| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Functions related to segment and merge handling | 
 |  */ | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/scatterlist.h> | 
 |  | 
 | #include <trace/events/block.h> | 
 |  | 
 | #include "blk.h" | 
 | #include "blk-rq-qos.h" | 
 |  | 
 | static inline bool bio_will_gap(struct request_queue *q, | 
 | 		struct request *prev_rq, struct bio *prev, struct bio *next) | 
 | { | 
 | 	struct bio_vec pb, nb; | 
 |  | 
 | 	if (!bio_has_data(prev) || !queue_virt_boundary(q)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it | 
 | 	 * is quite difficult to respect the sg gap limit.  We work hard to | 
 | 	 * merge a huge number of small single bios in case of mkfs. | 
 | 	 */ | 
 | 	if (prev_rq) | 
 | 		bio_get_first_bvec(prev_rq->bio, &pb); | 
 | 	else | 
 | 		bio_get_first_bvec(prev, &pb); | 
 | 	if (pb.bv_offset & queue_virt_boundary(q)) | 
 | 		return true; | 
 |  | 
 | 	/* | 
 | 	 * We don't need to worry about the situation that the merged segment | 
 | 	 * ends in unaligned virt boundary: | 
 | 	 * | 
 | 	 * - if 'pb' ends aligned, the merged segment ends aligned | 
 | 	 * - if 'pb' ends unaligned, the next bio must include | 
 | 	 *   one single bvec of 'nb', otherwise the 'nb' can't | 
 | 	 *   merge with 'pb' | 
 | 	 */ | 
 | 	bio_get_last_bvec(prev, &pb); | 
 | 	bio_get_first_bvec(next, &nb); | 
 | 	if (biovec_phys_mergeable(q, &pb, &nb)) | 
 | 		return false; | 
 | 	return __bvec_gap_to_prev(q, &pb, nb.bv_offset); | 
 | } | 
 |  | 
 | static inline bool req_gap_back_merge(struct request *req, struct bio *bio) | 
 | { | 
 | 	return bio_will_gap(req->q, req, req->biotail, bio); | 
 | } | 
 |  | 
 | static inline bool req_gap_front_merge(struct request *req, struct bio *bio) | 
 | { | 
 | 	return bio_will_gap(req->q, NULL, bio, req->bio); | 
 | } | 
 |  | 
 | static struct bio *blk_bio_discard_split(struct request_queue *q, | 
 | 					 struct bio *bio, | 
 | 					 struct bio_set *bs, | 
 | 					 unsigned *nsegs) | 
 | { | 
 | 	unsigned int max_discard_sectors, granularity; | 
 | 	int alignment; | 
 | 	sector_t tmp; | 
 | 	unsigned split_sectors; | 
 |  | 
 | 	*nsegs = 1; | 
 |  | 
 | 	/* Zero-sector (unknown) and one-sector granularities are the same.  */ | 
 | 	granularity = max(q->limits.discard_granularity >> 9, 1U); | 
 |  | 
 | 	max_discard_sectors = min(q->limits.max_discard_sectors, | 
 | 			bio_allowed_max_sectors(q)); | 
 | 	max_discard_sectors -= max_discard_sectors % granularity; | 
 |  | 
 | 	if (unlikely(!max_discard_sectors)) { | 
 | 		/* XXX: warn */ | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	if (bio_sectors(bio) <= max_discard_sectors) | 
 | 		return NULL; | 
 |  | 
 | 	split_sectors = max_discard_sectors; | 
 |  | 
 | 	/* | 
 | 	 * If the next starting sector would be misaligned, stop the discard at | 
 | 	 * the previous aligned sector. | 
 | 	 */ | 
 | 	alignment = (q->limits.discard_alignment >> 9) % granularity; | 
 |  | 
 | 	tmp = bio->bi_iter.bi_sector + split_sectors - alignment; | 
 | 	tmp = sector_div(tmp, granularity); | 
 |  | 
 | 	if (split_sectors > tmp) | 
 | 		split_sectors -= tmp; | 
 |  | 
 | 	return bio_split(bio, split_sectors, GFP_NOIO, bs); | 
 | } | 
 |  | 
 | static struct bio *blk_bio_write_zeroes_split(struct request_queue *q, | 
 | 		struct bio *bio, struct bio_set *bs, unsigned *nsegs) | 
 | { | 
 | 	*nsegs = 0; | 
 |  | 
 | 	if (!q->limits.max_write_zeroes_sectors) | 
 | 		return NULL; | 
 |  | 
 | 	if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors) | 
 | 		return NULL; | 
 |  | 
 | 	return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs); | 
 | } | 
 |  | 
 | static struct bio *blk_bio_write_same_split(struct request_queue *q, | 
 | 					    struct bio *bio, | 
 | 					    struct bio_set *bs, | 
 | 					    unsigned *nsegs) | 
 | { | 
 | 	*nsegs = 1; | 
 |  | 
 | 	if (!q->limits.max_write_same_sectors) | 
 | 		return NULL; | 
 |  | 
 | 	if (bio_sectors(bio) <= q->limits.max_write_same_sectors) | 
 | 		return NULL; | 
 |  | 
 | 	return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs); | 
 | } | 
 |  | 
 | /* | 
 |  * Return the maximum number of sectors from the start of a bio that may be | 
 |  * submitted as a single request to a block device. If enough sectors remain, | 
 |  * align the end to the physical block size. Otherwise align the end to the | 
 |  * logical block size. This approach minimizes the number of non-aligned | 
 |  * requests that are submitted to a block device if the start of a bio is not | 
 |  * aligned to a physical block boundary. | 
 |  */ | 
 | static inline unsigned get_max_io_size(struct request_queue *q, | 
 | 				       struct bio *bio) | 
 | { | 
 | 	unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0); | 
 | 	unsigned max_sectors = sectors; | 
 | 	unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT; | 
 | 	unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT; | 
 | 	unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1); | 
 |  | 
 | 	max_sectors += start_offset; | 
 | 	max_sectors &= ~(pbs - 1); | 
 | 	if (max_sectors > start_offset) | 
 | 		return max_sectors - start_offset; | 
 |  | 
 | 	return sectors & ~(lbs - 1); | 
 | } | 
 |  | 
 | static inline unsigned get_max_segment_size(const struct request_queue *q, | 
 | 					    struct page *start_page, | 
 | 					    unsigned long offset) | 
 | { | 
 | 	unsigned long mask = queue_segment_boundary(q); | 
 |  | 
 | 	offset = mask & (page_to_phys(start_page) + offset); | 
 |  | 
 | 	/* | 
 | 	 * overflow may be triggered in case of zero page physical address | 
 | 	 * on 32bit arch, use queue's max segment size when that happens. | 
 | 	 */ | 
 | 	return min_not_zero(mask - offset + 1, | 
 | 			(unsigned long)queue_max_segment_size(q)); | 
 | } | 
 |  | 
 | /** | 
 |  * bvec_split_segs - verify whether or not a bvec should be split in the middle | 
 |  * @q:        [in] request queue associated with the bio associated with @bv | 
 |  * @bv:       [in] bvec to examine | 
 |  * @nsegs:    [in,out] Number of segments in the bio being built. Incremented | 
 |  *            by the number of segments from @bv that may be appended to that | 
 |  *            bio without exceeding @max_segs | 
 |  * @sectors:  [in,out] Number of sectors in the bio being built. Incremented | 
 |  *            by the number of sectors from @bv that may be appended to that | 
 |  *            bio without exceeding @max_sectors | 
 |  * @max_segs: [in] upper bound for *@nsegs | 
 |  * @max_sectors: [in] upper bound for *@sectors | 
 |  * | 
 |  * When splitting a bio, it can happen that a bvec is encountered that is too | 
 |  * big to fit in a single segment and hence that it has to be split in the | 
 |  * middle. This function verifies whether or not that should happen. The value | 
 |  * %true is returned if and only if appending the entire @bv to a bio with | 
 |  * *@nsegs segments and *@sectors sectors would make that bio unacceptable for | 
 |  * the block driver. | 
 |  */ | 
 | static bool bvec_split_segs(const struct request_queue *q, | 
 | 			    const struct bio_vec *bv, unsigned *nsegs, | 
 | 			    unsigned *sectors, unsigned max_segs, | 
 | 			    unsigned max_sectors) | 
 | { | 
 | 	unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9; | 
 | 	unsigned len = min(bv->bv_len, max_len); | 
 | 	unsigned total_len = 0; | 
 | 	unsigned seg_size = 0; | 
 |  | 
 | 	while (len && *nsegs < max_segs) { | 
 | 		seg_size = get_max_segment_size(q, bv->bv_page, | 
 | 						bv->bv_offset + total_len); | 
 | 		seg_size = min(seg_size, len); | 
 |  | 
 | 		(*nsegs)++; | 
 | 		total_len += seg_size; | 
 | 		len -= seg_size; | 
 |  | 
 | 		if ((bv->bv_offset + total_len) & queue_virt_boundary(q)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	*sectors += total_len >> 9; | 
 |  | 
 | 	/* tell the caller to split the bvec if it is too big to fit */ | 
 | 	return len > 0 || bv->bv_len > max_len; | 
 | } | 
 |  | 
 | /** | 
 |  * blk_bio_segment_split - split a bio in two bios | 
 |  * @q:    [in] request queue pointer | 
 |  * @bio:  [in] bio to be split | 
 |  * @bs:	  [in] bio set to allocate the clone from | 
 |  * @segs: [out] number of segments in the bio with the first half of the sectors | 
 |  * | 
 |  * Clone @bio, update the bi_iter of the clone to represent the first sectors | 
 |  * of @bio and update @bio->bi_iter to represent the remaining sectors. The | 
 |  * following is guaranteed for the cloned bio: | 
 |  * - That it has at most get_max_io_size(@q, @bio) sectors. | 
 |  * - That it has at most queue_max_segments(@q) segments. | 
 |  * | 
 |  * Except for discard requests the cloned bio will point at the bi_io_vec of | 
 |  * the original bio. It is the responsibility of the caller to ensure that the | 
 |  * original bio is not freed before the cloned bio. The caller is also | 
 |  * responsible for ensuring that @bs is only destroyed after processing of the | 
 |  * split bio has finished. | 
 |  */ | 
 | static struct bio *blk_bio_segment_split(struct request_queue *q, | 
 | 					 struct bio *bio, | 
 | 					 struct bio_set *bs, | 
 | 					 unsigned *segs) | 
 | { | 
 | 	struct bio_vec bv, bvprv, *bvprvp = NULL; | 
 | 	struct bvec_iter iter; | 
 | 	unsigned nsegs = 0, sectors = 0; | 
 | 	const unsigned max_sectors = get_max_io_size(q, bio); | 
 | 	const unsigned max_segs = queue_max_segments(q); | 
 |  | 
 | 	bio_for_each_bvec(bv, bio, iter) { | 
 | 		/* | 
 | 		 * If the queue doesn't support SG gaps and adding this | 
 | 		 * offset would create a gap, disallow it. | 
 | 		 */ | 
 | 		if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset)) | 
 | 			goto split; | 
 |  | 
 | 		if (nsegs < max_segs && | 
 | 		    sectors + (bv.bv_len >> 9) <= max_sectors && | 
 | 		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) { | 
 | 			nsegs++; | 
 | 			sectors += bv.bv_len >> 9; | 
 | 		} else if (bvec_split_segs(q, &bv, &nsegs, §ors, max_segs, | 
 | 					 max_sectors)) { | 
 | 			goto split; | 
 | 		} | 
 |  | 
 | 		bvprv = bv; | 
 | 		bvprvp = &bvprv; | 
 | 	} | 
 |  | 
 | 	*segs = nsegs; | 
 | 	return NULL; | 
 | split: | 
 | 	*segs = nsegs; | 
 |  | 
 | 	/* | 
 | 	 * Bio splitting may cause subtle trouble such as hang when doing sync | 
 | 	 * iopoll in direct IO routine. Given performance gain of iopoll for | 
 | 	 * big IO can be trival, disable iopoll when split needed. | 
 | 	 */ | 
 | 	bio->bi_opf &= ~REQ_HIPRI; | 
 |  | 
 | 	return bio_split(bio, sectors, GFP_NOIO, bs); | 
 | } | 
 |  | 
 | /** | 
 |  * __blk_queue_split - split a bio and submit the second half | 
 |  * @bio:     [in, out] bio to be split | 
 |  * @nr_segs: [out] number of segments in the first bio | 
 |  * | 
 |  * Split a bio into two bios, chain the two bios, submit the second half and | 
 |  * store a pointer to the first half in *@bio. If the second bio is still too | 
 |  * big it will be split by a recursive call to this function. Since this | 
 |  * function may allocate a new bio from q->bio_split, it is the responsibility | 
 |  * of the caller to ensure that q->bio_split is only released after processing | 
 |  * of the split bio has finished. | 
 |  */ | 
 | void __blk_queue_split(struct bio **bio, unsigned int *nr_segs) | 
 | { | 
 | 	struct request_queue *q = (*bio)->bi_bdev->bd_disk->queue; | 
 | 	struct bio *split = NULL; | 
 |  | 
 | 	switch (bio_op(*bio)) { | 
 | 	case REQ_OP_DISCARD: | 
 | 	case REQ_OP_SECURE_ERASE: | 
 | 		split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs); | 
 | 		break; | 
 | 	case REQ_OP_WRITE_ZEROES: | 
 | 		split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split, | 
 | 				nr_segs); | 
 | 		break; | 
 | 	case REQ_OP_WRITE_SAME: | 
 | 		split = blk_bio_write_same_split(q, *bio, &q->bio_split, | 
 | 				nr_segs); | 
 | 		break; | 
 | 	default: | 
 | 		/* | 
 | 		 * All drivers must accept single-segments bios that are <= | 
 | 		 * PAGE_SIZE.  This is a quick and dirty check that relies on | 
 | 		 * the fact that bi_io_vec[0] is always valid if a bio has data. | 
 | 		 * The check might lead to occasional false negatives when bios | 
 | 		 * are cloned, but compared to the performance impact of cloned | 
 | 		 * bios themselves the loop below doesn't matter anyway. | 
 | 		 */ | 
 | 		if (!q->limits.chunk_sectors && | 
 | 		    (*bio)->bi_vcnt == 1 && | 
 | 		    ((*bio)->bi_io_vec[0].bv_len + | 
 | 		     (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) { | 
 | 			*nr_segs = 1; | 
 | 			break; | 
 | 		} | 
 | 		split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (split) { | 
 | 		/* there isn't chance to merge the splitted bio */ | 
 | 		split->bi_opf |= REQ_NOMERGE; | 
 |  | 
 | 		bio_chain(split, *bio); | 
 | 		trace_block_split(split, (*bio)->bi_iter.bi_sector); | 
 | 		submit_bio_noacct(*bio); | 
 | 		*bio = split; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * blk_queue_split - split a bio and submit the second half | 
 |  * @bio: [in, out] bio to be split | 
 |  * | 
 |  * Split a bio into two bios, chains the two bios, submit the second half and | 
 |  * store a pointer to the first half in *@bio. Since this function may allocate | 
 |  * a new bio from q->bio_split, it is the responsibility of the caller to ensure | 
 |  * that q->bio_split is only released after processing of the split bio has | 
 |  * finished. | 
 |  */ | 
 | void blk_queue_split(struct bio **bio) | 
 | { | 
 | 	unsigned int nr_segs; | 
 |  | 
 | 	__blk_queue_split(bio, &nr_segs); | 
 | } | 
 | EXPORT_SYMBOL(blk_queue_split); | 
 |  | 
 | unsigned int blk_recalc_rq_segments(struct request *rq) | 
 | { | 
 | 	unsigned int nr_phys_segs = 0; | 
 | 	unsigned int nr_sectors = 0; | 
 | 	struct req_iterator iter; | 
 | 	struct bio_vec bv; | 
 |  | 
 | 	if (!rq->bio) | 
 | 		return 0; | 
 |  | 
 | 	switch (bio_op(rq->bio)) { | 
 | 	case REQ_OP_DISCARD: | 
 | 	case REQ_OP_SECURE_ERASE: | 
 | 		if (queue_max_discard_segments(rq->q) > 1) { | 
 | 			struct bio *bio = rq->bio; | 
 |  | 
 | 			for_each_bio(bio) | 
 | 				nr_phys_segs++; | 
 | 			return nr_phys_segs; | 
 | 		} | 
 | 		return 1; | 
 | 	case REQ_OP_WRITE_ZEROES: | 
 | 		return 0; | 
 | 	case REQ_OP_WRITE_SAME: | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	rq_for_each_bvec(bv, rq, iter) | 
 | 		bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors, | 
 | 				UINT_MAX, UINT_MAX); | 
 | 	return nr_phys_segs; | 
 | } | 
 |  | 
 | static inline struct scatterlist *blk_next_sg(struct scatterlist **sg, | 
 | 		struct scatterlist *sglist) | 
 | { | 
 | 	if (!*sg) | 
 | 		return sglist; | 
 |  | 
 | 	/* | 
 | 	 * If the driver previously mapped a shorter list, we could see a | 
 | 	 * termination bit prematurely unless it fully inits the sg table | 
 | 	 * on each mapping. We KNOW that there must be more entries here | 
 | 	 * or the driver would be buggy, so force clear the termination bit | 
 | 	 * to avoid doing a full sg_init_table() in drivers for each command. | 
 | 	 */ | 
 | 	sg_unmark_end(*sg); | 
 | 	return sg_next(*sg); | 
 | } | 
 |  | 
 | static unsigned blk_bvec_map_sg(struct request_queue *q, | 
 | 		struct bio_vec *bvec, struct scatterlist *sglist, | 
 | 		struct scatterlist **sg) | 
 | { | 
 | 	unsigned nbytes = bvec->bv_len; | 
 | 	unsigned nsegs = 0, total = 0; | 
 |  | 
 | 	while (nbytes > 0) { | 
 | 		unsigned offset = bvec->bv_offset + total; | 
 | 		unsigned len = min(get_max_segment_size(q, bvec->bv_page, | 
 | 					offset), nbytes); | 
 | 		struct page *page = bvec->bv_page; | 
 |  | 
 | 		/* | 
 | 		 * Unfortunately a fair number of drivers barf on scatterlists | 
 | 		 * that have an offset larger than PAGE_SIZE, despite other | 
 | 		 * subsystems dealing with that invariant just fine.  For now | 
 | 		 * stick to the legacy format where we never present those from | 
 | 		 * the block layer, but the code below should be removed once | 
 | 		 * these offenders (mostly MMC/SD drivers) are fixed. | 
 | 		 */ | 
 | 		page += (offset >> PAGE_SHIFT); | 
 | 		offset &= ~PAGE_MASK; | 
 |  | 
 | 		*sg = blk_next_sg(sg, sglist); | 
 | 		sg_set_page(*sg, page, len, offset); | 
 |  | 
 | 		total += len; | 
 | 		nbytes -= len; | 
 | 		nsegs++; | 
 | 	} | 
 |  | 
 | 	return nsegs; | 
 | } | 
 |  | 
 | static inline int __blk_bvec_map_sg(struct bio_vec bv, | 
 | 		struct scatterlist *sglist, struct scatterlist **sg) | 
 | { | 
 | 	*sg = blk_next_sg(sg, sglist); | 
 | 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* only try to merge bvecs into one sg if they are from two bios */ | 
 | static inline bool | 
 | __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec, | 
 | 			   struct bio_vec *bvprv, struct scatterlist **sg) | 
 | { | 
 |  | 
 | 	int nbytes = bvec->bv_len; | 
 |  | 
 | 	if (!*sg) | 
 | 		return false; | 
 |  | 
 | 	if ((*sg)->length + nbytes > queue_max_segment_size(q)) | 
 | 		return false; | 
 |  | 
 | 	if (!biovec_phys_mergeable(q, bvprv, bvec)) | 
 | 		return false; | 
 |  | 
 | 	(*sg)->length += nbytes; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, | 
 | 			     struct scatterlist *sglist, | 
 | 			     struct scatterlist **sg) | 
 | { | 
 | 	struct bio_vec bvec, bvprv = { NULL }; | 
 | 	struct bvec_iter iter; | 
 | 	int nsegs = 0; | 
 | 	bool new_bio = false; | 
 |  | 
 | 	for_each_bio(bio) { | 
 | 		bio_for_each_bvec(bvec, bio, iter) { | 
 | 			/* | 
 | 			 * Only try to merge bvecs from two bios given we | 
 | 			 * have done bio internal merge when adding pages | 
 | 			 * to bio | 
 | 			 */ | 
 | 			if (new_bio && | 
 | 			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg)) | 
 | 				goto next_bvec; | 
 |  | 
 | 			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE) | 
 | 				nsegs += __blk_bvec_map_sg(bvec, sglist, sg); | 
 | 			else | 
 | 				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg); | 
 |  next_bvec: | 
 | 			new_bio = false; | 
 | 		} | 
 | 		if (likely(bio->bi_iter.bi_size)) { | 
 | 			bvprv = bvec; | 
 | 			new_bio = true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return nsegs; | 
 | } | 
 |  | 
 | /* | 
 |  * map a request to scatterlist, return number of sg entries setup. Caller | 
 |  * must make sure sg can hold rq->nr_phys_segments entries | 
 |  */ | 
 | int __blk_rq_map_sg(struct request_queue *q, struct request *rq, | 
 | 		struct scatterlist *sglist, struct scatterlist **last_sg) | 
 | { | 
 | 	int nsegs = 0; | 
 |  | 
 | 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) | 
 | 		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg); | 
 | 	else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME) | 
 | 		nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg); | 
 | 	else if (rq->bio) | 
 | 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg); | 
 |  | 
 | 	if (*last_sg) | 
 | 		sg_mark_end(*last_sg); | 
 |  | 
 | 	/* | 
 | 	 * Something must have been wrong if the figured number of | 
 | 	 * segment is bigger than number of req's physical segments | 
 | 	 */ | 
 | 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); | 
 |  | 
 | 	return nsegs; | 
 | } | 
 | EXPORT_SYMBOL(__blk_rq_map_sg); | 
 |  | 
 | static inline unsigned int blk_rq_get_max_segments(struct request *rq) | 
 | { | 
 | 	if (req_op(rq) == REQ_OP_DISCARD) | 
 | 		return queue_max_discard_segments(rq->q); | 
 | 	return queue_max_segments(rq->q); | 
 | } | 
 |  | 
 | static inline int ll_new_hw_segment(struct request *req, struct bio *bio, | 
 | 		unsigned int nr_phys_segs) | 
 | { | 
 | 	if (blk_integrity_merge_bio(req->q, req, bio) == false) | 
 | 		goto no_merge; | 
 |  | 
 | 	/* discard request merge won't add new segment */ | 
 | 	if (req_op(req) == REQ_OP_DISCARD) | 
 | 		return 1; | 
 |  | 
 | 	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req)) | 
 | 		goto no_merge; | 
 |  | 
 | 	/* | 
 | 	 * This will form the start of a new hw segment.  Bump both | 
 | 	 * counters. | 
 | 	 */ | 
 | 	req->nr_phys_segments += nr_phys_segs; | 
 | 	return 1; | 
 |  | 
 | no_merge: | 
 | 	req_set_nomerge(req->q, req); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs) | 
 | { | 
 | 	if (req_gap_back_merge(req, bio)) | 
 | 		return 0; | 
 | 	if (blk_integrity_rq(req) && | 
 | 	    integrity_req_gap_back_merge(req, bio)) | 
 | 		return 0; | 
 | 	if (!bio_crypt_ctx_back_mergeable(req, bio)) | 
 | 		return 0; | 
 | 	if (blk_rq_sectors(req) + bio_sectors(bio) > | 
 | 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) { | 
 | 		req_set_nomerge(req->q, req); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return ll_new_hw_segment(req, bio, nr_segs); | 
 | } | 
 |  | 
 | static int ll_front_merge_fn(struct request *req, struct bio *bio, | 
 | 		unsigned int nr_segs) | 
 | { | 
 | 	if (req_gap_front_merge(req, bio)) | 
 | 		return 0; | 
 | 	if (blk_integrity_rq(req) && | 
 | 	    integrity_req_gap_front_merge(req, bio)) | 
 | 		return 0; | 
 | 	if (!bio_crypt_ctx_front_mergeable(req, bio)) | 
 | 		return 0; | 
 | 	if (blk_rq_sectors(req) + bio_sectors(bio) > | 
 | 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { | 
 | 		req_set_nomerge(req->q, req); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return ll_new_hw_segment(req, bio, nr_segs); | 
 | } | 
 |  | 
 | static bool req_attempt_discard_merge(struct request_queue *q, struct request *req, | 
 | 		struct request *next) | 
 | { | 
 | 	unsigned short segments = blk_rq_nr_discard_segments(req); | 
 |  | 
 | 	if (segments >= queue_max_discard_segments(q)) | 
 | 		goto no_merge; | 
 | 	if (blk_rq_sectors(req) + bio_sectors(next->bio) > | 
 | 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) | 
 | 		goto no_merge; | 
 |  | 
 | 	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next); | 
 | 	return true; | 
 | no_merge: | 
 | 	req_set_nomerge(q, req); | 
 | 	return false; | 
 | } | 
 |  | 
 | static int ll_merge_requests_fn(struct request_queue *q, struct request *req, | 
 | 				struct request *next) | 
 | { | 
 | 	int total_phys_segments; | 
 |  | 
 | 	if (req_gap_back_merge(req, next->bio)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Will it become too large? | 
 | 	 */ | 
 | 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > | 
 | 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) | 
 | 		return 0; | 
 |  | 
 | 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; | 
 | 	if (total_phys_segments > blk_rq_get_max_segments(req)) | 
 | 		return 0; | 
 |  | 
 | 	if (blk_integrity_merge_rq(q, req, next) == false) | 
 | 		return 0; | 
 |  | 
 | 	if (!bio_crypt_ctx_merge_rq(req, next)) | 
 | 		return 0; | 
 |  | 
 | 	/* Merge is OK... */ | 
 | 	req->nr_phys_segments = total_phys_segments; | 
 | 	return 1; | 
 | } | 
 |  | 
 | /** | 
 |  * blk_rq_set_mixed_merge - mark a request as mixed merge | 
 |  * @rq: request to mark as mixed merge | 
 |  * | 
 |  * Description: | 
 |  *     @rq is about to be mixed merged.  Make sure the attributes | 
 |  *     which can be mixed are set in each bio and mark @rq as mixed | 
 |  *     merged. | 
 |  */ | 
 | void blk_rq_set_mixed_merge(struct request *rq) | 
 | { | 
 | 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; | 
 | 	struct bio *bio; | 
 |  | 
 | 	if (rq->rq_flags & RQF_MIXED_MERGE) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * @rq will no longer represent mixable attributes for all the | 
 | 	 * contained bios.  It will just track those of the first one. | 
 | 	 * Distributes the attributs to each bio. | 
 | 	 */ | 
 | 	for (bio = rq->bio; bio; bio = bio->bi_next) { | 
 | 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && | 
 | 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff); | 
 | 		bio->bi_opf |= ff; | 
 | 	} | 
 | 	rq->rq_flags |= RQF_MIXED_MERGE; | 
 | } | 
 |  | 
 | static void blk_account_io_merge_request(struct request *req) | 
 | { | 
 | 	if (blk_do_io_stat(req)) { | 
 | 		part_stat_lock(); | 
 | 		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); | 
 | 		part_stat_unlock(); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Two cases of handling DISCARD merge: | 
 |  * If max_discard_segments > 1, the driver takes every bio | 
 |  * as a range and send them to controller together. The ranges | 
 |  * needn't to be contiguous. | 
 |  * Otherwise, the bios/requests will be handled as same as | 
 |  * others which should be contiguous. | 
 |  */ | 
 | static inline bool blk_discard_mergable(struct request *req) | 
 | { | 
 | 	if (req_op(req) == REQ_OP_DISCARD && | 
 | 	    queue_max_discard_segments(req->q) > 1) | 
 | 		return true; | 
 | 	return false; | 
 | } | 
 |  | 
 | static enum elv_merge blk_try_req_merge(struct request *req, | 
 | 					struct request *next) | 
 | { | 
 | 	if (blk_discard_mergable(req)) | 
 | 		return ELEVATOR_DISCARD_MERGE; | 
 | 	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next)) | 
 | 		return ELEVATOR_BACK_MERGE; | 
 |  | 
 | 	return ELEVATOR_NO_MERGE; | 
 | } | 
 |  | 
 | /* | 
 |  * For non-mq, this has to be called with the request spinlock acquired. | 
 |  * For mq with scheduling, the appropriate queue wide lock should be held. | 
 |  */ | 
 | static struct request *attempt_merge(struct request_queue *q, | 
 | 				     struct request *req, struct request *next) | 
 | { | 
 | 	if (!rq_mergeable(req) || !rq_mergeable(next)) | 
 | 		return NULL; | 
 |  | 
 | 	if (req_op(req) != req_op(next)) | 
 | 		return NULL; | 
 |  | 
 | 	if (rq_data_dir(req) != rq_data_dir(next) | 
 | 	    || req->rq_disk != next->rq_disk) | 
 | 		return NULL; | 
 |  | 
 | 	if (req_op(req) == REQ_OP_WRITE_SAME && | 
 | 	    !blk_write_same_mergeable(req->bio, next->bio)) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * Don't allow merge of different write hints, or for a hint with | 
 | 	 * non-hint IO. | 
 | 	 */ | 
 | 	if (req->write_hint != next->write_hint) | 
 | 		return NULL; | 
 |  | 
 | 	if (req->ioprio != next->ioprio) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * If we are allowed to merge, then append bio list | 
 | 	 * from next to rq and release next. merge_requests_fn | 
 | 	 * will have updated segment counts, update sector | 
 | 	 * counts here. Handle DISCARDs separately, as they | 
 | 	 * have separate settings. | 
 | 	 */ | 
 |  | 
 | 	switch (blk_try_req_merge(req, next)) { | 
 | 	case ELEVATOR_DISCARD_MERGE: | 
 | 		if (!req_attempt_discard_merge(q, req, next)) | 
 | 			return NULL; | 
 | 		break; | 
 | 	case ELEVATOR_BACK_MERGE: | 
 | 		if (!ll_merge_requests_fn(q, req, next)) | 
 | 			return NULL; | 
 | 		break; | 
 | 	default: | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If failfast settings disagree or any of the two is already | 
 | 	 * a mixed merge, mark both as mixed before proceeding.  This | 
 | 	 * makes sure that all involved bios have mixable attributes | 
 | 	 * set properly. | 
 | 	 */ | 
 | 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || | 
 | 	    (req->cmd_flags & REQ_FAILFAST_MASK) != | 
 | 	    (next->cmd_flags & REQ_FAILFAST_MASK)) { | 
 | 		blk_rq_set_mixed_merge(req); | 
 | 		blk_rq_set_mixed_merge(next); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * At this point we have either done a back merge or front merge. We | 
 | 	 * need the smaller start_time_ns of the merged requests to be the | 
 | 	 * current request for accounting purposes. | 
 | 	 */ | 
 | 	if (next->start_time_ns < req->start_time_ns) | 
 | 		req->start_time_ns = next->start_time_ns; | 
 |  | 
 | 	req->biotail->bi_next = next->bio; | 
 | 	req->biotail = next->biotail; | 
 |  | 
 | 	req->__data_len += blk_rq_bytes(next); | 
 |  | 
 | 	if (!blk_discard_mergable(req)) | 
 | 		elv_merge_requests(q, req, next); | 
 |  | 
 | 	/* | 
 | 	 * 'next' is going away, so update stats accordingly | 
 | 	 */ | 
 | 	blk_account_io_merge_request(next); | 
 |  | 
 | 	trace_block_rq_merge(next); | 
 |  | 
 | 	/* | 
 | 	 * ownership of bio passed from next to req, return 'next' for | 
 | 	 * the caller to free | 
 | 	 */ | 
 | 	next->bio = NULL; | 
 | 	return next; | 
 | } | 
 |  | 
 | static struct request *attempt_back_merge(struct request_queue *q, | 
 | 		struct request *rq) | 
 | { | 
 | 	struct request *next = elv_latter_request(q, rq); | 
 |  | 
 | 	if (next) | 
 | 		return attempt_merge(q, rq, next); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct request *attempt_front_merge(struct request_queue *q, | 
 | 		struct request *rq) | 
 | { | 
 | 	struct request *prev = elv_former_request(q, rq); | 
 |  | 
 | 	if (prev) | 
 | 		return attempt_merge(q, prev, rq); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Try to merge 'next' into 'rq'. Return true if the merge happened, false | 
 |  * otherwise. The caller is responsible for freeing 'next' if the merge | 
 |  * happened. | 
 |  */ | 
 | bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, | 
 | 			   struct request *next) | 
 | { | 
 | 	return attempt_merge(q, rq, next); | 
 | } | 
 |  | 
 | bool blk_rq_merge_ok(struct request *rq, struct bio *bio) | 
 | { | 
 | 	if (!rq_mergeable(rq) || !bio_mergeable(bio)) | 
 | 		return false; | 
 |  | 
 | 	if (req_op(rq) != bio_op(bio)) | 
 | 		return false; | 
 |  | 
 | 	/* different data direction or already started, don't merge */ | 
 | 	if (bio_data_dir(bio) != rq_data_dir(rq)) | 
 | 		return false; | 
 |  | 
 | 	/* must be same device */ | 
 | 	if (rq->rq_disk != bio->bi_bdev->bd_disk) | 
 | 		return false; | 
 |  | 
 | 	/* only merge integrity protected bio into ditto rq */ | 
 | 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false) | 
 | 		return false; | 
 |  | 
 | 	/* Only merge if the crypt contexts are compatible */ | 
 | 	if (!bio_crypt_rq_ctx_compatible(rq, bio)) | 
 | 		return false; | 
 |  | 
 | 	/* must be using the same buffer */ | 
 | 	if (req_op(rq) == REQ_OP_WRITE_SAME && | 
 | 	    !blk_write_same_mergeable(rq->bio, bio)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * Don't allow merge of different write hints, or for a hint with | 
 | 	 * non-hint IO. | 
 | 	 */ | 
 | 	if (rq->write_hint != bio->bi_write_hint) | 
 | 		return false; | 
 |  | 
 | 	if (rq->ioprio != bio_prio(bio)) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) | 
 | { | 
 | 	if (blk_discard_mergable(rq)) | 
 | 		return ELEVATOR_DISCARD_MERGE; | 
 | 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) | 
 | 		return ELEVATOR_BACK_MERGE; | 
 | 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) | 
 | 		return ELEVATOR_FRONT_MERGE; | 
 | 	return ELEVATOR_NO_MERGE; | 
 | } | 
 |  | 
 | static void blk_account_io_merge_bio(struct request *req) | 
 | { | 
 | 	if (!blk_do_io_stat(req)) | 
 | 		return; | 
 |  | 
 | 	part_stat_lock(); | 
 | 	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); | 
 | 	part_stat_unlock(); | 
 | } | 
 |  | 
 | enum bio_merge_status { | 
 | 	BIO_MERGE_OK, | 
 | 	BIO_MERGE_NONE, | 
 | 	BIO_MERGE_FAILED, | 
 | }; | 
 |  | 
 | static enum bio_merge_status bio_attempt_back_merge(struct request *req, | 
 | 		struct bio *bio, unsigned int nr_segs) | 
 | { | 
 | 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK; | 
 |  | 
 | 	if (!ll_back_merge_fn(req, bio, nr_segs)) | 
 | 		return BIO_MERGE_FAILED; | 
 |  | 
 | 	trace_block_bio_backmerge(bio); | 
 | 	rq_qos_merge(req->q, req, bio); | 
 |  | 
 | 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) | 
 | 		blk_rq_set_mixed_merge(req); | 
 |  | 
 | 	req->biotail->bi_next = bio; | 
 | 	req->biotail = bio; | 
 | 	req->__data_len += bio->bi_iter.bi_size; | 
 |  | 
 | 	bio_crypt_free_ctx(bio); | 
 |  | 
 | 	blk_account_io_merge_bio(req); | 
 | 	return BIO_MERGE_OK; | 
 | } | 
 |  | 
 | static enum bio_merge_status bio_attempt_front_merge(struct request *req, | 
 | 		struct bio *bio, unsigned int nr_segs) | 
 | { | 
 | 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK; | 
 |  | 
 | 	if (!ll_front_merge_fn(req, bio, nr_segs)) | 
 | 		return BIO_MERGE_FAILED; | 
 |  | 
 | 	trace_block_bio_frontmerge(bio); | 
 | 	rq_qos_merge(req->q, req, bio); | 
 |  | 
 | 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) | 
 | 		blk_rq_set_mixed_merge(req); | 
 |  | 
 | 	bio->bi_next = req->bio; | 
 | 	req->bio = bio; | 
 |  | 
 | 	req->__sector = bio->bi_iter.bi_sector; | 
 | 	req->__data_len += bio->bi_iter.bi_size; | 
 |  | 
 | 	bio_crypt_do_front_merge(req, bio); | 
 |  | 
 | 	blk_account_io_merge_bio(req); | 
 | 	return BIO_MERGE_OK; | 
 | } | 
 |  | 
 | static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q, | 
 | 		struct request *req, struct bio *bio) | 
 | { | 
 | 	unsigned short segments = blk_rq_nr_discard_segments(req); | 
 |  | 
 | 	if (segments >= queue_max_discard_segments(q)) | 
 | 		goto no_merge; | 
 | 	if (blk_rq_sectors(req) + bio_sectors(bio) > | 
 | 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) | 
 | 		goto no_merge; | 
 |  | 
 | 	rq_qos_merge(q, req, bio); | 
 |  | 
 | 	req->biotail->bi_next = bio; | 
 | 	req->biotail = bio; | 
 | 	req->__data_len += bio->bi_iter.bi_size; | 
 | 	req->nr_phys_segments = segments + 1; | 
 |  | 
 | 	blk_account_io_merge_bio(req); | 
 | 	return BIO_MERGE_OK; | 
 | no_merge: | 
 | 	req_set_nomerge(q, req); | 
 | 	return BIO_MERGE_FAILED; | 
 | } | 
 |  | 
 | static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q, | 
 | 						   struct request *rq, | 
 | 						   struct bio *bio, | 
 | 						   unsigned int nr_segs, | 
 | 						   bool sched_allow_merge) | 
 | { | 
 | 	if (!blk_rq_merge_ok(rq, bio)) | 
 | 		return BIO_MERGE_NONE; | 
 |  | 
 | 	switch (blk_try_merge(rq, bio)) { | 
 | 	case ELEVATOR_BACK_MERGE: | 
 | 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) | 
 | 			return bio_attempt_back_merge(rq, bio, nr_segs); | 
 | 		break; | 
 | 	case ELEVATOR_FRONT_MERGE: | 
 | 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio)) | 
 | 			return bio_attempt_front_merge(rq, bio, nr_segs); | 
 | 		break; | 
 | 	case ELEVATOR_DISCARD_MERGE: | 
 | 		return bio_attempt_discard_merge(q, rq, bio); | 
 | 	default: | 
 | 		return BIO_MERGE_NONE; | 
 | 	} | 
 |  | 
 | 	return BIO_MERGE_FAILED; | 
 | } | 
 |  | 
 | /** | 
 |  * blk_attempt_plug_merge - try to merge with %current's plugged list | 
 |  * @q: request_queue new bio is being queued at | 
 |  * @bio: new bio being queued | 
 |  * @nr_segs: number of segments in @bio | 
 |  * @same_queue_rq: pointer to &struct request that gets filled in when | 
 |  * another request associated with @q is found on the plug list | 
 |  * (optional, may be %NULL) | 
 |  * | 
 |  * Determine whether @bio being queued on @q can be merged with a request | 
 |  * on %current's plugged list.  Returns %true if merge was successful, | 
 |  * otherwise %false. | 
 |  * | 
 |  * Plugging coalesces IOs from the same issuer for the same purpose without | 
 |  * going through @q->queue_lock.  As such it's more of an issuing mechanism | 
 |  * than scheduling, and the request, while may have elvpriv data, is not | 
 |  * added on the elevator at this point.  In addition, we don't have | 
 |  * reliable access to the elevator outside queue lock.  Only check basic | 
 |  * merging parameters without querying the elevator. | 
 |  * | 
 |  * Caller must ensure !blk_queue_nomerges(q) beforehand. | 
 |  */ | 
 | bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, | 
 | 		unsigned int nr_segs, struct request **same_queue_rq) | 
 | { | 
 | 	struct blk_plug *plug; | 
 | 	struct request *rq; | 
 | 	struct list_head *plug_list; | 
 |  | 
 | 	plug = blk_mq_plug(q, bio); | 
 | 	if (!plug) | 
 | 		return false; | 
 |  | 
 | 	plug_list = &plug->mq_list; | 
 |  | 
 | 	list_for_each_entry_reverse(rq, plug_list, queuelist) { | 
 | 		if (rq->q == q && same_queue_rq) { | 
 | 			/* | 
 | 			 * Only blk-mq multiple hardware queues case checks the | 
 | 			 * rq in the same queue, there should be only one such | 
 | 			 * rq in a queue | 
 | 			 **/ | 
 | 			*same_queue_rq = rq; | 
 | 		} | 
 |  | 
 | 		if (rq->q != q) | 
 | 			continue; | 
 |  | 
 | 		if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) == | 
 | 		    BIO_MERGE_OK) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * Iterate list of requests and see if we can merge this bio with any | 
 |  * of them. | 
 |  */ | 
 | bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, | 
 | 			struct bio *bio, unsigned int nr_segs) | 
 | { | 
 | 	struct request *rq; | 
 | 	int checked = 8; | 
 |  | 
 | 	list_for_each_entry_reverse(rq, list, queuelist) { | 
 | 		if (!checked--) | 
 | 			break; | 
 |  | 
 | 		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) { | 
 | 		case BIO_MERGE_NONE: | 
 | 			continue; | 
 | 		case BIO_MERGE_OK: | 
 | 			return true; | 
 | 		case BIO_MERGE_FAILED: | 
 | 			return false; | 
 | 		} | 
 |  | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_bio_list_merge); | 
 |  | 
 | bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, | 
 | 		unsigned int nr_segs, struct request **merged_request) | 
 | { | 
 | 	struct request *rq; | 
 |  | 
 | 	switch (elv_merge(q, &rq, bio)) { | 
 | 	case ELEVATOR_BACK_MERGE: | 
 | 		if (!blk_mq_sched_allow_merge(q, rq, bio)) | 
 | 			return false; | 
 | 		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK) | 
 | 			return false; | 
 | 		*merged_request = attempt_back_merge(q, rq); | 
 | 		if (!*merged_request) | 
 | 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); | 
 | 		return true; | 
 | 	case ELEVATOR_FRONT_MERGE: | 
 | 		if (!blk_mq_sched_allow_merge(q, rq, bio)) | 
 | 			return false; | 
 | 		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK) | 
 | 			return false; | 
 | 		*merged_request = attempt_front_merge(q, rq); | 
 | 		if (!*merged_request) | 
 | 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); | 
 | 		return true; | 
 | 	case ELEVATOR_DISCARD_MERGE: | 
 | 		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK; | 
 | 	default: | 
 | 		return false; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); |