORMATION_IND, id, sizeof(data), &data, | 
 | 			       GFP_ATOMIC); | 
 | 	if (!skb) | 
 | 		return; | 
 | 	recv_Dchannel_skb(dch, skb); | 
 | } | 
 |  | 
 | static inline void | 
 | handle_timer_irq(struct hfc_multi *hc) | 
 | { | 
 | 	int		ch, temp; | 
 | 	struct dchannel	*dch; | 
 | 	u_long		flags; | 
 |  | 
 | 	/* process queued resync jobs */ | 
 | 	if (hc->e1_resync) { | 
 | 		/* lock, so e1_resync gets not changed */ | 
 | 		spin_lock_irqsave(&HFClock, flags); | 
 | 		if (hc->e1_resync & 1) { | 
 | 			if (debug & DEBUG_HFCMULTI_PLXSD) | 
 | 				printk(KERN_DEBUG "Enable SYNC_I\n"); | 
 | 			HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC); | 
 | 			/* disable JATT, if RX_SYNC is set */ | 
 | 			if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) | 
 | 				HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX); | 
 | 		} | 
 | 		if (hc->e1_resync & 2) { | 
 | 			if (debug & DEBUG_HFCMULTI_PLXSD) | 
 | 				printk(KERN_DEBUG "Enable jatt PLL\n"); | 
 | 			HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS); | 
 | 		} | 
 | 		if (hc->e1_resync & 4) { | 
 | 			if (debug & DEBUG_HFCMULTI_PLXSD) | 
 | 				printk(KERN_DEBUG | 
 | 				       "Enable QUARTZ for HFC-E1\n"); | 
 | 			/* set jatt to quartz */ | 
 | 			HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | 
 | 				 | V_JATT_OFF); | 
 | 			/* switch to JATT, in case it is not already */ | 
 | 			HFC_outb(hc, R_SYNC_OUT, 0); | 
 | 		} | 
 | 		hc->e1_resync = 0; | 
 | 		spin_unlock_irqrestore(&HFClock, flags); | 
 | 	} | 
 |  | 
 | 	if (hc->ctype != HFC_TYPE_E1 || hc->e1_state == 1) | 
 | 		for (ch = 0; ch <= 31; ch++) { | 
 | 			if (hc->created[hc->chan[ch].port]) { | 
 | 				hfcmulti_tx(hc, ch); | 
 | 				/* fifo is started when switching to rx-fifo */ | 
 | 				hfcmulti_rx(hc, ch); | 
 | 				if (hc->chan[ch].dch && | 
 | 				    hc->chan[ch].nt_timer > -1) { | 
 | 					dch = hc->chan[ch].dch; | 
 | 					if (!(--hc->chan[ch].nt_timer)) { | 
 | 						schedule_event(dch, | 
 | 							       FLG_PHCHANGE); | 
 | 						if (debug & | 
 | 						    DEBUG_HFCMULTI_STATE) | 
 | 							printk(KERN_DEBUG | 
 | 							       "%s: nt_timer at " | 
 | 							       "state %x\n", | 
 | 							       __func__, | 
 | 							       dch->state); | 
 | 					} | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	if (hc->ctype == HFC_TYPE_E1 && hc->created[0]) { | 
 | 		dch = hc->chan[hc->dnum[0]].dch; | 
 | 		/* LOS */ | 
 | 		temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_SIG_LOS; | 
 | 		hc->chan[hc->dnum[0]].los = temp; | 
 | 		if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) { | 
 | 			if (!temp && hc->chan[hc->dnum[0]].los) | 
 | 				signal_state_up(dch, L1_SIGNAL_LOS_ON, | 
 | 						"LOS detected"); | 
 | 			if (temp && !hc->chan[hc->dnum[0]].los) | 
 | 				signal_state_up(dch, L1_SIGNAL_LOS_OFF, | 
 | 						"LOS gone"); | 
 | 		} | 
 | 		if (test_bit(HFC_CFG_REPORT_AIS, &hc->chan[hc->dnum[0]].cfg)) { | 
 | 			/* AIS */ | 
 | 			temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_AIS; | 
 | 			if (!temp && hc->chan[hc->dnum[0]].ais) | 
 | 				signal_state_up(dch, L1_SIGNAL_AIS_ON, | 
 | 						"AIS detected"); | 
 | 			if (temp && !hc->chan[hc->dnum[0]].ais) | 
 | 				signal_state_up(dch, L1_SIGNAL_AIS_OFF, | 
 | 						"AIS gone"); | 
 | 			hc->chan[hc->dnum[0]].ais = temp; | 
 | 		} | 
 | 		if (test_bit(HFC_CFG_REPORT_SLIP, &hc->chan[hc->dnum[0]].cfg)) { | 
 | 			/* SLIP */ | 
 | 			temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_RX; | 
 | 			if (!temp && hc->chan[hc->dnum[0]].slip_rx) | 
 | 				signal_state_up(dch, L1_SIGNAL_SLIP_RX, | 
 | 						" bit SLIP detected RX"); | 
 | 			hc->chan[hc->dnum[0]].slip_rx = temp; | 
 | 			temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_TX; | 
 | 			if (!temp && hc->chan[hc->dnum[0]].slip_tx) | 
 | 				signal_state_up(dch, L1_SIGNAL_SLIP_TX, | 
 | 						" bit SLIP detected TX"); | 
 | 			hc->chan[hc->dnum[0]].slip_tx = temp; | 
 | 		} | 
 | 		if (test_bit(HFC_CFG_REPORT_RDI, &hc->chan[hc->dnum[0]].cfg)) { | 
 | 			/* RDI */ | 
 | 			temp = HFC_inb_nodebug(hc, R_RX_SL0_0) & V_A; | 
 | 			if (!temp && hc->chan[hc->dnum[0]].rdi) | 
 | 				signal_state_up(dch, L1_SIGNAL_RDI_ON, | 
 | 						"RDI detected"); | 
 | 			if (temp && !hc->chan[hc->dnum[0]].rdi) | 
 | 				signal_state_up(dch, L1_SIGNAL_RDI_OFF, | 
 | 						"RDI gone"); | 
 | 			hc->chan[hc->dnum[0]].rdi = temp; | 
 | 		} | 
 | 		temp = HFC_inb_nodebug(hc, R_JATT_DIR); | 
 | 		switch (hc->chan[hc->dnum[0]].sync) { | 
 | 		case 0: | 
 | 			if ((temp & 0x60) == 0x60) { | 
 | 				if (debug & DEBUG_HFCMULTI_SYNC) | 
 | 					printk(KERN_DEBUG | 
 | 					       "%s: (id=%d) E1 now " | 
 | 					       "in clock sync\n", | 
 | 					       __func__, hc->id); | 
 | 				HFC_outb(hc, R_RX_OFF, | 
 | 				    hc->chan[hc->dnum[0]].jitter | V_RX_INIT); | 
 | 				HFC_outb(hc, R_TX_OFF, | 
 | 				    hc->chan[hc->dnum[0]].jitter | V_RX_INIT); | 
 | 				hc->chan[hc->dnum[0]].sync = 1; | 
 | 				goto check_framesync; | 
 | 			} | 
 | 			break; | 
 | 		case 1: | 
 | 			if ((temp & 0x60) != 0x60) { | 
 | 				if (debug & DEBUG_HFCMULTI_SYNC) | 
 | 					printk(KERN_DEBUG | 
 | 					       "%s: (id=%d) E1 " | 
 | 					       "lost clock sync\n", | 
 | 					       __func__, hc->id); | 
 | 				hc->chan[hc->dnum[0]].sync = 0; | 
 | 				break; | 
 | 			} | 
 | 		check_framesync: | 
 | 			temp = HFC_inb_nodebug(hc, R_SYNC_STA); | 
 | 			if (temp == 0x27) { | 
 | 				if (debug & DEBUG_HFCMULTI_SYNC) | 
 | 					printk(KERN_DEBUG | 
 | 					       "%s: (id=%d) E1 " | 
 | 					       "now in frame sync\n", | 
 | 					       __func__, hc->id); | 
 | 				hc->chan[hc->dnum[0]].sync = 2; | 
 | 			} | 
 | 			break; | 
 | 		case 2: | 
 | 			if ((temp & 0x60) != 0x60) { | 
 | 				if (debug & DEBUG_HFCMULTI_SYNC) | 
 | 					printk(KERN_DEBUG | 
 | 					       "%s: (id=%d) E1 lost " | 
 | 					       "clock & frame sync\n", | 
 | 					       __func__, hc->id); | 
 | 				hc->chan[hc->dnum[0]].sync = 0; | 
 | 				break; | 
 | 			} | 
 | 			temp = HFC_inb_nodebug(hc, R_SYNC_STA); | 
 | 			if (temp != 0x27) { | 
 | 				if (debug & DEBUG_HFCMULTI_SYNC) | 
 | 					printk(KERN_DEBUG | 
 | 					       "%s: (id=%d) E1 " | 
 | 					       "lost frame sync\n", | 
 | 					       __func__, hc->id); | 
 | 				hc->chan[hc->dnum[0]].sync = 1; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip)) | 
 | 		hfcmulti_watchdog(hc); | 
 |  | 
 | 	if (hc->leds) | 
 | 		hfcmulti_leds(hc); | 
 | } | 
 |  | 
 | static void | 
 | ph_state_irq(struct hfc_multi *hc, u_char r_irq_statech) | 
 | { | 
 | 	struct dchannel	*dch; | 
 | 	int		ch; | 
 | 	int		active; | 
 | 	u_char		st_status, temp; | 
 |  | 
 | 	/* state machine */ | 
 | 	for (ch = 0; ch <= 31; ch++) { | 
 | 		if (hc->chan[ch].dch) { | 
 | 			dch = hc->chan[ch].dch; | 
 | 			if (r_irq_statech & 1) { | 
 | 				HFC_outb_nodebug(hc, R_ST_SEL, | 
 | 						 hc->chan[ch].port); | 
 | 				/* undocumented: delay after R_ST_SEL */ | 
 | 				udelay(1); | 
 | 				/* undocumented: status changes during read */ | 
 | 				st_status = HFC_inb_nodebug(hc, A_ST_RD_STATE); | 
 | 				while (st_status != (temp = | 
 | 						     HFC_inb_nodebug(hc, A_ST_RD_STATE))) { | 
 | 					if (debug & DEBUG_HFCMULTI_STATE) | 
 | 						printk(KERN_DEBUG "%s: reread " | 
 | 						       "STATE because %d!=%d\n", | 
 | 						       __func__, temp, | 
 | 						       st_status); | 
 | 					st_status = temp; /* repeat */ | 
 | 				} | 
 |  | 
 | 				/* Speech Design TE-sync indication */ | 
 | 				if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && | 
 | 				    dch->dev.D.protocol == ISDN_P_TE_S0) { | 
 | 					if (st_status & V_FR_SYNC_ST) | 
 | 						hc->syncronized |= | 
 | 							(1 << hc->chan[ch].port); | 
 | 					else | 
 | 						hc->syncronized &= | 
 | 							~(1 << hc->chan[ch].port); | 
 | 				} | 
 | 				dch->state = st_status & 0x0f; | 
 | 				if (dch->dev.D.protocol == ISDN_P_NT_S0) | 
 | 					active = 3; | 
 | 				else | 
 | 					active = 7; | 
 | 				if (dch->state == active) { | 
 | 					HFC_outb_nodebug(hc, R_FIFO, | 
 | 							 (ch << 1) | 1); | 
 | 					HFC_wait_nodebug(hc); | 
 | 					HFC_outb_nodebug(hc, | 
 | 							 R_INC_RES_FIFO, V_RES_F); | 
 | 					HFC_wait_nodebug(hc); | 
 | 					dch->tx_idx = 0; | 
 | 				} | 
 | 				schedule_event(dch, FLG_PHCHANGE); | 
 | 				if (debug & DEBUG_HFCMULTI_STATE) | 
 | 					printk(KERN_DEBUG | 
 | 					       "%s: S/T newstate %x port %d\n", | 
 | 					       __func__, dch->state, | 
 | 					       hc->chan[ch].port); | 
 | 			} | 
 | 			r_irq_statech >>= 1; | 
 | 		} | 
 | 	} | 
 | 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) | 
 | 		plxsd_checksync(hc, 0); | 
 | } | 
 |  | 
 | static void | 
 | fifo_irq(struct hfc_multi *hc, int block) | 
 | { | 
 | 	int	ch, j; | 
 | 	struct dchannel	*dch; | 
 | 	struct bchannel	*bch; | 
 | 	u_char r_irq_fifo_bl; | 
 |  | 
 | 	r_irq_fifo_bl = HFC_inb_nodebug(hc, R_IRQ_FIFO_BL0 + block); | 
 | 	j = 0; | 
 | 	while (j < 8) { | 
 | 		ch = (block << 2) + (j >> 1); | 
 | 		dch = hc->chan[ch].dch; | 
 | 		bch = hc->chan[ch].bch; | 
 | 		if (((!dch) && (!bch)) || (!hc->created[hc->chan[ch].port])) { | 
 | 			j += 2; | 
 | 			continue; | 
 | 		} | 
 | 		if (dch && (r_irq_fifo_bl & (1 << j)) && | 
 | 		    test_bit(FLG_ACTIVE, &dch->Flags)) { | 
 | 			hfcmulti_tx(hc, ch); | 
 | 			/* start fifo */ | 
 | 			HFC_outb_nodebug(hc, R_FIFO, 0); | 
 | 			HFC_wait_nodebug(hc); | 
 | 		} | 
 | 		if (bch && (r_irq_fifo_bl & (1 << j)) && | 
 | 		    test_bit(FLG_ACTIVE, &bch->Flags)) { | 
 | 			hfcmulti_tx(hc, ch); | 
 | 			/* start fifo */ | 
 | 			HFC_outb_nodebug(hc, R_FIFO, 0); | 
 | 			HFC_wait_nodebug(hc); | 
 | 		} | 
 | 		j++; | 
 | 		if (dch && (r_irq_fifo_bl & (1 << j)) && | 
 | 		    test_bit(FLG_ACTIVE, &dch->Flags)) { | 
 | 			hfcmulti_rx(hc, ch); | 
 | 		} | 
 | 		if (bch && (r_irq_fifo_bl & (1 << j)) && | 
 | 		    test_bit(FLG_ACTIVE, &bch->Flags)) { | 
 | 			hfcmulti_rx(hc, ch); | 
 | 		} | 
 | 		j++; | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef IRQ_DEBUG | 
 | int irqsem; | 
 | #endif | 
 | static irqreturn_t | 
 | hfcmulti_interrupt(int intno, void *dev_id) | 
 | { | 
 | #ifdef IRQCOUNT_DEBUG | 
 | 	static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0, | 
 | 		iq5 = 0, iq6 = 0, iqcnt = 0; | 
 | #endif | 
 | 	struct hfc_multi	*hc = dev_id; | 
 | 	struct dchannel		*dch; | 
 | 	u_char			r_irq_statech, status, r_irq_misc, r_irq_oview; | 
 | 	int			i; | 
 | 	void __iomem		*plx_acc; | 
 | 	u_short			wval; | 
 | 	u_char			e1_syncsta, temp, temp2; | 
 | 	u_long			flags; | 
 |  | 
 | 	if (!hc) { | 
 | 		printk(KERN_ERR "HFC-multi: Spurious interrupt!\n"); | 
 | 		return IRQ_NONE; | 
 | 	} | 
 |  | 
 | 	spin_lock(&hc->lock); | 
 |  | 
 | #ifdef IRQ_DEBUG | 
 | 	if (irqsem) | 
 | 		printk(KERN_ERR "irq for card %d during irq from " | 
 | 		       "card %d, this is no bug.\n", hc->id + 1, irqsem); | 
 | 	irqsem = hc->id + 1; | 
 | #endif | 
 | #ifdef CONFIG_MISDN_HFCMULTI_8xx | 
 | 	if (hc->immap->im_cpm.cp_pbdat & hc->pb_irqmsk) | 
 | 		goto irq_notforus; | 
 | #endif | 
 | 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { | 
 | 		spin_lock_irqsave(&plx_lock, flags); | 
 | 		plx_acc = hc->plx_membase + PLX_INTCSR; | 
 | 		wval = readw(plx_acc); | 
 | 		spin_unlock_irqrestore(&plx_lock, flags); | 
 | 		if (!(wval & PLX_INTCSR_LINTI1_STATUS)) | 
 | 			goto irq_notforus; | 
 | 	} | 
 |  | 
 | 	status = HFC_inb_nodebug(hc, R_STATUS); | 
 | 	r_irq_statech = HFC_inb_nodebug(hc, R_IRQ_STATECH); | 
 | #ifdef IRQCOUNT_DEBUG | 
 | 	if (r_irq_statech) | 
 | 		iq1++; | 
 | 	if (status & V_DTMF_STA) | 
 | 		iq2++; | 
 | 	if (status & V_LOST_STA) | 
 | 		iq3++; | 
 | 	if (status & V_EXT_IRQSTA) | 
 | 		iq4++; | 
 | 	if (status & V_MISC_IRQSTA) | 
 | 		iq5++; | 
 | 	if (status & V_FR_IRQSTA) | 
 | 		iq6++; | 
 | 	if (iqcnt++ > 5000) { | 
 | 		printk(KERN_ERR "iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n", | 
 | 		       iq1, iq2, iq3, iq4, iq5, iq6); | 
 | 		iqcnt = 0; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	if (!r_irq_statech && | 
 | 	    !(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA | | 
 | 			V_MISC_IRQSTA | V_FR_IRQSTA))) { | 
 | 		/* irq is not for us */ | 
 | 		goto irq_notforus; | 
 | 	} | 
 | 	hc->irqcnt++; | 
 | 	if (r_irq_statech) { | 
 | 		if (hc->ctype != HFC_TYPE_E1) | 
 | 			ph_state_irq(hc, r_irq_statech); | 
 | 	} | 
 | 	if (status & V_EXT_IRQSTA) | 
 | 		; /* external IRQ */ | 
 | 	if (status & V_LOST_STA) { | 
 | 		/* LOST IRQ */ | 
 | 		HFC_outb(hc, R_INC_RES_FIFO, V_RES_LOST); /* clear irq! */ | 
 | 	} | 
 | 	if (status & V_MISC_IRQSTA) { | 
 | 		/* misc IRQ */ | 
 | 		r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC); | 
 | 		r_irq_misc &= hc->hw.r_irqmsk_misc; /* ignore disabled irqs */ | 
 | 		if (r_irq_misc & V_STA_IRQ) { | 
 | 			if (hc->ctype == HFC_TYPE_E1) { | 
 | 				/* state machine */ | 
 | 				dch = hc->chan[hc->dnum[0]].dch; | 
 | 				e1_syncsta = HFC_inb_nodebug(hc, R_SYNC_STA); | 
 | 				if (test_bit(HFC_CHIP_PLXSD, &hc->chip) | 
 | 				    && hc->e1_getclock) { | 
 | 					if (e1_syncsta & V_FR_SYNC_E1) | 
 | 						hc->syncronized = 1; | 
 | 					else | 
 | 						hc->syncronized = 0; | 
 | 				} | 
 | 				/* undocumented: status changes during read */ | 
 | 				temp = HFC_inb_nodebug(hc, R_E1_RD_STA); | 
 | 				while (temp != (temp2 = | 
 | 						      HFC_inb_nodebug(hc, R_E1_RD_STA))) { | 
 | 					if (debug & DEBUG_HFCMULTI_STATE) | 
 | 						printk(KERN_DEBUG "%s: reread " | 
 | 						       "STATE because %d!=%d\n", | 
 | 						    __func__, temp, temp2); | 
 | 					temp = temp2; /* repeat */ | 
 | 				} | 
 | 				/* broadcast state change to all fragments */ | 
 | 				if (debug & DEBUG_HFCMULTI_STATE) | 
 | 					printk(KERN_DEBUG | 
 | 					       "%s: E1 (id=%d) newstate %x\n", | 
 | 					    __func__, hc->id, temp & 0x7); | 
 | 				for (i = 0; i < hc->ports; i++) { | 
 | 					dch = hc->chan[hc->dnum[i]].dch; | 
 | 					dch->state = temp & 0x7; | 
 | 					schedule_event(dch, FLG_PHCHANGE); | 
 | 				} | 
 |  | 
 | 				if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) | 
 | 					plxsd_checksync(hc, 0); | 
 | 			} | 
 | 		} | 
 | 		if (r_irq_misc & V_TI_IRQ) { | 
 | 			if (hc->iclock_on) | 
 | 				mISDN_clock_update(hc->iclock, poll, NULL); | 
 | 			handle_timer_irq(hc); | 
 | 		} | 
 |  | 
 | 		if (r_irq_misc & V_DTMF_IRQ) | 
 | 			hfcmulti_dtmf(hc); | 
 |  | 
 | 		if (r_irq_misc & V_IRQ_PROC) { | 
 | 			static int irq_proc_cnt; | 
 | 			if (!irq_proc_cnt++) | 
 | 				printk(KERN_DEBUG "%s: got V_IRQ_PROC -" | 
 | 				       " this should not happen\n", __func__); | 
 | 		} | 
 |  | 
 | 	} | 
 | 	if (status & V_FR_IRQSTA) { | 
 | 		/* FIFO IRQ */ | 
 | 		r_irq_oview = HFC_inb_nodebug(hc, R_IRQ_OVIEW); | 
 | 		for (i = 0; i < 8; i++) { | 
 | 			if (r_irq_oview & (1 << i)) | 
 | 				fifo_irq(hc, i); | 
 | 		} | 
 | 	} | 
 |  | 
 | #ifdef IRQ_DEBUG | 
 | 	irqsem = 0; | 
 | #endif | 
 | 	spin_unlock(&hc->lock); | 
 | 	return IRQ_HANDLED; | 
 |  | 
 | irq_notforus: | 
 | #ifdef IRQ_DEBUG | 
 | 	irqsem = 0; | 
 | #endif | 
 | 	spin_unlock(&hc->lock); | 
 | 	return IRQ_NONE; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * timer callback for D-chan busy resolution. Currently no function | 
 |  */ | 
 |  | 
 | static void | 
 | hfcmulti_dbusy_timer(struct timer_list *t) | 
 | { | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * activate/deactivate hardware for selected channels and mode | 
 |  * | 
 |  * configure B-channel with the given protocol | 
 |  * ch eqals to the HFC-channel (0-31) | 
 |  * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31 | 
 |  * for S/T, 1-31 for E1) | 
 |  * the hdlc interrupts will be set/unset | 
 |  */ | 
 | static int | 
 | mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx, | 
 | 	      int bank_tx, int slot_rx, int bank_rx) | 
 | { | 
 | 	int flow_tx = 0, flow_rx = 0, routing = 0; | 
 | 	int oslot_tx, oslot_rx; | 
 | 	int conf; | 
 |  | 
 | 	if (ch < 0 || ch > 31) | 
 | 		return -EINVAL; | 
 | 	oslot_tx = hc->chan[ch].slot_tx; | 
 | 	oslot_rx = hc->chan[ch].slot_rx; | 
 | 	conf = hc->chan[ch].conf; | 
 |  | 
 | 	if (debug & DEBUG_HFCMULTI_MODE) | 
 | 		printk(KERN_DEBUG | 
 | 		       "%s: card %d channel %d protocol %x slot old=%d new=%d " | 
 | 		       "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n", | 
 | 		       __func__, hc->id, ch, protocol, oslot_tx, slot_tx, | 
 | 		       bank_tx, oslot_rx, slot_rx, bank_rx); | 
 |  | 
 | 	if (oslot_tx >= 0 && slot_tx != oslot_tx) { | 
 | 		/* remove from slot */ | 
 | 		if (debug & DEBUG_HFCMULTI_MODE) | 
 | 			printk(KERN_DEBUG "%s: remove from slot %d (TX)\n", | 
 | 			       __func__, oslot_tx); | 
 | 		if (hc->slot_owner[oslot_tx << 1] == ch) { | 
 | 			HFC_outb(hc, R_SLOT, oslot_tx << 1); | 
 | 			HFC_outb(hc, A_SL_CFG, 0); | 
 | 			if (hc->ctype != HFC_TYPE_XHFC) | 
 | 				HFC_outb(hc, A_CONF, 0); | 
 | 			hc->slot_owner[oslot_tx << 1] = -1; | 
 | 		} else { | 
 | 			if (debug & DEBUG_HFCMULTI_MODE) | 
 | 				printk(KERN_DEBUG | 
 | 				       "%s: we are not owner of this tx slot " | 
 | 				       "anymore, channel %d is.\n", | 
 | 				       __func__, hc->slot_owner[oslot_tx << 1]); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (oslot_rx >= 0 && slot_rx != oslot_rx) { | 
 | 		/* remove from slot */ | 
 | 		if (debug & DEBUG_HFCMULTI_MODE) | 
 | 			printk(KERN_DEBUG | 
 | 			       "%s: remove from slot %d (RX)\n", | 
 | 			       __func__, oslot_rx); | 
 | 		if (hc->slot_owner[(oslot_rx << 1) | 1] == ch) { | 
 | 			HFC_outb(hc, R_SLOT, (oslot_rx << 1) | V_SL_DIR); | 
 | 			HFC_outb(hc, A_SL_CFG, 0); | 
 | 			hc->slot_owner[(oslot_rx << 1) | 1] = -1; | 
 | 		} else { | 
 | 			if (debug & DEBUG_HFCMULTI_MODE) | 
 | 				printk(KERN_DEBUG | 
 | 				       "%s: we are not owner of this rx slot " | 
 | 				       "anymore, channel %d is.\n", | 
 | 				       __func__, | 
 | 				       hc->slot_owner[(oslot_rx << 1) | 1]); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (slot_tx < 0) { | 
 | 		flow_tx = 0x80; /* FIFO->ST */ | 
 | 		/* disable pcm slot */ | 
 | 		hc->chan[ch].slot_tx = -1; | 
 | 		hc->chan[ch].bank_tx = 0; | 
 | 	} else { | 
 | 		/* set pcm slot */ | 
 | 		if (hc->chan[ch].txpending) | 
 | 			flow_tx = 0x80; /* FIFO->ST */ | 
 | 		else | 
 | 			flow_tx = 0xc0; /* PCM->ST */ | 
 | 		/* put on slot */ | 
 | 		routing = bank_tx ? 0xc0 : 0x80; | 
 | 		if (conf >= 0 || bank_tx > 1) | 
 | 			routing = 0x40; /* loop */ | 
 | 		if (debug & DEBUG_HFCMULTI_MODE) | 
 | 			printk(KERN_DEBUG "%s: put channel %d to slot %d bank" | 
 | 			       " %d flow %02x routing %02x conf %d (TX)\n", | 
 | 			       __func__, ch, slot_tx, bank_tx, | 
 | 			       flow_tx, routing, conf); | 
 | 		HFC_outb(hc, R_SLOT, slot_tx << 1); | 
 | 		HFC_outb(hc, A_SL_CFG, (ch << 1) | routing); | 
 | 		if (hc->ctype != HFC_TYPE_XHFC) | 
 | 			HFC_outb(hc, A_CONF, | 
 | 				 (conf < 0) ? 0 : (conf | V_CONF_SL)); | 
 | 		hc->slot_owner[slot_tx << 1] = ch; | 
 | 		hc->chan[ch].slot_tx = slot_tx; | 
 | 		hc->chan[ch].bank_tx = bank_tx; | 
 | 	} | 
 | 	if (slot_rx < 0) { | 
 | 		/* disable pcm slot */ | 
 | 		flow_rx = 0x80; /* ST->FIFO */ | 
 | 		hc->chan[ch].slot_rx = -1; | 
 | 		hc->chan[ch].bank_rx = 0; | 
 | 	} else { | 
 | 		/* set pcm slot */ | 
 | 		if (hc->chan[ch].txpending) | 
 | 			flow_rx = 0x80; /* ST->FIFO */ | 
 | 		else | 
 | 			flow_rx = 0xc0; /* ST->(FIFO,PCM) */ | 
 | 		/* put on slot */ | 
 | 		routing = bank_rx ? 0x80 : 0xc0; /* reversed */ | 
 | 		if (conf >= 0 || bank_rx > 1) | 
 | 			routing = 0x40; /* loop */ | 
 | 		if (debug & DEBUG_HFCMULTI_MODE) | 
 | 			printk(KERN_DEBUG "%s: put channel %d to slot %d bank" | 
 | 			       " %d flow %02x routing %02x conf %d (RX)\n", | 
 | 			       __func__, ch, slot_rx, bank_rx, | 
 | 			       flow_rx, routing, conf); | 
 | 		HFC_outb(hc, R_SLOT, (slot_rx << 1) | V_SL_DIR); | 
 | 		HFC_outb(hc, A_SL_CFG, (ch << 1) | V_CH_DIR | routing); | 
 | 		hc->slot_owner[(slot_rx << 1) | 1] = ch; | 
 | 		hc->chan[ch].slot_rx = slot_rx; | 
 | 		hc->chan[ch].bank_rx = bank_rx; | 
 | 	} | 
 |  | 
 | 	switch (protocol) { | 
 | 	case (ISDN_P_NONE): | 
 | 		/* disable TX fifo */ | 
 | 		HFC_outb(hc, R_FIFO, ch << 1); | 
 | 		HFC_wait(hc); | 
 | 		HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | V_IFF); | 
 | 		HFC_outb(hc, A_SUBCH_CFG, 0); | 
 | 		HFC_outb(hc, A_IRQ_MSK, 0); | 
 | 		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); | 
 | 		HFC_wait(hc); | 
 | 		/* disable RX fifo */ | 
 | 		HFC_outb(hc, R_FIFO, (ch << 1) | 1); | 
 | 		HFC_wait(hc); | 
 | 		HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00); | 
 | 		HFC_outb(hc, A_SUBCH_CFG, 0); | 
 | 		HFC_outb(hc, A_IRQ_MSK, 0); | 
 | 		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); | 
 | 		HFC_wait(hc); | 
 | 		if (hc->chan[ch].bch && hc->ctype != HFC_TYPE_E1) { | 
 | 			hc->hw.a_st_ctrl0[hc->chan[ch].port] &= | 
 | 				((ch & 0x3) == 0) ? ~V_B1_EN : ~V_B2_EN; | 
 | 			HFC_outb(hc, R_ST_SEL, hc->chan[ch].port); | 
 | 			/* undocumented: delay after R_ST_SEL */ | 
 | 			udelay(1); | 
 | 			HFC_outb(hc, A_ST_CTRL0, | 
 | 				 hc->hw.a_st_ctrl0[hc->chan[ch].port]); | 
 | 		} | 
 | 		if (hc->chan[ch].bch) { | 
 | 			test_and_clear_bit(FLG_HDLC, &hc->chan[ch].bch->Flags); | 
 | 			test_and_clear_bit(FLG_TRANSPARENT, | 
 | 					   &hc->chan[ch].bch->Flags); | 
 | 		} | 
 | 		break; | 
 | 	case (ISDN_P_B_RAW): /* B-channel */ | 
 |  | 
 | 		if (test_bit(HFC_CHIP_B410P, &hc->chip) && | 
 | 		    (hc->chan[ch].slot_rx < 0) && | 
 | 		    (hc->chan[ch].slot_tx < 0)) { | 
 |  | 
 | 			printk(KERN_DEBUG | 
 | 			       "Setting B-channel %d to echo cancelable " | 
 | 			       "state on PCM slot %d\n", ch, | 
 | 			       ((ch / 4) * 8) + ((ch % 4) * 4) + 1); | 
 | 			printk(KERN_DEBUG | 
 | 			       "Enabling pass through for channel\n"); | 
 | 			vpm_out(hc, ch, ((ch / 4) * 8) + | 
 | 				((ch % 4) * 4) + 1, 0x01); | 
 | 			/* rx path */ | 
 | 			/* S/T -> PCM */ | 
 | 			HFC_outb(hc, R_FIFO, (ch << 1)); | 
 | 			HFC_wait(hc); | 
 | 			HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF); | 
 | 			HFC_outb(hc, R_SLOT, (((ch / 4) * 8) + | 
 | 					      ((ch % 4) * 4) + 1) << 1); | 
 | 			HFC_outb(hc, A_SL_CFG, 0x80 | (ch << 1)); | 
 |  | 
 | 			/* PCM -> FIFO */ | 
 | 			HFC_outb(hc, R_FIFO, 0x20 | (ch << 1) | 1); | 
 | 			HFC_wait(hc); | 
 | 			HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF); | 
 | 			HFC_outb(hc, A_SUBCH_CFG, 0); | 
 | 			HFC_outb(hc, A_IRQ_MSK, 0); | 
 | 			if (hc->chan[ch].protocol != protocol) { | 
 | 				HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); | 
 | 				HFC_wait(hc); | 
 | 			} | 
 | 			HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) + | 
 | 					       ((ch % 4) * 4) + 1) << 1) | 1); | 
 | 			HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1) | 1); | 
 |  | 
 | 			/* tx path */ | 
 | 			/* PCM -> S/T */ | 
 | 			HFC_outb(hc, R_FIFO, (ch << 1) | 1); | 
 | 			HFC_wait(hc); | 
 | 			HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF); | 
 | 			HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) + | 
 | 					       ((ch % 4) * 4)) << 1) | 1); | 
 | 			HFC_outb(hc, A_SL_CFG, 0x80 | 0x40 | (ch << 1) | 1); | 
 |  | 
 | 			/* FIFO -> PCM */ | 
 | 			HFC_outb(hc, R_FIFO, 0x20 | (ch << 1)); | 
 | 			HFC_wait(hc); | 
 | 			HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF); | 
 | 			HFC_outb(hc, A_SUBCH_CFG, 0); | 
 | 			HFC_outb(hc, A_IRQ_MSK, 0); | 
 | 			if (hc->chan[ch].protocol != protocol) { | 
 | 				HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); | 
 | 				HFC_wait(hc); | 
 | 			} | 
 | 			/* tx silence */ | 
 | 			HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence); | 
 | 			HFC_outb(hc, R_SLOT, (((ch / 4) * 8) + | 
 | 					      ((ch % 4) * 4)) << 1); | 
 | 			HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1)); | 
 | 		} else { | 
 | 			/* enable TX fifo */ | 
 | 			HFC_outb(hc, R_FIFO, ch << 1); | 
 | 			HFC_wait(hc); | 
 | 			if (hc->ctype == HFC_TYPE_XHFC) | 
 | 				HFC_outb(hc, A_CON_HDLC, flow_tx | 0x07 << 2 | | 
 | 					 V_HDLC_TRP | V_IFF); | 
 | 			/* Enable FIFO, no interrupt */ | 
 | 			else | 
 | 				HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | | 
 | 					 V_HDLC_TRP | V_IFF); | 
 | 			HFC_outb(hc, A_SUBCH_CFG, 0); | 
 | 			HFC_outb(hc, A_IRQ_MSK, 0); | 
 | 			if (hc->chan[ch].protocol != protocol) { | 
 | 				HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); | 
 | 				HFC_wait(hc); | 
 | 			} | 
 | 			/* tx silence */ | 
 | 			HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence); | 
 | 			/* enable RX fifo */ | 
 | 			HFC_outb(hc, R_FIFO, (ch << 1) | 1); | 
 | 			HFC_wait(hc); | 
 | 			if (hc->ctype == HFC_TYPE_XHFC) | 
 | 				HFC_outb(hc, A_CON_HDLC, flow_rx | 0x07 << 2 | | 
 | 					 V_HDLC_TRP); | 
 | 			/* Enable FIFO, no interrupt*/ | 
 | 			else | 
 | 				HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00 | | 
 | 					 V_HDLC_TRP); | 
 | 			HFC_outb(hc, A_SUBCH_CFG, 0); | 
 | 			HFC_outb(hc, A_IRQ_MSK, 0); | 
 | 			if (hc->chan[ch].protocol != protocol) { | 
 | 				HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); | 
 | 				HFC_wait(hc); | 
 | 			} | 
 | 		} | 
 | 		if (hc->ctype != HFC_TYPE_E1) { | 
 | 			hc->hw.a_st_ctrl0[hc->chan[ch].port] |= | 
 | 				((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN; | 
 | 			HFC_outb(hc, R_ST_SEL, hc->chan[ch].port); | 
 | 			/* undocumented: delay after R_ST_SEL */ | 
 | 			udelay(1); | 
 | 			HFC_outb(hc, A_ST_CTRL0, | 
 | 				 hc->hw.a_st_ctrl0[hc->chan[ch].port]); | 
 | 		} | 
 | 		if (hc->chan[ch].bch) | 
 | 			test_and_set_bit(FLG_TRANSPARENT, | 
 | 					 &hc->chan[ch].bch->Flags); | 
 | 		break; | 
 | 	case (ISDN_P_B_HDLC): /* B-channel */ | 
 | 	case (ISDN_P_TE_S0): /* D-channel */ | 
 | 	case (ISDN_P_NT_S0): | 
 | 	case (ISDN_P_TE_E1): | 
 | 	case (ISDN_P_NT_E1): | 
 | 		/* enable TX fifo */ | 
 | 		HFC_outb(hc, R_FIFO, ch << 1); | 
 | 		HFC_wait(hc); | 
 | 		if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch) { | 
 | 			/* E1 or B-channel */ | 
 | 			HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04); | 
 | 			HFC_outb(hc, A_SUBCH_CFG, 0); | 
 | 		} else { | 
 | 			/* D-Channel without HDLC fill flags */ | 
 | 			HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04 | V_IFF); | 
 | 			HFC_outb(hc, A_SUBCH_CFG, 2); | 
 | 		} | 
 | 		HFC_outb(hc, A_IRQ_MSK, V_IRQ); | 
 | 		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); | 
 | 		HFC_wait(hc); | 
 | 		/* enable RX fifo */ | 
 | 		HFC_outb(hc, R_FIFO, (ch << 1) | 1); | 
 | 		HFC_wait(hc); | 
 | 		HFC_outb(hc, A_CON_HDLC, flow_rx | 0x04); | 
 | 		if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch) | 
 | 			HFC_outb(hc, A_SUBCH_CFG, 0); /* full 8 bits */ | 
 | 		else | 
 | 			HFC_outb(hc, A_SUBCH_CFG, 2); /* 2 bits dchannel */ | 
 | 		HFC_outb(hc, A_IRQ_MSK, V_IRQ); | 
 | 		HFC_outb(hc, R_INC_RES_FIFO, V_RES_F); | 
 | 		HFC_wait(hc); | 
 | 		if (hc->chan[ch].bch) { | 
 | 			test_and_set_bit(FLG_HDLC, &hc->chan[ch].bch->Flags); | 
 | 			if (hc->ctype != HFC_TYPE_E1) { | 
 | 				hc->hw.a_st_ctrl0[hc->chan[ch].port] |= | 
 | 					((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN; | 
 | 				HFC_outb(hc, R_ST_SEL, hc->chan[ch].port); | 
 | 				/* undocumented: delay after R_ST_SEL */ | 
 | 				udelay(1); | 
 | 				HFC_outb(hc, A_ST_CTRL0, | 
 | 					 hc->hw.a_st_ctrl0[hc->chan[ch].port]); | 
 | 			} | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		printk(KERN_DEBUG "%s: protocol not known %x\n", | 
 | 		       __func__, protocol); | 
 | 		hc->chan[ch].protocol = ISDN_P_NONE; | 
 | 		return -ENOPROTOOPT; | 
 | 	} | 
 | 	hc->chan[ch].protocol = protocol; | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * connect/disconnect PCM | 
 |  */ | 
 |  | 
 | static void | 
 | hfcmulti_pcm(struct hfc_multi *hc, int ch, int slot_tx, int bank_tx, | 
 | 	     int slot_rx, int bank_rx) | 
 | { | 
 | 	if (slot_tx < 0 || slot_rx < 0 || bank_tx < 0 || bank_rx < 0) { | 
 | 		/* disable PCM */ | 
 | 		mode_hfcmulti(hc, ch, hc->chan[ch].protocol, -1, 0, -1, 0); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* enable pcm */ | 
 | 	mode_hfcmulti(hc, ch, hc->chan[ch].protocol, slot_tx, bank_tx, | 
 | 		      slot_rx, bank_rx); | 
 | } | 
 |  | 
 | /* | 
 |  * set/disable conference | 
 |  */ | 
 |  | 
 | static void | 
 | hfcmulti_conf(struct hfc_multi *hc, int ch, int num) | 
 | { | 
 | 	if (num >= 0 && num <= 7) | 
 | 		hc->chan[ch].conf = num; | 
 | 	else | 
 | 		hc->chan[ch].conf = -1; | 
 | 	mode_hfcmulti(hc, ch, hc->chan[ch].protocol, hc->chan[ch].slot_tx, | 
 | 		      hc->chan[ch].bank_tx, hc->chan[ch].slot_rx, | 
 | 		      hc->chan[ch].bank_rx); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * set/disable sample loop | 
 |  */ | 
 |  | 
 | /* NOTE: this function is experimental and therefore disabled */ | 
 |  | 
 | /* | 
 |  * Layer 1 callback function | 
 |  */ | 
 | static int | 
 | hfcm_l1callback(struct dchannel *dch, u_int cmd) | 
 | { | 
 | 	struct hfc_multi	*hc = dch->hw; | 
 | 	u_long	flags; | 
 |  | 
 | 	switch (cmd) { | 
 | 	case INFO3_P8: | 
 | 	case INFO3_P10: | 
 | 		break; | 
 | 	case HW_RESET_REQ: | 
 | 		/* start activation */ | 
 | 		spin_lock_irqsave(&hc->lock, flags); | 
 | 		if (hc->ctype == HFC_TYPE_E1) { | 
 | 			if (debug & DEBUG_HFCMULTI_MSG) | 
 | 				printk(KERN_DEBUG | 
 | 				       "%s: HW_RESET_REQ no BRI\n", | 
 | 				       __func__); | 
 | 		} else { | 
 | 			HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port); | 
 | 			/* undocumented: delay after R_ST_SEL */ | 
 | 			udelay(1); | 
 | 			HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 3); /* F3 */ | 
 | 			udelay(6); /* wait at least 5,21us */ | 
 | 			HFC_outb(hc, A_ST_WR_STATE, 3); | 
 | 			HFC_outb(hc, A_ST_WR_STATE, 3 | (V_ST_ACT * 3)); | 
 | 			/* activate */ | 
 | 		} | 
 | 		spin_unlock_irqrestore(&hc->lock, flags); | 
 | 		l1_event(dch->l1, HW_POWERUP_IND); | 
 | 		break; | 
 | 	case HW_DEACT_REQ: | 
 | 		/* start deactivation */ | 
 | 		spin_lock_irqsave(&hc->lock, flags); | 
 | 		if (hc->ctype == HFC_TYPE_E1) { | 
 | 			if (debug & DEBUG_HFCMULTI_MSG) | 
 | 				printk(KERN_DEBUG | 
 | 				       "%s: HW_DEACT_REQ no BRI\n", | 
 | 				       __func__); | 
 | 		} else { | 
 | 			HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port); | 
 | 			/* undocumented: delay after R_ST_SEL */ | 
 | 			udelay(1); | 
 | 			HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2); | 
 | 			/* deactivate */ | 
 | 			if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { | 
 | 				hc->syncronized &= | 
 | 					~(1 << hc->chan[dch->slot].port); | 
 | 				plxsd_checksync(hc, 0); | 
 | 			} | 
 | 		} | 
 | 		skb_queue_purge(&dch->squeue); | 
 | 		if (dch->tx_skb) { | 
 | 			dev_kfree_skb(dch->tx_skb); | 
 | 			dch->tx_skb = NULL; | 
 | 		} | 
 | 		dch->tx_idx = 0; | 
 | 		if (dch->rx_skb) { | 
 | 			dev_kfree_skb(dch->rx_skb); | 
 | 			dch->rx_skb = NULL; | 
 | 		} | 
 | 		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags); | 
 | 		if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags)) | 
 | 			del_timer(&dch->timer); | 
 | 		spin_unlock_irqrestore(&hc->lock, flags); | 
 | 		break; | 
 | 	case HW_POWERUP_REQ: | 
 | 		spin_lock_irqsave(&hc->lock, flags); | 
 | 		if (hc->ctype == HFC_TYPE_E1) { | 
 | 			if (debug & DEBUG_HFCMULTI_MSG) | 
 | 				printk(KERN_DEBUG | 
 | 				       "%s: HW_POWERUP_REQ no BRI\n", | 
 | 				       __func__); | 
 | 		} else { | 
 | 			HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port); | 
 | 			/* undocumented: delay after R_ST_SEL */ | 
 | 			udelay(1); | 
 | 			HFC_outb(hc, A_ST_WR_STATE, 3 | 0x10); /* activate */ | 
 | 			udelay(6); /* wait at least 5,21us */ | 
 | 			HFC_outb(hc, A_ST_WR_STATE, 3); /* activate */ | 
 | 		} | 
 | 		spin_unlock_irqrestore(&hc->lock, flags); | 
 | 		break; | 
 | 	case PH_ACTIVATE_IND: | 
 | 		test_and_set_bit(FLG_ACTIVE, &dch->Flags); | 
 | 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL, | 
 | 			    GFP_ATOMIC); | 
 | 		break; | 
 | 	case PH_DEACTIVATE_IND: | 
 | 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags); | 
 | 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL, | 
 | 			    GFP_ATOMIC); | 
 | 		break; | 
 | 	default: | 
 | 		if (dch->debug & DEBUG_HW) | 
 | 			printk(KERN_DEBUG "%s: unknown command %x\n", | 
 | 			       __func__, cmd); | 
 | 		return -1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Layer2 -> Layer 1 Transfer | 
 |  */ | 
 |  | 
 | static int | 
 | handle_dmsg(struct mISDNchannel *ch, struct sk_buff *skb) | 
 | { | 
 | 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D); | 
 | 	struct dchannel		*dch = container_of(dev, struct dchannel, dev); | 
 | 	struct hfc_multi	*hc = dch->hw; | 
 | 	struct mISDNhead	*hh = mISDN_HEAD_P(skb); | 
 | 	int			ret = -EINVAL; | 
 | 	unsigned int		id; | 
 | 	u_long			flags; | 
 |  | 
 | 	switch (hh->prim) { | 
 | 	case PH_DATA_REQ: | 
 | 		if (skb->len < 1) | 
 | 			break; | 
 | 		spin_lock_irqsave(&hc->lock, flags); | 
 | 		ret = dchannel_senddata(dch, skb); | 
 | 		if (ret > 0) { /* direct TX */ | 
 | 			id = hh->id; /* skb can be freed */ | 
 | 			hfcmulti_tx(hc, dch->slot); | 
 | 			ret = 0; | 
 | 			/* start fifo */ | 
 | 			HFC_outb(hc, R_FIFO, 0); | 
 | 			HFC_wait(hc); | 
 | 			spin_unlock_irqrestore(&hc->lock, flags); | 
 | 			queue_ch_frame(ch, PH_DATA_CNF, id, NULL); | 
 | 		} else | 
 | 			spin_unlock_irqrestore(&hc->lock, flags); | 
 | 		return ret; | 
 | 	case PH_ACTIVATE_REQ: | 
 | 		if (dch->dev.D.protocol != ISDN_P_TE_S0) { | 
 | 			spin_lock_irqsave(&hc->lock, flags); | 
 | 			ret = 0; | 
 | 			if (debug & DEBUG_HFCMULTI_MSG) | 
 | 				printk(KERN_DEBUG | 
 | 				       "%s: PH_ACTIVATE port %d (0..%d)\n", | 
 | 				       __func__, hc->chan[dch->slot].port, | 
 | 				       hc->ports - 1); | 
 | 			/* start activation */ | 
 | 			if (hc->ctype == HFC_TYPE_E1) { | 
 | 				ph_state_change(dch); | 
 | 				if (debug & DEBUG_HFCMULTI_STATE) | 
 | 					printk(KERN_DEBUG | 
 | 					       "%s: E1 report state %x \n", | 
 | 					       __func__, dch->state); | 
 | 			} else { | 
 | 				HFC_outb(hc, R_ST_SEL, | 
 | 					 hc->chan[dch->slot].port); | 
 | 				/* undocumented: delay after R_ST_SEL */ | 
 | 				udelay(1); | 
 | 				HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 1); | 
 | 				/* G1 */ | 
 | 				udelay(6); /* wait at least 5,21us */ | 
 | 				HFC_outb(hc, A_ST_WR_STATE, 1); | 
 | 				HFC_outb(hc, A_ST_WR_STATE, 1 | | 
 | 					 (V_ST_ACT * 3)); /* activate */ | 
 | 				dch->state = 1; | 
 | 			} | 
 | 			spin_unlock_irqrestore(&hc->lock, flags); | 
 | 		} else | 
 | 			ret = l1_event(dch->l1, hh->prim); | 
 | 		break; | 
 | 	case PH_DEACTIVATE_REQ: | 
 | 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags); | 
 | 		if (dch->dev.D.protocol != ISDN_P_TE_S0) { | 
 | 			spin_lock_irqsave(&hc->lock, flags); | 
 | 			if (debug & DEBUG_HFCMULTI_MSG) | 
 | 				printk(KERN_DEBUG | 
 | 				       "%s: PH_DEACTIVATE port %d (0..%d)\n", | 
 | 				       __func__, hc->chan[dch->slot].port, | 
 | 				       hc->ports - 1); | 
 | 			/* start deactivation */ | 
 | 			if (hc->ctype == HFC_TYPE_E1) { | 
 | 				if (debug & DEBUG_HFCMULTI_MSG) | 
 | 					printk(KERN_DEBUG | 
 | 					       "%s: PH_DEACTIVATE no BRI\n", | 
 | 					       __func__); | 
 | 			} else { | 
 | 				HFC_outb(hc, R_ST_SEL, | 
 | 					 hc->chan[dch->slot].port); | 
 | 				/* undocumented: delay after R_ST_SEL */ | 
 | 				udelay(1); | 
 | 				HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2); | 
 | 				/* deactivate */ | 
 | 				dch->state = 1; | 
 | 			} | 
 | 			skb_queue_purge(&dch->squeue); | 
 | 			if (dch->tx_skb) { | 
 | 				dev_kfree_skb(dch->tx_skb); | 
 | 				dch->tx_skb = NULL; | 
 | 			} | 
 | 			dch->tx_idx = 0; | 
 | 			if (dch->rx_skb) { | 
 | 				dev_kfree_skb(dch->rx_skb); | 
 | 				dch->rx_skb = NULL; | 
 | 			} | 
 | 			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags); | 
 | 			if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags)) | 
 | 				del_timer(&dch->timer); | 
 | #ifdef FIXME | 
 | 			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags)) | 
 | 				dchannel_sched_event(&hc->dch, D_CLEARBUSY); | 
 | #endif | 
 | 			ret = 0; | 
 | 			spin_unlock_irqrestore(&hc->lock, flags); | 
 | 		} else | 
 | 			ret = l1_event(dch->l1, hh->prim); | 
 | 		break; | 
 | 	} | 
 | 	if (!ret) | 
 | 		dev_kfree_skb(skb); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void | 
 | deactivate_bchannel(struct bchannel *bch) | 
 | { | 
 | 	struct hfc_multi	*hc = bch->hw; | 
 | 	u_long			flags; | 
 |  | 
 | 	spin_lock_irqsave(&hc->lock, flags); | 
 | 	mISDN_clear_bchannel(bch); | 
 | 	hc->chan[bch->slot].coeff_count = 0; | 
 | 	hc->chan[bch->slot].rx_off = 0; | 
 | 	hc->chan[bch->slot].conf = -1; | 
 | 	mode_hfcmulti(hc, bch->slot, ISDN_P_NONE, -1, 0, -1, 0); | 
 | 	spin_unlock_irqrestore(&hc->lock, flags); | 
 | } | 
 |  | 
 | static int | 
 | handle_bmsg(struct mISDNchannel *ch, struct sk_buff *skb) | 
 | { | 
 | 	struct bchannel		*bch = container_of(ch, struct bchannel, ch); | 
 | 	struct hfc_multi	*hc = bch->hw; | 
 | 	int			ret = -EINVAL; | 
 | 	struct mISDNhead	*hh = mISDN_HEAD_P(skb); | 
 | 	unsigned long		flags; | 
 |  | 
 | 	switch (hh->prim) { | 
 | 	case PH_DATA_REQ: | 
 | 		if (!skb->len) | 
 | 			break; | 
 | 		spin_lock_irqsave(&hc->lock, flags); | 
 | 		ret = bchannel_senddata(bch, skb); | 
 | 		if (ret > 0) { /* direct TX */ | 
 | 			hfcmulti_tx(hc, bch->slot); | 
 | 			ret = 0; | 
 | 			/* start fifo */ | 
 | 			HFC_outb_nodebug(hc, R_FIFO, 0); | 
 | 			HFC_wait_nodebug(hc); | 
 | 		} | 
 | 		spin_unlock_irqrestore(&hc->lock, flags); | 
 | 		return ret; | 
 | 	case PH_ACTIVATE_REQ: | 
 | 		if (debug & DEBUG_HFCMULTI_MSG) | 
 | 			printk(KERN_DEBUG "%s: PH_ACTIVATE ch %d (0..32)\n", | 
 | 			       __func__, bch->slot); | 
 | 		spin_lock_irqsave(&hc->lock, flags); | 
 | 		/* activate B-channel if not already activated */ | 
 | 		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) { | 
 | 			hc->chan[bch->slot].txpending = 0; | 
 | 			ret = mode_hfcmulti(hc, bch->slot, | 
 | 					    ch->protocol, | 
 | 					    hc->chan[bch->slot].slot_tx, | 
 | 					    hc->chan[bch->slot].bank_tx, | 
 | 					    hc->chan[bch->slot].slot_rx, | 
 | 					    hc->chan[bch->slot].bank_rx); | 
 | 			if (!ret) { | 
 | 				if (ch->protocol == ISDN_P_B_RAW && !hc->dtmf | 
 | 				    && test_bit(HFC_CHIP_DTMF, &hc->chip)) { | 
 | 					/* start decoder */ | 
 | 					hc->dtmf = 1; | 
 | 					if (debug & DEBUG_HFCMULTI_DTMF) | 
 | 						printk(KERN_DEBUG | 
 | 						       "%s: start dtmf decoder\n", | 
 | 						       __func__); | 
 | 					HFC_outb(hc, R_DTMF, hc->hw.r_dtmf | | 
 | 						 V_RST_DTMF); | 
 | 				} | 
 | 			} | 
 | 		} else | 
 | 			ret = 0; | 
 | 		spin_unlock_irqrestore(&hc->lock, flags); | 
 | 		if (!ret) | 
 | 			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL, | 
 | 				    GFP_KERNEL); | 
 | 		break; | 
 | 	case PH_CONTROL_REQ: | 
 | 		spin_lock_irqsave(&hc->lock, flags); | 
 | 		switch (hh->id) { | 
 | 		case HFC_SPL_LOOP_ON: /* set sample loop */ | 
 | 			if (debug & DEBUG_HFCMULTI_MSG) | 
 | 				printk(KERN_DEBUG | 
 | 				       "%s: HFC_SPL_LOOP_ON (len = %d)\n", | 
 | 				       __func__, skb->len); | 
 | 			ret = 0; | 
 | 			break; | 
 | 		case HFC_SPL_LOOP_OFF: /* set silence */ | 
 | 			if (debug & DEBUG_HFCMULTI_MSG) | 
 | 				printk(KERN_DEBUG "%s: HFC_SPL_LOOP_OFF\n", | 
 | 				       __func__); | 
 | 			ret = 0; | 
 | 			break; | 
 | 		default: | 
 | 			printk(KERN_ERR | 
 | 			       "%s: unknown PH_CONTROL_REQ info %x\n", | 
 | 			       __func__, hh->id); | 
 | 			ret = -EINVAL; | 
 | 		} | 
 | 		spin_unlock_irqrestore(&hc->lock, flags); | 
 | 		break; | 
 | 	case PH_DEACTIVATE_REQ: | 
 | 		deactivate_bchannel(bch); /* locked there */ | 
 | 		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL, | 
 | 			    GFP_KERNEL); | 
 | 		ret = 0; | 
 | 		break; | 
 | 	} | 
 | 	if (!ret) | 
 | 		dev_kfree_skb(skb); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * bchannel control function | 
 |  */ | 
 | static int | 
 | channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq) | 
 | { | 
 | 	int			ret = 0; | 
 | 	struct dsp_features	*features = | 
 | 		(struct dsp_features *)(*((u_long *)&cq->p1)); | 
 | 	struct hfc_multi	*hc = bch->hw; | 
 | 	int			slot_tx; | 
 | 	int			bank_tx; | 
 | 	int			slot_rx; | 
 | 	int			bank_rx; | 
 | 	int			num; | 
 |  | 
 | 	switch (cq->op) { | 
 | 	case MISDN_CTRL_GETOP: | 
 | 		ret = mISDN_ctrl_bchannel(bch, cq); | 
 | 		cq->op |= MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP; | 
 | 		break; | 
 | 	case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */ | 
 | 		ret = mISDN_ctrl_bchannel(bch, cq); | 
 | 		hc->chan[bch->slot].rx_off = !!cq->p1; | 
 | 		if (!hc->chan[bch->slot].rx_off) { | 
 | 			/* reset fifo on rx on */ | 
 | 			HFC_outb_nodebug(hc, R_FIFO, (bch->slot << 1) | 1); | 
 | 			HFC_wait_nodebug(hc); | 
 | 			HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F); | 
 | 			HFC_wait_nodebug(hc); | 
 | 		} | 
 | 		if (debug & DEBUG_HFCMULTI_MSG) | 
 | 			printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n", | 
 | 			       __func__, bch->nr, hc->chan[bch->slot].rx_off); | 
 | 		break; | 
 | 	case MISDN_CTRL_FILL_EMPTY: | 
 | 		ret = mISDN_ctrl_bchannel(bch, cq); | 
 | 		hc->silence = bch->fill[0]; | 
 | 		memset(hc->silence_data, hc->silence, sizeof(hc->silence_data)); | 
 | 		break; | 
 | 	case MISDN_CTRL_HW_FEATURES: /* fill features structure */ | 
 | 		if (debug & DEBUG_HFCMULTI_MSG) | 
 | 			printk(KERN_DEBUG "%s: HW_FEATURE request\n", | 
 | 			       __func__); | 
 | 		/* create confirm */ | 
 | 		features->hfc_id = hc->id; | 
 | 		if (test_bit(HFC_CHIP_DTMF, &hc->chip)) | 
 | 			features->hfc_dtmf = 1; | 
 | 		if (test_bit(HFC_CHIP_CONF, &hc->chip)) | 
 | 			features->hfc_conf = 1; | 
 | 		features->hfc_loops = 0; | 
 | 		if (test_bit(HFC_CHIP_B410P, &hc->chip)) { | 
 | 			features->hfc_echocanhw = 1; | 
 | 		} else { | 
 | 			features->pcm_id = hc->pcm; | 
 | 			features->pcm_slots = hc->slots; | 
 | 			features->pcm_banks = 2; | 
 | 		} | 
 | 		break; | 
 | 	case MISDN_CTRL_HFC_PCM_CONN: /* connect to pcm timeslot (0..N) */ | 
 | 		slot_tx = cq->p1 & 0xff; | 
 | 		bank_tx = cq->p1 >> 8; | 
 | 		slot_rx = cq->p2 & 0xff; | 
 | 		bank_rx = cq->p2 >> 8; | 
 | 		if (debug & DEBUG_HFCMULTI_MSG) | 
 | 			printk(KERN_DEBUG | 
 | 			       "%s: HFC_PCM_CONN slot %d bank %d (TX) " | 
 | 			       "slot %d bank %d (RX)\n", | 
 | 			       __func__, slot_tx, bank_tx, | 
 | 			       slot_rx, bank_rx); | 
 | 		if (slot_tx < hc->slots && bank_tx <= 2 && | 
 | 		    slot_rx < hc->slots && bank_rx <= 2) | 
 | 			hfcmulti_pcm(hc, bch->slot, | 
 | 				     slot_tx, bank_tx, slot_rx, bank_rx); | 
 | 		else { | 
 | 			printk(KERN_WARNING | 
 | 			       "%s: HFC_PCM_CONN slot %d bank %d (TX) " | 
 | 			       "slot %d bank %d (RX) out of range\n", | 
 | 			       __func__, slot_tx, bank_tx, | 
 | 			       slot_rx, bank_rx); | 
 | 			ret = -EINVAL; | 
 | 		} | 
 | 		break; | 
 | 	case MISDN_CTRL_HFC_PCM_DISC: /* release interface from pcm timeslot */ | 
 | 		if (debug & DEBUG_HFCMULTI_MSG) | 
 | 			printk(KERN_DEBUG "%s: HFC_PCM_DISC\n", | 
 | 			       __func__); | 
 | 		hfcmulti_pcm(hc, bch->slot, -1, 0, -1, 0); | 
 | 		break; | 
 | 	case MISDN_CTRL_HFC_CONF_JOIN: /* join conference (0..7) */ | 
 | 		num = cq->p1 & 0xff; | 
 | 		if (debug & DEBUG_HFCMULTI_MSG) | 
 | 			printk(KERN_DEBUG "%s: HFC_CONF_JOIN conf %d\n", | 
 | 			       __func__, num); | 
 | 		if (num <= 7) | 
 | 			hfcmulti_conf(hc, bch->slot, num); | 
 | 		else { | 
 | 			printk(KERN_WARNING | 
 | 			       "%s: HW_CONF_JOIN conf %d out of range\n", | 
 | 			       __func__, num); | 
 | 			ret = -EINVAL; | 
 | 		} | 
 | 		break; | 
 | 	case MISDN_CTRL_HFC_CONF_SPLIT: /* split conference */ | 
 | 		if (debug & DEBUG_HFCMULTI_MSG) | 
 | 			printk(KERN_DEBUG "%s: HFC_CONF_SPLIT\n", __func__); | 
 | 		hfcmulti_conf(hc, bch->slot, -1); | 
 | 		break; | 
 | 	case MISDN_CTRL_HFC_ECHOCAN_ON: | 
 | 		if (debug & DEBUG_HFCMULTI_MSG) | 
 | 			printk(KERN_DEBUG "%s: HFC_ECHOCAN_ON\n", __func__); | 
 | 		if (test_bit(HFC_CHIP_B410P, &hc->chip)) | 
 | 			vpm_echocan_on(hc, bch->slot, cq->p1); | 
 | 		else | 
 | 			ret = -EINVAL; | 
 | 		break; | 
 |  | 
 | 	case MISDN_CTRL_HFC_ECHOCAN_OFF: | 
 | 		if (debug & DEBUG_HFCMULTI_MSG) | 
 | 			printk(KERN_DEBUG "%s: HFC_ECHOCAN_OFF\n", | 
 | 			       __func__); | 
 | 		if (test_bit(HFC_CHIP_B410P, &hc->chip)) | 
 | 			vpm_echocan_off(hc, bch->slot); | 
 | 		else | 
 | 			ret = -EINVAL; | 
 | 		break; | 
 | 	default: | 
 | 		ret = mISDN_ctrl_bchannel(bch, cq); | 
 | 		break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int | 
 | hfcm_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg) | 
 | { | 
 | 	struct bchannel		*bch = container_of(ch, struct bchannel, ch); | 
 | 	struct hfc_multi	*hc = bch->hw; | 
 | 	int			err = -EINVAL; | 
 | 	u_long	flags; | 
 |  | 
 | 	if (bch->debug & DEBUG_HW) | 
 | 		printk(KERN_DEBUG "%s: cmd:%x %p\n", | 
 | 		       __func__, cmd, arg); | 
 | 	switch (cmd) { | 
 | 	case CLOSE_CHANNEL: | 
 | 		test_and_clear_bit(FLG_OPEN, &bch->Flags); | 
 | 		deactivate_bchannel(bch); /* locked there */ | 
 | 		ch->protocol = ISDN_P_NONE; | 
 | 		ch->peer = NULL; | 
 | 		module_put(THIS_MODULE); | 
 | 		err = 0; | 
 | 		break; | 
 | 	case CONTROL_CHANNEL: | 
 | 		spin_lock_irqsave(&hc->lock, flags); | 
 | 		err = channel_bctrl(bch, arg); | 
 | 		spin_unlock_irqrestore(&hc->lock, flags); | 
 | 		break; | 
 | 	default: | 
 | 		printk(KERN_WARNING "%s: unknown prim(%x)\n", | 
 | 		       __func__, cmd); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * handle D-channel events | 
 |  * | 
 |  * handle state change event | 
 |  */ | 
 | static void | 
 | ph_state_change(struct dchannel *dch) | 
 | { | 
 | 	struct hfc_multi *hc; | 
 | 	int ch, i; | 
 |  | 
 | 	if (!dch) { | 
 | 		printk(KERN_WARNING "%s: ERROR given dch is NULL\n", __func__); | 
 | 		return; | 
 | 	} | 
 | 	hc = dch->hw; | 
 | 	ch = dch->slot; | 
 |  | 
 | 	if (hc->ctype == HFC_TYPE_E1) { | 
 | 		if (dch->dev.D.protocol == ISDN_P_TE_E1) { | 
 | 			if (debug & DEBUG_HFCMULTI_STATE) | 
 | 				printk(KERN_DEBUG | 
 | 				       "%s: E1 TE (id=%d) newstate %x\n", | 
 | 				       __func__, hc->id, dch->state); | 
 | 		} else { | 
 | 			if (debug & DEBUG_HFCMULTI_STATE) | 
 | 				printk(KERN_DEBUG | 
 | 				       "%s: E1 NT (id=%d) newstate %x\n", | 
 | 				       __func__, hc->id, dch->state); | 
 | 		} | 
 | 		switch (dch->state) { | 
 | 		case (1): | 
 | 			if (hc->e1_state != 1) { | 
 | 				for (i = 1; i <= 31; i++) { | 
 | 					/* reset fifos on e1 activation */ | 
 | 					HFC_outb_nodebug(hc, R_FIFO, | 
 | 							 (i << 1) | 1); | 
 | 					HFC_wait_nodebug(hc); | 
 | 					HFC_outb_nodebug(hc, R_INC_RES_FIFO, | 
 | 							 V_RES_F); | 
 | 					HFC_wait_nodebug(hc); | 
 | 				} | 
 | 			} | 
 | 			test_and_set_bit(FLG_ACTIVE, &dch->Flags); | 
 | 			_queue_data(&dch->dev.D, PH_ACTIVATE_IND, | 
 | 				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); | 
 | 			break; | 
 |  | 
 | 		default: | 
 | 			if (hc->e1_state != 1) | 
 | 				return; | 
 | 			test_and_clear_bit(FLG_ACTIVE, &dch->Flags); | 
 | 			_queue_data(&dch->dev.D, PH_DEACTIVATE_IND, | 
 | 				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); | 
 | 		} | 
 | 		hc->e1_state = dch->state; | 
 | 	} else { | 
 | 		if (dch->dev.D.protocol == ISDN_P_TE_S0) { | 
 | 			if (debug & DEBUG_HFCMULTI_STATE) | 
 | 				printk(KERN_DEBUG | 
 | 				       "%s: S/T TE newstate %x\n", | 
 | 				       __func__, dch->state); | 
 | 			switch (dch->state) { | 
 | 			case (0): | 
 | 				l1_event(dch->l1, HW_RESET_IND); | 
 | 				break; | 
 | 			case (3): | 
 | 				l1_event(dch->l1, HW_DEACT_IND); | 
 | 				break; | 
 | 			case (5): | 
 | 			case (8): | 
 | 				l1_event(dch->l1, ANYSIGNAL); | 
 | 				break; | 
 | 			case (6): | 
 | 				l1_event(dch->l1, INFO2); | 
 | 				break; | 
 | 			case (7): | 
 | 				l1_event(dch->l1, INFO4_P8); | 
 | 				break; | 
 | 			} | 
 | 		} else { | 
 | 			if (debug & DEBUG_HFCMULTI_STATE) | 
 | 				printk(KERN_DEBUG "%s: S/T NT newstate %x\n", | 
 | 				       __func__, dch->state); | 
 | 			switch (dch->state) { | 
 | 			case (2): | 
 | 				if (hc->chan[ch].nt_timer == 0) { | 
 | 					hc->chan[ch].nt_timer = -1; | 
 | 					HFC_outb(hc, R_ST_SEL, | 
 | 						 hc->chan[ch].port); | 
 | 					/* undocumented: delay after R_ST_SEL */ | 
 | 					udelay(1); | 
 | 					HFC_outb(hc, A_ST_WR_STATE, 4 | | 
 | 						 V_ST_LD_STA); /* G4 */ | 
 | 					udelay(6); /* wait at least 5,21us */ | 
 | 					HFC_outb(hc, A_ST_WR_STATE, 4); | 
 | 					dch->state = 4; | 
 | 				} else { | 
 | 					/* one extra count for the next event */ | 
 | 					hc->chan[ch].nt_timer = | 
 | 						nt_t1_count[poll_timer] + 1; | 
 | 					HFC_outb(hc, R_ST_SEL, | 
 | 						 hc->chan[ch].port); | 
 | 					/* undocumented: delay after R_ST_SEL */ | 
 | 					udelay(1); | 
 | 					/* allow G2 -> G3 transition */ | 
 | 					HFC_outb(hc, A_ST_WR_STATE, 2 | | 
 | 						 V_SET_G2_G3); | 
 | 				} | 
 | 				break; | 
 | 			case (1): | 
 | 				hc->chan[ch].nt_timer = -1; | 
 | 				test_and_clear_bit(FLG_ACTIVE, &dch->Flags); | 
 | 				_queue_data(&dch->dev.D, PH_DEACTIVATE_IND, | 
 | 					    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); | 
 | 				break; | 
 | 			case (4): | 
 | 				hc->chan[ch].nt_timer = -1; | 
 | 				break; | 
 | 			case (3): | 
 | 				hc->chan[ch].nt_timer = -1; | 
 | 				test_and_set_bit(FLG_ACTIVE, &dch->Flags); | 
 | 				_queue_data(&dch->dev.D, PH_ACTIVATE_IND, | 
 | 					    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * called for card mode init message | 
 |  */ | 
 |  | 
 | static void | 
 | hfcmulti_initmode(struct dchannel *dch) | 
 | { | 
 | 	struct hfc_multi *hc = dch->hw; | 
 | 	u_char		a_st_wr_state, r_e1_wr_sta; | 
 | 	int		i, pt; | 
 |  | 
 | 	if (debug & DEBUG_HFCMULTI_INIT) | 
 | 		printk(KERN_DEBUG "%s: entered\n", __func__); | 
 |  | 
 | 	i = dch->slot; | 
 | 	pt = hc->chan[i].port; | 
 | 	if (hc->ctype == HFC_TYPE_E1) { | 
 | 		/* E1 */ | 
 | 		hc->chan[hc->dnum[pt]].slot_tx = -1; | 
 | 		hc->chan[hc->dnum[pt]].slot_rx = -1; | 
 | 		hc->chan[hc->dnum[pt]].conf = -1; | 
 | 		if (hc->dnum[pt]) { | 
 | 			mode_hfcmulti(hc, dch->slot, dch->dev.D.protocol, | 
 | 				      -1, 0, -1, 0); | 
 | 			timer_setup(&dch->timer, hfcmulti_dbusy_timer, 0); | 
 | 		} | 
 | 		for (i = 1; i <= 31; i++) { | 
 | 			if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */ | 
 | 				continue; | 
 | 			hc->chan[i].slot_tx = -1; | 
 | 			hc->chan[i].slot_rx = -1; | 
 | 			hc->chan[i].conf = -1; | 
 | 			mode_hfcmulti(hc, i, ISDN_P_NONE, -1, 0, -1, 0); | 
 | 		} | 
 | 	} | 
 | 	if (hc->ctype == HFC_TYPE_E1 && pt == 0) { | 
 | 		/* E1, port 0 */ | 
 | 		dch = hc->chan[hc->dnum[0]].dch; | 
 | 		if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) { | 
 | 			HFC_outb(hc, R_LOS0, 255); /* 2 ms */ | 
 | 			HFC_outb(hc, R_LOS1, 255); /* 512 ms */ | 
 | 		} | 
 | 		if (test_bit(HFC_CFG_OPTICAL, &hc->chan[hc->dnum[0]].cfg)) { | 
 | 			HFC_outb(hc, R_RX0, 0); | 
 | 			hc->hw.r_tx0 = 0 | V_OUT_EN; | 
 | 		} else { | 
 | 			HFC_outb(hc, R_RX0, 1); | 
 | 			hc->hw.r_tx0 = 1 | V_OUT_EN; | 
 | 		} | 
 | 		hc->hw.r_tx1 = V_ATX | V_NTRI; | 
 | 		HFC_outb(hc, R_TX0, hc->hw.r_tx0); | 
 | 		HFC_outb(hc, R_TX1, hc->hw.r_tx1); | 
 | 		HFC_outb(hc, R_TX_FR0, 0x00); | 
 | 		HFC_outb(hc, R_TX_FR1, 0xf8); | 
 |  | 
 | 		if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg)) | 
 | 			HFC_outb(hc, R_TX_FR2, V_TX_MF | V_TX_E | V_NEG_E); | 
 |  | 
 | 		HFC_outb(hc, R_RX_FR0, V_AUTO_RESYNC | V_AUTO_RECO | 0); | 
 |  | 
 | 		if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg)) | 
 | 			HFC_outb(hc, R_RX_FR1, V_RX_MF | V_RX_MF_SYNC); | 
 |  | 
 | 		if (dch->dev.D.protocol == ISDN_P_NT_E1) { | 
 | 			if (debug & DEBUG_HFCMULTI_INIT) | 
 | 				printk(KERN_DEBUG "%s: E1 port is NT-mode\n", | 
 | 				       __func__); | 
 | 			r_e1_wr_sta = 0; /* G0 */ | 
 | 			hc->e1_getclock = 0; | 
 | 		} else { | 
 | 			if (debug & DEBUG_HFCMULTI_INIT) | 
 | 				printk(KERN_DEBUG "%s: E1 port is TE-mode\n", | 
 | 				       __func__); | 
 | 			r_e1_wr_sta = 0; /* F0 */ | 
 | 			hc->e1_getclock = 1; | 
 | 		} | 
 | 		if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) | 
 | 			HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX); | 
 | 		else | 
 | 			HFC_outb(hc, R_SYNC_OUT, 0); | 
 | 		if (test_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip)) | 
 | 			hc->e1_getclock = 1; | 
 | 		if (test_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip)) | 
 | 			hc->e1_getclock = 0; | 
 | 		if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) { | 
 | 			/* SLAVE (clock master) */ | 
 | 			if (debug & DEBUG_HFCMULTI_INIT) | 
 | 				printk(KERN_DEBUG | 
 | 				       "%s: E1 port is clock master " | 
 | 				       "(clock from PCM)\n", __func__); | 
 | 			HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | V_PCM_SYNC); | 
 | 		} else { | 
 | 			if (hc->e1_getclock) { | 
 | 				/* MASTER (clock slave) */ | 
 | 				if (debug & DEBUG_HFCMULTI_INIT) | 
 | 					printk(KERN_DEBUG | 
 | 					       "%s: E1 port is clock slave " | 
 | 					       "(clock to PCM)\n", __func__); | 
 | 				HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS); | 
 | 			} else { | 
 | 				/* MASTER (clock master) */ | 
 | 				if (debug & DEBUG_HFCMULTI_INIT) | 
 | 					printk(KERN_DEBUG "%s: E1 port is " | 
 | 					       "clock master " | 
 | 					       "(clock from QUARTZ)\n", | 
 | 					       __func__); | 
 | 				HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | | 
 | 					 V_PCM_SYNC | V_JATT_OFF); | 
 | 				HFC_outb(hc, R_SYNC_OUT, 0); | 
 | 			} | 
 | 		} | 
 | 		HFC_outb(hc, R_JATT_ATT, 0x9c); /* undoc register */ | 
 | 		HFC_outb(hc, R_PWM_MD, V_PWM0_MD); | 
 | 		HFC_outb(hc, R_PWM0, 0x50); | 
 | 		HFC_outb(hc, R_PWM1, 0xff); | 
 | 		/* state machine setup */ | 
 | 		HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta | V_E1_LD_STA); | 
 | 		udelay(6); /* wait at least 5,21us */ | 
 | 		HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta); | 
 | 		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { | 
 | 			hc->syncronized = 0; | 
 | 			plxsd_checksync(hc, 0); | 
 | 		} | 
 | 	} | 
 | 	if (hc->ctype != HFC_TYPE_E1) { | 
 | 		/* ST */ | 
 | 		hc->chan[i].slot_tx = -1; | 
 | 		hc->chan[i].slot_rx = -1; | 
 | 		hc->chan[i].conf = -1; | 
 | 		mode_hfcmulti(hc, i, dch->dev.D.protocol, -1, 0, -1, 0); | 
 | 		timer_setup(&dch->timer, hfcmulti_dbusy_timer, 0); | 
 | 		hc->chan[i - 2].slot_tx = -1; | 
 | 		hc->chan[i - 2].slot_rx = -1; | 
 | 		hc->chan[i - 2].conf = -1; | 
 | 		mode_hfcmulti(hc, i - 2, ISDN_P_NONE, -1, 0, -1, 0); | 
 | 		hc->chan[i - 1].slot_tx = -1; | 
 | 		hc->chan[i - 1].slot_rx = -1; | 
 | 		hc->chan[i - 1].conf = -1; | 
 | 		mode_hfcmulti(hc, i - 1, ISDN_P_NONE, -1, 0, -1, 0); | 
 | 		/* select interface */ | 
 | 		HFC_outb(hc, R_ST_SEL, pt); | 
 | 		/* undocumented: delay after R_ST_SEL */ | 
 | 		udelay(1); | 
 | 		if (dch->dev.D.protocol == ISDN_P_NT_S0) { | 
 | 			if (debug & DEBUG_HFCMULTI_INIT) | 
 | 				printk(KERN_DEBUG | 
 | 				       "%s: ST port %d is NT-mode\n", | 
 | 				       __func__, pt); | 
 | 			/* clock delay */ | 
 | 			HFC_outb(hc, A_ST_CLK_DLY, clockdelay_nt); | 
 | 			a_st_wr_state = 1; /* G1 */ | 
 | 			hc->hw.a_st_ctrl0[pt] = V_ST_MD; | 
 | 		} else { | 
 | 			if (debug & DEBUG_HFCMULTI_INIT) | 
 | 				printk(KERN_DEBUG | 
 | 				       "%s: ST port %d is TE-mode\n", | 
 | 				       __func__, pt); | 
 | 			/* clock delay */ | 
 | 			HFC_outb(hc, A_ST_CLK_DLY, clockdelay_te); | 
 | 			a_st_wr_state = 2; /* F2 */ | 
 | 			hc->hw.a_st_ctrl0[pt] = 0; | 
 | 		} | 
 | 		if (!test_bit(HFC_CFG_NONCAP_TX, &hc->chan[i].cfg)) | 
 | 			hc->hw.a_st_ctrl0[pt] |= V_TX_LI; | 
 | 		if (hc->ctype == HFC_TYPE_XHFC) { | 
 | 			hc->hw.a_st_ctrl0[pt] |= 0x40 /* V_ST_PU_CTRL */; | 
 | 			HFC_outb(hc, 0x35 /* A_ST_CTRL3 */, | 
 | 				 0x7c << 1 /* V_ST_PULSE */); | 
 | 		} | 
 | 		/* line setup */ | 
 | 		HFC_outb(hc, A_ST_CTRL0,  hc->hw.a_st_ctrl0[pt]); | 
 | 		/* disable E-channel */ | 
 | 		if ((dch->dev.D.protocol == ISDN_P_NT_S0) || | 
 | 		    test_bit(HFC_CFG_DIS_ECHANNEL, &hc->chan[i].cfg)) | 
 | 			HFC_outb(hc, A_ST_CTRL1, V_E_IGNO); | 
 | 		else | 
 | 			HFC_outb(hc, A_ST_CTRL1, 0); | 
 | 		/* enable B-channel receive */ | 
 | 		HFC_outb(hc, A_ST_CTRL2,  V_B1_RX_EN | V_B2_RX_EN); | 
 | 		/* state machine setup */ | 
 | 		HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state | V_ST_LD_STA); | 
 | 		udelay(6); /* wait at least 5,21us */ | 
 | 		HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state); | 
 | 		hc->hw.r_sci_msk |= 1 << pt; | 
 | 		/* state machine interrupts */ | 
 | 		HFC_outb(hc, R_SCI_MSK, hc->hw.r_sci_msk); | 
 | 		/* unset sync on port */ | 
 | 		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { | 
 | 			hc->syncronized &= | 
 | 				~(1 << hc->chan[dch->slot].port); | 
 | 			plxsd_checksync(hc, 0); | 
 | 		} | 
 | 	} | 
 | 	if (debug & DEBUG_HFCMULTI_INIT) | 
 | 		printk("%s: done\n", __func__); | 
 | } | 
 |  | 
 |  | 
 | static int | 
 | open_dchannel(struct hfc_multi *hc, struct dchannel *dch, | 
 | 	      struct channel_req *rq) | 
 | { | 
 | 	int	err = 0; | 
 | 	u_long	flags; | 
 |  | 
 | 	if (debug & DEBUG_HW_OPEN) | 
 | 		printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__, | 
 | 		       dch->dev.id, __builtin_return_address(0)); | 
 | 	if (rq->protocol == ISDN_P_NONE) | 
 | 		return -EINVAL; | 
 | 	if ((dch->dev.D.protocol != ISDN_P_NONE) && | 
 | 	    (dch->dev.D.protocol != rq->protocol)) { | 
 | 		if (debug & DEBUG_HFCMULTI_MODE) | 
 | 			printk(KERN_DEBUG "%s: change protocol %x to %x\n", | 
 | 			       __func__, dch->dev.D.protocol, rq->protocol); | 
 | 	} | 
 | 	if ((dch->dev.D.protocol == ISDN_P_TE_S0) && | 
 | 	    (rq->protocol != ISDN_P_TE_S0)) | 
 | 		l1_event(dch->l1, CLOSE_CHANNEL); | 
 | 	if (dch->dev.D.protocol != rq->protocol) { | 
 | 		if (rq->protocol == ISDN_P_TE_S0) { | 
 | 			err = create_l1(dch, hfcm_l1callback); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} | 
 | 		dch->dev.D.protocol = rq->protocol; | 
 | 		spin_lock_irqsave(&hc->lock, flags); | 
 | 		hfcmulti_initmode(dch); | 
 | 		spin_unlock_irqrestore(&hc->lock, flags); | 
 | 	} | 
 | 	if (test_bit(FLG_ACTIVE, &dch->Flags)) | 
 | 		_queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY, | 
 | 			    0, NULL, GFP_KERNEL); | 
 | 	rq->ch = &dch->dev.D; | 
 | 	if (!try_module_get(THIS_MODULE)) | 
 | 		printk(KERN_WARNING "%s:cannot get module\n", __func__); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | open_bchannel(struct hfc_multi *hc, struct dchannel *dch, | 
 | 	      struct channel_req *rq) | 
 | { | 
 | 	struct bchannel	*bch; | 
 | 	int		ch; | 
 |  | 
 | 	if (!test_channelmap(rq->adr.channel, dch->dev.channelmap)) | 
 | 		return -EINVAL; | 
 | 	if (rq->protocol == ISDN_P_NONE) | 
 | 		return -EINVAL; | 
 | 	if (hc->ctype == HFC_TYPE_E1) | 
 | 		ch = rq->adr.channel; | 
 | 	else | 
 | 		ch = (rq->adr.channel - 1) + (dch->slot - 2); | 
 | 	bch = hc->chan[ch].bch; | 
 | 	if (!bch) { | 
 | 		printk(KERN_ERR "%s:internal error ch %d has no bch\n", | 
 | 		       __func__, ch); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	if (test_and_set_bit(FLG_OPEN, &bch->Flags)) | 
 | 		return -EBUSY; /* b-channel can be only open once */ | 
 | 	bch->ch.protocol = rq->protocol; | 
 | 	hc->chan[ch].rx_off = 0; | 
 | 	rq->ch = &bch->ch; | 
 | 	if (!try_module_get(THIS_MODULE)) | 
 | 		printk(KERN_WARNING "%s:cannot get module\n", __func__); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * device control function | 
 |  */ | 
 | static int | 
 | channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq) | 
 | { | 
 | 	struct hfc_multi	*hc = dch->hw; | 
 | 	int	ret = 0; | 
 | 	int	wd_mode, wd_cnt; | 
 |  | 
 | 	switch (cq->op) { | 
 | 	case MISDN_CTRL_GETOP: | 
 | 		cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_L1_TIMER3; | 
 | 		break; | 
 | 	case MISDN_CTRL_HFC_WD_INIT: /* init the watchdog */ | 
 | 		wd_cnt = cq->p1 & 0xf; | 
 | 		wd_mode = !!(cq->p1 >> 4); | 
 | 		if (debug & DEBUG_HFCMULTI_MSG) | 
 | 			printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_INIT mode %s" | 
 | 			       ", counter 0x%x\n", __func__, | 
 | 			       wd_mode ? "AUTO" : "MANUAL", wd_cnt); | 
 | 		/* set the watchdog timer */ | 
 | 		HFC_outb(hc, R_TI_WD, poll_timer | (wd_cnt << 4)); | 
 | 		hc->hw.r_bert_wd_md = (wd_mode ? V_AUTO_WD_RES : 0); | 
 | 		if (hc->ctype == HFC_TYPE_XHFC) | 
 | 			hc->hw.r_bert_wd_md |= 0x40 /* V_WD_EN */; | 
 | 		/* init the watchdog register and reset the counter */ | 
 | 		HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES); | 
 | 		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { | 
 | 			/* enable the watchdog output for Speech-Design */ | 
 | 			HFC_outb(hc, R_GPIO_SEL,  V_GPIO_SEL7); | 
 | 			HFC_outb(hc, R_GPIO_EN1,  V_GPIO_EN15); | 
 | 			HFC_outb(hc, R_GPIO_OUT1, 0); | 
 | 			HFC_outb(hc, R_GPIO_OUT1, V_GPIO_OUT15); | 
 | 		} | 
 | 		break; | 
 | 	case MISDN_CTRL_HFC_WD_RESET: /* reset the watchdog counter */ | 
 | 		if (debug & DEBUG_HFCMULTI_MSG) | 
 | 			printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_RESET\n", | 
 | 			       __func__); | 
 | 		HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES); | 
 | 		break; | 
 | 	case MISDN_CTRL_L1_TIMER3: | 
 | 		ret = l1_event(dch->l1, HW_TIMER3_VALUE | (cq->p1 & 0xff)); | 
 | 		break; | 
 | 	default: | 
 | 		printk(KERN_WARNING "%s: unknown Op %x\n", | 
 | 		       __func__, cq->op); | 
 | 		ret = -EINVAL; | 
 | 		break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int | 
 | hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg) | 
 | { | 
 | 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D); | 
 | 	struct dchannel		*dch = container_of(dev, struct dchannel, dev); | 
 | 	struct hfc_multi	*hc = dch->hw; | 
 | 	struct channel_req	*rq; | 
 | 	int			err = 0; | 
 | 	u_long			flags; | 
 |  | 
 | 	if (dch->debug & DEBUG_HW) | 
 | 		printk(KERN_DEBUG "%s: cmd:%x %p\n", | 
 | 		       __func__, cmd, arg); | 
 | 	switch (cmd) { | 
 | 	case OPEN_CHANNEL: | 
 | 		rq = arg; | 
 | 		switch (rq->protocol) { | 
 | 		case ISDN_P_TE_S0: | 
 | 		case ISDN_P_NT_S0: | 
 | 			if (hc->ctype == HFC_TYPE_E1) { | 
 | 				err = -EINVAL; | 
 | 				break; | 
 | 			} | 
 | 			err = open_dchannel(hc, dch, rq); /* locked there */ | 
 | 			break; | 
 | 		case ISDN_P_TE_E1: | 
 | 		case ISDN_P_NT_E1: | 
 | 			if (hc->ctype != HFC_TYPE_E1) { | 
 | 				err = -EINVAL; | 
 | 				break; | 
 | 			} | 
 | 			err = open_dchannel(hc, dch, rq); /* locked there */ | 
 | 			break; | 
 | 		default: | 
 | 			spin_lock_irqsave(&hc->lock, flags); | 
 | 			err = open_bchannel(hc, dch, rq); | 
 | 			spin_unlock_irqrestore(&hc->lock, flags); | 
 | 		} | 
 | 		break; | 
 | 	case CLOSE_CHANNEL: | 
 | 		if (debug & DEBUG_HW_OPEN) | 
 | 			printk(KERN_DEBUG "%s: dev(%d) close from %p\n", | 
 | 			       __func__, dch->dev.id, | 
 | 			       __builtin_return_address(0)); | 
 | 		module_put(THIS_MODULE); | 
 | 		break; | 
 | 	case CONTROL_CHANNEL: | 
 | 		spin_lock_irqsave(&hc->lock, flags); | 
 | 		err = channel_dctrl(dch, arg); | 
 | 		spin_unlock_irqrestore(&hc->lock, flags); | 
 | 		break; | 
 | 	default: | 
 | 		if (dch->debug & DEBUG_HW) | 
 | 			printk(KERN_DEBUG "%s: unknown command %x\n", | 
 | 			       __func__, cmd); | 
 | 		err = -EINVAL; | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | static int | 
 | clockctl(void *priv, int enable) | 
 | { | 
 | 	struct hfc_multi *hc = priv; | 
 |  | 
 | 	hc->iclock_on = enable; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * initialize the card | 
 |  */ | 
 |  | 
 | /* | 
 |  * start timer irq, wait some time and check if we have interrupts. | 
 |  * if not, reset chip and try again. | 
 |  */ | 
 | static int | 
 | init_card(struct hfc_multi *hc) | 
 | { | 
 | 	int	err = -EIO; | 
 | 	u_long	flags; | 
 | 	void	__iomem *plx_acc; | 
 | 	u_long	plx_flags; | 
 |  | 
 | 	if (debug & DEBUG_HFCMULTI_INIT) | 
 | 		printk(KERN_DEBUG "%s: entered\n", __func__); | 
 |  | 
 | 	spin_lock_irqsave(&hc->lock, flags); | 
 | 	/* set interrupts but leave global interrupt disabled */ | 
 | 	hc->hw.r_irq_ctrl = V_FIFO_IRQ; | 
 | 	disable_hwirq(hc); | 
 | 	spin_unlock_irqrestore(&hc->lock, flags); | 
 |  | 
 | 	if (request_irq(hc->irq, hfcmulti_interrupt, IRQF_SHARED, | 
 | 			"HFC-multi", hc)) { | 
 | 		printk(KERN_WARNING "mISDN: Could not get interrupt %d.\n", | 
 | 		       hc->irq); | 
 | 		hc->irq = 0; | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { | 
 | 		spin_lock_irqsave(&plx_lock, plx_flags); | 
 | 		plx_acc = hc->plx_membase + PLX_INTCSR; | 
 | 		writew((PLX_INTCSR_PCIINT_ENABLE | PLX_INTCSR_LINTI1_ENABLE), | 
 | 		       plx_acc); /* enable PCI & LINT1 irq */ | 
 | 		spin_unlock_irqrestore(&plx_lock, plx_flags); | 
 | 	} | 
 |  | 
 | 	if (debug & DEBUG_HFCMULTI_INIT) | 
 | 		printk(KERN_DEBUG "%s: IRQ %d count %d\n", | 
 | 		       __func__, hc->irq, hc->irqcnt); | 
 | 	err = init_chip(hc); | 
 | 	if (err) | 
 | 		goto error; | 
 | 	/* | 
 | 	 * Finally enable IRQ output | 
 | 	 * this is only allowed, if an IRQ routine is already | 
 | 	 * established for this HFC, so don't do that earlier | 
 | 	 */ | 
 | 	spin_lock_irqsave(&hc->lock, flags); | 
 | 	enable_hwirq(hc); | 
 | 	spin_unlock_irqrestore(&hc->lock, flags); | 
 | 	/* printk(KERN_DEBUG "no master irq set!!!\n"); */ | 
 | 	set_current_state(TASK_UNINTERRUPTIBLE); | 
 | 	schedule_timeout((100 * HZ) / 1000); /* Timeout 100ms */ | 
 | 	/* turn IRQ off until chip is completely initialized */ | 
 | 	spin_lock_irqsave(&hc->lock, flags); | 
 | 	disable_hwirq(hc); | 
 | 	spin_unlock_irqrestore(&hc->lock, flags); | 
 | 	if (debug & DEBUG_HFCMULTI_INIT) | 
 | 		printk(KERN_DEBUG "%s: IRQ %d count %d\n", | 
 | 		       __func__, hc->irq, hc->irqcnt); | 
 | 	if (hc->irqcnt) { | 
 | 		if (debug & DEBUG_HFCMULTI_INIT) | 
 | 			printk(KERN_DEBUG "%s: done\n", __func__); | 
 |  | 
 | 		return 0; | 
 | 	} | 
 | 	if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) { | 
 | 		printk(KERN_INFO "ignoring missing interrupts\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	printk(KERN_ERR "HFC PCI: IRQ(%d) getting no interrupts during init.\n", | 
 | 	       hc->irq); | 
 |  | 
 | 	err = -EIO; | 
 |  | 
 | error: | 
 | 	if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { | 
 | 		spin_lock_irqsave(&plx_lock, plx_flags); | 
 | 		plx_acc = hc->plx_membase + PLX_INTCSR; | 
 | 		writew(0x00, plx_acc); /*disable IRQs*/ | 
 | 		spin_unlock_irqrestore(&plx_lock, plx_flags); | 
 | 	} | 
 |  | 
 | 	if (debug & DEBUG_HFCMULTI_INIT) | 
 | 		printk(KERN_DEBUG "%s: free irq %d\n", __func__, hc->irq); | 
 | 	if (hc->irq) { | 
 | 		free_irq(hc->irq, hc); | 
 | 		hc->irq = 0; | 
 | 	} | 
 |  | 
 | 	if (debug & DEBUG_HFCMULTI_INIT) | 
 | 		printk(KERN_DEBUG "%s: done (err=%d)\n", __func__, err); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * find pci device and set it up | 
 |  */ | 
 |  | 
 | static int | 
 | setup_pci(struct hfc_multi *hc, struct pci_dev *pdev, | 
 | 	  const struct pci_device_id *ent) | 
 | { | 
 | 	struct hm_map	*m = (struct hm_map *)ent->driver_data; | 
 |  | 
 | 	printk(KERN_INFO | 
 | 	       "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n", | 
 | 	       m->vendor_name, m->card_name, m->clock2 ? "double" : "normal"); | 
 |  | 
 | 	hc->pci_dev = pdev; | 
 | 	if (m->clock2) | 
 | 		test_and_set_bit(HFC_CHIP_CLOCK2, &hc->chip); | 
 |  | 
 | 	if (ent->device == 0xB410) { | 
 | 		test_and_set_bit(HFC_CHIP_B410P, &hc->chip); | 
 | 		test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip); | 
 | 		test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip); | 
 | 		hc->slots = 32; | 
 | 	} | 
 |  | 
 | 	if (hc->pci_dev->irq <= 0) { | 
 | 		printk(KERN_WARNING "HFC-multi: No IRQ for PCI card found.\n"); | 
 | 		return -EIO; | 
 | 	} | 
 | 	if (pci_enable_device(hc->pci_dev)) { | 
 | 		printk(KERN_WARNING "HFC-multi: Error enabling PCI card.\n"); | 
 | 		return -EIO; | 
 | 	} | 
 | 	hc->leds = m->leds; | 
 | 	hc->ledstate = 0xAFFEAFFE; | 
 | 	hc->opticalsupport = m->opticalsupport; | 
 |  | 
 | 	hc->pci_iobase = 0; | 
 | 	hc->pci_membase = NULL; | 
 | 	hc->plx_membase = NULL; | 
 |  | 
 | 	/* set memory access methods */ | 
 | 	if (m->io_mode) /* use mode from card config */ | 
 | 		hc->io_mode = m->io_mode; | 
 | 	switch (hc->io_mode) { | 
 | 	case HFC_IO_MODE_PLXSD: | 
 | 		test_and_set_bit(HFC_CHIP_PLXSD, &hc->chip); | 
 | 		hc->slots = 128; /* required */ | 
 | 		hc->HFC_outb = HFC_outb_pcimem; | 
 | 		hc->HFC_inb = HFC_inb_pcimem; | 
 | 		hc->HFC_inw = HFC_inw_pcimem; | 
 | 		hc->HFC_wait = HFC_wait_pcimem; | 
 | 		hc->read_fifo = read_fifo_pcimem; | 
 | 		hc->write_fifo = write_fifo_pcimem; | 
 | 		hc->plx_origmembase =  hc->pci_dev->resource[0].start; | 
 | 		/* MEMBASE 1 is PLX PCI Bridge */ | 
 |  | 
 | 		if (!hc->plx_origmembase) { | 
 | 			printk(KERN_WARNING | 
 | 			       "HFC-multi: No IO-Memory for PCI PLX bridge found\n"); | 
 | 			pci_disable_device(hc->pci_dev); | 
 | 			return -EIO; | 
 | 		} | 
 |  | 
 | 		hc->plx_membase = ioremap(hc->plx_origmembase, 0x80); | 
 | 		if (!hc->plx_membase) { | 
 | 			printk(KERN_WARNING | 
 | 			       "HFC-multi: failed to remap plx address space. " | 
 | 			       "(internal error)\n"); | 
 | 			pci_disable_device(hc->pci_dev); | 
 | 			return -EIO; | 
 | 		} | 
 | 		printk(KERN_INFO | 
 | 		       "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n", | 
 | 		       (u_long)hc->plx_membase, hc->plx_origmembase); | 
 |  | 
 | 		hc->pci_origmembase =  hc->pci_dev->resource[2].start; | 
 | 		/* MEMBASE 1 is PLX PCI Bridge */ | 
 | 		if (!hc->pci_origmembase) { | 
 | 			printk(KERN_WARNING | 
 | 			       "HFC-multi: No IO-Memory for PCI card found\n"); | 
 | 			pci_disable_device(hc->pci_dev); | 
 | 			return -EIO; | 
 | 		} | 
 |  | 
 | 		hc->pci_membase = ioremap(hc->pci_origmembase, 0x400); | 
 | 		if (!hc->pci_membase) { | 
 | 			printk(KERN_WARNING "HFC-multi: failed to remap io " | 
 | 			       "address space. (internal error)\n"); | 
 | 			pci_disable_device(hc->pci_dev); | 
 | 			return -EIO; | 
 | 		} | 
 |  | 
 | 		printk(KERN_INFO | 
 | 		       "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d " | 
 | 		       "leds-type %d\n", | 
 | 		       hc->id, (u_long)hc->pci_membase, hc->pci_origmembase, | 
 | 		       hc->pci_dev->irq, HZ, hc->leds); | 
 | 		pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO); | 
 | 		break; | 
 | 	case HFC_IO_MODE_PCIMEM: | 
 | 		hc->HFC_outb = HFC_outb_pcimem; | 
 | 		hc->HFC_inb = HFC_inb_pcimem; | 
 | 		hc->HFC_inw = HFC_inw_pcimem; | 
 | 		hc->HFC_wait = HFC_wait_pcimem; | 
 | 		hc->read_fifo = read_fifo_pcimem; | 
 | 		hc->write_fifo = write_fifo_pcimem; | 
 | 		hc->pci_origmembase = hc->pci_dev->resource[1].start; | 
 | 		if (!hc->pci_origmembase) { | 
 | 			printk(KERN_WARNING | 
 | 			       "HFC-multi: No IO-Memory for PCI card found\n"); | 
 | 			pci_disable_device(hc->pci_dev); | 
 | 			return -EIO; | 
 | 		} | 
 |  | 
 | 		hc->pci_membase = ioremap(hc->pci_origmembase, 256); | 
 | 		if (!hc->pci_membase) { | 
 | 			printk(KERN_WARNING | 
 | 			       "HFC-multi: failed to remap io address space. " | 
 | 			       "(internal error)\n"); | 
 | 			pci_disable_device(hc->pci_dev); | 
 | 			return -EIO; | 
 | 		} | 
 | 		printk(KERN_INFO "card %d: defined at MEMBASE %#lx (%#lx) IRQ " | 
 | 		       "%d HZ %d leds-type %d\n", hc->id, (u_long)hc->pci_membase, | 
 | 		       hc->pci_origmembase, hc->pci_dev->irq, HZ, hc->leds); | 
 | 		pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO); | 
 | 		break; | 
 | 	case HFC_IO_MODE_REGIO: | 
 | 		hc->HFC_outb = HFC_outb_regio; | 
 | 		hc->HFC_inb = HFC_inb_regio; | 
 | 		hc->HFC_inw = HFC_inw_regio; | 
 | 		hc->HFC_wait = HFC_wait_regio; | 
 | 		hc->read_fifo = read_fifo_regio; | 
 | 		hc->write_fifo = write_fifo_regio; | 
 | 		hc->pci_iobase = (u_int) hc->pci_dev->resource[0].start; | 
 | 		if (!hc->pci_iobase) { | 
 | 			printk(KERN_WARNING | 
 | 			       "HFC-multi: No IO for PCI card found\n"); | 
 | 			pci_disable_device(hc->pci_dev); | 
 | 			return -EIO; | 
 | 		} | 
 |  | 
 | 		if (!request_region(hc->pci_iobase, 8, "hfcmulti")) { | 
 | 			printk(KERN_WARNING "HFC-multi: failed to request " | 
 | 			       "address space at 0x%08lx (internal error)\n", | 
 | 			       hc->pci_iobase); | 
 | 			pci_disable_device(hc->pci_dev); | 
 | 			return -EIO; | 
 | 		} | 
 |  | 
 | 		printk(KERN_INFO | 
 | 		       "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n", | 
 | 		       m->vendor_name, m->card_name, (u_int) hc->pci_iobase, | 
 | 		       hc->pci_dev->irq, HZ, hc->leds); | 
 | 		pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_REGIO); | 
 | 		break; | 
 | 	default: | 
 | 		printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n"); | 
 | 		pci_disable_device(hc->pci_dev); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	pci_set_drvdata(hc->pci_dev, hc); | 
 |  | 
 | 	/* At this point the needed PCI config is done */ | 
 | 	/* fifos are still not enabled */ | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * remove port | 
 |  */ | 
 |  | 
 | static void | 
 | release_port(struct hfc_multi *hc, struct dchannel *dch) | 
 | { | 
 | 	int	pt, ci, i = 0; | 
 | 	u_long	flags; | 
 | 	struct bchannel *pb; | 
 |  | 
 | 	ci = dch->slot; | 
 | 	pt = hc->chan[ci].port; | 
 |  | 
 | 	if (debug & DEBUG_HFCMULTI_INIT) | 
 | 		printk(KERN_DEBUG "%s: entered for port %d\n", | 
 | 		       __func__, pt + 1); | 
 |  | 
 | 	if (pt >= hc->ports) { | 
 | 		printk(KERN_WARNING "%s: ERROR port out of range (%d).\n", | 
 | 		       __func__, pt + 1); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (debug & DEBUG_HFCMULTI_INIT) | 
 | 		printk(KERN_DEBUG "%s: releasing port=%d\n", | 
 | 		       __func__, pt + 1); | 
 |  | 
 | 	if (dch->dev.D.protocol == ISDN_P_TE_S0) | 
 | 		l1_event(dch->l1, CLOSE_CHANNEL); | 
 |  | 
 | 	hc->chan[ci].dch = NULL; | 
 |  | 
 | 	if (hc->created[pt]) { | 
 | 		hc->created[pt] = 0; | 
 | 		mISDN_unregister_device(&dch->dev); | 
 | 	} | 
 |  | 
 | 	spin_lock_irqsave(&hc->lock, flags); | 
 |  | 
 | 	if (dch->timer.function) { | 
 | 		del_timer(&dch->timer); | 
 | 		dch->timer.function = NULL; | 
 | 	} | 
 |  | 
 | 	if (hc->ctype == HFC_TYPE_E1) { /* E1 */ | 
 | 		/* remove sync */ | 
 | 		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { | 
 | 			hc->syncronized = 0; | 
 | 			plxsd_checksync(hc, 1); | 
 | 		} | 
 | 		/* free channels */ | 
 | 		for (i = 0; i <= 31; i++) { | 
 | 			if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */ | 
 | 				continue; | 
 | 			if (hc->chan[i].bch) { | 
 | 				if (debug & DEBUG_HFCMULTI_INIT) | 
 | 					printk(KERN_DEBUG | 
 | 					       "%s: free port %d channel %d\n", | 
 | 					       __func__, hc->chan[i].port + 1, i); | 
 | 				pb = hc->chan[i].bch; | 
 | 				hc->chan[i].bch = NULL; | 
 | 				spin_unlock_irqrestore(&hc->lock, flags); | 
 | 				mISDN_freebchannel(pb); | 
 | 				kfree(pb); | 
 | 				kfree(hc->chan[i].coeff); | 
 | 				spin_lock_irqsave(&hc->lock, flags); | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		/* remove sync */ | 
 | 		if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) { | 
 | 			hc->syncronized &= | 
 | 				~(1 << hc->chan[ci].port); | 
 | 			plxsd_checksync(hc, 1); | 
 | 		} | 
 | 		/* free channels */ | 
 | 		if (hc->chan[ci - 2].bch) { | 
 | 			if (debug & DEBUG_HFCMULTI_INIT) | 
 | 				printk(KERN_DEBUG | 
 | 				       "%s: free port %d channel %d\n", | 
 | 				       __func__, hc->chan[ci - 2].port + 1, | 
 | 				       ci - 2); | 
 | 			pb = hc->chan[ci - 2].bch; | 
 | 			hc->chan[ci - 2].bch = NULL; | 
 | 			spin_unlock_irqrestore(&hc->lock, flags); | 
 | 			mISDN_freebchannel(pb); | 
 | 			kfree(pb); | 
 | 			kfree(hc->chan[ci - 2].coeff); | 
 | 			spin_lock_irqsave(&hc->lock, flags); | 
 | 		} | 
 | 		if (hc->chan[ci - 1].bch) { | 
 | 			if (debug & DEBUG_HFCMULTI_INIT) | 
 | 				printk(KERN_DEBUG | 
 | 				       "%s: free port %d channel %d\n", | 
 | 				       __func__, hc->chan[ci - 1].port + 1, | 
 | 				       ci - 1); | 
 | 			pb = hc->chan[ci - 1].bch; | 
 | 			hc->chan[ci - 1].bch = NULL; | 
 | 			spin_unlock_irqrestore(&hc->lock, flags); | 
 | 			mISDN_freebchannel(pb); | 
 | 			kfree(pb); | 
 | 			kfree(hc->chan[ci - 1].coeff); | 
 | 			spin_lock_irqsave(&hc->lock, flags); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&hc->lock, flags); | 
 |  | 
 | 	if (debug & DEBUG_HFCMULTI_INIT) | 
 | 		printk(KERN_DEBUG "%s: free port %d channel D(%d)\n", __func__, | 
 | 			pt+1, ci); | 
 | 	mISDN_freedchannel(dch); | 
 | 	kfree(dch); | 
 |  | 
 | 	if (debug & DEBUG_HFCMULTI_INIT) | 
 | 		printk(KERN_DEBUG "%s: done!\n", __func__); | 
 | } | 
 |  | 
 | static void | 
 | release_card(struct hfc_multi *hc) | 
 | { | 
 | 	u_long	flags; | 
 | 	int	ch; | 
 |  | 
 | 	if (debug & DEBUG_HFCMULTI_INIT) | 
 | 		printk(KERN_DEBUG "%s: release card (%d) entered\n", | 
 | 		       __func__, hc->id); | 
 |  | 
 | 	/* unregister clock source */ | 
 | 	if (hc->iclock) | 
 | 		mISDN_unregister_clock(hc->iclock); | 
 |  | 
 | 	/* disable and free irq */ | 
 | 	spin_lock_irqsave(&hc->lock, flags); | 
 | 	disable_hwirq(hc); | 
 | 	spin_unlock_irqrestore(&hc->lock, flags); | 
 | 	udelay(1000); | 
 | 	if (hc->irq) { | 
 | 		if (debug & DEBUG_HFCMULTI_INIT) | 
 | 			printk(KERN_DEBUG "%s: free irq %d (hc=%p)\n", | 
 | 			    __func__, hc->irq, hc); | 
 | 		free_irq(hc->irq, hc); | 
 | 		hc->irq = 0; | 
 |  | 
 | 	} | 
 |  | 
 | 	/* disable D-channels & B-channels */ | 
 | 	if (debug & DEBUG_HFCMULTI_INIT) | 
 | 		printk(KERN_DEBUG "%s: disable all channels (d and b)\n", | 
 | 		       __func__); | 
 | 	for (ch = 0; ch <= 31; ch++) { | 
 | 		if (hc->chan[ch].dch) | 
 | 			release_port(hc, hc->chan[ch].dch); | 
 | 	} | 
 |  | 
 | 	/* dimm leds */ | 
 | 	if (hc->leds) | 
 | 		hfcmulti_leds(hc); | 
 |  | 
 | 	/* release hardware */ | 
 | 	release_io_hfcmulti(hc); | 
 |  | 
 | 	if (debug & DEBUG_HFCMULTI_INIT) | 
 | 		printk(KERN_DEBUG "%s: remove instance from list\n", | 
 | 		       __func__); | 
 | 	list_del(&hc->list); | 
 |  | 
 | 	if (debug & DEBUG_HFCMULTI_INIT) | 
 | 		printk(KERN_DEBUG "%s: delete instance\n", __func__); | 
 | 	if (hc == syncmaster) | 
 | 		syncmaster = NULL; | 
 | 	kfree(hc); | 
 | 	if (debug & DEBUG_HFCMULTI_INIT) | 
 | 		printk(KERN_DEBUG "%s: card successfully removed\n", | 
 | 		       __func__); | 
 | } | 
 |  | 
 | static void | 
 | init_e1_port_hw(struct hfc_multi *hc, struct hm_map *m) | 
 | { | 
 | 	/* set optical line type */ | 
 | 	if (port[Port_cnt] & 0x001) { | 
 | 		if (!m->opticalsupport)  { | 
 | 			printk(KERN_INFO | 
 | 			       "This board has no optical " | 
 | 			       "support\n"); | 
 | 		} else { | 
 | 			if (debug & DEBUG_HFCMULTI_INIT) | 
 | 				printk(KERN_DEBUG | 
 | 				       "%s: PORT set optical " | 
 | 				       "interfacs: card(%d) " | 
 | 				       "port(%d)\n", | 
 | 				       __func__, | 
 | 				       HFC_cnt + 1, 1); | 
 | 			test_and_set_bit(HFC_CFG_OPTICAL, | 
 | 			    &hc->chan[hc->dnum[0]].cfg); | 
 | 		} | 
 | 	} | 
 | 	/* set LOS report */ | 
 | 	if (port[Port_cnt] & 0x004) { | 
 | 		if (debug & DEBUG_HFCMULTI_INIT) | 
 | 			printk(KERN_DEBUG "%s: PORT set " | 
 | 			       "LOS report: card(%d) port(%d)\n", | 
 | 			       __func__, HFC_cnt + 1, 1); | 
 | 		test_and_set_bit(HFC_CFG_REPORT_LOS, | 
 | 		    &hc->chan[hc->dnum[0]].cfg); | 
 | 	} | 
 | 	/* set AIS report */ | 
 | 	if (port[Port_cnt] & 0x008) { | 
 | 		if (debug & DEBUG_HFCMULTI_INIT) | 
 | 			printk(KERN_DEBUG "%s: PORT set " | 
 | 			       "AIS report: card(%d) port(%d)\n", | 
 | 			       __func__, HFC_cnt + 1, 1); | 
 | 		test_and_set_bit(HFC_CFG_REPORT_AIS, | 
 | 		    &hc->chan[hc->dnum[0]].cfg); | 
 | 	} | 
 | 	/* set SLIP report */ | 
 | 	if (port[Port_cnt] & 0x010) { | 
 | 		if (debug & DEBUG_HFCMULTI_INIT) | 
 | 			printk(KERN_DEBUG | 
 | 			       "%s: PORT set SLIP report: " | 
 | 			       "card(%d) port(%d)\n", | 
 | 			       __func__, HFC_cnt + 1, 1); | 
 | 		test_and_set_bit(HFC_CFG_REPORT_SLIP, | 
 | 		    &hc->chan[hc->dnum[0]].cfg); | 
 | 	} | 
 | 	/* set RDI report */ | 
 | 	if (port[Port_cnt] & 0x020) { | 
 | 		if (debug & DEBUG_HFCMULTI_INIT) | 
 | 			printk(KERN_DEBUG | 
 | 			       "%s: PORT set RDI report: " | 
 | 			       "card(%d) port(%d)\n", | 
 | 			       __func__, HFC_cnt + 1, 1); | 
 | 		test_and_set_bit(HFC_CFG_REPORT_RDI, | 
 | 		    &hc->chan[hc->dnum[0]].cfg); | 
 | 	} | 
 | 	/* set CRC-4 Mode */ | 
 | 	if (!(port[Port_cnt] & 0x100)) { | 
 | 		if (debug & DEBUG_HFCMULTI_INIT) | 
 | 			printk(KERN_DEBUG "%s: PORT turn on CRC4 report:" | 
 | 			       " card(%d) port(%d)\n", | 
 | 			       __func__, HFC_cnt + 1, 1); | 
 | 		test_and_set_bit(HFC_CFG_CRC4, | 
 | 		    &hc->chan[hc->dnum[0]].cfg); | 
 | 	} else { | 
 | 		if (debug & DEBUG_HFCMULTI_INIT) | 
 | 			printk(KERN_DEBUG "%s: PORT turn off CRC4" | 
 | 			       " report: card(%d) port(%d)\n", | 
 | 			       __func__, HFC_cnt + 1, 1); | 
 | 	} | 
 | 	/* set forced clock */ | 
 | 	if (port[Port_cnt] & 0x0200) { | 
 | 		if (debug & DEBUG_HFCMULTI_INIT) | 
 | 			printk(KERN_DEBUG "%s: PORT force getting clock from " | 
 | 			       "E1: card(%d) port(%d)\n", | 
 | 			       __func__, HFC_cnt + 1, 1); | 
 | 		test_and_set_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip); | 
 | 	} else | 
 | 		if (port[Port_cnt] & 0x0400) { | 
 | 			if (debug & DEBUG_HFCMULTI_INIT) | 
 | 				printk(KERN_DEBUG "%s: PORT force putting clock to " | 
 | 				       "E1: card(%d) port(%d)\n", | 
 | 				       __func__, HFC_cnt + 1, 1); | 
 | 			test_and_set_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip); | 
 | 		} | 
 | 	/* set JATT PLL */ | 
 | 	if (port[Port_cnt] & 0x0800) { | 
 | 		if (debug & DEBUG_HFCMULTI_INIT) | 
 | 			printk(KERN_DEBUG "%s: PORT disable JATT PLL on " | 
 | 			       "E1: card(%d) port(%d)\n", | 
 | 			       __func__, HFC_cnt + 1, 1); | 
 | 		test_and_set_bit(HFC_CHIP_RX_SYNC, &hc->chip); | 
 | 	} | 
 | 	/* set elastic jitter buffer */ | 
 | 	if (port[Port_cnt] & 0x3000) { | 
 | 		hc->chan[hc->dnum[0]].jitter = (port[Port_cnt]>>12) & 0x3; | 
 | 		if (debug & DEBUG_HFCMULTI_INIT) | 
 | 			printk(KERN_DEBUG | 
 | 			       "%s: PORT set elastic " | 
 | 			       "buffer to %d: card(%d) port(%d)\n", | 
 | 			    __func__, hc->chan[hc->dnum[0]].jitter, | 
 | 			       HFC_cnt + 1, 1); | 
 | 	} else | 
 | 		hc->chan[hc->dnum[0]].jitter = 2; /* default */ | 
 | } | 
 |  | 
 | static int | 
 | init_e1_port(struct hfc_multi *hc, struct hm_map *m, int pt) | 
 | { | 
 | 	struct dchannel	*dch; | 
 | 	struct bchannel	*bch; | 
 | 	int		ch, ret = 0; | 
 | 	char		name[MISDN_MAX_IDLEN]; | 
 | 	int		bcount = 0; | 
 |  | 
 | 	dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL); | 
 | 	if (!dch) | 
 | 		return -ENOMEM; | 
 | 	dch->debug = debug; | 
 | 	mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change); | 
 | 	dch->hw = hc; | 
 | 	dch->dev.Dprotocols = (1 << ISDN_P_TE_E1) | (1 << ISDN_P_NT_E1); | 
 | 	dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) | | 
 | 	    (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK)); | 
 | 	dch->dev.D.send = handle_dmsg; | 
 | 	dch->dev.D.ctrl = hfcm_dctrl; | 
 | 	dch->slot = hc->dnum[pt]; | 
 | 	hc->chan[hc->dnum[pt]].dch = dch; | 
 | 	hc->chan[hc->dnum[pt]].port = pt; | 
 | 	hc->chan[hc->dnum[pt]].nt_timer = -1; | 
 | 	for (ch = 1; ch <= 31; ch++) { | 
 | 		if (!((1 << ch) & hc->bmask[pt])) /* skip unused channel */ | 
 | 			continue; | 
 | 		bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL); | 
 | 		if (!bch) { | 
 | 			printk(KERN_ERR "%s: no memory for bchannel\n", | 
 | 			    __func__); | 
 | 			ret = -ENOMEM; | 
 | 			goto free_chan; | 
 | 		} | 
 | 		hc->chan[ch].coeff = kzalloc(512, GFP_KERNEL); | 
 | 		if (!hc->chan[ch].coeff) { | 
 | 			printk(KERN_ERR "%s: no memory for coeffs\n", | 
 | 			    __func__); | 
 | 			ret = -ENOMEM; | 
 | 			kfree(bch); | 
 | 			goto free_chan; | 
 | 		} | 
 | 		bch->nr = ch; | 
 | 		bch->slot = ch; | 
 | 		bch->debug = debug; | 
 | 		mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1); | 
 | 		bch->hw = hc; | 
 | 		bch->ch.send = handle_bmsg; | 
 | 		bch->ch.ctrl = hfcm_bctrl; | 
 | 		bch->ch.nr = ch; | 
 | 		list_add(&bch->ch.list, &dch->dev.bchannels); | 
 | 		hc->chan[ch].bch = bch; | 
 | 		hc->chan[ch].port = pt; | 
 | 		set_channelmap(bch->nr, dch->dev.channelmap); | 
 | 		bcount++; | 
 | 	} | 
 | 	dch->dev.nrbchan = bcount; | 
 | 	if (pt == 0) | 
 | 		init_e1_port_hw(hc, m); | 
 | 	if (hc->ports > 1) | 
 | 		snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d-%d", | 
 | 				HFC_cnt + 1, pt+1); | 
 | 	else | 
 | 		snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1); | 
 | 	ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name); | 
 | 	if (ret) | 
 | 		goto free_chan; | 
 | 	hc->created[pt] = 1; | 
 | 	return ret; | 
 | free_chan: | 
 | 	release_port(hc, dch); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int | 
 | init_multi_port(struct hfc_multi *hc, int pt) | 
 | { | 
 | 	struct dchannel	*dch; | 
 | 	struct bchannel	*bch; | 
 | 	int		ch, i, ret = 0; | 
 | 	char		name[MISDN_MAX_IDLEN]; | 
 |  | 
 | 	dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL); | 
 | 	if (!dch) | 
 | 		return -ENOMEM; | 
 | 	dch->debug = debug; | 
 | 	mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change); | 
 | 	dch->hw = hc; | 
 | 	dch->dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0); | 
 | 	dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) | | 
 | 		(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK)); | 
 | 	dch->dev.D.send = handle_dmsg; | 
 | 	dch->dev.D.ctrl = hfcm_dctrl; | 
 | 	dch->dev.nrbchan = 2; | 
 | 	i = pt << 2; | 
 | 	dch->slot = i + 2; | 
 | 	hc->chan[i + 2].dch = dch; | 
 | 	hc->chan[i + 2].port = pt; | 
 | 	hc->chan[i + 2].nt_timer = -1; | 
 | 	for (ch = 0; ch < dch->dev.nrbchan; ch++) { | 
 | 		bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL); | 
 | 		if (!bch) { | 
 | 			printk(KERN_ERR "%s: no memory for bchannel\n", | 
 | 			       __func__); | 
 | 			ret = -ENOMEM; | 
 | 			goto free_chan; | 
 | 		} | 
 | 		hc->chan[i + ch].coeff = kzalloc(512, GFP_KERNEL); | 
 | 		if (!hc->chan[i + ch].coeff) { | 
 | 			printk(KERN_ERR "%s: no memory for coeffs\n", | 
 | 			       __func__); | 
 | 			ret = -ENOMEM; | 
 | 			kfree(bch); | 
 | 			goto free_chan; | 
 | 		} | 
 | 		bch->nr = ch + 1; | 
 | 		bch->slot = i + ch; | 
 | 		bch->debug = debug; | 
 | 		mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1); | 
 | 		bch->hw = hc; | 
 | 		bch->ch.send = handle_bmsg; | 
 | 		bch->ch.ctrl = hfcm_bctrl; | 
 | 		bch->ch.nr = ch + 1; | 
 | 		list_add(&bch->ch.list, &dch->dev.bchannels); | 
 | 		hc->chan[i + ch].bch = bch; | 
 | 		hc->chan[i + ch].port = pt; | 
 | 		set_channelmap(bch->nr, dch->dev.channelmap); | 
 | 	} | 
 | 	/* set master clock */ | 
 | 	if (port[Port_cnt] & 0x001) { | 
 | 		if (debug & DEBUG_HFCMULTI_INIT) | 
 | 			printk(KERN_DEBUG | 
 | 			       "%s: PROTOCOL set master clock: " | 
 | 			       "card(%d) port(%d)\n", | 
 | 			       __func__, HFC_cnt + 1, pt + 1); | 
 | 		if (dch->dev.D.protocol != ISDN_P_TE_S0) { | 
 | 			printk(KERN_ERR "Error: Master clock " | 
 | 			       "for port(%d) of card(%d) is only" | 
 | 			       " possible with TE-mode\n", | 
 | 			       pt + 1, HFC_cnt + 1); | 
 | 			ret = -EINVAL; | 
 | 			goto free_chan; | 
 | 		} | 
 | 		if (hc->masterclk >= 0) { | 
 | 			printk(KERN_ERR "Error: Master clock " | 
 | 			       "for port(%d) of card(%d) already " | 
 | 			       "defined for port(%d)\n", | 
 | 			       pt + 1, HFC_cnt + 1, hc->masterclk + 1); | 
 | 			ret = -EINVAL; | 
 | 			goto free_chan; | 
 | 		} | 
 | 		hc->masterclk = pt; | 
 | 	} | 
 | 	/* set transmitter line to non capacitive */ | 
 | 	if (port[Port_cnt] & 0x002) { | 
 | 		if (debug & DEBUG_HFCMULTI_INIT) | 
 | 			printk(KERN_DEBUG | 
 | 			       "%s: PROTOCOL set non capacitive " | 
 | 			       "transmitter: card(%d) port(%d)\n", | 
 | 			       __func__, HFC_cnt + 1, pt + 1); | 
 | 		test_and_set_bit(HFC_CFG_NONCAP_TX, | 
 | 				 &hc->chan[i + 2].cfg); | 
 | 	} | 
 | 	/* disable E-channel */ | 
 | 	if (port[Port_cnt] & 0x004) { | 
 | 		if (debug & DEBUG_HFCMULTI_INIT) | 
 | 			printk(KERN_DEBUG | 
 | 			       "%s: PROTOCOL disable E-channel: " | 
 | 			       "card(%d) port(%d)\n", | 
 | 			       __func__, HFC_cnt + 1, pt + 1); | 
 | 		test_and_set_bit(HFC_CFG_DIS_ECHANNEL, | 
 | 				 &hc->chan[i + 2].cfg); | 
 | 	} | 
 | 	if (hc->ctype == HFC_TYPE_XHFC) { | 
 | 		snprintf(name, MISDN_MAX_IDLEN - 1, "xhfc.%d-%d", | 
 | 			 HFC_cnt + 1, pt + 1); | 
 | 		ret = mISDN_register_device(&dch->dev, NULL, name); | 
 | 	} else { | 
 | 		snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d-%d", | 
 | 			 hc->ctype, HFC_cnt + 1, pt + 1); | 
 | 		ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name); | 
 | 	} | 
 | 	if (ret) | 
 | 		goto free_chan; | 
 | 	hc->created[pt] = 1; | 
 | 	return ret; | 
 | free_chan: | 
 | 	release_port(hc, dch); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int | 
 | hfcmulti_init(struct hm_map *m, struct pci_dev *pdev, | 
 | 	      const struct pci_device_id *ent) | 
 | { | 
 | 	int		ret_err = 0; | 
 | 	int		pt; | 
 | 	struct hfc_multi	*hc; | 
 | 	u_long		flags; | 
 | 	u_char		dips = 0, pmj = 0; /* dip settings, port mode Jumpers */ | 
 | 	int		i, ch; | 
 | 	u_int		maskcheck; | 
 |  | 
 | 	if (HFC_cnt >= MAX_CARDS) { | 
 | 		printk(KERN_ERR "too many cards (max=%d).\n", | 
 | 		       MAX_CARDS); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	if ((type[HFC_cnt] & 0xff) && (type[HFC_cnt] & 0xff) != m->type) { | 
 | 		printk(KERN_WARNING "HFC-MULTI: Card '%s:%s' type %d found but " | 
 | 		       "type[%d] %d was supplied as module parameter\n", | 
 | 		       m->vendor_name, m->card_name, m->type, HFC_cnt, | 
 | 		       type[HFC_cnt] & 0xff); | 
 | 		printk(KERN_WARNING "HFC-MULTI: Load module without parameters " | 
 | 		       "first, to see cards and their types."); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	if (debug & DEBUG_HFCMULTI_INIT) | 
 | 		printk(KERN_DEBUG "%s: Registering %s:%s chip type %d (0x%x)\n", | 
 | 		       __func__, m->vendor_name, m->card_name, m->type, | 
 | 		       type[HFC_cnt]); | 
 |  | 
 | 	/* allocate card+fifo structure */ | 
 | 	hc = kzalloc(sizeof(struct hfc_multi), GFP_KERNEL); | 
 | 	if (!hc) { | 
 | 		printk(KERN_ERR "No kmem for HFC-Multi card\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	spin_lock_init(&hc->lock); | 
 | 	hc->mtyp = m; | 
 | 	hc->ctype =  m->type; | 
 | 	hc->ports = m->ports; | 
 | 	hc->id = HFC_cnt; | 
 | 	hc->pcm = pcm[HFC_cnt]; | 
 | 	hc->io_mode = iomode[HFC_cnt]; | 
 | 	if (hc->ctype == HFC_TYPE_E1 && dmask[E1_cnt]) { | 
 | 		/* fragment card */ | 
 | 		pt = 0; | 
 | 		maskcheck = 0; | 
 | 		for (ch = 0; ch <= 31; ch++) { | 
 | 			if (!((1 << ch) & dmask[E1_cnt])) | 
 | 				continue; | 
 | 			hc->dnum[pt] = ch; | 
 | 			hc->bmask[pt] = bmask[bmask_cnt++]; | 
 | 			if ((maskcheck & hc->bmask[pt]) | 
 | 			 || (dmask[E1_cnt] & hc->bmask[pt])) { | 
 | 				printk(KERN_INFO | 
 | 				       "HFC-E1 #%d has overlapping B-channels on fragment #%d\n", | 
 | 				       E1_cnt + 1, pt); | 
 | 				kfree(hc); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 			maskcheck |= hc->bmask[pt]; | 
 | 			printk(KERN_INFO | 
 | 			       "HFC-E1 #%d uses D-channel on slot %d and a B-channel map of 0x%08x\n", | 
 | 				E1_cnt + 1, ch, hc->bmask[pt]); | 
 | 			pt++; | 
 | 		} | 
 | 		hc->ports = pt; | 
 | 	} | 
 | 	if (hc->ctype == HFC_TYPE_E1 && !dmask[E1_cnt]) { | 
 | 		/* default card layout */ | 
 | 		hc->dnum[0] = 16; | 
 | 		hc->bmask[0] = 0xfffefffe; | 
 | 		hc->ports = 1; | 
 | 	} | 
 |  | 
 | 	/* set chip specific features */ | 
 | 	hc->masterclk = -1; | 
 | 	if (type[HFC_cnt] & 0x100) { | 
 | 		test_and_set_bit(HFC_CHIP_ULAW, &hc->chip); | 
 | 		hc->silence = 0xff; /* ulaw silence */ | 
 | 	} else | 
 | 		hc->silence = 0x2a; /* alaw silence */ | 
 | 	if ((poll >> 1) > sizeof(hc->silence_data)) { | 
 | 		printk(KERN_ERR "HFCMULTI error: silence_data too small, " | 
 | 		       "please fix\n"); | 
 | 		kfree(hc); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	for (i = 0; i < (poll >> 1); i++) | 
 | 		hc->silence_data[i] = hc->silence; | 
 |  | 
 | 	if (hc->ctype != HFC_TYPE_XHFC) { | 
 | 		if (!(type[HFC_cnt] & 0x200)) | 
 | 			test_and_set_bit(HFC_CHIP_DTMF, &hc->chip); | 
 | 		test_and_set_bit(HFC_CHIP_CONF, &hc->chip); | 
 | 	} | 
 |  | 
 | 	if (type[HFC_cnt] & 0x800) | 
 | 		test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip); | 
 | 	if (type[HFC_cnt] & 0x1000) { | 
 | 		test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip); | 
 | 		test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip); | 
 | 	} | 
 | 	if (type[HFC_cnt] & 0x4000) | 
 | 		test_and_set_bit(HFC_CHIP_EXRAM_128, &hc->chip); | 
 | 	if (type[HFC_cnt] & 0x8000) | 
 | 		test_and_set_bit(HFC_CHIP_EXRAM_512, &hc->chip); | 
 | 	hc->slots = 32; | 
 | 	if (type[HFC_cnt] & 0x10000) | 
 | 		hc->slots = 64; | 
 | 	if (type[HFC_cnt] & 0x20000) | 
 | 		hc->slots = 128; | 
 | 	if (type[HFC_cnt] & 0x80000) { | 
 | 		test_and_set_bit(HFC_CHIP_WATCHDOG, &hc->chip); | 
 | 		hc->wdcount = 0; | 
 | 		hc->wdbyte = V_GPIO_OUT2; | 
 | 		printk(KERN_NOTICE "Watchdog enabled\n"); | 
 | 	} | 
 |  | 
 | 	if (pdev && ent) | 
 | 		/* setup pci, hc->slots may change due to PLXSD */ | 
 | 		ret_err = setup_pci(hc, pdev, ent); | 
 | 	else | 
 | #ifdef CONFIG_MISDN_HFCMULTI_8xx | 
 | 		ret_err = setup_embedded(hc, m); | 
 | #else | 
 | 	{ | 
 | 		printk(KERN_WARNING "Embedded IO Mode not selected\n"); | 
 | 		ret_err = -EIO; | 
 | 	} | 
 | #endif | 
 | 	if (ret_err) { | 
 | 		if (hc == syncmaster) | 
 | 			syncmaster = NULL; | 
 | 		kfree(hc); | 
 | 		return ret_err; | 
 | 	} | 
 |  | 
 | 	hc->HFC_outb_nodebug = hc->HFC_outb; | 
 | 	hc->HFC_inb_nodebug = hc->HFC_inb; | 
 | 	hc->HFC_inw_nodebug = hc->HFC_inw; | 
 | 	hc->HFC_wait_nodebug = hc->HFC_wait; | 
 | #ifdef HFC_REGISTER_DEBUG | 
 | 	hc->HFC_outb = HFC_outb_debug; | 
 | 	hc->HFC_inb = HFC_inb_debug; | 
 | 	hc->HFC_inw = HFC_inw_debug; | 
 | 	hc->HFC_wait = HFC_wait_debug; | 
 | #endif | 
 | 	/* create channels */ | 
 | 	for (pt = 0; pt < hc->ports; pt++) { | 
 | 		if (Port_cnt >= MAX_PORTS) { | 
 | 			printk(KERN_ERR "too many ports (max=%d).\n", | 
 | 			       MAX_PORTS); | 
 | 			ret_err = -EINVAL; | 
 | 			goto free_card; | 
 | 		} | 
 | 		if (hc->ctype == HFC_TYPE_E1) | 
 | 			ret_err = init_e1_port(hc, m, pt); | 
 | 		else | 
 | 			ret_err = init_multi_port(hc, pt); | 
 | 		if (debug & DEBUG_HFCMULTI_INIT) | 
 | 			printk(KERN_DEBUG | 
 | 			    "%s: Registering D-channel, card(%d) port(%d) " | 
 | 			       "result %d\n", | 
 | 			    __func__, HFC_cnt + 1, pt + 1, ret_err); | 
 |  | 
 | 		if (ret_err) { | 
 | 			while (pt) { /* release already registered ports */ | 
 | 				pt--; | 
 | 				if (hc->ctype == HFC_TYPE_E1) | 
 | 					release_port(hc, | 
 | 						hc->chan[hc->dnum[pt]].dch); | 
 | 				else | 
 | 					release_port(hc, | 
 | 						hc->chan[(pt << 2) + 2].dch); | 
 | 			} | 
 | 			goto free_card; | 
 | 		} | 
 | 		if (hc->ctype != HFC_TYPE_E1) | 
 | 			Port_cnt++; /* for each S0 port */ | 
 | 	} | 
 | 	if (hc->ctype == HFC_TYPE_E1) { | 
 | 		Port_cnt++; /* for each E1 port */ | 
 | 		E1_cnt++; | 
 | 	} | 
 |  | 
 | 	/* disp switches */ | 
 | 	switch (m->dip_type) { | 
 | 	case DIP_4S: | 
 | 		/* | 
 | 		 * Get DIP setting for beroNet 1S/2S/4S cards | 
 | 		 * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) + | 
 | 		 * GPI 19/23 (R_GPI_IN2)) | 
 | 		 */ | 
 | 		dips = ((~HFC_inb(hc, R_GPIO_IN1) & 0xE0) >> 5) | | 
 | 			((~HFC_inb(hc, R_GPI_IN2) & 0x80) >> 3) | | 
 | 			(~HFC_inb(hc, R_GPI_IN2) & 0x08); | 
 |  | 
 | 		/* Port mode (TE/NT) jumpers */ | 
 | 		pmj = ((HFC_inb(hc, R_GPI_IN3) >> 4)  & 0xf); | 
 |  | 
 | 		if (test_bit(HFC_CHIP_B410P, &hc->chip)) | 
 | 			pmj = ~pmj & 0xf; | 
 |  | 
 | 		printk(KERN_INFO "%s: %s DIPs(0x%x) jumpers(0x%x)\n", | 
 | 		       m->vendor_name, m->card_name, dips, pmj); | 
 | 		break; | 
 | 	case DIP_8S: | 
 | 		/* | 
 | 		 * Get DIP Setting for beroNet 8S0+ cards | 
 | 		 * Enable PCI auxbridge function | 
 | 		 */ | 
 | 		HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK); | 
 | 		/* prepare access to auxport */ | 
 | 		outw(0x4000, hc->pci_iobase + 4); | 
 | 		/* | 
 | 		 * some dummy reads are required to | 
 | 		 * read valid DIP switch data | 
 | 		 */ | 
 | 		dips = inb(hc->pci_iobase); | 
 | 		dips = inb(hc->pci_iobase); | 
 | 		dips = inb(hc->pci_iobase); | 
 | 		dips = ~inb(hc->pci_iobase) & 0x3F; | 
 | 		outw(0x0, hc->pci_iobase + 4); | 
 | 		/* disable PCI auxbridge function */ | 
 | 		HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK); | 
 | 		printk(KERN_INFO "%s: %s DIPs(0x%x)\n", | 
 | 		       m->vendor_name, m->card_name, dips); | 
 | 		break; | 
 | 	case DIP_E1: | 
 | 		/* | 
 | 		 * get DIP Setting for beroNet E1 cards | 
 | 		 * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0) | 
 | 		 */ | 
 | 		dips = (~HFC_inb(hc, R_GPI_IN0) & 0xF0) >> 4; | 
 | 		printk(KERN_INFO "%s: %s DIPs(0x%x)\n", | 
 | 		       m->vendor_name, m->card_name, dips); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* add to list */ | 
 | 	spin_lock_irqsave(&HFClock, flags); | 
 | 	list_add_tail(&hc->list, &HFClist); | 
 | 	spin_unlock_irqrestore(&HFClock, flags); | 
 |  | 
 | 	/* use as clock source */ | 
 | 	if (clock == HFC_cnt + 1) | 
 | 		hc->iclock = mISDN_register_clock("HFCMulti", 0, clockctl, hc); | 
 |  | 
 | 	/* initialize hardware */ | 
 | 	hc->irq = (m->irq) ? : hc->pci_dev->irq; | 
 | 	ret_err = init_card(hc); | 
 | 	if (ret_err) { | 
 | 		printk(KERN_ERR "init card returns %d\n", ret_err); | 
 | 		release_card(hc); | 
 | 		return ret_err; | 
 | 	} | 
 |  | 
 | 	/* start IRQ and return */ | 
 | 	spin_lock_irqsave(&hc->lock, flags); | 
 | 	enable_hwirq(hc); | 
 | 	spin_unlock_irqrestore(&hc->lock, flags); | 
 | 	return 0; | 
 |  | 
 | free_card: | 
 | 	release_io_hfcmulti(hc); | 
 | 	if (hc == syncmaster) | 
 | 		syncmaster = NULL; | 
 | 	kfree(hc); | 
 | 	return ret_err; | 
 | } | 
 |  | 
 | static void hfc_remove_pci(struct pci_dev *pdev) | 
 | { | 
 | 	struct hfc_multi	*card = pci_get_drvdata(pdev); | 
 | 	u_long			flags; | 
 |  | 
 | 	if (debug) | 
 | 		printk(KERN_INFO "removing hfc_multi card vendor:%x " | 
 | 		       "device:%x subvendor:%x subdevice:%x\n", | 
 | 		       pdev->vendor, pdev->device, | 
 | 		       pdev->subsystem_vendor, pdev->subsystem_device); | 
 |  | 
 | 	if (card) { | 
 | 		spin_lock_irqsave(&HFClock, flags); | 
 | 		release_card(card); | 
 | 		spin_unlock_irqrestore(&HFClock, flags); | 
 | 	}  else { | 
 | 		if (debug) | 
 | 			printk(KERN_DEBUG "%s: drvdata already removed\n", | 
 | 			       __func__); | 
 | 	} | 
 | } | 
 |  | 
 | #define	VENDOR_CCD	"Cologne Chip AG" | 
 | #define	VENDOR_BN	"beroNet GmbH" | 
 | #define	VENDOR_DIG	"Digium Inc." | 
 | #define VENDOR_JH	"Junghanns.NET GmbH" | 
 | #define VENDOR_PRIM	"PrimuX" | 
 |  | 
 | static const struct hm_map hfcm_map[] = { | 
 | 	/*0*/	{VENDOR_BN, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S, 0, 0}, | 
 | 	/*1*/	{VENDOR_BN, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S, 0, 0}, | 
 | 	/*2*/	{VENDOR_BN, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S, 0, 0}, | 
 | 	/*3*/	{VENDOR_BN, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S, 0, 0}, | 
 | 	/*4*/	{VENDOR_BN, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0, 0}, | 
 | 	/*5*/	{VENDOR_CCD, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0, 0}, | 
 | 	/*6*/	{VENDOR_CCD, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S, 0, 0}, | 
 | 	/*7*/	{VENDOR_CCD, "HFC-4S", 4, 4, 1, 2, 0, 0, 0, 0}, | 
 | 	/*8*/	{VENDOR_DIG, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO, 0}, | 
 | 	/*9*/	{VENDOR_CCD, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0, 0}, | 
 | 	/*10*/	{VENDOR_JH, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0, 0}, | 
 | 	/*11*/	{VENDOR_PRIM, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0, 0}, | 
 |  | 
 | 	/*12*/	{VENDOR_BN, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0, 0}, | 
 | 	/*13*/	{VENDOR_BN, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S, | 
 | 		 HFC_IO_MODE_REGIO, 0}, | 
 | 	/*14*/	{VENDOR_CCD, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0, 0}, | 
 | 	/*15*/	{VENDOR_CCD, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0, 0}, | 
 |  | 
 | 	/*16*/	{VENDOR_CCD, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0, 0}, | 
 | 	/*17*/	{VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0}, | 
 | 	/*18*/	{VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0}, | 
 |  | 
 | 	/*19*/	{VENDOR_BN, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1, 0, 0}, | 
 | 	/*20*/	{VENDOR_BN, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0, 0}, | 
 | 	/*21*/	{VENDOR_BN, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0}, | 
 | 	/*22*/	{VENDOR_BN, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0}, | 
 |  | 
 | 	/*23*/	{VENDOR_CCD, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0, 0}, | 
 | 	/*24*/	{VENDOR_CCD, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0, 0}, | 
 | 	/*25*/	{VENDOR_CCD, "HFC-E1", 1, 1, 0, 1, 0, 0, 0, 0}, | 
 |  | 
 | 	/*26*/	{VENDOR_CCD, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0, | 
 | 		 HFC_IO_MODE_PLXSD, 0}, | 
 | 	/*27*/	{VENDOR_CCD, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0, | 
 | 		 HFC_IO_MODE_PLXSD, 0}, | 
 | 	/*28*/	{VENDOR_CCD, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0, 0}, | 
 | 	/*29*/	{VENDOR_CCD, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0, 0}, | 
 | 	/*30*/	{VENDOR_CCD, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0, 0}, | 
 | 	/*31*/	{VENDOR_CCD, "XHFC-4S Speech Design", 5, 4, 0, 0, 0, 0, | 
 | 		 HFC_IO_MODE_EMBSD, XHFC_IRQ}, | 
 | 	/*32*/	{VENDOR_JH, "HFC-8S (junghanns)", 8, 8, 1, 0, 0, 0, 0, 0}, | 
 | 	/*33*/	{VENDOR_BN, "HFC-2S Beronet Card PCIe", 4, 2, 1, 3, 0, DIP_4S, 0, 0}, | 
 | 	/*34*/	{VENDOR_BN, "HFC-4S Beronet Card PCIe", 4, 4, 1, 2, 0, DIP_4S, 0, 0}, | 
 | }; | 
 |  | 
 | #undef H | 
 | #define H(x)	((unsigned long)&hfcm_map[x]) | 
 | static const struct pci_device_id hfmultipci_ids[] = { | 
 |  | 
 | 	/* Cards with HFC-4S Chip */ | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_SUBDEVICE_ID_CCD_BN1SM, 0, 0, H(0)}, /* BN1S mini PCI */ | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_SUBDEVICE_ID_CCD_BN2S, 0, 0, H(1)}, /* BN2S */ | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_SUBDEVICE_ID_CCD_BN2SM, 0, 0, H(2)}, /* BN2S mini PCI */ | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_SUBDEVICE_ID_CCD_BN4S, 0, 0, H(3)}, /* BN4S */ | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_SUBDEVICE_ID_CCD_BN4SM, 0, 0, H(4)}, /* BN4S mini PCI */ | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_DEVICE_ID_CCD_HFC4S, 0, 0, H(5)}, /* Old Eval */ | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_SUBDEVICE_ID_CCD_IOB4ST, 0, 0, H(6)}, /* IOB4ST */ | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_SUBDEVICE_ID_CCD_HFC4S, 0, 0, H(7)}, /* 4S */ | 
 | 	{ PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, | 
 | 	  PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 0, 0, H(8)}, | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_SUBDEVICE_ID_CCD_SWYX4S, 0, 0, H(9)}, /* 4S Swyx */ | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_SUBDEVICE_ID_CCD_JH4S20, 0, 0, H(10)}, | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_SUBDEVICE_ID_CCD_PMX2S, 0, 0, H(11)}, /* Primux */ | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_SUBDEVICE_ID_CCD_OV4S, 0, 0, H(28)}, /* OpenVox 4 */ | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_SUBDEVICE_ID_CCD_OV2S, 0, 0, H(29)}, /* OpenVox 2 */ | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, | 
 | 	  0xb761, 0, 0, H(33)}, /* BN2S PCIe */ | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD, | 
 | 	  0xb762, 0, 0, H(34)}, /* BN4S PCIe */ | 
 |  | 
 | 	/* Cards with HFC-8S Chip */ | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_SUBDEVICE_ID_CCD_BN8S, 0, 0, H(12)}, /* BN8S */ | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_SUBDEVICE_ID_CCD_BN8SP, 0, 0, H(13)}, /* BN8S+ */ | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */ | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)}, /* IOB8ST Recording */ | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST  */ | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_SUBDEVICE_ID_CCD_IOB8ST_1, 0, 0, H(17)}, /* IOB8ST  */ | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_SUBDEVICE_ID_CCD_HFC8S, 0, 0, H(18)}, /* 8S */ | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_SUBDEVICE_ID_CCD_OV8S, 0, 0, H(30)}, /* OpenVox 8 */ | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_SUBDEVICE_ID_CCD_JH8S, 0, 0, H(32)}, /* Junganns 8S  */ | 
 |  | 
 |  | 
 | 	/* Cards with HFC-E1 Chip */ | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_SUBDEVICE_ID_CCD_BNE1, 0, 0, H(19)}, /* BNE1 */ | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_SUBDEVICE_ID_CCD_BNE1M, 0, 0, H(20)}, /* BNE1 mini PCI */ | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_SUBDEVICE_ID_CCD_BNE1DP, 0, 0, H(21)}, /* BNE1 + (Dual) */ | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_SUBDEVICE_ID_CCD_BNE1D, 0, 0, H(22)}, /* BNE1 (Dual) */ | 
 |  | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_DEVICE_ID_CCD_HFCE1, 0, 0, H(23)}, /* Old Eval */ | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_SUBDEVICE_ID_CCD_IOB1E1, 0, 0, H(24)}, /* IOB1E1 */ | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_SUBDEVICE_ID_CCD_HFCE1, 0, 0, H(25)}, /* E1 */ | 
 |  | 
 | 	{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_SUBDEVICE_ID_CCD_SPD4S, 0, 0, H(26)}, /* PLX PCI Bridge */ | 
 | 	{ PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_SUBDEVICE_ID_CCD_SPDE1, 0, 0, H(27)}, /* PLX PCI Bridge */ | 
 |  | 
 | 	{ PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD, | 
 | 	  PCI_SUBDEVICE_ID_CCD_JHSE1, 0, 0, H(25)}, /* Junghanns E1 */ | 
 |  | 
 | 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC4S), 0 }, | 
 | 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC8S), 0 }, | 
 | 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFCE1), 0 }, | 
 | 	{0, } | 
 | }; | 
 | #undef H | 
 |  | 
 | MODULE_DEVICE_TABLE(pci, hfmultipci_ids); | 
 |  | 
 | static int | 
 | hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent) | 
 | { | 
 | 	struct hm_map	*m = (struct hm_map *)ent->driver_data; | 
 | 	int		ret; | 
 |  | 
 | 	if (m == NULL && ent->vendor == PCI_VENDOR_ID_CCD && ( | 
 | 		    ent->device == PCI_DEVICE_ID_CCD_HFC4S || | 
 | 		    ent->device == PCI_DEVICE_ID_CCD_HFC8S || | 
 | 		    ent->device == PCI_DEVICE_ID_CCD_HFCE1)) { | 
 | 		printk(KERN_ERR | 
 | 		       "Unknown HFC multiport controller (vendor:%04x device:%04x " | 
 | 		       "subvendor:%04x subdevice:%04x)\n", pdev->vendor, | 
 | 		       pdev->device, pdev->subsystem_vendor, | 
 | 		       pdev->subsystem_device); | 
 | 		printk(KERN_ERR | 
 | 		       "Please contact the driver maintainer for support.\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	ret = hfcmulti_init(m, pdev, ent); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	HFC_cnt++; | 
 | 	printk(KERN_INFO "%d devices registered\n", HFC_cnt); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct pci_driver hfcmultipci_driver = { | 
 | 	.name		= "hfc_multi", | 
 | 	.probe		= hfcmulti_probe, | 
 | 	.remove		= hfc_remove_pci, | 
 | 	.id_table	= hfmultipci_ids, | 
 | }; | 
 |  | 
 | static void __exit | 
 | HFCmulti_cleanup(void) | 
 | { | 
 | 	struct hfc_multi *card, *next; | 
 |  | 
 | 	/* get rid of all devices of this driver */ | 
 | 	list_for_each_entry_safe(card, next, &HFClist, list) | 
 | 		release_card(card); | 
 | 	pci_unregister_driver(&hfcmultipci_driver); | 
 | } | 
 |  | 
 | static int __init | 
 | HFCmulti_init(void) | 
 | { | 
 | 	int err; | 
 | 	int i, xhfc = 0; | 
 | 	struct hm_map m; | 
 |  | 
 | 	printk(KERN_INFO "mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION); | 
 |  | 
 | #ifdef IRQ_DEBUG | 
 | 	printk(KERN_DEBUG "%s: IRQ_DEBUG IS ENABLED!\n", __func__); | 
 | #endif | 
 |  | 
 | 	spin_lock_init(&HFClock); | 
 | 	spin_lock_init(&plx_lock); | 
 |  | 
 | 	if (debug & DEBUG_HFCMULTI_INIT) | 
 | 		printk(KERN_DEBUG "%s: init entered\n", __func__); | 
 |  | 
 | 	switch (poll) { | 
 | 	case 0: | 
 | 		poll_timer = 6; | 
 | 		poll = 128; | 
 | 		break; | 
 | 	case 8: | 
 | 		poll_timer = 2; | 
 | 		break; | 
 | 	case 16: | 
 | 		poll_timer = 3; | 
 | 		break; | 
 | 	case 32: | 
 | 		poll_timer = 4; | 
 | 		break; | 
 | 	case 64: | 
 | 		poll_timer = 5; | 
 | 		break; | 
 | 	case 128: | 
 | 		poll_timer = 6; | 
 | 		break; | 
 | 	case 256: | 
 | 		poll_timer = 7; | 
 | 		break; | 
 | 	default: | 
 | 		printk(KERN_ERR | 
 | 		       "%s: Wrong poll value (%d).\n", __func__, poll); | 
 | 		err = -EINVAL; | 
 | 		return err; | 
 |  | 
 | 	} | 
 |  | 
 | 	if (!clock) | 
 | 		clock = 1; | 
 |  | 
 | 	/* Register the embedded devices. | 
 | 	 * This should be done before the PCI cards registration */ | 
 | 	switch (hwid) { | 
 | 	case HWID_MINIP4: | 
 | 		xhfc = 1; | 
 | 		m = hfcm_map[31]; | 
 | 		break; | 
 | 	case HWID_MINIP8: | 
 | 		xhfc = 2; | 
 | 		m = hfcm_map[31]; | 
 | 		break; | 
 | 	case HWID_MINIP16: | 
 | 		xhfc = 4; | 
 | 		m = hfcm_map[31]; | 
 | 		break; | 
 | 	default: | 
 | 		xhfc = 0; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < xhfc; ++i) { | 
 | 		err = hfcmulti_init(&m, NULL, NULL); | 
 | 		if (err) { | 
 | 			printk(KERN_ERR "error registering embedded driver: " | 
 | 			       "%x\n", err); | 
 | 			return err; | 
 | 		} | 
 | 		HFC_cnt++; | 
 | 		printk(KERN_INFO "%d devices registered\n", HFC_cnt); | 
 | 	} | 
 |  | 
 | 	/* Register the PCI cards */ | 
 | 	err = pci_register_driver(&hfcmultipci_driver); | 
 | 	if (err < 0) { | 
 | 		printk(KERN_ERR "error registering pci driver: %x\n", err); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | module_init(HFCmulti_init); | 
 | module_exit(HFCmulti_cleanup); |