|  | /* | 
|  | * raid10.c : Multiple Devices driver for Linux | 
|  | * | 
|  | * Copyright (C) 2000-2004 Neil Brown | 
|  | * | 
|  | * RAID-10 support for md. | 
|  | * | 
|  | * Base on code in raid1.c.  See raid1.c for further copyright information. | 
|  | * | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2, or (at your option) | 
|  | * any later version. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * (for example /usr/src/linux/COPYING); if not, write to the Free | 
|  | * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/slab.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/ratelimit.h> | 
|  | #include <linux/kthread.h> | 
|  | #include "md.h" | 
|  | #include "raid10.h" | 
|  | #include "raid0.h" | 
|  | #include "bitmap.h" | 
|  |  | 
|  | /* | 
|  | * RAID10 provides a combination of RAID0 and RAID1 functionality. | 
|  | * The layout of data is defined by | 
|  | *    chunk_size | 
|  | *    raid_disks | 
|  | *    near_copies (stored in low byte of layout) | 
|  | *    far_copies (stored in second byte of layout) | 
|  | *    far_offset (stored in bit 16 of layout ) | 
|  | *    use_far_sets (stored in bit 17 of layout ) | 
|  | * | 
|  | * The data to be stored is divided into chunks using chunksize.  Each device | 
|  | * is divided into far_copies sections.   In each section, chunks are laid out | 
|  | * in a style similar to raid0, but near_copies copies of each chunk is stored | 
|  | * (each on a different drive).  The starting device for each section is offset | 
|  | * near_copies from the starting device of the previous section.  Thus there | 
|  | * are (near_copies * far_copies) of each chunk, and each is on a different | 
|  | * drive.  near_copies and far_copies must be at least one, and their product | 
|  | * is at most raid_disks. | 
|  | * | 
|  | * If far_offset is true, then the far_copies are handled a bit differently. | 
|  | * The copies are still in different stripes, but instead of being very far | 
|  | * apart on disk, there are adjacent stripes. | 
|  | * | 
|  | * The far and offset algorithms are handled slightly differently if | 
|  | * 'use_far_sets' is true.  In this case, the array's devices are grouped into | 
|  | * sets that are (near_copies * far_copies) in size.  The far copied stripes | 
|  | * are still shifted by 'near_copies' devices, but this shifting stays confined | 
|  | * to the set rather than the entire array.  This is done to improve the number | 
|  | * of device combinations that can fail without causing the array to fail. | 
|  | * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk | 
|  | * on a device): | 
|  | *    A B C D    A B C D E | 
|  | *      ...         ... | 
|  | *    D A B C    E A B C D | 
|  | * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s): | 
|  | *    [A B] [C D]    [A B] [C D E] | 
|  | *    |...| |...|    |...| | ... | | 
|  | *    [B A] [D C]    [B A] [E C D] | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Number of guaranteed r10bios in case of extreme VM load: | 
|  | */ | 
|  | #define	NR_RAID10_BIOS 256 | 
|  |  | 
|  | /* when we get a read error on a read-only array, we redirect to another | 
|  | * device without failing the first device, or trying to over-write to | 
|  | * correct the read error.  To keep track of bad blocks on a per-bio | 
|  | * level, we store IO_BLOCKED in the appropriate 'bios' pointer | 
|  | */ | 
|  | #define IO_BLOCKED ((struct bio *)1) | 
|  | /* When we successfully write to a known bad-block, we need to remove the | 
|  | * bad-block marking which must be done from process context.  So we record | 
|  | * the success by setting devs[n].bio to IO_MADE_GOOD | 
|  | */ | 
|  | #define IO_MADE_GOOD ((struct bio *)2) | 
|  |  | 
|  | #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2) | 
|  |  | 
|  | /* When there are this many requests queued to be written by | 
|  | * the raid10 thread, we become 'congested' to provide back-pressure | 
|  | * for writeback. | 
|  | */ | 
|  | static int max_queued_requests = 1024; | 
|  |  | 
|  | static void allow_barrier(struct r10conf *conf); | 
|  | static void lower_barrier(struct r10conf *conf); | 
|  | static int _enough(struct r10conf *conf, int previous, int ignore); | 
|  | static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, | 
|  | int *skipped); | 
|  | static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio); | 
|  | static void end_reshape_write(struct bio *bio); | 
|  | static void end_reshape(struct r10conf *conf); | 
|  |  | 
|  | static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) | 
|  | { | 
|  | struct r10conf *conf = data; | 
|  | int size = offsetof(struct r10bio, devs[conf->copies]); | 
|  |  | 
|  | /* allocate a r10bio with room for raid_disks entries in the | 
|  | * bios array */ | 
|  | return kzalloc(size, gfp_flags); | 
|  | } | 
|  |  | 
|  | static void r10bio_pool_free(void *r10_bio, void *data) | 
|  | { | 
|  | kfree(r10_bio); | 
|  | } | 
|  |  | 
|  | /* Maximum size of each resync request */ | 
|  | #define RESYNC_BLOCK_SIZE (64*1024) | 
|  | #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) | 
|  | /* amount of memory to reserve for resync requests */ | 
|  | #define RESYNC_WINDOW (1024*1024) | 
|  | /* maximum number of concurrent requests, memory permitting */ | 
|  | #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) | 
|  |  | 
|  | /* | 
|  | * When performing a resync, we need to read and compare, so | 
|  | * we need as many pages are there are copies. | 
|  | * When performing a recovery, we need 2 bios, one for read, | 
|  | * one for write (we recover only one drive per r10buf) | 
|  | * | 
|  | */ | 
|  | static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) | 
|  | { | 
|  | struct r10conf *conf = data; | 
|  | struct page *page; | 
|  | struct r10bio *r10_bio; | 
|  | struct bio *bio; | 
|  | int i, j; | 
|  | int nalloc; | 
|  |  | 
|  | r10_bio = r10bio_pool_alloc(gfp_flags, conf); | 
|  | if (!r10_bio) | 
|  | return NULL; | 
|  |  | 
|  | if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) || | 
|  | test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery)) | 
|  | nalloc = conf->copies; /* resync */ | 
|  | else | 
|  | nalloc = 2; /* recovery */ | 
|  |  | 
|  | /* | 
|  | * Allocate bios. | 
|  | */ | 
|  | for (j = nalloc ; j-- ; ) { | 
|  | bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); | 
|  | if (!bio) | 
|  | goto out_free_bio; | 
|  | r10_bio->devs[j].bio = bio; | 
|  | if (!conf->have_replacement) | 
|  | continue; | 
|  | bio = bio_kmalloc(gfp_flags, RESYNC_PAGES); | 
|  | if (!bio) | 
|  | goto out_free_bio; | 
|  | r10_bio->devs[j].repl_bio = bio; | 
|  | } | 
|  | /* | 
|  | * Allocate RESYNC_PAGES data pages and attach them | 
|  | * where needed. | 
|  | */ | 
|  | for (j = 0 ; j < nalloc; j++) { | 
|  | struct bio *rbio = r10_bio->devs[j].repl_bio; | 
|  | bio = r10_bio->devs[j].bio; | 
|  | for (i = 0; i < RESYNC_PAGES; i++) { | 
|  | if (j > 0 && !test_bit(MD_RECOVERY_SYNC, | 
|  | &conf->mddev->recovery)) { | 
|  | /* we can share bv_page's during recovery | 
|  | * and reshape */ | 
|  | struct bio *rbio = r10_bio->devs[0].bio; | 
|  | page = rbio->bi_io_vec[i].bv_page; | 
|  | get_page(page); | 
|  | } else | 
|  | page = alloc_page(gfp_flags); | 
|  | if (unlikely(!page)) | 
|  | goto out_free_pages; | 
|  |  | 
|  | bio->bi_io_vec[i].bv_page = page; | 
|  | if (rbio) | 
|  | rbio->bi_io_vec[i].bv_page = page; | 
|  | } | 
|  | } | 
|  |  | 
|  | return r10_bio; | 
|  |  | 
|  | out_free_pages: | 
|  | for ( ; i > 0 ; i--) | 
|  | safe_put_page(bio->bi_io_vec[i-1].bv_page); | 
|  | while (j--) | 
|  | for (i = 0; i < RESYNC_PAGES ; i++) | 
|  | safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); | 
|  | j = 0; | 
|  | out_free_bio: | 
|  | for ( ; j < nalloc; j++) { | 
|  | if (r10_bio->devs[j].bio) | 
|  | bio_put(r10_bio->devs[j].bio); | 
|  | if (r10_bio->devs[j].repl_bio) | 
|  | bio_put(r10_bio->devs[j].repl_bio); | 
|  | } | 
|  | r10bio_pool_free(r10_bio, conf); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void r10buf_pool_free(void *__r10_bio, void *data) | 
|  | { | 
|  | int i; | 
|  | struct r10conf *conf = data; | 
|  | struct r10bio *r10bio = __r10_bio; | 
|  | int j; | 
|  |  | 
|  | for (j=0; j < conf->copies; j++) { | 
|  | struct bio *bio = r10bio->devs[j].bio; | 
|  | if (bio) { | 
|  | for (i = 0; i < RESYNC_PAGES; i++) { | 
|  | safe_put_page(bio->bi_io_vec[i].bv_page); | 
|  | bio->bi_io_vec[i].bv_page = NULL; | 
|  | } | 
|  | bio_put(bio); | 
|  | } | 
|  | bio = r10bio->devs[j].repl_bio; | 
|  | if (bio) | 
|  | bio_put(bio); | 
|  | } | 
|  | r10bio_pool_free(r10bio, conf); | 
|  | } | 
|  |  | 
|  | static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < conf->copies; i++) { | 
|  | struct bio **bio = & r10_bio->devs[i].bio; | 
|  | if (!BIO_SPECIAL(*bio)) | 
|  | bio_put(*bio); | 
|  | *bio = NULL; | 
|  | bio = &r10_bio->devs[i].repl_bio; | 
|  | if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio)) | 
|  | bio_put(*bio); | 
|  | *bio = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void free_r10bio(struct r10bio *r10_bio) | 
|  | { | 
|  | struct r10conf *conf = r10_bio->mddev->private; | 
|  |  | 
|  | put_all_bios(conf, r10_bio); | 
|  | mempool_free(r10_bio, conf->r10bio_pool); | 
|  | } | 
|  |  | 
|  | static void put_buf(struct r10bio *r10_bio) | 
|  | { | 
|  | struct r10conf *conf = r10_bio->mddev->private; | 
|  |  | 
|  | mempool_free(r10_bio, conf->r10buf_pool); | 
|  |  | 
|  | lower_barrier(conf); | 
|  | } | 
|  |  | 
|  | static void reschedule_retry(struct r10bio *r10_bio) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct mddev *mddev = r10_bio->mddev; | 
|  | struct r10conf *conf = mddev->private; | 
|  |  | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | list_add(&r10_bio->retry_list, &conf->retry_list); | 
|  | conf->nr_queued ++; | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  |  | 
|  | /* wake up frozen array... */ | 
|  | wake_up(&conf->wait_barrier); | 
|  |  | 
|  | md_wakeup_thread(mddev->thread); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * raid_end_bio_io() is called when we have finished servicing a mirrored | 
|  | * operation and are ready to return a success/failure code to the buffer | 
|  | * cache layer. | 
|  | */ | 
|  | static void raid_end_bio_io(struct r10bio *r10_bio) | 
|  | { | 
|  | struct bio *bio = r10_bio->master_bio; | 
|  | int done; | 
|  | struct r10conf *conf = r10_bio->mddev->private; | 
|  |  | 
|  | if (bio->bi_phys_segments) { | 
|  | unsigned long flags; | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | bio->bi_phys_segments--; | 
|  | done = (bio->bi_phys_segments == 0); | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | } else | 
|  | done = 1; | 
|  | if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) | 
|  | bio->bi_error = -EIO; | 
|  | if (done) { | 
|  | bio_endio(bio); | 
|  | /* | 
|  | * Wake up any possible resync thread that waits for the device | 
|  | * to go idle. | 
|  | */ | 
|  | allow_barrier(conf); | 
|  | } | 
|  | free_r10bio(r10_bio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update disk head position estimator based on IRQ completion info. | 
|  | */ | 
|  | static inline void update_head_pos(int slot, struct r10bio *r10_bio) | 
|  | { | 
|  | struct r10conf *conf = r10_bio->mddev->private; | 
|  |  | 
|  | conf->mirrors[r10_bio->devs[slot].devnum].head_position = | 
|  | r10_bio->devs[slot].addr + (r10_bio->sectors); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the disk number which triggered given bio | 
|  | */ | 
|  | static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio, | 
|  | struct bio *bio, int *slotp, int *replp) | 
|  | { | 
|  | int slot; | 
|  | int repl = 0; | 
|  |  | 
|  | for (slot = 0; slot < conf->copies; slot++) { | 
|  | if (r10_bio->devs[slot].bio == bio) | 
|  | break; | 
|  | if (r10_bio->devs[slot].repl_bio == bio) { | 
|  | repl = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | BUG_ON(slot == conf->copies); | 
|  | update_head_pos(slot, r10_bio); | 
|  |  | 
|  | if (slotp) | 
|  | *slotp = slot; | 
|  | if (replp) | 
|  | *replp = repl; | 
|  | return r10_bio->devs[slot].devnum; | 
|  | } | 
|  |  | 
|  | static void raid10_end_read_request(struct bio *bio) | 
|  | { | 
|  | int uptodate = !bio->bi_error; | 
|  | struct r10bio *r10_bio = bio->bi_private; | 
|  | int slot, dev; | 
|  | struct md_rdev *rdev; | 
|  | struct r10conf *conf = r10_bio->mddev->private; | 
|  |  | 
|  | slot = r10_bio->read_slot; | 
|  | dev = r10_bio->devs[slot].devnum; | 
|  | rdev = r10_bio->devs[slot].rdev; | 
|  | /* | 
|  | * this branch is our 'one mirror IO has finished' event handler: | 
|  | */ | 
|  | update_head_pos(slot, r10_bio); | 
|  |  | 
|  | if (uptodate) { | 
|  | /* | 
|  | * Set R10BIO_Uptodate in our master bio, so that | 
|  | * we will return a good error code to the higher | 
|  | * levels even if IO on some other mirrored buffer fails. | 
|  | * | 
|  | * The 'master' represents the composite IO operation to | 
|  | * user-side. So if something waits for IO, then it will | 
|  | * wait for the 'master' bio. | 
|  | */ | 
|  | set_bit(R10BIO_Uptodate, &r10_bio->state); | 
|  | } else { | 
|  | /* If all other devices that store this block have | 
|  | * failed, we want to return the error upwards rather | 
|  | * than fail the last device.  Here we redefine | 
|  | * "uptodate" to mean "Don't want to retry" | 
|  | */ | 
|  | if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state), | 
|  | rdev->raid_disk)) | 
|  | uptodate = 1; | 
|  | } | 
|  | if (uptodate) { | 
|  | raid_end_bio_io(r10_bio); | 
|  | rdev_dec_pending(rdev, conf->mddev); | 
|  | } else { | 
|  | /* | 
|  | * oops, read error - keep the refcount on the rdev | 
|  | */ | 
|  | char b[BDEVNAME_SIZE]; | 
|  | printk_ratelimited(KERN_ERR | 
|  | "md/raid10:%s: %s: rescheduling sector %llu\n", | 
|  | mdname(conf->mddev), | 
|  | bdevname(rdev->bdev, b), | 
|  | (unsigned long long)r10_bio->sector); | 
|  | set_bit(R10BIO_ReadError, &r10_bio->state); | 
|  | reschedule_retry(r10_bio); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void close_write(struct r10bio *r10_bio) | 
|  | { | 
|  | /* clear the bitmap if all writes complete successfully */ | 
|  | bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, | 
|  | r10_bio->sectors, | 
|  | !test_bit(R10BIO_Degraded, &r10_bio->state), | 
|  | 0); | 
|  | md_write_end(r10_bio->mddev); | 
|  | } | 
|  |  | 
|  | static void one_write_done(struct r10bio *r10_bio) | 
|  | { | 
|  | if (atomic_dec_and_test(&r10_bio->remaining)) { | 
|  | if (test_bit(R10BIO_WriteError, &r10_bio->state)) | 
|  | reschedule_retry(r10_bio); | 
|  | else { | 
|  | close_write(r10_bio); | 
|  | if (test_bit(R10BIO_MadeGood, &r10_bio->state)) | 
|  | reschedule_retry(r10_bio); | 
|  | else | 
|  | raid_end_bio_io(r10_bio); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void raid10_end_write_request(struct bio *bio) | 
|  | { | 
|  | struct r10bio *r10_bio = bio->bi_private; | 
|  | int dev; | 
|  | int dec_rdev = 1; | 
|  | struct r10conf *conf = r10_bio->mddev->private; | 
|  | int slot, repl; | 
|  | struct md_rdev *rdev = NULL; | 
|  |  | 
|  | dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl); | 
|  |  | 
|  | if (repl) | 
|  | rdev = conf->mirrors[dev].replacement; | 
|  | if (!rdev) { | 
|  | smp_rmb(); | 
|  | repl = 0; | 
|  | rdev = conf->mirrors[dev].rdev; | 
|  | } | 
|  | /* | 
|  | * this branch is our 'one mirror IO has finished' event handler: | 
|  | */ | 
|  | if (bio->bi_error) { | 
|  | if (repl) | 
|  | /* Never record new bad blocks to replacement, | 
|  | * just fail it. | 
|  | */ | 
|  | md_error(rdev->mddev, rdev); | 
|  | else { | 
|  | set_bit(WriteErrorSeen,	&rdev->flags); | 
|  | if (!test_and_set_bit(WantReplacement, &rdev->flags)) | 
|  | set_bit(MD_RECOVERY_NEEDED, | 
|  | &rdev->mddev->recovery); | 
|  | set_bit(R10BIO_WriteError, &r10_bio->state); | 
|  | dec_rdev = 0; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * Set R10BIO_Uptodate in our master bio, so that | 
|  | * we will return a good error code for to the higher | 
|  | * levels even if IO on some other mirrored buffer fails. | 
|  | * | 
|  | * The 'master' represents the composite IO operation to | 
|  | * user-side. So if something waits for IO, then it will | 
|  | * wait for the 'master' bio. | 
|  | */ | 
|  | sector_t first_bad; | 
|  | int bad_sectors; | 
|  |  | 
|  | /* | 
|  | * Do not set R10BIO_Uptodate if the current device is | 
|  | * rebuilding or Faulty. This is because we cannot use | 
|  | * such device for properly reading the data back (we could | 
|  | * potentially use it, if the current write would have felt | 
|  | * before rdev->recovery_offset, but for simplicity we don't | 
|  | * check this here. | 
|  | */ | 
|  | if (test_bit(In_sync, &rdev->flags) && | 
|  | !test_bit(Faulty, &rdev->flags)) | 
|  | set_bit(R10BIO_Uptodate, &r10_bio->state); | 
|  |  | 
|  | /* Maybe we can clear some bad blocks. */ | 
|  | if (is_badblock(rdev, | 
|  | r10_bio->devs[slot].addr, | 
|  | r10_bio->sectors, | 
|  | &first_bad, &bad_sectors)) { | 
|  | bio_put(bio); | 
|  | if (repl) | 
|  | r10_bio->devs[slot].repl_bio = IO_MADE_GOOD; | 
|  | else | 
|  | r10_bio->devs[slot].bio = IO_MADE_GOOD; | 
|  | dec_rdev = 0; | 
|  | set_bit(R10BIO_MadeGood, &r10_bio->state); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * | 
|  | * Let's see if all mirrored write operations have finished | 
|  | * already. | 
|  | */ | 
|  | one_write_done(r10_bio); | 
|  | if (dec_rdev) | 
|  | rdev_dec_pending(rdev, conf->mddev); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * RAID10 layout manager | 
|  | * As well as the chunksize and raid_disks count, there are two | 
|  | * parameters: near_copies and far_copies. | 
|  | * near_copies * far_copies must be <= raid_disks. | 
|  | * Normally one of these will be 1. | 
|  | * If both are 1, we get raid0. | 
|  | * If near_copies == raid_disks, we get raid1. | 
|  | * | 
|  | * Chunks are laid out in raid0 style with near_copies copies of the | 
|  | * first chunk, followed by near_copies copies of the next chunk and | 
|  | * so on. | 
|  | * If far_copies > 1, then after 1/far_copies of the array has been assigned | 
|  | * as described above, we start again with a device offset of near_copies. | 
|  | * So we effectively have another copy of the whole array further down all | 
|  | * the drives, but with blocks on different drives. | 
|  | * With this layout, and block is never stored twice on the one device. | 
|  | * | 
|  | * raid10_find_phys finds the sector offset of a given virtual sector | 
|  | * on each device that it is on. | 
|  | * | 
|  | * raid10_find_virt does the reverse mapping, from a device and a | 
|  | * sector offset to a virtual address | 
|  | */ | 
|  |  | 
|  | static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio) | 
|  | { | 
|  | int n,f; | 
|  | sector_t sector; | 
|  | sector_t chunk; | 
|  | sector_t stripe; | 
|  | int dev; | 
|  | int slot = 0; | 
|  | int last_far_set_start, last_far_set_size; | 
|  |  | 
|  | last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; | 
|  | last_far_set_start *= geo->far_set_size; | 
|  |  | 
|  | last_far_set_size = geo->far_set_size; | 
|  | last_far_set_size += (geo->raid_disks % geo->far_set_size); | 
|  |  | 
|  | /* now calculate first sector/dev */ | 
|  | chunk = r10bio->sector >> geo->chunk_shift; | 
|  | sector = r10bio->sector & geo->chunk_mask; | 
|  |  | 
|  | chunk *= geo->near_copies; | 
|  | stripe = chunk; | 
|  | dev = sector_div(stripe, geo->raid_disks); | 
|  | if (geo->far_offset) | 
|  | stripe *= geo->far_copies; | 
|  |  | 
|  | sector += stripe << geo->chunk_shift; | 
|  |  | 
|  | /* and calculate all the others */ | 
|  | for (n = 0; n < geo->near_copies; n++) { | 
|  | int d = dev; | 
|  | int set; | 
|  | sector_t s = sector; | 
|  | r10bio->devs[slot].devnum = d; | 
|  | r10bio->devs[slot].addr = s; | 
|  | slot++; | 
|  |  | 
|  | for (f = 1; f < geo->far_copies; f++) { | 
|  | set = d / geo->far_set_size; | 
|  | d += geo->near_copies; | 
|  |  | 
|  | if ((geo->raid_disks % geo->far_set_size) && | 
|  | (d > last_far_set_start)) { | 
|  | d -= last_far_set_start; | 
|  | d %= last_far_set_size; | 
|  | d += last_far_set_start; | 
|  | } else { | 
|  | d %= geo->far_set_size; | 
|  | d += geo->far_set_size * set; | 
|  | } | 
|  | s += geo->stride; | 
|  | r10bio->devs[slot].devnum = d; | 
|  | r10bio->devs[slot].addr = s; | 
|  | slot++; | 
|  | } | 
|  | dev++; | 
|  | if (dev >= geo->raid_disks) { | 
|  | dev = 0; | 
|  | sector += (geo->chunk_mask + 1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio) | 
|  | { | 
|  | struct geom *geo = &conf->geo; | 
|  |  | 
|  | if (conf->reshape_progress != MaxSector && | 
|  | ((r10bio->sector >= conf->reshape_progress) != | 
|  | conf->mddev->reshape_backwards)) { | 
|  | set_bit(R10BIO_Previous, &r10bio->state); | 
|  | geo = &conf->prev; | 
|  | } else | 
|  | clear_bit(R10BIO_Previous, &r10bio->state); | 
|  |  | 
|  | __raid10_find_phys(geo, r10bio); | 
|  | } | 
|  |  | 
|  | static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev) | 
|  | { | 
|  | sector_t offset, chunk, vchunk; | 
|  | /* Never use conf->prev as this is only called during resync | 
|  | * or recovery, so reshape isn't happening | 
|  | */ | 
|  | struct geom *geo = &conf->geo; | 
|  | int far_set_start = (dev / geo->far_set_size) * geo->far_set_size; | 
|  | int far_set_size = geo->far_set_size; | 
|  | int last_far_set_start; | 
|  |  | 
|  | if (geo->raid_disks % geo->far_set_size) { | 
|  | last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1; | 
|  | last_far_set_start *= geo->far_set_size; | 
|  |  | 
|  | if (dev >= last_far_set_start) { | 
|  | far_set_size = geo->far_set_size; | 
|  | far_set_size += (geo->raid_disks % geo->far_set_size); | 
|  | far_set_start = last_far_set_start; | 
|  | } | 
|  | } | 
|  |  | 
|  | offset = sector & geo->chunk_mask; | 
|  | if (geo->far_offset) { | 
|  | int fc; | 
|  | chunk = sector >> geo->chunk_shift; | 
|  | fc = sector_div(chunk, geo->far_copies); | 
|  | dev -= fc * geo->near_copies; | 
|  | if (dev < far_set_start) | 
|  | dev += far_set_size; | 
|  | } else { | 
|  | while (sector >= geo->stride) { | 
|  | sector -= geo->stride; | 
|  | if (dev < (geo->near_copies + far_set_start)) | 
|  | dev += far_set_size - geo->near_copies; | 
|  | else | 
|  | dev -= geo->near_copies; | 
|  | } | 
|  | chunk = sector >> geo->chunk_shift; | 
|  | } | 
|  | vchunk = chunk * geo->raid_disks + dev; | 
|  | sector_div(vchunk, geo->near_copies); | 
|  | return (vchunk << geo->chunk_shift) + offset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine returns the disk from which the requested read should | 
|  | * be done. There is a per-array 'next expected sequential IO' sector | 
|  | * number - if this matches on the next IO then we use the last disk. | 
|  | * There is also a per-disk 'last know head position' sector that is | 
|  | * maintained from IRQ contexts, both the normal and the resync IO | 
|  | * completion handlers update this position correctly. If there is no | 
|  | * perfect sequential match then we pick the disk whose head is closest. | 
|  | * | 
|  | * If there are 2 mirrors in the same 2 devices, performance degrades | 
|  | * because position is mirror, not device based. | 
|  | * | 
|  | * The rdev for the device selected will have nr_pending incremented. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * FIXME: possibly should rethink readbalancing and do it differently | 
|  | * depending on near_copies / far_copies geometry. | 
|  | */ | 
|  | static struct md_rdev *read_balance(struct r10conf *conf, | 
|  | struct r10bio *r10_bio, | 
|  | int *max_sectors) | 
|  | { | 
|  | const sector_t this_sector = r10_bio->sector; | 
|  | int disk, slot; | 
|  | int sectors = r10_bio->sectors; | 
|  | int best_good_sectors; | 
|  | sector_t new_distance, best_dist; | 
|  | struct md_rdev *best_rdev, *rdev = NULL; | 
|  | int do_balance; | 
|  | int best_slot; | 
|  | struct geom *geo = &conf->geo; | 
|  |  | 
|  | raid10_find_phys(conf, r10_bio); | 
|  | rcu_read_lock(); | 
|  | retry: | 
|  | sectors = r10_bio->sectors; | 
|  | best_slot = -1; | 
|  | best_rdev = NULL; | 
|  | best_dist = MaxSector; | 
|  | best_good_sectors = 0; | 
|  | do_balance = 1; | 
|  | /* | 
|  | * Check if we can balance. We can balance on the whole | 
|  | * device if no resync is going on (recovery is ok), or below | 
|  | * the resync window. We take the first readable disk when | 
|  | * above the resync window. | 
|  | */ | 
|  | if (conf->mddev->recovery_cp < MaxSector | 
|  | && (this_sector + sectors >= conf->next_resync)) | 
|  | do_balance = 0; | 
|  |  | 
|  | for (slot = 0; slot < conf->copies ; slot++) { | 
|  | sector_t first_bad; | 
|  | int bad_sectors; | 
|  | sector_t dev_sector; | 
|  |  | 
|  | if (r10_bio->devs[slot].bio == IO_BLOCKED) | 
|  | continue; | 
|  | disk = r10_bio->devs[slot].devnum; | 
|  | rdev = rcu_dereference(conf->mirrors[disk].replacement); | 
|  | if (rdev == NULL || test_bit(Faulty, &rdev->flags) || | 
|  | r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) | 
|  | rdev = rcu_dereference(conf->mirrors[disk].rdev); | 
|  | if (rdev == NULL || | 
|  | test_bit(Faulty, &rdev->flags)) | 
|  | continue; | 
|  | if (!test_bit(In_sync, &rdev->flags) && | 
|  | r10_bio->devs[slot].addr + sectors > rdev->recovery_offset) | 
|  | continue; | 
|  |  | 
|  | dev_sector = r10_bio->devs[slot].addr; | 
|  | if (is_badblock(rdev, dev_sector, sectors, | 
|  | &first_bad, &bad_sectors)) { | 
|  | if (best_dist < MaxSector) | 
|  | /* Already have a better slot */ | 
|  | continue; | 
|  | if (first_bad <= dev_sector) { | 
|  | /* Cannot read here.  If this is the | 
|  | * 'primary' device, then we must not read | 
|  | * beyond 'bad_sectors' from another device. | 
|  | */ | 
|  | bad_sectors -= (dev_sector - first_bad); | 
|  | if (!do_balance && sectors > bad_sectors) | 
|  | sectors = bad_sectors; | 
|  | if (best_good_sectors > sectors) | 
|  | best_good_sectors = sectors; | 
|  | } else { | 
|  | sector_t good_sectors = | 
|  | first_bad - dev_sector; | 
|  | if (good_sectors > best_good_sectors) { | 
|  | best_good_sectors = good_sectors; | 
|  | best_slot = slot; | 
|  | best_rdev = rdev; | 
|  | } | 
|  | if (!do_balance) | 
|  | /* Must read from here */ | 
|  | break; | 
|  | } | 
|  | continue; | 
|  | } else | 
|  | best_good_sectors = sectors; | 
|  |  | 
|  | if (!do_balance) | 
|  | break; | 
|  |  | 
|  | /* This optimisation is debatable, and completely destroys | 
|  | * sequential read speed for 'far copies' arrays.  So only | 
|  | * keep it for 'near' arrays, and review those later. | 
|  | */ | 
|  | if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending)) | 
|  | break; | 
|  |  | 
|  | /* for far > 1 always use the lowest address */ | 
|  | if (geo->far_copies > 1) | 
|  | new_distance = r10_bio->devs[slot].addr; | 
|  | else | 
|  | new_distance = abs(r10_bio->devs[slot].addr - | 
|  | conf->mirrors[disk].head_position); | 
|  | if (new_distance < best_dist) { | 
|  | best_dist = new_distance; | 
|  | best_slot = slot; | 
|  | best_rdev = rdev; | 
|  | } | 
|  | } | 
|  | if (slot >= conf->copies) { | 
|  | slot = best_slot; | 
|  | rdev = best_rdev; | 
|  | } | 
|  |  | 
|  | if (slot >= 0) { | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | if (test_bit(Faulty, &rdev->flags)) { | 
|  | /* Cannot risk returning a device that failed | 
|  | * before we inc'ed nr_pending | 
|  | */ | 
|  | rdev_dec_pending(rdev, conf->mddev); | 
|  | goto retry; | 
|  | } | 
|  | r10_bio->read_slot = slot; | 
|  | } else | 
|  | rdev = NULL; | 
|  | rcu_read_unlock(); | 
|  | *max_sectors = best_good_sectors; | 
|  |  | 
|  | return rdev; | 
|  | } | 
|  |  | 
|  | static int raid10_congested(struct mddev *mddev, int bits) | 
|  | { | 
|  | struct r10conf *conf = mddev->private; | 
|  | int i, ret = 0; | 
|  |  | 
|  | if ((bits & (1 << WB_async_congested)) && | 
|  | conf->pending_count >= max_queued_requests) | 
|  | return 1; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for (i = 0; | 
|  | (i < conf->geo.raid_disks || i < conf->prev.raid_disks) | 
|  | && ret == 0; | 
|  | i++) { | 
|  | struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); | 
|  | if (rdev && !test_bit(Faulty, &rdev->flags)) { | 
|  | struct request_queue *q = bdev_get_queue(rdev->bdev); | 
|  |  | 
|  | ret |= bdi_congested(&q->backing_dev_info, bits); | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void flush_pending_writes(struct r10conf *conf) | 
|  | { | 
|  | /* Any writes that have been queued but are awaiting | 
|  | * bitmap updates get flushed here. | 
|  | */ | 
|  | spin_lock_irq(&conf->device_lock); | 
|  |  | 
|  | if (conf->pending_bio_list.head) { | 
|  | struct bio *bio; | 
|  | bio = bio_list_get(&conf->pending_bio_list); | 
|  | conf->pending_count = 0; | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | /* flush any pending bitmap writes to disk | 
|  | * before proceeding w/ I/O */ | 
|  | bitmap_unplug(conf->mddev->bitmap); | 
|  | wake_up(&conf->wait_barrier); | 
|  |  | 
|  | while (bio) { /* submit pending writes */ | 
|  | struct bio *next = bio->bi_next; | 
|  | bio->bi_next = NULL; | 
|  | if (unlikely((bio->bi_rw & REQ_DISCARD) && | 
|  | !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) | 
|  | /* Just ignore it */ | 
|  | bio_endio(bio); | 
|  | else | 
|  | generic_make_request(bio); | 
|  | bio = next; | 
|  | } | 
|  | } else | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | } | 
|  |  | 
|  | /* Barriers.... | 
|  | * Sometimes we need to suspend IO while we do something else, | 
|  | * either some resync/recovery, or reconfigure the array. | 
|  | * To do this we raise a 'barrier'. | 
|  | * The 'barrier' is a counter that can be raised multiple times | 
|  | * to count how many activities are happening which preclude | 
|  | * normal IO. | 
|  | * We can only raise the barrier if there is no pending IO. | 
|  | * i.e. if nr_pending == 0. | 
|  | * We choose only to raise the barrier if no-one is waiting for the | 
|  | * barrier to go down.  This means that as soon as an IO request | 
|  | * is ready, no other operations which require a barrier will start | 
|  | * until the IO request has had a chance. | 
|  | * | 
|  | * So: regular IO calls 'wait_barrier'.  When that returns there | 
|  | *    is no backgroup IO happening,  It must arrange to call | 
|  | *    allow_barrier when it has finished its IO. | 
|  | * backgroup IO calls must call raise_barrier.  Once that returns | 
|  | *    there is no normal IO happeing.  It must arrange to call | 
|  | *    lower_barrier when the particular background IO completes. | 
|  | */ | 
|  |  | 
|  | static void raise_barrier(struct r10conf *conf, int force) | 
|  | { | 
|  | BUG_ON(force && !conf->barrier); | 
|  | spin_lock_irq(&conf->resync_lock); | 
|  |  | 
|  | /* Wait until no block IO is waiting (unless 'force') */ | 
|  | wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, | 
|  | conf->resync_lock); | 
|  |  | 
|  | /* block any new IO from starting */ | 
|  | conf->barrier++; | 
|  |  | 
|  | /* Now wait for all pending IO to complete */ | 
|  | wait_event_lock_irq(conf->wait_barrier, | 
|  | !conf->nr_pending && conf->barrier < RESYNC_DEPTH, | 
|  | conf->resync_lock); | 
|  |  | 
|  | spin_unlock_irq(&conf->resync_lock); | 
|  | } | 
|  |  | 
|  | static void lower_barrier(struct r10conf *conf) | 
|  | { | 
|  | unsigned long flags; | 
|  | spin_lock_irqsave(&conf->resync_lock, flags); | 
|  | conf->barrier--; | 
|  | spin_unlock_irqrestore(&conf->resync_lock, flags); | 
|  | wake_up(&conf->wait_barrier); | 
|  | } | 
|  |  | 
|  | static void wait_barrier(struct r10conf *conf) | 
|  | { | 
|  | spin_lock_irq(&conf->resync_lock); | 
|  | if (conf->barrier) { | 
|  | conf->nr_waiting++; | 
|  | /* Wait for the barrier to drop. | 
|  | * However if there are already pending | 
|  | * requests (preventing the barrier from | 
|  | * rising completely), and the | 
|  | * pre-process bio queue isn't empty, | 
|  | * then don't wait, as we need to empty | 
|  | * that queue to get the nr_pending | 
|  | * count down. | 
|  | */ | 
|  | wait_event_lock_irq(conf->wait_barrier, | 
|  | !conf->barrier || | 
|  | (conf->nr_pending && | 
|  | current->bio_list && | 
|  | !bio_list_empty(current->bio_list)), | 
|  | conf->resync_lock); | 
|  | conf->nr_waiting--; | 
|  | } | 
|  | conf->nr_pending++; | 
|  | spin_unlock_irq(&conf->resync_lock); | 
|  | } | 
|  |  | 
|  | static void allow_barrier(struct r10conf *conf) | 
|  | { | 
|  | unsigned long flags; | 
|  | spin_lock_irqsave(&conf->resync_lock, flags); | 
|  | conf->nr_pending--; | 
|  | spin_unlock_irqrestore(&conf->resync_lock, flags); | 
|  | wake_up(&conf->wait_barrier); | 
|  | } | 
|  |  | 
|  | static void freeze_array(struct r10conf *conf, int extra) | 
|  | { | 
|  | /* stop syncio and normal IO and wait for everything to | 
|  | * go quiet. | 
|  | * We increment barrier and nr_waiting, and then | 
|  | * wait until nr_pending match nr_queued+extra | 
|  | * This is called in the context of one normal IO request | 
|  | * that has failed. Thus any sync request that might be pending | 
|  | * will be blocked by nr_pending, and we need to wait for | 
|  | * pending IO requests to complete or be queued for re-try. | 
|  | * Thus the number queued (nr_queued) plus this request (extra) | 
|  | * must match the number of pending IOs (nr_pending) before | 
|  | * we continue. | 
|  | */ | 
|  | spin_lock_irq(&conf->resync_lock); | 
|  | conf->barrier++; | 
|  | conf->nr_waiting++; | 
|  | wait_event_lock_irq_cmd(conf->wait_barrier, | 
|  | conf->nr_pending == conf->nr_queued+extra, | 
|  | conf->resync_lock, | 
|  | flush_pending_writes(conf)); | 
|  |  | 
|  | spin_unlock_irq(&conf->resync_lock); | 
|  | } | 
|  |  | 
|  | static void unfreeze_array(struct r10conf *conf) | 
|  | { | 
|  | /* reverse the effect of the freeze */ | 
|  | spin_lock_irq(&conf->resync_lock); | 
|  | conf->barrier--; | 
|  | conf->nr_waiting--; | 
|  | wake_up(&conf->wait_barrier); | 
|  | spin_unlock_irq(&conf->resync_lock); | 
|  | } | 
|  |  | 
|  | static sector_t choose_data_offset(struct r10bio *r10_bio, | 
|  | struct md_rdev *rdev) | 
|  | { | 
|  | if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) || | 
|  | test_bit(R10BIO_Previous, &r10_bio->state)) | 
|  | return rdev->data_offset; | 
|  | else | 
|  | return rdev->new_data_offset; | 
|  | } | 
|  |  | 
|  | struct raid10_plug_cb { | 
|  | struct blk_plug_cb	cb; | 
|  | struct bio_list		pending; | 
|  | int			pending_cnt; | 
|  | }; | 
|  |  | 
|  | static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule) | 
|  | { | 
|  | struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb, | 
|  | cb); | 
|  | struct mddev *mddev = plug->cb.data; | 
|  | struct r10conf *conf = mddev->private; | 
|  | struct bio *bio; | 
|  |  | 
|  | if (from_schedule || current->bio_list) { | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | bio_list_merge(&conf->pending_bio_list, &plug->pending); | 
|  | conf->pending_count += plug->pending_cnt; | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | wake_up(&conf->wait_barrier); | 
|  | md_wakeup_thread(mddev->thread); | 
|  | kfree(plug); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* we aren't scheduling, so we can do the write-out directly. */ | 
|  | bio = bio_list_get(&plug->pending); | 
|  | bitmap_unplug(mddev->bitmap); | 
|  | wake_up(&conf->wait_barrier); | 
|  |  | 
|  | while (bio) { /* submit pending writes */ | 
|  | struct bio *next = bio->bi_next; | 
|  | bio->bi_next = NULL; | 
|  | if (unlikely((bio->bi_rw & REQ_DISCARD) && | 
|  | !blk_queue_discard(bdev_get_queue(bio->bi_bdev)))) | 
|  | /* Just ignore it */ | 
|  | bio_endio(bio); | 
|  | else | 
|  | generic_make_request(bio); | 
|  | bio = next; | 
|  | } | 
|  | kfree(plug); | 
|  | } | 
|  |  | 
|  | static void __make_request(struct mddev *mddev, struct bio *bio) | 
|  | { | 
|  | struct r10conf *conf = mddev->private; | 
|  | struct r10bio *r10_bio; | 
|  | struct bio *read_bio; | 
|  | int i; | 
|  | const int rw = bio_data_dir(bio); | 
|  | const unsigned long do_sync = (bio->bi_rw & REQ_SYNC); | 
|  | const unsigned long do_fua = (bio->bi_rw & REQ_FUA); | 
|  | const unsigned long do_discard = (bio->bi_rw | 
|  | & (REQ_DISCARD | REQ_SECURE)); | 
|  | const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME); | 
|  | unsigned long flags; | 
|  | struct md_rdev *blocked_rdev; | 
|  | struct blk_plug_cb *cb; | 
|  | struct raid10_plug_cb *plug = NULL; | 
|  | int sectors_handled; | 
|  | int max_sectors; | 
|  | int sectors; | 
|  |  | 
|  | /* | 
|  | * Register the new request and wait if the reconstruction | 
|  | * thread has put up a bar for new requests. | 
|  | * Continue immediately if no resync is active currently. | 
|  | */ | 
|  | wait_barrier(conf); | 
|  |  | 
|  | sectors = bio_sectors(bio); | 
|  | while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && | 
|  | bio->bi_iter.bi_sector < conf->reshape_progress && | 
|  | bio->bi_iter.bi_sector + sectors > conf->reshape_progress) { | 
|  | /* IO spans the reshape position.  Need to wait for | 
|  | * reshape to pass | 
|  | */ | 
|  | allow_barrier(conf); | 
|  | wait_event(conf->wait_barrier, | 
|  | conf->reshape_progress <= bio->bi_iter.bi_sector || | 
|  | conf->reshape_progress >= bio->bi_iter.bi_sector + | 
|  | sectors); | 
|  | wait_barrier(conf); | 
|  | } | 
|  | if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && | 
|  | bio_data_dir(bio) == WRITE && | 
|  | (mddev->reshape_backwards | 
|  | ? (bio->bi_iter.bi_sector < conf->reshape_safe && | 
|  | bio->bi_iter.bi_sector + sectors > conf->reshape_progress) | 
|  | : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe && | 
|  | bio->bi_iter.bi_sector < conf->reshape_progress))) { | 
|  | /* Need to update reshape_position in metadata */ | 
|  | mddev->reshape_position = conf->reshape_progress; | 
|  | set_bit(MD_CHANGE_DEVS, &mddev->flags); | 
|  | set_bit(MD_CHANGE_PENDING, &mddev->flags); | 
|  | md_wakeup_thread(mddev->thread); | 
|  | wait_event(mddev->sb_wait, | 
|  | !test_bit(MD_CHANGE_PENDING, &mddev->flags)); | 
|  |  | 
|  | conf->reshape_safe = mddev->reshape_position; | 
|  | } | 
|  |  | 
|  | r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); | 
|  |  | 
|  | r10_bio->master_bio = bio; | 
|  | r10_bio->sectors = sectors; | 
|  |  | 
|  | r10_bio->mddev = mddev; | 
|  | r10_bio->sector = bio->bi_iter.bi_sector; | 
|  | r10_bio->state = 0; | 
|  |  | 
|  | /* We might need to issue multiple reads to different | 
|  | * devices if there are bad blocks around, so we keep | 
|  | * track of the number of reads in bio->bi_phys_segments. | 
|  | * If this is 0, there is only one r10_bio and no locking | 
|  | * will be needed when the request completes.  If it is | 
|  | * non-zero, then it is the number of not-completed requests. | 
|  | */ | 
|  | bio->bi_phys_segments = 0; | 
|  | bio_clear_flag(bio, BIO_SEG_VALID); | 
|  |  | 
|  | if (rw == READ) { | 
|  | /* | 
|  | * read balancing logic: | 
|  | */ | 
|  | struct md_rdev *rdev; | 
|  | int slot; | 
|  |  | 
|  | read_again: | 
|  | rdev = read_balance(conf, r10_bio, &max_sectors); | 
|  | if (!rdev) { | 
|  | raid_end_bio_io(r10_bio); | 
|  | return; | 
|  | } | 
|  | slot = r10_bio->read_slot; | 
|  |  | 
|  | read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev); | 
|  | bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector, | 
|  | max_sectors); | 
|  |  | 
|  | r10_bio->devs[slot].bio = read_bio; | 
|  | r10_bio->devs[slot].rdev = rdev; | 
|  |  | 
|  | read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr + | 
|  | choose_data_offset(r10_bio, rdev); | 
|  | read_bio->bi_bdev = rdev->bdev; | 
|  | read_bio->bi_end_io = raid10_end_read_request; | 
|  | read_bio->bi_rw = READ | do_sync; | 
|  | read_bio->bi_private = r10_bio; | 
|  |  | 
|  | if (max_sectors < r10_bio->sectors) { | 
|  | /* Could not read all from this device, so we will | 
|  | * need another r10_bio. | 
|  | */ | 
|  | sectors_handled = (r10_bio->sector + max_sectors | 
|  | - bio->bi_iter.bi_sector); | 
|  | r10_bio->sectors = max_sectors; | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | if (bio->bi_phys_segments == 0) | 
|  | bio->bi_phys_segments = 2; | 
|  | else | 
|  | bio->bi_phys_segments++; | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | /* Cannot call generic_make_request directly | 
|  | * as that will be queued in __generic_make_request | 
|  | * and subsequent mempool_alloc might block | 
|  | * waiting for it.  so hand bio over to raid10d. | 
|  | */ | 
|  | reschedule_retry(r10_bio); | 
|  |  | 
|  | r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); | 
|  |  | 
|  | r10_bio->master_bio = bio; | 
|  | r10_bio->sectors = bio_sectors(bio) - sectors_handled; | 
|  | r10_bio->state = 0; | 
|  | r10_bio->mddev = mddev; | 
|  | r10_bio->sector = bio->bi_iter.bi_sector + | 
|  | sectors_handled; | 
|  | goto read_again; | 
|  | } else | 
|  | generic_make_request(read_bio); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * WRITE: | 
|  | */ | 
|  | if (conf->pending_count >= max_queued_requests) { | 
|  | md_wakeup_thread(mddev->thread); | 
|  | wait_event(conf->wait_barrier, | 
|  | conf->pending_count < max_queued_requests); | 
|  | } | 
|  | /* first select target devices under rcu_lock and | 
|  | * inc refcount on their rdev.  Record them by setting | 
|  | * bios[x] to bio | 
|  | * If there are known/acknowledged bad blocks on any device | 
|  | * on which we have seen a write error, we want to avoid | 
|  | * writing to those blocks.  This potentially requires several | 
|  | * writes to write around the bad blocks.  Each set of writes | 
|  | * gets its own r10_bio with a set of bios attached.  The number | 
|  | * of r10_bios is recored in bio->bi_phys_segments just as with | 
|  | * the read case. | 
|  | */ | 
|  |  | 
|  | r10_bio->read_slot = -1; /* make sure repl_bio gets freed */ | 
|  | raid10_find_phys(conf, r10_bio); | 
|  | retry_write: | 
|  | blocked_rdev = NULL; | 
|  | rcu_read_lock(); | 
|  | max_sectors = r10_bio->sectors; | 
|  |  | 
|  | for (i = 0;  i < conf->copies; i++) { | 
|  | int d = r10_bio->devs[i].devnum; | 
|  | struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev); | 
|  | struct md_rdev *rrdev = rcu_dereference( | 
|  | conf->mirrors[d].replacement); | 
|  | if (rdev == rrdev) | 
|  | rrdev = NULL; | 
|  | if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | blocked_rdev = rdev; | 
|  | break; | 
|  | } | 
|  | if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) { | 
|  | atomic_inc(&rrdev->nr_pending); | 
|  | blocked_rdev = rrdev; | 
|  | break; | 
|  | } | 
|  | if (rdev && (test_bit(Faulty, &rdev->flags))) | 
|  | rdev = NULL; | 
|  | if (rrdev && (test_bit(Faulty, &rrdev->flags))) | 
|  | rrdev = NULL; | 
|  |  | 
|  | r10_bio->devs[i].bio = NULL; | 
|  | r10_bio->devs[i].repl_bio = NULL; | 
|  |  | 
|  | if (!rdev && !rrdev) { | 
|  | set_bit(R10BIO_Degraded, &r10_bio->state); | 
|  | continue; | 
|  | } | 
|  | if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) { | 
|  | sector_t first_bad; | 
|  | sector_t dev_sector = r10_bio->devs[i].addr; | 
|  | int bad_sectors; | 
|  | int is_bad; | 
|  |  | 
|  | is_bad = is_badblock(rdev, dev_sector, | 
|  | max_sectors, | 
|  | &first_bad, &bad_sectors); | 
|  | if (is_bad < 0) { | 
|  | /* Mustn't write here until the bad block | 
|  | * is acknowledged | 
|  | */ | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | set_bit(BlockedBadBlocks, &rdev->flags); | 
|  | blocked_rdev = rdev; | 
|  | break; | 
|  | } | 
|  | if (is_bad && first_bad <= dev_sector) { | 
|  | /* Cannot write here at all */ | 
|  | bad_sectors -= (dev_sector - first_bad); | 
|  | if (bad_sectors < max_sectors) | 
|  | /* Mustn't write more than bad_sectors | 
|  | * to other devices yet | 
|  | */ | 
|  | max_sectors = bad_sectors; | 
|  | /* We don't set R10BIO_Degraded as that | 
|  | * only applies if the disk is missing, | 
|  | * so it might be re-added, and we want to | 
|  | * know to recover this chunk. | 
|  | * In this case the device is here, and the | 
|  | * fact that this chunk is not in-sync is | 
|  | * recorded in the bad block log. | 
|  | */ | 
|  | continue; | 
|  | } | 
|  | if (is_bad) { | 
|  | int good_sectors = first_bad - dev_sector; | 
|  | if (good_sectors < max_sectors) | 
|  | max_sectors = good_sectors; | 
|  | } | 
|  | } | 
|  | if (rdev) { | 
|  | r10_bio->devs[i].bio = bio; | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | } | 
|  | if (rrdev) { | 
|  | r10_bio->devs[i].repl_bio = bio; | 
|  | atomic_inc(&rrdev->nr_pending); | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (unlikely(blocked_rdev)) { | 
|  | /* Have to wait for this device to get unblocked, then retry */ | 
|  | int j; | 
|  | int d; | 
|  |  | 
|  | for (j = 0; j < i; j++) { | 
|  | if (r10_bio->devs[j].bio) { | 
|  | d = r10_bio->devs[j].devnum; | 
|  | rdev_dec_pending(conf->mirrors[d].rdev, mddev); | 
|  | } | 
|  | if (r10_bio->devs[j].repl_bio) { | 
|  | struct md_rdev *rdev; | 
|  | d = r10_bio->devs[j].devnum; | 
|  | rdev = conf->mirrors[d].replacement; | 
|  | if (!rdev) { | 
|  | /* Race with remove_disk */ | 
|  | smp_mb(); | 
|  | rdev = conf->mirrors[d].rdev; | 
|  | } | 
|  | rdev_dec_pending(rdev, mddev); | 
|  | } | 
|  | } | 
|  | allow_barrier(conf); | 
|  | md_wait_for_blocked_rdev(blocked_rdev, mddev); | 
|  | wait_barrier(conf); | 
|  | goto retry_write; | 
|  | } | 
|  |  | 
|  | if (max_sectors < r10_bio->sectors) { | 
|  | /* We are splitting this into multiple parts, so | 
|  | * we need to prepare for allocating another r10_bio. | 
|  | */ | 
|  | r10_bio->sectors = max_sectors; | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | if (bio->bi_phys_segments == 0) | 
|  | bio->bi_phys_segments = 2; | 
|  | else | 
|  | bio->bi_phys_segments++; | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | } | 
|  | sectors_handled = r10_bio->sector + max_sectors - | 
|  | bio->bi_iter.bi_sector; | 
|  |  | 
|  | atomic_set(&r10_bio->remaining, 1); | 
|  | bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0); | 
|  |  | 
|  | for (i = 0; i < conf->copies; i++) { | 
|  | struct bio *mbio; | 
|  | int d = r10_bio->devs[i].devnum; | 
|  | if (r10_bio->devs[i].bio) { | 
|  | struct md_rdev *rdev = conf->mirrors[d].rdev; | 
|  | mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); | 
|  | bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector, | 
|  | max_sectors); | 
|  | r10_bio->devs[i].bio = mbio; | 
|  |  | 
|  | mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr+ | 
|  | choose_data_offset(r10_bio, | 
|  | rdev)); | 
|  | mbio->bi_bdev = rdev->bdev; | 
|  | mbio->bi_end_io	= raid10_end_write_request; | 
|  | mbio->bi_rw = | 
|  | WRITE | do_sync | do_fua | do_discard | do_same; | 
|  | mbio->bi_private = r10_bio; | 
|  |  | 
|  | atomic_inc(&r10_bio->remaining); | 
|  |  | 
|  | cb = blk_check_plugged(raid10_unplug, mddev, | 
|  | sizeof(*plug)); | 
|  | if (cb) | 
|  | plug = container_of(cb, struct raid10_plug_cb, | 
|  | cb); | 
|  | else | 
|  | plug = NULL; | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | if (plug) { | 
|  | bio_list_add(&plug->pending, mbio); | 
|  | plug->pending_cnt++; | 
|  | } else { | 
|  | bio_list_add(&conf->pending_bio_list, mbio); | 
|  | conf->pending_count++; | 
|  | } | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | if (!plug) | 
|  | md_wakeup_thread(mddev->thread); | 
|  | } | 
|  |  | 
|  | if (r10_bio->devs[i].repl_bio) { | 
|  | struct md_rdev *rdev = conf->mirrors[d].replacement; | 
|  | if (rdev == NULL) { | 
|  | /* Replacement just got moved to main 'rdev' */ | 
|  | smp_mb(); | 
|  | rdev = conf->mirrors[d].rdev; | 
|  | } | 
|  | mbio = bio_clone_mddev(bio, GFP_NOIO, mddev); | 
|  | bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector, | 
|  | max_sectors); | 
|  | r10_bio->devs[i].repl_bio = mbio; | 
|  |  | 
|  | mbio->bi_iter.bi_sector	= (r10_bio->devs[i].addr + | 
|  | choose_data_offset( | 
|  | r10_bio, rdev)); | 
|  | mbio->bi_bdev = rdev->bdev; | 
|  | mbio->bi_end_io	= raid10_end_write_request; | 
|  | mbio->bi_rw = | 
|  | WRITE | do_sync | do_fua | do_discard | do_same; | 
|  | mbio->bi_private = r10_bio; | 
|  |  | 
|  | atomic_inc(&r10_bio->remaining); | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | bio_list_add(&conf->pending_bio_list, mbio); | 
|  | conf->pending_count++; | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | if (!mddev_check_plugged(mddev)) | 
|  | md_wakeup_thread(mddev->thread); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Don't remove the bias on 'remaining' (one_write_done) until | 
|  | * after checking if we need to go around again. | 
|  | */ | 
|  |  | 
|  | if (sectors_handled < bio_sectors(bio)) { | 
|  | one_write_done(r10_bio); | 
|  | /* We need another r10_bio.  It has already been counted | 
|  | * in bio->bi_phys_segments. | 
|  | */ | 
|  | r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); | 
|  |  | 
|  | r10_bio->master_bio = bio; | 
|  | r10_bio->sectors = bio_sectors(bio) - sectors_handled; | 
|  |  | 
|  | r10_bio->mddev = mddev; | 
|  | r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled; | 
|  | r10_bio->state = 0; | 
|  | goto retry_write; | 
|  | } | 
|  | one_write_done(r10_bio); | 
|  | } | 
|  |  | 
|  | static void make_request(struct mddev *mddev, struct bio *bio) | 
|  | { | 
|  | struct r10conf *conf = mddev->private; | 
|  | sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask); | 
|  | int chunk_sects = chunk_mask + 1; | 
|  |  | 
|  | struct bio *split; | 
|  |  | 
|  | if (unlikely(bio->bi_rw & REQ_FLUSH)) { | 
|  | md_flush_request(mddev, bio); | 
|  | return; | 
|  | } | 
|  |  | 
|  | md_write_start(mddev, bio); | 
|  |  | 
|  | do { | 
|  |  | 
|  | /* | 
|  | * If this request crosses a chunk boundary, we need to split | 
|  | * it. | 
|  | */ | 
|  | if (unlikely((bio->bi_iter.bi_sector & chunk_mask) + | 
|  | bio_sectors(bio) > chunk_sects | 
|  | && (conf->geo.near_copies < conf->geo.raid_disks | 
|  | || conf->prev.near_copies < | 
|  | conf->prev.raid_disks))) { | 
|  | split = bio_split(bio, chunk_sects - | 
|  | (bio->bi_iter.bi_sector & | 
|  | (chunk_sects - 1)), | 
|  | GFP_NOIO, fs_bio_set); | 
|  | bio_chain(split, bio); | 
|  | } else { | 
|  | split = bio; | 
|  | } | 
|  |  | 
|  | __make_request(mddev, split); | 
|  | } while (split != bio); | 
|  |  | 
|  | /* In case raid10d snuck in to freeze_array */ | 
|  | wake_up(&conf->wait_barrier); | 
|  | } | 
|  |  | 
|  | static void status(struct seq_file *seq, struct mddev *mddev) | 
|  | { | 
|  | struct r10conf *conf = mddev->private; | 
|  | int i; | 
|  |  | 
|  | if (conf->geo.near_copies < conf->geo.raid_disks) | 
|  | seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); | 
|  | if (conf->geo.near_copies > 1) | 
|  | seq_printf(seq, " %d near-copies", conf->geo.near_copies); | 
|  | if (conf->geo.far_copies > 1) { | 
|  | if (conf->geo.far_offset) | 
|  | seq_printf(seq, " %d offset-copies", conf->geo.far_copies); | 
|  | else | 
|  | seq_printf(seq, " %d far-copies", conf->geo.far_copies); | 
|  | } | 
|  | seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks, | 
|  | conf->geo.raid_disks - mddev->degraded); | 
|  | for (i = 0; i < conf->geo.raid_disks; i++) | 
|  | seq_printf(seq, "%s", | 
|  | conf->mirrors[i].rdev && | 
|  | test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); | 
|  | seq_printf(seq, "]"); | 
|  | } | 
|  |  | 
|  | /* check if there are enough drives for | 
|  | * every block to appear on atleast one. | 
|  | * Don't consider the device numbered 'ignore' | 
|  | * as we might be about to remove it. | 
|  | */ | 
|  | static int _enough(struct r10conf *conf, int previous, int ignore) | 
|  | { | 
|  | int first = 0; | 
|  | int has_enough = 0; | 
|  | int disks, ncopies; | 
|  | if (previous) { | 
|  | disks = conf->prev.raid_disks; | 
|  | ncopies = conf->prev.near_copies; | 
|  | } else { | 
|  | disks = conf->geo.raid_disks; | 
|  | ncopies = conf->geo.near_copies; | 
|  | } | 
|  |  | 
|  | rcu_read_lock(); | 
|  | do { | 
|  | int n = conf->copies; | 
|  | int cnt = 0; | 
|  | int this = first; | 
|  | while (n--) { | 
|  | struct md_rdev *rdev; | 
|  | if (this != ignore && | 
|  | (rdev = rcu_dereference(conf->mirrors[this].rdev)) && | 
|  | test_bit(In_sync, &rdev->flags)) | 
|  | cnt++; | 
|  | this = (this+1) % disks; | 
|  | } | 
|  | if (cnt == 0) | 
|  | goto out; | 
|  | first = (first + ncopies) % disks; | 
|  | } while (first != 0); | 
|  | has_enough = 1; | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  | return has_enough; | 
|  | } | 
|  |  | 
|  | static int enough(struct r10conf *conf, int ignore) | 
|  | { | 
|  | /* when calling 'enough', both 'prev' and 'geo' must | 
|  | * be stable. | 
|  | * This is ensured if ->reconfig_mutex or ->device_lock | 
|  | * is held. | 
|  | */ | 
|  | return _enough(conf, 0, ignore) && | 
|  | _enough(conf, 1, ignore); | 
|  | } | 
|  |  | 
|  | static void error(struct mddev *mddev, struct md_rdev *rdev) | 
|  | { | 
|  | char b[BDEVNAME_SIZE]; | 
|  | struct r10conf *conf = mddev->private; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * If it is not operational, then we have already marked it as dead | 
|  | * else if it is the last working disks, ignore the error, let the | 
|  | * next level up know. | 
|  | * else mark the drive as failed | 
|  | */ | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | if (test_bit(In_sync, &rdev->flags) | 
|  | && !enough(conf, rdev->raid_disk)) { | 
|  | /* | 
|  | * Don't fail the drive, just return an IO error. | 
|  | */ | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | return; | 
|  | } | 
|  | if (test_and_clear_bit(In_sync, &rdev->flags)) | 
|  | mddev->degraded++; | 
|  | /* | 
|  | * If recovery is running, make sure it aborts. | 
|  | */ | 
|  | set_bit(MD_RECOVERY_INTR, &mddev->recovery); | 
|  | set_bit(Blocked, &rdev->flags); | 
|  | set_bit(Faulty, &rdev->flags); | 
|  | set_bit(MD_CHANGE_DEVS, &mddev->flags); | 
|  | set_bit(MD_CHANGE_PENDING, &mddev->flags); | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | printk(KERN_ALERT | 
|  | "md/raid10:%s: Disk failure on %s, disabling device.\n" | 
|  | "md/raid10:%s: Operation continuing on %d devices.\n", | 
|  | mdname(mddev), bdevname(rdev->bdev, b), | 
|  | mdname(mddev), conf->geo.raid_disks - mddev->degraded); | 
|  | } | 
|  |  | 
|  | static void print_conf(struct r10conf *conf) | 
|  | { | 
|  | int i; | 
|  | struct raid10_info *tmp; | 
|  |  | 
|  | printk(KERN_DEBUG "RAID10 conf printout:\n"); | 
|  | if (!conf) { | 
|  | printk(KERN_DEBUG "(!conf)\n"); | 
|  | return; | 
|  | } | 
|  | printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded, | 
|  | conf->geo.raid_disks); | 
|  |  | 
|  | for (i = 0; i < conf->geo.raid_disks; i++) { | 
|  | char b[BDEVNAME_SIZE]; | 
|  | tmp = conf->mirrors + i; | 
|  | if (tmp->rdev) | 
|  | printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", | 
|  | i, !test_bit(In_sync, &tmp->rdev->flags), | 
|  | !test_bit(Faulty, &tmp->rdev->flags), | 
|  | bdevname(tmp->rdev->bdev,b)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void close_sync(struct r10conf *conf) | 
|  | { | 
|  | wait_barrier(conf); | 
|  | allow_barrier(conf); | 
|  |  | 
|  | mempool_destroy(conf->r10buf_pool); | 
|  | conf->r10buf_pool = NULL; | 
|  | } | 
|  |  | 
|  | static int raid10_spare_active(struct mddev *mddev) | 
|  | { | 
|  | int i; | 
|  | struct r10conf *conf = mddev->private; | 
|  | struct raid10_info *tmp; | 
|  | int count = 0; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * Find all non-in_sync disks within the RAID10 configuration | 
|  | * and mark them in_sync | 
|  | */ | 
|  | for (i = 0; i < conf->geo.raid_disks; i++) { | 
|  | tmp = conf->mirrors + i; | 
|  | if (tmp->replacement | 
|  | && tmp->replacement->recovery_offset == MaxSector | 
|  | && !test_bit(Faulty, &tmp->replacement->flags) | 
|  | && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { | 
|  | /* Replacement has just become active */ | 
|  | if (!tmp->rdev | 
|  | || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) | 
|  | count++; | 
|  | if (tmp->rdev) { | 
|  | /* Replaced device not technically faulty, | 
|  | * but we need to be sure it gets removed | 
|  | * and never re-added. | 
|  | */ | 
|  | set_bit(Faulty, &tmp->rdev->flags); | 
|  | sysfs_notify_dirent_safe( | 
|  | tmp->rdev->sysfs_state); | 
|  | } | 
|  | sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); | 
|  | } else if (tmp->rdev | 
|  | && tmp->rdev->recovery_offset == MaxSector | 
|  | && !test_bit(Faulty, &tmp->rdev->flags) | 
|  | && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { | 
|  | count++; | 
|  | sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); | 
|  | } | 
|  | } | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | mddev->degraded -= count; | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  |  | 
|  | print_conf(conf); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev) | 
|  | { | 
|  | struct r10conf *conf = mddev->private; | 
|  | int err = -EEXIST; | 
|  | int mirror; | 
|  | int first = 0; | 
|  | int last = conf->geo.raid_disks - 1; | 
|  |  | 
|  | if (mddev->recovery_cp < MaxSector) | 
|  | /* only hot-add to in-sync arrays, as recovery is | 
|  | * very different from resync | 
|  | */ | 
|  | return -EBUSY; | 
|  | if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (rdev->raid_disk >= 0) | 
|  | first = last = rdev->raid_disk; | 
|  |  | 
|  | if (rdev->saved_raid_disk >= first && | 
|  | conf->mirrors[rdev->saved_raid_disk].rdev == NULL) | 
|  | mirror = rdev->saved_raid_disk; | 
|  | else | 
|  | mirror = first; | 
|  | for ( ; mirror <= last ; mirror++) { | 
|  | struct raid10_info *p = &conf->mirrors[mirror]; | 
|  | if (p->recovery_disabled == mddev->recovery_disabled) | 
|  | continue; | 
|  | if (p->rdev) { | 
|  | if (!test_bit(WantReplacement, &p->rdev->flags) || | 
|  | p->replacement != NULL) | 
|  | continue; | 
|  | clear_bit(In_sync, &rdev->flags); | 
|  | set_bit(Replacement, &rdev->flags); | 
|  | rdev->raid_disk = mirror; | 
|  | err = 0; | 
|  | if (mddev->gendisk) | 
|  | disk_stack_limits(mddev->gendisk, rdev->bdev, | 
|  | rdev->data_offset << 9); | 
|  | conf->fullsync = 1; | 
|  | rcu_assign_pointer(p->replacement, rdev); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (mddev->gendisk) | 
|  | disk_stack_limits(mddev->gendisk, rdev->bdev, | 
|  | rdev->data_offset << 9); | 
|  |  | 
|  | p->head_position = 0; | 
|  | p->recovery_disabled = mddev->recovery_disabled - 1; | 
|  | rdev->raid_disk = mirror; | 
|  | err = 0; | 
|  | if (rdev->saved_raid_disk != mirror) | 
|  | conf->fullsync = 1; | 
|  | rcu_assign_pointer(p->rdev, rdev); | 
|  | break; | 
|  | } | 
|  | md_integrity_add_rdev(rdev, mddev); | 
|  | if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev))) | 
|  | queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue); | 
|  |  | 
|  | print_conf(conf); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev) | 
|  | { | 
|  | struct r10conf *conf = mddev->private; | 
|  | int err = 0; | 
|  | int number = rdev->raid_disk; | 
|  | struct md_rdev **rdevp; | 
|  | struct raid10_info *p = conf->mirrors + number; | 
|  |  | 
|  | print_conf(conf); | 
|  | if (rdev == p->rdev) | 
|  | rdevp = &p->rdev; | 
|  | else if (rdev == p->replacement) | 
|  | rdevp = &p->replacement; | 
|  | else | 
|  | return 0; | 
|  |  | 
|  | if (test_bit(In_sync, &rdev->flags) || | 
|  | atomic_read(&rdev->nr_pending)) { | 
|  | err = -EBUSY; | 
|  | goto abort; | 
|  | } | 
|  | /* Only remove faulty devices if recovery | 
|  | * is not possible. | 
|  | */ | 
|  | if (!test_bit(Faulty, &rdev->flags) && | 
|  | mddev->recovery_disabled != p->recovery_disabled && | 
|  | (!p->replacement || p->replacement == rdev) && | 
|  | number < conf->geo.raid_disks && | 
|  | enough(conf, -1)) { | 
|  | err = -EBUSY; | 
|  | goto abort; | 
|  | } | 
|  | *rdevp = NULL; | 
|  | synchronize_rcu(); | 
|  | if (atomic_read(&rdev->nr_pending)) { | 
|  | /* lost the race, try later */ | 
|  | err = -EBUSY; | 
|  | *rdevp = rdev; | 
|  | goto abort; | 
|  | } else if (p->replacement) { | 
|  | /* We must have just cleared 'rdev' */ | 
|  | p->rdev = p->replacement; | 
|  | clear_bit(Replacement, &p->replacement->flags); | 
|  | smp_mb(); /* Make sure other CPUs may see both as identical | 
|  | * but will never see neither -- if they are careful. | 
|  | */ | 
|  | p->replacement = NULL; | 
|  | clear_bit(WantReplacement, &rdev->flags); | 
|  | } else | 
|  | /* We might have just remove the Replacement as faulty | 
|  | * Clear the flag just in case | 
|  | */ | 
|  | clear_bit(WantReplacement, &rdev->flags); | 
|  |  | 
|  | err = md_integrity_register(mddev); | 
|  |  | 
|  | abort: | 
|  |  | 
|  | print_conf(conf); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void end_sync_read(struct bio *bio) | 
|  | { | 
|  | struct r10bio *r10_bio = bio->bi_private; | 
|  | struct r10conf *conf = r10_bio->mddev->private; | 
|  | int d; | 
|  |  | 
|  | if (bio == r10_bio->master_bio) { | 
|  | /* this is a reshape read */ | 
|  | d = r10_bio->read_slot; /* really the read dev */ | 
|  | } else | 
|  | d = find_bio_disk(conf, r10_bio, bio, NULL, NULL); | 
|  |  | 
|  | if (!bio->bi_error) | 
|  | set_bit(R10BIO_Uptodate, &r10_bio->state); | 
|  | else | 
|  | /* The write handler will notice the lack of | 
|  | * R10BIO_Uptodate and record any errors etc | 
|  | */ | 
|  | atomic_add(r10_bio->sectors, | 
|  | &conf->mirrors[d].rdev->corrected_errors); | 
|  |  | 
|  | /* for reconstruct, we always reschedule after a read. | 
|  | * for resync, only after all reads | 
|  | */ | 
|  | rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); | 
|  | if (test_bit(R10BIO_IsRecover, &r10_bio->state) || | 
|  | atomic_dec_and_test(&r10_bio->remaining)) { | 
|  | /* we have read all the blocks, | 
|  | * do the comparison in process context in raid10d | 
|  | */ | 
|  | reschedule_retry(r10_bio); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void end_sync_request(struct r10bio *r10_bio) | 
|  | { | 
|  | struct mddev *mddev = r10_bio->mddev; | 
|  |  | 
|  | while (atomic_dec_and_test(&r10_bio->remaining)) { | 
|  | if (r10_bio->master_bio == NULL) { | 
|  | /* the primary of several recovery bios */ | 
|  | sector_t s = r10_bio->sectors; | 
|  | if (test_bit(R10BIO_MadeGood, &r10_bio->state) || | 
|  | test_bit(R10BIO_WriteError, &r10_bio->state)) | 
|  | reschedule_retry(r10_bio); | 
|  | else | 
|  | put_buf(r10_bio); | 
|  | md_done_sync(mddev, s, 1); | 
|  | break; | 
|  | } else { | 
|  | struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio; | 
|  | if (test_bit(R10BIO_MadeGood, &r10_bio->state) || | 
|  | test_bit(R10BIO_WriteError, &r10_bio->state)) | 
|  | reschedule_retry(r10_bio); | 
|  | else | 
|  | put_buf(r10_bio); | 
|  | r10_bio = r10_bio2; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void end_sync_write(struct bio *bio) | 
|  | { | 
|  | struct r10bio *r10_bio = bio->bi_private; | 
|  | struct mddev *mddev = r10_bio->mddev; | 
|  | struct r10conf *conf = mddev->private; | 
|  | int d; | 
|  | sector_t first_bad; | 
|  | int bad_sectors; | 
|  | int slot; | 
|  | int repl; | 
|  | struct md_rdev *rdev = NULL; | 
|  |  | 
|  | d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); | 
|  | if (repl) | 
|  | rdev = conf->mirrors[d].replacement; | 
|  | else | 
|  | rdev = conf->mirrors[d].rdev; | 
|  |  | 
|  | if (bio->bi_error) { | 
|  | if (repl) | 
|  | md_error(mddev, rdev); | 
|  | else { | 
|  | set_bit(WriteErrorSeen, &rdev->flags); | 
|  | if (!test_and_set_bit(WantReplacement, &rdev->flags)) | 
|  | set_bit(MD_RECOVERY_NEEDED, | 
|  | &rdev->mddev->recovery); | 
|  | set_bit(R10BIO_WriteError, &r10_bio->state); | 
|  | } | 
|  | } else if (is_badblock(rdev, | 
|  | r10_bio->devs[slot].addr, | 
|  | r10_bio->sectors, | 
|  | &first_bad, &bad_sectors)) | 
|  | set_bit(R10BIO_MadeGood, &r10_bio->state); | 
|  |  | 
|  | rdev_dec_pending(rdev, mddev); | 
|  |  | 
|  | end_sync_request(r10_bio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note: sync and recover and handled very differently for raid10 | 
|  | * This code is for resync. | 
|  | * For resync, we read through virtual addresses and read all blocks. | 
|  | * If there is any error, we schedule a write.  The lowest numbered | 
|  | * drive is authoritative. | 
|  | * However requests come for physical address, so we need to map. | 
|  | * For every physical address there are raid_disks/copies virtual addresses, | 
|  | * which is always are least one, but is not necessarly an integer. | 
|  | * This means that a physical address can span multiple chunks, so we may | 
|  | * have to submit multiple io requests for a single sync request. | 
|  | */ | 
|  | /* | 
|  | * We check if all blocks are in-sync and only write to blocks that | 
|  | * aren't in sync | 
|  | */ | 
|  | static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio) | 
|  | { | 
|  | struct r10conf *conf = mddev->private; | 
|  | int i, first; | 
|  | struct bio *tbio, *fbio; | 
|  | int vcnt; | 
|  |  | 
|  | atomic_set(&r10_bio->remaining, 1); | 
|  |  | 
|  | /* find the first device with a block */ | 
|  | for (i=0; i<conf->copies; i++) | 
|  | if (!r10_bio->devs[i].bio->bi_error) | 
|  | break; | 
|  |  | 
|  | if (i == conf->copies) | 
|  | goto done; | 
|  |  | 
|  | first = i; | 
|  | fbio = r10_bio->devs[i].bio; | 
|  |  | 
|  | vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9); | 
|  | /* now find blocks with errors */ | 
|  | for (i=0 ; i < conf->copies ; i++) { | 
|  | int  j, d; | 
|  |  | 
|  | tbio = r10_bio->devs[i].bio; | 
|  |  | 
|  | if (tbio->bi_end_io != end_sync_read) | 
|  | continue; | 
|  | if (i == first) | 
|  | continue; | 
|  | if (!r10_bio->devs[i].bio->bi_error) { | 
|  | /* We know that the bi_io_vec layout is the same for | 
|  | * both 'first' and 'i', so we just compare them. | 
|  | * All vec entries are PAGE_SIZE; | 
|  | */ | 
|  | int sectors = r10_bio->sectors; | 
|  | for (j = 0; j < vcnt; j++) { | 
|  | int len = PAGE_SIZE; | 
|  | if (sectors < (len / 512)) | 
|  | len = sectors * 512; | 
|  | if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), | 
|  | page_address(tbio->bi_io_vec[j].bv_page), | 
|  | len)) | 
|  | break; | 
|  | sectors -= len/512; | 
|  | } | 
|  | if (j == vcnt) | 
|  | continue; | 
|  | atomic64_add(r10_bio->sectors, &mddev->resync_mismatches); | 
|  | if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) | 
|  | /* Don't fix anything. */ | 
|  | continue; | 
|  | } | 
|  | /* Ok, we need to write this bio, either to correct an | 
|  | * inconsistency or to correct an unreadable block. | 
|  | * First we need to fixup bv_offset, bv_len and | 
|  | * bi_vecs, as the read request might have corrupted these | 
|  | */ | 
|  | bio_reset(tbio); | 
|  |  | 
|  | tbio->bi_vcnt = vcnt; | 
|  | tbio->bi_iter.bi_size = r10_bio->sectors << 9; | 
|  | tbio->bi_rw = WRITE; | 
|  | tbio->bi_private = r10_bio; | 
|  | tbio->bi_iter.bi_sector = r10_bio->devs[i].addr; | 
|  | tbio->bi_end_io = end_sync_write; | 
|  |  | 
|  | bio_copy_data(tbio, fbio); | 
|  |  | 
|  | d = r10_bio->devs[i].devnum; | 
|  | atomic_inc(&conf->mirrors[d].rdev->nr_pending); | 
|  | atomic_inc(&r10_bio->remaining); | 
|  | md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio)); | 
|  |  | 
|  | tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset; | 
|  | tbio->bi_bdev = conf->mirrors[d].rdev->bdev; | 
|  | generic_make_request(tbio); | 
|  | } | 
|  |  | 
|  | /* Now write out to any replacement devices | 
|  | * that are active | 
|  | */ | 
|  | for (i = 0; i < conf->copies; i++) { | 
|  | int d; | 
|  |  | 
|  | tbio = r10_bio->devs[i].repl_bio; | 
|  | if (!tbio || !tbio->bi_end_io) | 
|  | continue; | 
|  | if (r10_bio->devs[i].bio->bi_end_io != end_sync_write | 
|  | && r10_bio->devs[i].bio != fbio) | 
|  | bio_copy_data(tbio, fbio); | 
|  | d = r10_bio->devs[i].devnum; | 
|  | atomic_inc(&r10_bio->remaining); | 
|  | md_sync_acct(conf->mirrors[d].replacement->bdev, | 
|  | bio_sectors(tbio)); | 
|  | generic_make_request(tbio); | 
|  | } | 
|  |  | 
|  | done: | 
|  | if (atomic_dec_and_test(&r10_bio->remaining)) { | 
|  | md_done_sync(mddev, r10_bio->sectors, 1); | 
|  | put_buf(r10_bio); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now for the recovery code. | 
|  | * Recovery happens across physical sectors. | 
|  | * We recover all non-is_sync drives by finding the virtual address of | 
|  | * each, and then choose a working drive that also has that virt address. | 
|  | * There is a separate r10_bio for each non-in_sync drive. | 
|  | * Only the first two slots are in use. The first for reading, | 
|  | * The second for writing. | 
|  | * | 
|  | */ | 
|  | static void fix_recovery_read_error(struct r10bio *r10_bio) | 
|  | { | 
|  | /* We got a read error during recovery. | 
|  | * We repeat the read in smaller page-sized sections. | 
|  | * If a read succeeds, write it to the new device or record | 
|  | * a bad block if we cannot. | 
|  | * If a read fails, record a bad block on both old and | 
|  | * new devices. | 
|  | */ | 
|  | struct mddev *mddev = r10_bio->mddev; | 
|  | struct r10conf *conf = mddev->private; | 
|  | struct bio *bio = r10_bio->devs[0].bio; | 
|  | sector_t sect = 0; | 
|  | int sectors = r10_bio->sectors; | 
|  | int idx = 0; | 
|  | int dr = r10_bio->devs[0].devnum; | 
|  | int dw = r10_bio->devs[1].devnum; | 
|  |  | 
|  | while (sectors) { | 
|  | int s = sectors; | 
|  | struct md_rdev *rdev; | 
|  | sector_t addr; | 
|  | int ok; | 
|  |  | 
|  | if (s > (PAGE_SIZE>>9)) | 
|  | s = PAGE_SIZE >> 9; | 
|  |  | 
|  | rdev = conf->mirrors[dr].rdev; | 
|  | addr = r10_bio->devs[0].addr + sect, | 
|  | ok = sync_page_io(rdev, | 
|  | addr, | 
|  | s << 9, | 
|  | bio->bi_io_vec[idx].bv_page, | 
|  | READ, false); | 
|  | if (ok) { | 
|  | rdev = conf->mirrors[dw].rdev; | 
|  | addr = r10_bio->devs[1].addr + sect; | 
|  | ok = sync_page_io(rdev, | 
|  | addr, | 
|  | s << 9, | 
|  | bio->bi_io_vec[idx].bv_page, | 
|  | WRITE, false); | 
|  | if (!ok) { | 
|  | set_bit(WriteErrorSeen, &rdev->flags); | 
|  | if (!test_and_set_bit(WantReplacement, | 
|  | &rdev->flags)) | 
|  | set_bit(MD_RECOVERY_NEEDED, | 
|  | &rdev->mddev->recovery); | 
|  | } | 
|  | } | 
|  | if (!ok) { | 
|  | /* We don't worry if we cannot set a bad block - | 
|  | * it really is bad so there is no loss in not | 
|  | * recording it yet | 
|  | */ | 
|  | rdev_set_badblocks(rdev, addr, s, 0); | 
|  |  | 
|  | if (rdev != conf->mirrors[dw].rdev) { | 
|  | /* need bad block on destination too */ | 
|  | struct md_rdev *rdev2 = conf->mirrors[dw].rdev; | 
|  | addr = r10_bio->devs[1].addr + sect; | 
|  | ok = rdev_set_badblocks(rdev2, addr, s, 0); | 
|  | if (!ok) { | 
|  | /* just abort the recovery */ | 
|  | printk(KERN_NOTICE | 
|  | "md/raid10:%s: recovery aborted" | 
|  | " due to read error\n", | 
|  | mdname(mddev)); | 
|  |  | 
|  | conf->mirrors[dw].recovery_disabled | 
|  | = mddev->recovery_disabled; | 
|  | set_bit(MD_RECOVERY_INTR, | 
|  | &mddev->recovery); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | sectors -= s; | 
|  | sect += s; | 
|  | idx++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio) | 
|  | { | 
|  | struct r10conf *conf = mddev->private; | 
|  | int d; | 
|  | struct bio *wbio, *wbio2; | 
|  |  | 
|  | if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) { | 
|  | fix_recovery_read_error(r10_bio); | 
|  | end_sync_request(r10_bio); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * share the pages with the first bio | 
|  | * and submit the write request | 
|  | */ | 
|  | d = r10_bio->devs[1].devnum; | 
|  | wbio = r10_bio->devs[1].bio; | 
|  | wbio2 = r10_bio->devs[1].repl_bio; | 
|  | /* Need to test wbio2->bi_end_io before we call | 
|  | * generic_make_request as if the former is NULL, | 
|  | * the latter is free to free wbio2. | 
|  | */ | 
|  | if (wbio2 && !wbio2->bi_end_io) | 
|  | wbio2 = NULL; | 
|  | if (wbio->bi_end_io) { | 
|  | atomic_inc(&conf->mirrors[d].rdev->nr_pending); | 
|  | md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio)); | 
|  | generic_make_request(wbio); | 
|  | } | 
|  | if (wbio2) { | 
|  | atomic_inc(&conf->mirrors[d].replacement->nr_pending); | 
|  | md_sync_acct(conf->mirrors[d].replacement->bdev, | 
|  | bio_sectors(wbio2)); | 
|  | generic_make_request(wbio2); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Used by fix_read_error() to decay the per rdev read_errors. | 
|  | * We halve the read error count for every hour that has elapsed | 
|  | * since the last recorded read error. | 
|  | * | 
|  | */ | 
|  | static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev) | 
|  | { | 
|  | struct timespec cur_time_mon; | 
|  | unsigned long hours_since_last; | 
|  | unsigned int read_errors = atomic_read(&rdev->read_errors); | 
|  |  | 
|  | ktime_get_ts(&cur_time_mon); | 
|  |  | 
|  | if (rdev->last_read_error.tv_sec == 0 && | 
|  | rdev->last_read_error.tv_nsec == 0) { | 
|  | /* first time we've seen a read error */ | 
|  | rdev->last_read_error = cur_time_mon; | 
|  | return; | 
|  | } | 
|  |  | 
|  | hours_since_last = (cur_time_mon.tv_sec - | 
|  | rdev->last_read_error.tv_sec) / 3600; | 
|  |  | 
|  | rdev->last_read_error = cur_time_mon; | 
|  |  | 
|  | /* | 
|  | * if hours_since_last is > the number of bits in read_errors | 
|  | * just set read errors to 0. We do this to avoid | 
|  | * overflowing the shift of read_errors by hours_since_last. | 
|  | */ | 
|  | if (hours_since_last >= 8 * sizeof(read_errors)) | 
|  | atomic_set(&rdev->read_errors, 0); | 
|  | else | 
|  | atomic_set(&rdev->read_errors, read_errors >> hours_since_last); | 
|  | } | 
|  |  | 
|  | static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector, | 
|  | int sectors, struct page *page, int rw) | 
|  | { | 
|  | sector_t first_bad; | 
|  | int bad_sectors; | 
|  |  | 
|  | if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors) | 
|  | && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags))) | 
|  | return -1; | 
|  | if (sync_page_io(rdev, sector, sectors << 9, page, rw, false)) | 
|  | /* success */ | 
|  | return 1; | 
|  | if (rw == WRITE) { | 
|  | set_bit(WriteErrorSeen, &rdev->flags); | 
|  | if (!test_and_set_bit(WantReplacement, &rdev->flags)) | 
|  | set_bit(MD_RECOVERY_NEEDED, | 
|  | &rdev->mddev->recovery); | 
|  | } | 
|  | /* need to record an error - either for the block or the device */ | 
|  | if (!rdev_set_badblocks(rdev, sector, sectors, 0)) | 
|  | md_error(rdev->mddev, rdev); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is a kernel thread which: | 
|  | * | 
|  | *	1.	Retries failed read operations on working mirrors. | 
|  | *	2.	Updates the raid superblock when problems encounter. | 
|  | *	3.	Performs writes following reads for array synchronising. | 
|  | */ | 
|  |  | 
|  | static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio) | 
|  | { | 
|  | int sect = 0; /* Offset from r10_bio->sector */ | 
|  | int sectors = r10_bio->sectors; | 
|  | struct md_rdev*rdev; | 
|  | int max_read_errors = atomic_read(&mddev->max_corr_read_errors); | 
|  | int d = r10_bio->devs[r10_bio->read_slot].devnum; | 
|  |  | 
|  | /* still own a reference to this rdev, so it cannot | 
|  | * have been cleared recently. | 
|  | */ | 
|  | rdev = conf->mirrors[d].rdev; | 
|  |  | 
|  | if (test_bit(Faulty, &rdev->flags)) | 
|  | /* drive has already been failed, just ignore any | 
|  | more fix_read_error() attempts */ | 
|  | return; | 
|  |  | 
|  | check_decay_read_errors(mddev, rdev); | 
|  | atomic_inc(&rdev->read_errors); | 
|  | if (atomic_read(&rdev->read_errors) > max_read_errors) { | 
|  | char b[BDEVNAME_SIZE]; | 
|  | bdevname(rdev->bdev, b); | 
|  |  | 
|  | printk(KERN_NOTICE | 
|  | "md/raid10:%s: %s: Raid device exceeded " | 
|  | "read_error threshold [cur %d:max %d]\n", | 
|  | mdname(mddev), b, | 
|  | atomic_read(&rdev->read_errors), max_read_errors); | 
|  | printk(KERN_NOTICE | 
|  | "md/raid10:%s: %s: Failing raid device\n", | 
|  | mdname(mddev), b); | 
|  | md_error(mddev, conf->mirrors[d].rdev); | 
|  | r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED; | 
|  | return; | 
|  | } | 
|  |  | 
|  | while(sectors) { | 
|  | int s = sectors; | 
|  | int sl = r10_bio->read_slot; | 
|  | int success = 0; | 
|  | int start; | 
|  |  | 
|  | if (s > (PAGE_SIZE>>9)) | 
|  | s = PAGE_SIZE >> 9; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | do { | 
|  | sector_t first_bad; | 
|  | int bad_sectors; | 
|  |  | 
|  | d = r10_bio->devs[sl].devnum; | 
|  | rdev = rcu_dereference(conf->mirrors[d].rdev); | 
|  | if (rdev && | 
|  | test_bit(In_sync, &rdev->flags) && | 
|  | is_badblock(rdev, r10_bio->devs[sl].addr + sect, s, | 
|  | &first_bad, &bad_sectors) == 0) { | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | rcu_read_unlock(); | 
|  | success = sync_page_io(rdev, | 
|  | r10_bio->devs[sl].addr + | 
|  | sect, | 
|  | s<<9, | 
|  | conf->tmppage, READ, false); | 
|  | rdev_dec_pending(rdev, mddev); | 
|  | rcu_read_lock(); | 
|  | if (success) | 
|  | break; | 
|  | } | 
|  | sl++; | 
|  | if (sl == conf->copies) | 
|  | sl = 0; | 
|  | } while (!success && sl != r10_bio->read_slot); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (!success) { | 
|  | /* Cannot read from anywhere, just mark the block | 
|  | * as bad on the first device to discourage future | 
|  | * reads. | 
|  | */ | 
|  | int dn = r10_bio->devs[r10_bio->read_slot].devnum; | 
|  | rdev = conf->mirrors[dn].rdev; | 
|  |  | 
|  | if (!rdev_set_badblocks( | 
|  | rdev, | 
|  | r10_bio->devs[r10_bio->read_slot].addr | 
|  | + sect, | 
|  | s, 0)) { | 
|  | md_error(mddev, rdev); | 
|  | r10_bio->devs[r10_bio->read_slot].bio | 
|  | = IO_BLOCKED; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | start = sl; | 
|  | /* write it back and re-read */ | 
|  | rcu_read_lock(); | 
|  | while (sl != r10_bio->read_slot) { | 
|  | char b[BDEVNAME_SIZE]; | 
|  |  | 
|  | if (sl==0) | 
|  | sl = conf->copies; | 
|  | sl--; | 
|  | d = r10_bio->devs[sl].devnum; | 
|  | rdev = rcu_dereference(conf->mirrors[d].rdev); | 
|  | if (!rdev || | 
|  | !test_bit(In_sync, &rdev->flags)) | 
|  | continue; | 
|  |  | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | rcu_read_unlock(); | 
|  | if (r10_sync_page_io(rdev, | 
|  | r10_bio->devs[sl].addr + | 
|  | sect, | 
|  | s, conf->tmppage, WRITE) | 
|  | == 0) { | 
|  | /* Well, this device is dead */ | 
|  | printk(KERN_NOTICE | 
|  | "md/raid10:%s: read correction " | 
|  | "write failed" | 
|  | " (%d sectors at %llu on %s)\n", | 
|  | mdname(mddev), s, | 
|  | (unsigned long long)( | 
|  | sect + | 
|  | choose_data_offset(r10_bio, | 
|  | rdev)), | 
|  | bdevname(rdev->bdev, b)); | 
|  | printk(KERN_NOTICE "md/raid10:%s: %s: failing " | 
|  | "drive\n", | 
|  | mdname(mddev), | 
|  | bdevname(rdev->bdev, b)); | 
|  | } | 
|  | rdev_dec_pending(rdev, mddev); | 
|  | rcu_read_lock(); | 
|  | } | 
|  | sl = start; | 
|  | while (sl != r10_bio->read_slot) { | 
|  | char b[BDEVNAME_SIZE]; | 
|  |  | 
|  | if (sl==0) | 
|  | sl = conf->copies; | 
|  | sl--; | 
|  | d = r10_bio->devs[sl].devnum; | 
|  | rdev = rcu_dereference(conf->mirrors[d].rdev); | 
|  | if (!rdev || | 
|  | !test_bit(In_sync, &rdev->flags)) | 
|  | continue; | 
|  |  | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | rcu_read_unlock(); | 
|  | switch (r10_sync_page_io(rdev, | 
|  | r10_bio->devs[sl].addr + | 
|  | sect, | 
|  | s, conf->tmppage, | 
|  | READ)) { | 
|  | case 0: | 
|  | /* Well, this device is dead */ | 
|  | printk(KERN_NOTICE | 
|  | "md/raid10:%s: unable to read back " | 
|  | "corrected sectors" | 
|  | " (%d sectors at %llu on %s)\n", | 
|  | mdname(mddev), s, | 
|  | (unsigned long long)( | 
|  | sect + | 
|  | choose_data_offset(r10_bio, rdev)), | 
|  | bdevname(rdev->bdev, b)); | 
|  | printk(KERN_NOTICE "md/raid10:%s: %s: failing " | 
|  | "drive\n", | 
|  | mdname(mddev), | 
|  | bdevname(rdev->bdev, b)); | 
|  | break; | 
|  | case 1: | 
|  | printk(KERN_INFO | 
|  | "md/raid10:%s: read error corrected" | 
|  | " (%d sectors at %llu on %s)\n", | 
|  | mdname(mddev), s, | 
|  | (unsigned long long)( | 
|  | sect + | 
|  | choose_data_offset(r10_bio, rdev)), | 
|  | bdevname(rdev->bdev, b)); | 
|  | atomic_add(s, &rdev->corrected_errors); | 
|  | } | 
|  |  | 
|  | rdev_dec_pending(rdev, mddev); | 
|  | rcu_read_lock(); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | sectors -= s; | 
|  | sect += s; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int narrow_write_error(struct r10bio *r10_bio, int i) | 
|  | { | 
|  | struct bio *bio = r10_bio->master_bio; | 
|  | struct mddev *mddev = r10_bio->mddev; | 
|  | struct r10conf *conf = mddev->private; | 
|  | struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev; | 
|  | /* bio has the data to be written to slot 'i' where | 
|  | * we just recently had a write error. | 
|  | * We repeatedly clone the bio and trim down to one block, | 
|  | * then try the write.  Where the write fails we record | 
|  | * a bad block. | 
|  | * It is conceivable that the bio doesn't exactly align with | 
|  | * blocks.  We must handle this. | 
|  | * | 
|  | * We currently own a reference to the rdev. | 
|  | */ | 
|  |  | 
|  | int block_sectors; | 
|  | sector_t sector; | 
|  | int sectors; | 
|  | int sect_to_write = r10_bio->sectors; | 
|  | int ok = 1; | 
|  |  | 
|  | if (rdev->badblocks.shift < 0) | 
|  | return 0; | 
|  |  | 
|  | block_sectors = roundup(1 << rdev->badblocks.shift, | 
|  | bdev_logical_block_size(rdev->bdev) >> 9); | 
|  | sector = r10_bio->sector; | 
|  | sectors = ((r10_bio->sector + block_sectors) | 
|  | & ~(sector_t)(block_sectors - 1)) | 
|  | - sector; | 
|  |  | 
|  | while (sect_to_write) { | 
|  | struct bio *wbio; | 
|  | if (sectors > sect_to_write) | 
|  | sectors = sect_to_write; | 
|  | /* Write at 'sector' for 'sectors' */ | 
|  | wbio = bio_clone_mddev(bio, GFP_NOIO, mddev); | 
|  | bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors); | 
|  | wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+ | 
|  | choose_data_offset(r10_bio, rdev) + | 
|  | (sector - r10_bio->sector)); | 
|  | wbio->bi_bdev = rdev->bdev; | 
|  | if (submit_bio_wait(WRITE, wbio) == 0) | 
|  | /* Failure! */ | 
|  | ok = rdev_set_badblocks(rdev, sector, | 
|  | sectors, 0) | 
|  | && ok; | 
|  |  | 
|  | bio_put(wbio); | 
|  | sect_to_write -= sectors; | 
|  | sector += sectors; | 
|  | sectors = block_sectors; | 
|  | } | 
|  | return ok; | 
|  | } | 
|  |  | 
|  | static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio) | 
|  | { | 
|  | int slot = r10_bio->read_slot; | 
|  | struct bio *bio; | 
|  | struct r10conf *conf = mddev->private; | 
|  | struct md_rdev *rdev = r10_bio->devs[slot].rdev; | 
|  | char b[BDEVNAME_SIZE]; | 
|  | unsigned long do_sync; | 
|  | int max_sectors; | 
|  |  | 
|  | /* we got a read error. Maybe the drive is bad.  Maybe just | 
|  | * the block and we can fix it. | 
|  | * We freeze all other IO, and try reading the block from | 
|  | * other devices.  When we find one, we re-write | 
|  | * and check it that fixes the read error. | 
|  | * This is all done synchronously while the array is | 
|  | * frozen. | 
|  | */ | 
|  | bio = r10_bio->devs[slot].bio; | 
|  | bdevname(bio->bi_bdev, b); | 
|  | bio_put(bio); | 
|  | r10_bio->devs[slot].bio = NULL; | 
|  |  | 
|  | if (mddev->ro == 0) { | 
|  | freeze_array(conf, 1); | 
|  | fix_read_error(conf, mddev, r10_bio); | 
|  | unfreeze_array(conf); | 
|  | } else | 
|  | r10_bio->devs[slot].bio = IO_BLOCKED; | 
|  |  | 
|  | rdev_dec_pending(rdev, mddev); | 
|  |  | 
|  | read_more: | 
|  | rdev = read_balance(conf, r10_bio, &max_sectors); | 
|  | if (rdev == NULL) { | 
|  | printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" | 
|  | " read error for block %llu\n", | 
|  | mdname(mddev), b, | 
|  | (unsigned long long)r10_bio->sector); | 
|  | raid_end_bio_io(r10_bio); | 
|  | return; | 
|  | } | 
|  |  | 
|  | do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC); | 
|  | slot = r10_bio->read_slot; | 
|  | printk_ratelimited( | 
|  | KERN_ERR | 
|  | "md/raid10:%s: %s: redirecting " | 
|  | "sector %llu to another mirror\n", | 
|  | mdname(mddev), | 
|  | bdevname(rdev->bdev, b), | 
|  | (unsigned long long)r10_bio->sector); | 
|  | bio = bio_clone_mddev(r10_bio->master_bio, | 
|  | GFP_NOIO, mddev); | 
|  | bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors); | 
|  | r10_bio->devs[slot].bio = bio; | 
|  | r10_bio->devs[slot].rdev = rdev; | 
|  | bio->bi_iter.bi_sector = r10_bio->devs[slot].addr | 
|  | + choose_data_offset(r10_bio, rdev); | 
|  | bio->bi_bdev = rdev->bdev; | 
|  | bio->bi_rw = READ | do_sync; | 
|  | bio->bi_private = r10_bio; | 
|  | bio->bi_end_io = raid10_end_read_request; | 
|  | if (max_sectors < r10_bio->sectors) { | 
|  | /* Drat - have to split this up more */ | 
|  | struct bio *mbio = r10_bio->master_bio; | 
|  | int sectors_handled = | 
|  | r10_bio->sector + max_sectors | 
|  | - mbio->bi_iter.bi_sector; | 
|  | r10_bio->sectors = max_sectors; | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | if (mbio->bi_phys_segments == 0) | 
|  | mbio->bi_phys_segments = 2; | 
|  | else | 
|  | mbio->bi_phys_segments++; | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | generic_make_request(bio); | 
|  |  | 
|  | r10_bio = mempool_alloc(conf->r10bio_pool, | 
|  | GFP_NOIO); | 
|  | r10_bio->master_bio = mbio; | 
|  | r10_bio->sectors = bio_sectors(mbio) - sectors_handled; | 
|  | r10_bio->state = 0; | 
|  | set_bit(R10BIO_ReadError, | 
|  | &r10_bio->state); | 
|  | r10_bio->mddev = mddev; | 
|  | r10_bio->sector = mbio->bi_iter.bi_sector | 
|  | + sectors_handled; | 
|  |  | 
|  | goto read_more; | 
|  | } else | 
|  | generic_make_request(bio); | 
|  | } | 
|  |  | 
|  | static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio) | 
|  | { | 
|  | /* Some sort of write request has finished and it | 
|  | * succeeded in writing where we thought there was a | 
|  | * bad block.  So forget the bad block. | 
|  | * Or possibly if failed and we need to record | 
|  | * a bad block. | 
|  | */ | 
|  | int m; | 
|  | struct md_rdev *rdev; | 
|  |  | 
|  | if (test_bit(R10BIO_IsSync, &r10_bio->state) || | 
|  | test_bit(R10BIO_IsRecover, &r10_bio->state)) { | 
|  | for (m = 0; m < conf->copies; m++) { | 
|  | int dev = r10_bio->devs[m].devnum; | 
|  | rdev = conf->mirrors[dev].rdev; | 
|  | if (r10_bio->devs[m].bio == NULL) | 
|  | continue; | 
|  | if (!r10_bio->devs[m].bio->bi_error) { | 
|  | rdev_clear_badblocks( | 
|  | rdev, | 
|  | r10_bio->devs[m].addr, | 
|  | r10_bio->sectors, 0); | 
|  | } else { | 
|  | if (!rdev_set_badblocks( | 
|  | rdev, | 
|  | r10_bio->devs[m].addr, | 
|  | r10_bio->sectors, 0)) | 
|  | md_error(conf->mddev, rdev); | 
|  | } | 
|  | rdev = conf->mirrors[dev].replacement; | 
|  | if (r10_bio->devs[m].repl_bio == NULL) | 
|  | continue; | 
|  |  | 
|  | if (!r10_bio->devs[m].repl_bio->bi_error) { | 
|  | rdev_clear_badblocks( | 
|  | rdev, | 
|  | r10_bio->devs[m].addr, | 
|  | r10_bio->sectors, 0); | 
|  | } else { | 
|  | if (!rdev_set_badblocks( | 
|  | rdev, | 
|  | r10_bio->devs[m].addr, | 
|  | r10_bio->sectors, 0)) | 
|  | md_error(conf->mddev, rdev); | 
|  | } | 
|  | } | 
|  | put_buf(r10_bio); | 
|  | } else { | 
|  | bool fail = false; | 
|  | for (m = 0; m < conf->copies; m++) { | 
|  | int dev = r10_bio->devs[m].devnum; | 
|  | struct bio *bio = r10_bio->devs[m].bio; | 
|  | rdev = conf->mirrors[dev].rdev; | 
|  | if (bio == IO_MADE_GOOD) { | 
|  | rdev_clear_badblocks( | 
|  | rdev, | 
|  | r10_bio->devs[m].addr, | 
|  | r10_bio->sectors, 0); | 
|  | rdev_dec_pending(rdev, conf->mddev); | 
|  | } else if (bio != NULL && bio->bi_error) { | 
|  | fail = true; | 
|  | if (!narrow_write_error(r10_bio, m)) { | 
|  | md_error(conf->mddev, rdev); | 
|  | set_bit(R10BIO_Degraded, | 
|  | &r10_bio->state); | 
|  | } | 
|  | rdev_dec_pending(rdev, conf->mddev); | 
|  | } | 
|  | bio = r10_bio->devs[m].repl_bio; | 
|  | rdev = conf->mirrors[dev].replacement; | 
|  | if (rdev && bio == IO_MADE_GOOD) { | 
|  | rdev_clear_badblocks( | 
|  | rdev, | 
|  | r10_bio->devs[m].addr, | 
|  | r10_bio->sectors, 0); | 
|  | rdev_dec_pending(rdev, conf->mddev); | 
|  | } | 
|  | } | 
|  | if (test_bit(R10BIO_WriteError, | 
|  | &r10_bio->state)) | 
|  | close_write(r10_bio); | 
|  | if (fail) { | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | list_add(&r10_bio->retry_list, &conf->bio_end_io_list); | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | md_wakeup_thread(conf->mddev->thread); | 
|  | } else | 
|  | raid_end_bio_io(r10_bio); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void raid10d(struct md_thread *thread) | 
|  | { | 
|  | struct mddev *mddev = thread->mddev; | 
|  | struct r10bio *r10_bio; | 
|  | unsigned long flags; | 
|  | struct r10conf *conf = mddev->private; | 
|  | struct list_head *head = &conf->retry_list; | 
|  | struct blk_plug plug; | 
|  |  | 
|  | md_check_recovery(mddev); | 
|  |  | 
|  | if (!list_empty_careful(&conf->bio_end_io_list) && | 
|  | !test_bit(MD_CHANGE_PENDING, &mddev->flags)) { | 
|  | LIST_HEAD(tmp); | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) { | 
|  | list_add(&tmp, &conf->bio_end_io_list); | 
|  | list_del_init(&conf->bio_end_io_list); | 
|  | } | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | while (!list_empty(&tmp)) { | 
|  | r10_bio = list_first_entry(&conf->bio_end_io_list, | 
|  | struct r10bio, retry_list); | 
|  | list_del(&r10_bio->retry_list); | 
|  | raid_end_bio_io(r10_bio); | 
|  | } | 
|  | } | 
|  |  | 
|  | blk_start_plug(&plug); | 
|  | for (;;) { | 
|  |  | 
|  | flush_pending_writes(conf); | 
|  |  | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | if (list_empty(head)) { | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | break; | 
|  | } | 
|  | r10_bio = list_entry(head->prev, struct r10bio, retry_list); | 
|  | list_del(head->prev); | 
|  | conf->nr_queued--; | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  |  | 
|  | mddev = r10_bio->mddev; | 
|  | conf = mddev->private; | 
|  | if (test_bit(R10BIO_MadeGood, &r10_bio->state) || | 
|  | test_bit(R10BIO_WriteError, &r10_bio->state)) | 
|  | handle_write_completed(conf, r10_bio); | 
|  | else if (test_bit(R10BIO_IsReshape, &r10_bio->state)) | 
|  | reshape_request_write(mddev, r10_bio); | 
|  | else if (test_bit(R10BIO_IsSync, &r10_bio->state)) | 
|  | sync_request_write(mddev, r10_bio); | 
|  | else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) | 
|  | recovery_request_write(mddev, r10_bio); | 
|  | else if (test_bit(R10BIO_ReadError, &r10_bio->state)) | 
|  | handle_read_error(mddev, r10_bio); | 
|  | else { | 
|  | /* just a partial read to be scheduled from a | 
|  | * separate context | 
|  | */ | 
|  | int slot = r10_bio->read_slot; | 
|  | generic_make_request(r10_bio->devs[slot].bio); | 
|  | } | 
|  |  | 
|  | cond_resched(); | 
|  | if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) | 
|  | md_check_recovery(mddev); | 
|  | } | 
|  | blk_finish_plug(&plug); | 
|  | } | 
|  |  | 
|  | static int init_resync(struct r10conf *conf) | 
|  | { | 
|  | int buffs; | 
|  | int i; | 
|  |  | 
|  | buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; | 
|  | BUG_ON(conf->r10buf_pool); | 
|  | conf->have_replacement = 0; | 
|  | for (i = 0; i < conf->geo.raid_disks; i++) | 
|  | if (conf->mirrors[i].replacement) | 
|  | conf->have_replacement = 1; | 
|  | conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); | 
|  | if (!conf->r10buf_pool) | 
|  | return -ENOMEM; | 
|  | conf->next_resync = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * perform a "sync" on one "block" | 
|  | * | 
|  | * We need to make sure that no normal I/O request - particularly write | 
|  | * requests - conflict with active sync requests. | 
|  | * | 
|  | * This is achieved by tracking pending requests and a 'barrier' concept | 
|  | * that can be installed to exclude normal IO requests. | 
|  | * | 
|  | * Resync and recovery are handled very differently. | 
|  | * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. | 
|  | * | 
|  | * For resync, we iterate over virtual addresses, read all copies, | 
|  | * and update if there are differences.  If only one copy is live, | 
|  | * skip it. | 
|  | * For recovery, we iterate over physical addresses, read a good | 
|  | * value for each non-in_sync drive, and over-write. | 
|  | * | 
|  | * So, for recovery we may have several outstanding complex requests for a | 
|  | * given address, one for each out-of-sync device.  We model this by allocating | 
|  | * a number of r10_bio structures, one for each out-of-sync device. | 
|  | * As we setup these structures, we collect all bio's together into a list | 
|  | * which we then process collectively to add pages, and then process again | 
|  | * to pass to generic_make_request. | 
|  | * | 
|  | * The r10_bio structures are linked using a borrowed master_bio pointer. | 
|  | * This link is counted in ->remaining.  When the r10_bio that points to NULL | 
|  | * has its remaining count decremented to 0, the whole complex operation | 
|  | * is complete. | 
|  | * | 
|  | */ | 
|  |  | 
|  | static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, | 
|  | int *skipped) | 
|  | { | 
|  | struct r10conf *conf = mddev->private; | 
|  | struct r10bio *r10_bio; | 
|  | struct bio *biolist = NULL, *bio; | 
|  | sector_t max_sector, nr_sectors; | 
|  | int i; | 
|  | int max_sync; | 
|  | sector_t sync_blocks; | 
|  | sector_t sectors_skipped = 0; | 
|  | int chunks_skipped = 0; | 
|  | sector_t chunk_mask = conf->geo.chunk_mask; | 
|  |  | 
|  | if (!conf->r10buf_pool) | 
|  | if (init_resync(conf)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Allow skipping a full rebuild for incremental assembly | 
|  | * of a clean array, like RAID1 does. | 
|  | */ | 
|  | if (mddev->bitmap == NULL && | 
|  | mddev->recovery_cp == MaxSector && | 
|  | mddev->reshape_position == MaxSector && | 
|  | !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && | 
|  | !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && | 
|  | !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && | 
|  | conf->fullsync == 0) { | 
|  | *skipped = 1; | 
|  | return mddev->dev_sectors - sector_nr; | 
|  | } | 
|  |  | 
|  | skipped: | 
|  | max_sector = mddev->dev_sectors; | 
|  | if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || | 
|  | test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) | 
|  | max_sector = mddev->resync_max_sectors; | 
|  | if (sector_nr >= max_sector) { | 
|  | /* If we aborted, we need to abort the | 
|  | * sync on the 'current' bitmap chucks (there can | 
|  | * be several when recovering multiple devices). | 
|  | * as we may have started syncing it but not finished. | 
|  | * We can find the current address in | 
|  | * mddev->curr_resync, but for recovery, | 
|  | * we need to convert that to several | 
|  | * virtual addresses. | 
|  | */ | 
|  | if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { | 
|  | end_reshape(conf); | 
|  | close_sync(conf); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (mddev->curr_resync < max_sector) { /* aborted */ | 
|  | if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) | 
|  | bitmap_end_sync(mddev->bitmap, mddev->curr_resync, | 
|  | &sync_blocks, 1); | 
|  | else for (i = 0; i < conf->geo.raid_disks; i++) { | 
|  | sector_t sect = | 
|  | raid10_find_virt(conf, mddev->curr_resync, i); | 
|  | bitmap_end_sync(mddev->bitmap, sect, | 
|  | &sync_blocks, 1); | 
|  | } | 
|  | } else { | 
|  | /* completed sync */ | 
|  | if ((!mddev->bitmap || conf->fullsync) | 
|  | && conf->have_replacement | 
|  | && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { | 
|  | /* Completed a full sync so the replacements | 
|  | * are now fully recovered. | 
|  | */ | 
|  | for (i = 0; i < conf->geo.raid_disks; i++) | 
|  | if (conf->mirrors[i].replacement) | 
|  | conf->mirrors[i].replacement | 
|  | ->recovery_offset | 
|  | = MaxSector; | 
|  | } | 
|  | conf->fullsync = 0; | 
|  | } | 
|  | bitmap_close_sync(mddev->bitmap); | 
|  | close_sync(conf); | 
|  | *skipped = 1; | 
|  | return sectors_skipped; | 
|  | } | 
|  |  | 
|  | if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) | 
|  | return reshape_request(mddev, sector_nr, skipped); | 
|  |  | 
|  | if (chunks_skipped >= conf->geo.raid_disks) { | 
|  | /* if there has been nothing to do on any drive, | 
|  | * then there is nothing to do at all.. | 
|  | */ | 
|  | *skipped = 1; | 
|  | return (max_sector - sector_nr) + sectors_skipped; | 
|  | } | 
|  |  | 
|  | if (max_sector > mddev->resync_max) | 
|  | max_sector = mddev->resync_max; /* Don't do IO beyond here */ | 
|  |  | 
|  | /* make sure whole request will fit in a chunk - if chunks | 
|  | * are meaningful | 
|  | */ | 
|  | if (conf->geo.near_copies < conf->geo.raid_disks && | 
|  | max_sector > (sector_nr | chunk_mask)) | 
|  | max_sector = (sector_nr | chunk_mask) + 1; | 
|  |  | 
|  | /* Again, very different code for resync and recovery. | 
|  | * Both must result in an r10bio with a list of bios that | 
|  | * have bi_end_io, bi_sector, bi_bdev set, | 
|  | * and bi_private set to the r10bio. | 
|  | * For recovery, we may actually create several r10bios | 
|  | * with 2 bios in each, that correspond to the bios in the main one. | 
|  | * In this case, the subordinate r10bios link back through a | 
|  | * borrowed master_bio pointer, and the counter in the master | 
|  | * includes a ref from each subordinate. | 
|  | */ | 
|  | /* First, we decide what to do and set ->bi_end_io | 
|  | * To end_sync_read if we want to read, and | 
|  | * end_sync_write if we will want to write. | 
|  | */ | 
|  |  | 
|  | max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); | 
|  | if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { | 
|  | /* recovery... the complicated one */ | 
|  | int j; | 
|  | r10_bio = NULL; | 
|  |  | 
|  | for (i = 0 ; i < conf->geo.raid_disks; i++) { | 
|  | int still_degraded; | 
|  | struct r10bio *rb2; | 
|  | sector_t sect; | 
|  | int must_sync; | 
|  | int any_working; | 
|  | struct raid10_info *mirror = &conf->mirrors[i]; | 
|  |  | 
|  | if ((mirror->rdev == NULL || | 
|  | test_bit(In_sync, &mirror->rdev->flags)) | 
|  | && | 
|  | (mirror->replacement == NULL || | 
|  | test_bit(Faulty, | 
|  | &mirror->replacement->flags))) | 
|  | continue; | 
|  |  | 
|  | still_degraded = 0; | 
|  | /* want to reconstruct this device */ | 
|  | rb2 = r10_bio; | 
|  | sect = raid10_find_virt(conf, sector_nr, i); | 
|  | if (sect >= mddev->resync_max_sectors) { | 
|  | /* last stripe is not complete - don't | 
|  | * try to recover this sector. | 
|  | */ | 
|  | continue; | 
|  | } | 
|  | /* Unless we are doing a full sync, or a replacement | 
|  | * we only need to recover the block if it is set in | 
|  | * the bitmap | 
|  | */ | 
|  | must_sync = bitmap_start_sync(mddev->bitmap, sect, | 
|  | &sync_blocks, 1); | 
|  | if (sync_blocks < max_sync) | 
|  | max_sync = sync_blocks; | 
|  | if (!must_sync && | 
|  | mirror->replacement == NULL && | 
|  | !conf->fullsync) { | 
|  | /* yep, skip the sync_blocks here, but don't assume | 
|  | * that there will never be anything to do here | 
|  | */ | 
|  | chunks_skipped = -1; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); | 
|  | r10_bio->state = 0; | 
|  | raise_barrier(conf, rb2 != NULL); | 
|  | atomic_set(&r10_bio->remaining, 0); | 
|  |  | 
|  | r10_bio->master_bio = (struct bio*)rb2; | 
|  | if (rb2) | 
|  | atomic_inc(&rb2->remaining); | 
|  | r10_bio->mddev = mddev; | 
|  | set_bit(R10BIO_IsRecover, &r10_bio->state); | 
|  | r10_bio->sector = sect; | 
|  |  | 
|  | raid10_find_phys(conf, r10_bio); | 
|  |  | 
|  | /* Need to check if the array will still be | 
|  | * degraded | 
|  | */ | 
|  | for (j = 0; j < conf->geo.raid_disks; j++) | 
|  | if (conf->mirrors[j].rdev == NULL || | 
|  | test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { | 
|  | still_degraded = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | must_sync = bitmap_start_sync(mddev->bitmap, sect, | 
|  | &sync_blocks, still_degraded); | 
|  |  | 
|  | any_working = 0; | 
|  | for (j=0; j<conf->copies;j++) { | 
|  | int k; | 
|  | int d = r10_bio->devs[j].devnum; | 
|  | sector_t from_addr, to_addr; | 
|  | struct md_rdev *rdev; | 
|  | sector_t sector, first_bad; | 
|  | int bad_sectors; | 
|  | if (!conf->mirrors[d].rdev || | 
|  | !test_bit(In_sync, &conf->mirrors[d].rdev->flags)) | 
|  | continue; | 
|  | /* This is where we read from */ | 
|  | any_working = 1; | 
|  | rdev = conf->mirrors[d].rdev; | 
|  | sector = r10_bio->devs[j].addr; | 
|  |  | 
|  | if (is_badblock(rdev, sector, max_sync, | 
|  | &first_bad, &bad_sectors)) { | 
|  | if (first_bad > sector) | 
|  | max_sync = first_bad - sector; | 
|  | else { | 
|  | bad_sectors -= (sector | 
|  | - first_bad); | 
|  | if (max_sync > bad_sectors) | 
|  | max_sync = bad_sectors; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | bio = r10_bio->devs[0].bio; | 
|  | bio_reset(bio); | 
|  | bio->bi_next = biolist; | 
|  | biolist = bio; | 
|  | bio->bi_private = r10_bio; | 
|  | bio->bi_end_io = end_sync_read; | 
|  | bio->bi_rw = READ; | 
|  | from_addr = r10_bio->devs[j].addr; | 
|  | bio->bi_iter.bi_sector = from_addr + | 
|  | rdev->data_offset; | 
|  | bio->bi_bdev = rdev->bdev; | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | /* and we write to 'i' (if not in_sync) */ | 
|  |  | 
|  | for (k=0; k<conf->copies; k++) | 
|  | if (r10_bio->devs[k].devnum == i) | 
|  | break; | 
|  | BUG_ON(k == conf->copies); | 
|  | to_addr = r10_bio->devs[k].addr; | 
|  | r10_bio->devs[0].devnum = d; | 
|  | r10_bio->devs[0].addr = from_addr; | 
|  | r10_bio->devs[1].devnum = i; | 
|  | r10_bio->devs[1].addr = to_addr; | 
|  |  | 
|  | rdev = mirror->rdev; | 
|  | if (!test_bit(In_sync, &rdev->flags)) { | 
|  | bio = r10_bio->devs[1].bio; | 
|  | bio_reset(bio); | 
|  | bio->bi_next = biolist; | 
|  | biolist = bio; | 
|  | bio->bi_private = r10_bio; | 
|  | bio->bi_end_io = end_sync_write; | 
|  | bio->bi_rw = WRITE; | 
|  | bio->bi_iter.bi_sector = to_addr | 
|  | + rdev->data_offset; | 
|  | bio->bi_bdev = rdev->bdev; | 
|  | atomic_inc(&r10_bio->remaining); | 
|  | } else | 
|  | r10_bio->devs[1].bio->bi_end_io = NULL; | 
|  |  | 
|  | /* and maybe write to replacement */ | 
|  | bio = r10_bio->devs[1].repl_bio; | 
|  | if (bio) | 
|  | bio->bi_end_io = NULL; | 
|  | rdev = mirror->replacement; | 
|  | /* Note: if rdev != NULL, then bio | 
|  | * cannot be NULL as r10buf_pool_alloc will | 
|  | * have allocated it. | 
|  | * So the second test here is pointless. | 
|  | * But it keeps semantic-checkers happy, and | 
|  | * this comment keeps human reviewers | 
|  | * happy. | 
|  | */ | 
|  | if (rdev == NULL || bio == NULL || | 
|  | test_bit(Faulty, &rdev->flags)) | 
|  | break; | 
|  | bio_reset(bio); | 
|  | bio->bi_next = biolist; | 
|  | biolist = bio; | 
|  | bio->bi_private = r10_bio; | 
|  | bio->bi_end_io = end_sync_write; | 
|  | bio->bi_rw = WRITE; | 
|  | bio->bi_iter.bi_sector = to_addr + | 
|  | rdev->data_offset; | 
|  | bio->bi_bdev = rdev->bdev; | 
|  | atomic_inc(&r10_bio->remaining); | 
|  | break; | 
|  | } | 
|  | if (j == conf->copies) { | 
|  | /* Cannot recover, so abort the recovery or | 
|  | * record a bad block */ | 
|  | if (any_working) { | 
|  | /* problem is that there are bad blocks | 
|  | * on other device(s) | 
|  | */ | 
|  | int k; | 
|  | for (k = 0; k < conf->copies; k++) | 
|  | if (r10_bio->devs[k].devnum == i) | 
|  | break; | 
|  | if (!test_bit(In_sync, | 
|  | &mirror->rdev->flags) | 
|  | && !rdev_set_badblocks( | 
|  | mirror->rdev, | 
|  | r10_bio->devs[k].addr, | 
|  | max_sync, 0)) | 
|  | any_working = 0; | 
|  | if (mirror->replacement && | 
|  | !rdev_set_badblocks( | 
|  | mirror->replacement, | 
|  | r10_bio->devs[k].addr, | 
|  | max_sync, 0)) | 
|  | any_working = 0; | 
|  | } | 
|  | if (!any_working)  { | 
|  | if (!test_and_set_bit(MD_RECOVERY_INTR, | 
|  | &mddev->recovery)) | 
|  | printk(KERN_INFO "md/raid10:%s: insufficient " | 
|  | "working devices for recovery.\n", | 
|  | mdname(mddev)); | 
|  | mirror->recovery_disabled | 
|  | = mddev->recovery_disabled; | 
|  | } | 
|  | put_buf(r10_bio); | 
|  | if (rb2) | 
|  | atomic_dec(&rb2->remaining); | 
|  | r10_bio = rb2; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (biolist == NULL) { | 
|  | while (r10_bio) { | 
|  | struct r10bio *rb2 = r10_bio; | 
|  | r10_bio = (struct r10bio*) rb2->master_bio; | 
|  | rb2->master_bio = NULL; | 
|  | put_buf(rb2); | 
|  | } | 
|  | goto giveup; | 
|  | } | 
|  | } else { | 
|  | /* resync. Schedule a read for every block at this virt offset */ | 
|  | int count = 0; | 
|  |  | 
|  | bitmap_cond_end_sync(mddev->bitmap, sector_nr); | 
|  |  | 
|  | if (!bitmap_start_sync(mddev->bitmap, sector_nr, | 
|  | &sync_blocks, mddev->degraded) && | 
|  | !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, | 
|  | &mddev->recovery)) { | 
|  | /* We can skip this block */ | 
|  | *skipped = 1; | 
|  | return sync_blocks + sectors_skipped; | 
|  | } | 
|  | if (sync_blocks < max_sync) | 
|  | max_sync = sync_blocks; | 
|  | r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); | 
|  | r10_bio->state = 0; | 
|  |  | 
|  | r10_bio->mddev = mddev; | 
|  | atomic_set(&r10_bio->remaining, 0); | 
|  | raise_barrier(conf, 0); | 
|  | conf->next_resync = sector_nr; | 
|  |  | 
|  | r10_bio->master_bio = NULL; | 
|  | r10_bio->sector = sector_nr; | 
|  | set_bit(R10BIO_IsSync, &r10_bio->state); | 
|  | raid10_find_phys(conf, r10_bio); | 
|  | r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1; | 
|  |  | 
|  | for (i = 0; i < conf->copies; i++) { | 
|  | int d = r10_bio->devs[i].devnum; | 
|  | sector_t first_bad, sector; | 
|  | int bad_sectors; | 
|  |  | 
|  | if (r10_bio->devs[i].repl_bio) | 
|  | r10_bio->devs[i].repl_bio->bi_end_io = NULL; | 
|  |  | 
|  | bio = r10_bio->devs[i].bio; | 
|  | bio_reset(bio); | 
|  | bio->bi_error = -EIO; | 
|  | if (conf->mirrors[d].rdev == NULL || | 
|  | test_bit(Faulty, &conf->mirrors[d].rdev->flags)) | 
|  | continue; | 
|  | sector = r10_bio->devs[i].addr; | 
|  | if (is_badblock(conf->mirrors[d].rdev, | 
|  | sector, max_sync, | 
|  | &first_bad, &bad_sectors)) { | 
|  | if (first_bad > sector) | 
|  | max_sync = first_bad - sector; | 
|  | else { | 
|  | bad_sectors -= (sector - first_bad); | 
|  | if (max_sync > bad_sectors) | 
|  | max_sync = bad_sectors; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | atomic_inc(&conf->mirrors[d].rdev->nr_pending); | 
|  | atomic_inc(&r10_bio->remaining); | 
|  | bio->bi_next = biolist; | 
|  | biolist = bio; | 
|  | bio->bi_private = r10_bio; | 
|  | bio->bi_end_io = end_sync_read; | 
|  | bio->bi_rw = READ; | 
|  | bio->bi_iter.bi_sector = sector + | 
|  | conf->mirrors[d].rdev->data_offset; | 
|  | bio->bi_bdev = conf->mirrors[d].rdev->bdev; | 
|  | count++; | 
|  |  | 
|  | if (conf->mirrors[d].replacement == NULL || | 
|  | test_bit(Faulty, | 
|  | &conf->mirrors[d].replacement->flags)) | 
|  | continue; | 
|  |  | 
|  | /* Need to set up for writing to the replacement */ | 
|  | bio = r10_bio->devs[i].repl_bio; | 
|  | bio_reset(bio); | 
|  | bio->bi_error = -EIO; | 
|  |  | 
|  | sector = r10_bio->devs[i].addr; | 
|  | atomic_inc(&conf->mirrors[d].rdev->nr_pending); | 
|  | bio->bi_next = biolist; | 
|  | biolist = bio; | 
|  | bio->bi_private = r10_bio; | 
|  | bio->bi_end_io = end_sync_write; | 
|  | bio->bi_rw = WRITE; | 
|  | bio->bi_iter.bi_sector = sector + | 
|  | conf->mirrors[d].replacement->data_offset; | 
|  | bio->bi_bdev = conf->mirrors[d].replacement->bdev; | 
|  | count++; | 
|  | } | 
|  |  | 
|  | if (count < 2) { | 
|  | for (i=0; i<conf->copies; i++) { | 
|  | int d = r10_bio->devs[i].devnum; | 
|  | if (r10_bio->devs[i].bio->bi_end_io) | 
|  | rdev_dec_pending(conf->mirrors[d].rdev, | 
|  | mddev); | 
|  | if (r10_bio->devs[i].repl_bio && | 
|  | r10_bio->devs[i].repl_bio->bi_end_io) | 
|  | rdev_dec_pending( | 
|  | conf->mirrors[d].replacement, | 
|  | mddev); | 
|  | } | 
|  | put_buf(r10_bio); | 
|  | biolist = NULL; | 
|  | goto giveup; | 
|  | } | 
|  | } | 
|  |  | 
|  | nr_sectors = 0; | 
|  | if (sector_nr + max_sync < max_sector) | 
|  | max_sector = sector_nr + max_sync; | 
|  | do { | 
|  | struct page *page; | 
|  | int len = PAGE_SIZE; | 
|  | if (sector_nr + (len>>9) > max_sector) | 
|  | len = (max_sector - sector_nr) << 9; | 
|  | if (len == 0) | 
|  | break; | 
|  | for (bio= biolist ; bio ; bio=bio->bi_next) { | 
|  | struct bio *bio2; | 
|  | page = bio->bi_io_vec[bio->bi_vcnt].bv_page; | 
|  | if (bio_add_page(bio, page, len, 0)) | 
|  | continue; | 
|  |  | 
|  | /* stop here */ | 
|  | bio->bi_io_vec[bio->bi_vcnt].bv_page = page; | 
|  | for (bio2 = biolist; | 
|  | bio2 && bio2 != bio; | 
|  | bio2 = bio2->bi_next) { | 
|  | /* remove last page from this bio */ | 
|  | bio2->bi_vcnt--; | 
|  | bio2->bi_iter.bi_size -= len; | 
|  | bio_clear_flag(bio2, BIO_SEG_VALID); | 
|  | } | 
|  | goto bio_full; | 
|  | } | 
|  | nr_sectors += len>>9; | 
|  | sector_nr += len>>9; | 
|  | } while (biolist->bi_vcnt < RESYNC_PAGES); | 
|  | bio_full: | 
|  | r10_bio->sectors = nr_sectors; | 
|  |  | 
|  | while (biolist) { | 
|  | bio = biolist; | 
|  | biolist = biolist->bi_next; | 
|  |  | 
|  | bio->bi_next = NULL; | 
|  | r10_bio = bio->bi_private; | 
|  | r10_bio->sectors = nr_sectors; | 
|  |  | 
|  | if (bio->bi_end_io == end_sync_read) { | 
|  | md_sync_acct(bio->bi_bdev, nr_sectors); | 
|  | bio->bi_error = 0; | 
|  | generic_make_request(bio); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sectors_skipped) | 
|  | /* pretend they weren't skipped, it makes | 
|  | * no important difference in this case | 
|  | */ | 
|  | md_done_sync(mddev, sectors_skipped, 1); | 
|  |  | 
|  | return sectors_skipped + nr_sectors; | 
|  | giveup: | 
|  | /* There is nowhere to write, so all non-sync | 
|  | * drives must be failed or in resync, all drives | 
|  | * have a bad block, so try the next chunk... | 
|  | */ | 
|  | if (sector_nr + max_sync < max_sector) | 
|  | max_sector = sector_nr + max_sync; | 
|  |  | 
|  | sectors_skipped += (max_sector - sector_nr); | 
|  | chunks_skipped ++; | 
|  | sector_nr = max_sector; | 
|  | goto skipped; | 
|  | } | 
|  |  | 
|  | static sector_t | 
|  | raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks) | 
|  | { | 
|  | sector_t size; | 
|  | struct r10conf *conf = mddev->private; | 
|  |  | 
|  | if (!raid_disks) | 
|  | raid_disks = min(conf->geo.raid_disks, | 
|  | conf->prev.raid_disks); | 
|  | if (!sectors) | 
|  | sectors = conf->dev_sectors; | 
|  |  | 
|  | size = sectors >> conf->geo.chunk_shift; | 
|  | sector_div(size, conf->geo.far_copies); | 
|  | size = size * raid_disks; | 
|  | sector_div(size, conf->geo.near_copies); | 
|  |  | 
|  | return size << conf->geo.chunk_shift; | 
|  | } | 
|  |  | 
|  | static void calc_sectors(struct r10conf *conf, sector_t size) | 
|  | { | 
|  | /* Calculate the number of sectors-per-device that will | 
|  | * actually be used, and set conf->dev_sectors and | 
|  | * conf->stride | 
|  | */ | 
|  |  | 
|  | size = size >> conf->geo.chunk_shift; | 
|  | sector_div(size, conf->geo.far_copies); | 
|  | size = size * conf->geo.raid_disks; | 
|  | sector_div(size, conf->geo.near_copies); | 
|  | /* 'size' is now the number of chunks in the array */ | 
|  | /* calculate "used chunks per device" */ | 
|  | size = size * conf->copies; | 
|  |  | 
|  | /* We need to round up when dividing by raid_disks to | 
|  | * get the stride size. | 
|  | */ | 
|  | size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks); | 
|  |  | 
|  | conf->dev_sectors = size << conf->geo.chunk_shift; | 
|  |  | 
|  | if (conf->geo.far_offset) | 
|  | conf->geo.stride = 1 << conf->geo.chunk_shift; | 
|  | else { | 
|  | sector_div(size, conf->geo.far_copies); | 
|  | conf->geo.stride = size << conf->geo.chunk_shift; | 
|  | } | 
|  | } | 
|  |  | 
|  | enum geo_type {geo_new, geo_old, geo_start}; | 
|  | static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new) | 
|  | { | 
|  | int nc, fc, fo; | 
|  | int layout, chunk, disks; | 
|  | switch (new) { | 
|  | case geo_old: | 
|  | layout = mddev->layout; | 
|  | chunk = mddev->chunk_sectors; | 
|  | disks = mddev->raid_disks - mddev->delta_disks; | 
|  | break; | 
|  | case geo_new: | 
|  | layout = mddev->new_layout; | 
|  | chunk = mddev->new_chunk_sectors; | 
|  | disks = mddev->raid_disks; | 
|  | break; | 
|  | default: /* avoid 'may be unused' warnings */ | 
|  | case geo_start: /* new when starting reshape - raid_disks not | 
|  | * updated yet. */ | 
|  | layout = mddev->new_layout; | 
|  | chunk = mddev->new_chunk_sectors; | 
|  | disks = mddev->raid_disks + mddev->delta_disks; | 
|  | break; | 
|  | } | 
|  | if (layout >> 18) | 
|  | return -1; | 
|  | if (chunk < (PAGE_SIZE >> 9) || | 
|  | !is_power_of_2(chunk)) | 
|  | return -2; | 
|  | nc = layout & 255; | 
|  | fc = (layout >> 8) & 255; | 
|  | fo = layout & (1<<16); | 
|  | geo->raid_disks = disks; | 
|  | geo->near_copies = nc; | 
|  | geo->far_copies = fc; | 
|  | geo->far_offset = fo; | 
|  | geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks; | 
|  | geo->chunk_mask = chunk - 1; | 
|  | geo->chunk_shift = ffz(~chunk); | 
|  | return nc*fc; | 
|  | } | 
|  |  | 
|  | static struct r10conf *setup_conf(struct mddev *mddev) | 
|  | { | 
|  | struct r10conf *conf = NULL; | 
|  | int err = -EINVAL; | 
|  | struct geom geo; | 
|  | int copies; | 
|  |  | 
|  | copies = setup_geo(&geo, mddev, geo_new); | 
|  |  | 
|  | if (copies == -2) { | 
|  | printk(KERN_ERR "md/raid10:%s: chunk size must be " | 
|  | "at least PAGE_SIZE(%ld) and be a power of 2.\n", | 
|  | mdname(mddev), PAGE_SIZE); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (copies < 2 || copies > mddev->raid_disks) { | 
|  | printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", | 
|  | mdname(mddev), mddev->new_layout); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | err = -ENOMEM; | 
|  | conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL); | 
|  | if (!conf) | 
|  | goto out; | 
|  |  | 
|  | /* FIXME calc properly */ | 
|  | conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks + | 
|  | max(0,-mddev->delta_disks)), | 
|  | GFP_KERNEL); | 
|  | if (!conf->mirrors) | 
|  | goto out; | 
|  |  | 
|  | conf->tmppage = alloc_page(GFP_KERNEL); | 
|  | if (!conf->tmppage) | 
|  | goto out; | 
|  |  | 
|  | conf->geo = geo; | 
|  | conf->copies = copies; | 
|  | conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, | 
|  | r10bio_pool_free, conf); | 
|  | if (!conf->r10bio_pool) | 
|  | goto out; | 
|  |  | 
|  | calc_sectors(conf, mddev->dev_sectors); | 
|  | if (mddev->reshape_position == MaxSector) { | 
|  | conf->prev = conf->geo; | 
|  | conf->reshape_progress = MaxSector; | 
|  | } else { | 
|  | if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | conf->reshape_progress = mddev->reshape_position; | 
|  | if (conf->prev.far_offset) | 
|  | conf->prev.stride = 1 << conf->prev.chunk_shift; | 
|  | else | 
|  | /* far_copies must be 1 */ | 
|  | conf->prev.stride = conf->dev_sectors; | 
|  | } | 
|  | conf->reshape_safe = conf->reshape_progress; | 
|  | spin_lock_init(&conf->device_lock); | 
|  | INIT_LIST_HEAD(&conf->retry_list); | 
|  | INIT_LIST_HEAD(&conf->bio_end_io_list); | 
|  |  | 
|  | spin_lock_init(&conf->resync_lock); | 
|  | init_waitqueue_head(&conf->wait_barrier); | 
|  |  | 
|  | conf->thread = md_register_thread(raid10d, mddev, "raid10"); | 
|  | if (!conf->thread) | 
|  | goto out; | 
|  |  | 
|  | conf->mddev = mddev; | 
|  | return conf; | 
|  |  | 
|  | out: | 
|  | if (err == -ENOMEM) | 
|  | printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", | 
|  | mdname(mddev)); | 
|  | if (conf) { | 
|  | if (conf->r10bio_pool) | 
|  | mempool_destroy(conf->r10bio_pool); | 
|  | kfree(conf->mirrors); | 
|  | safe_put_page(conf->tmppage); | 
|  | kfree(conf); | 
|  | } | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | static int run(struct mddev *mddev) | 
|  | { | 
|  | struct r10conf *conf; | 
|  | int i, disk_idx, chunk_size; | 
|  | struct raid10_info *disk; | 
|  | struct md_rdev *rdev; | 
|  | sector_t size; | 
|  | sector_t min_offset_diff = 0; | 
|  | int first = 1; | 
|  | bool discard_supported = false; | 
|  |  | 
|  | if (mddev->private == NULL) { | 
|  | conf = setup_conf(mddev); | 
|  | if (IS_ERR(conf)) | 
|  | return PTR_ERR(conf); | 
|  | mddev->private = conf; | 
|  | } | 
|  | conf = mddev->private; | 
|  | if (!conf) | 
|  | goto out; | 
|  |  | 
|  | mddev->thread = conf->thread; | 
|  | conf->thread = NULL; | 
|  |  | 
|  | chunk_size = mddev->chunk_sectors << 9; | 
|  | if (mddev->queue) { | 
|  | blk_queue_max_discard_sectors(mddev->queue, | 
|  | mddev->chunk_sectors); | 
|  | blk_queue_max_write_same_sectors(mddev->queue, 0); | 
|  | blk_queue_io_min(mddev->queue, chunk_size); | 
|  | if (conf->geo.raid_disks % conf->geo.near_copies) | 
|  | blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks); | 
|  | else | 
|  | blk_queue_io_opt(mddev->queue, chunk_size * | 
|  | (conf->geo.raid_disks / conf->geo.near_copies)); | 
|  | } | 
|  |  | 
|  | rdev_for_each(rdev, mddev) { | 
|  | long long diff; | 
|  | struct request_queue *q; | 
|  |  | 
|  | disk_idx = rdev->raid_disk; | 
|  | if (disk_idx < 0) | 
|  | continue; | 
|  | if (disk_idx >= conf->geo.raid_disks && | 
|  | disk_idx >= conf->prev.raid_disks) | 
|  | continue; | 
|  | disk = conf->mirrors + disk_idx; | 
|  |  | 
|  | if (test_bit(Replacement, &rdev->flags)) { | 
|  | if (disk->replacement) | 
|  | goto out_free_conf; | 
|  | disk->replacement = rdev; | 
|  | } else { | 
|  | if (disk->rdev) | 
|  | goto out_free_conf; | 
|  | disk->rdev = rdev; | 
|  | } | 
|  | q = bdev_get_queue(rdev->bdev); | 
|  | diff = (rdev->new_data_offset - rdev->data_offset); | 
|  | if (!mddev->reshape_backwards) | 
|  | diff = -diff; | 
|  | if (diff < 0) | 
|  | diff = 0; | 
|  | if (first || diff < min_offset_diff) | 
|  | min_offset_diff = diff; | 
|  |  | 
|  | if (mddev->gendisk) | 
|  | disk_stack_limits(mddev->gendisk, rdev->bdev, | 
|  | rdev->data_offset << 9); | 
|  |  | 
|  | disk->head_position = 0; | 
|  |  | 
|  | if (blk_queue_discard(bdev_get_queue(rdev->bdev))) | 
|  | discard_supported = true; | 
|  | } | 
|  |  | 
|  | if (mddev->queue) { | 
|  | if (discard_supported) | 
|  | queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, | 
|  | mddev->queue); | 
|  | else | 
|  | queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, | 
|  | mddev->queue); | 
|  | } | 
|  | /* need to check that every block has at least one working mirror */ | 
|  | if (!enough(conf, -1)) { | 
|  | printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", | 
|  | mdname(mddev)); | 
|  | goto out_free_conf; | 
|  | } | 
|  |  | 
|  | if (conf->reshape_progress != MaxSector) { | 
|  | /* must ensure that shape change is supported */ | 
|  | if (conf->geo.far_copies != 1 && | 
|  | conf->geo.far_offset == 0) | 
|  | goto out_free_conf; | 
|  | if (conf->prev.far_copies != 1 && | 
|  | conf->prev.far_offset == 0) | 
|  | goto out_free_conf; | 
|  | } | 
|  |  | 
|  | mddev->degraded = 0; | 
|  | for (i = 0; | 
|  | i < conf->geo.raid_disks | 
|  | || i < conf->prev.raid_disks; | 
|  | i++) { | 
|  |  | 
|  | disk = conf->mirrors + i; | 
|  |  | 
|  | if (!disk->rdev && disk->replacement) { | 
|  | /* The replacement is all we have - use it */ | 
|  | disk->rdev = disk->replacement; | 
|  | disk->replacement = NULL; | 
|  | clear_bit(Replacement, &disk->rdev->flags); | 
|  | } | 
|  |  | 
|  | if (!disk->rdev || | 
|  | !test_bit(In_sync, &disk->rdev->flags)) { | 
|  | disk->head_position = 0; | 
|  | mddev->degraded++; | 
|  | if (disk->rdev && | 
|  | disk->rdev->saved_raid_disk < 0) | 
|  | conf->fullsync = 1; | 
|  | } | 
|  | disk->recovery_disabled = mddev->recovery_disabled - 1; | 
|  | } | 
|  |  | 
|  | if (mddev->recovery_cp != MaxSector) | 
|  | printk(KERN_NOTICE "md/raid10:%s: not clean" | 
|  | " -- starting background reconstruction\n", | 
|  | mdname(mddev)); | 
|  | printk(KERN_INFO | 
|  | "md/raid10:%s: active with %d out of %d devices\n", | 
|  | mdname(mddev), conf->geo.raid_disks - mddev->degraded, | 
|  | conf->geo.raid_disks); | 
|  | /* | 
|  | * Ok, everything is just fine now | 
|  | */ | 
|  | mddev->dev_sectors = conf->dev_sectors; | 
|  | size = raid10_size(mddev, 0, 0); | 
|  | md_set_array_sectors(mddev, size); | 
|  | mddev->resync_max_sectors = size; | 
|  |  | 
|  | if (mddev->queue) { | 
|  | int stripe = conf->geo.raid_disks * | 
|  | ((mddev->chunk_sectors << 9) / PAGE_SIZE); | 
|  |  | 
|  | /* Calculate max read-ahead size. | 
|  | * We need to readahead at least twice a whole stripe.... | 
|  | * maybe... | 
|  | */ | 
|  | stripe /= conf->geo.near_copies; | 
|  | if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) | 
|  | mddev->queue->backing_dev_info.ra_pages = 2 * stripe; | 
|  | } | 
|  |  | 
|  | if (md_integrity_register(mddev)) | 
|  | goto out_free_conf; | 
|  |  | 
|  | if (conf->reshape_progress != MaxSector) { | 
|  | unsigned long before_length, after_length; | 
|  |  | 
|  | before_length = ((1 << conf->prev.chunk_shift) * | 
|  | conf->prev.far_copies); | 
|  | after_length = ((1 << conf->geo.chunk_shift) * | 
|  | conf->geo.far_copies); | 
|  |  | 
|  | if (max(before_length, after_length) > min_offset_diff) { | 
|  | /* This cannot work */ | 
|  | printk("md/raid10: offset difference not enough to continue reshape\n"); | 
|  | goto out_free_conf; | 
|  | } | 
|  | conf->offset_diff = min_offset_diff; | 
|  |  | 
|  | clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); | 
|  | clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); | 
|  | set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); | 
|  | set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); | 
|  | mddev->sync_thread = md_register_thread(md_do_sync, mddev, | 
|  | "reshape"); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_free_conf: | 
|  | md_unregister_thread(&mddev->thread); | 
|  | if (conf->r10bio_pool) | 
|  | mempool_destroy(conf->r10bio_pool); | 
|  | safe_put_page(conf->tmppage); | 
|  | kfree(conf->mirrors); | 
|  | kfree(conf); | 
|  | mddev->private = NULL; | 
|  | out: | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | static void raid10_free(struct mddev *mddev, void *priv) | 
|  | { | 
|  | struct r10conf *conf = priv; | 
|  |  | 
|  | if (conf->r10bio_pool) | 
|  | mempool_destroy(conf->r10bio_pool); | 
|  | safe_put_page(conf->tmppage); | 
|  | kfree(conf->mirrors); | 
|  | kfree(conf->mirrors_old); | 
|  | kfree(conf->mirrors_new); | 
|  | kfree(conf); | 
|  | } | 
|  |  | 
|  | static void raid10_quiesce(struct mddev *mddev, int state) | 
|  | { | 
|  | struct r10conf *conf = mddev->private; | 
|  |  | 
|  | switch(state) { | 
|  | case 1: | 
|  | raise_barrier(conf, 0); | 
|  | break; | 
|  | case 0: | 
|  | lower_barrier(conf); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int raid10_resize(struct mddev *mddev, sector_t sectors) | 
|  | { | 
|  | /* Resize of 'far' arrays is not supported. | 
|  | * For 'near' and 'offset' arrays we can set the | 
|  | * number of sectors used to be an appropriate multiple | 
|  | * of the chunk size. | 
|  | * For 'offset', this is far_copies*chunksize. | 
|  | * For 'near' the multiplier is the LCM of | 
|  | * near_copies and raid_disks. | 
|  | * So if far_copies > 1 && !far_offset, fail. | 
|  | * Else find LCM(raid_disks, near_copy)*far_copies and | 
|  | * multiply by chunk_size.  Then round to this number. | 
|  | * This is mostly done by raid10_size() | 
|  | */ | 
|  | struct r10conf *conf = mddev->private; | 
|  | sector_t oldsize, size; | 
|  |  | 
|  | if (mddev->reshape_position != MaxSector) | 
|  | return -EBUSY; | 
|  |  | 
|  | if (conf->geo.far_copies > 1 && !conf->geo.far_offset) | 
|  | return -EINVAL; | 
|  |  | 
|  | oldsize = raid10_size(mddev, 0, 0); | 
|  | size = raid10_size(mddev, sectors, 0); | 
|  | if (mddev->external_size && | 
|  | mddev->array_sectors > size) | 
|  | return -EINVAL; | 
|  | if (mddev->bitmap) { | 
|  | int ret = bitmap_resize(mddev->bitmap, size, 0, 0); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | md_set_array_sectors(mddev, size); | 
|  | set_capacity(mddev->gendisk, mddev->array_sectors); | 
|  | revalidate_disk(mddev->gendisk); | 
|  | if (sectors > mddev->dev_sectors && | 
|  | mddev->recovery_cp > oldsize) { | 
|  | mddev->recovery_cp = oldsize; | 
|  | set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); | 
|  | } | 
|  | calc_sectors(conf, sectors); | 
|  | mddev->dev_sectors = conf->dev_sectors; | 
|  | mddev->resync_max_sectors = size; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs) | 
|  | { | 
|  | struct md_rdev *rdev; | 
|  | struct r10conf *conf; | 
|  |  | 
|  | if (mddev->degraded > 0) { | 
|  | printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", | 
|  | mdname(mddev)); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  | sector_div(size, devs); | 
|  |  | 
|  | /* Set new parameters */ | 
|  | mddev->new_level = 10; | 
|  | /* new layout: far_copies = 1, near_copies = 2 */ | 
|  | mddev->new_layout = (1<<8) + 2; | 
|  | mddev->new_chunk_sectors = mddev->chunk_sectors; | 
|  | mddev->delta_disks = mddev->raid_disks; | 
|  | mddev->raid_disks *= 2; | 
|  | /* make sure it will be not marked as dirty */ | 
|  | mddev->recovery_cp = MaxSector; | 
|  | mddev->dev_sectors = size; | 
|  |  | 
|  | conf = setup_conf(mddev); | 
|  | if (!IS_ERR(conf)) { | 
|  | rdev_for_each(rdev, mddev) | 
|  | if (rdev->raid_disk >= 0) { | 
|  | rdev->new_raid_disk = rdev->raid_disk * 2; | 
|  | rdev->sectors = size; | 
|  | } | 
|  | conf->barrier = 1; | 
|  | } | 
|  |  | 
|  | return conf; | 
|  | } | 
|  |  | 
|  | static void *raid10_takeover(struct mddev *mddev) | 
|  | { | 
|  | struct r0conf *raid0_conf; | 
|  |  | 
|  | /* raid10 can take over: | 
|  | *  raid0 - providing it has only two drives | 
|  | */ | 
|  | if (mddev->level == 0) { | 
|  | /* for raid0 takeover only one zone is supported */ | 
|  | raid0_conf = mddev->private; | 
|  | if (raid0_conf->nr_strip_zones > 1) { | 
|  | printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" | 
|  | " with more than one zone.\n", | 
|  | mdname(mddev)); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  | return raid10_takeover_raid0(mddev, | 
|  | raid0_conf->strip_zone->zone_end, | 
|  | raid0_conf->strip_zone->nb_dev); | 
|  | } | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | static int raid10_check_reshape(struct mddev *mddev) | 
|  | { | 
|  | /* Called when there is a request to change | 
|  | * - layout (to ->new_layout) | 
|  | * - chunk size (to ->new_chunk_sectors) | 
|  | * - raid_disks (by delta_disks) | 
|  | * or when trying to restart a reshape that was ongoing. | 
|  | * | 
|  | * We need to validate the request and possibly allocate | 
|  | * space if that might be an issue later. | 
|  | * | 
|  | * Currently we reject any reshape of a 'far' mode array, | 
|  | * allow chunk size to change if new is generally acceptable, | 
|  | * allow raid_disks to increase, and allow | 
|  | * a switch between 'near' mode and 'offset' mode. | 
|  | */ | 
|  | struct r10conf *conf = mddev->private; | 
|  | struct geom geo; | 
|  |  | 
|  | if (conf->geo.far_copies != 1 && !conf->geo.far_offset) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (setup_geo(&geo, mddev, geo_start) != conf->copies) | 
|  | /* mustn't change number of copies */ | 
|  | return -EINVAL; | 
|  | if (geo.far_copies > 1 && !geo.far_offset) | 
|  | /* Cannot switch to 'far' mode */ | 
|  | return -EINVAL; | 
|  |  | 
|  | if (mddev->array_sectors & geo.chunk_mask) | 
|  | /* not factor of array size */ | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!enough(conf, -1)) | 
|  | return -EINVAL; | 
|  |  | 
|  | kfree(conf->mirrors_new); | 
|  | conf->mirrors_new = NULL; | 
|  | if (mddev->delta_disks > 0) { | 
|  | /* allocate new 'mirrors' list */ | 
|  | conf->mirrors_new = kzalloc( | 
|  | sizeof(struct raid10_info) | 
|  | *(mddev->raid_disks + | 
|  | mddev->delta_disks), | 
|  | GFP_KERNEL); | 
|  | if (!conf->mirrors_new) | 
|  | return -ENOMEM; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Need to check if array has failed when deciding whether to: | 
|  | *  - start an array | 
|  | *  - remove non-faulty devices | 
|  | *  - add a spare | 
|  | *  - allow a reshape | 
|  | * This determination is simple when no reshape is happening. | 
|  | * However if there is a reshape, we need to carefully check | 
|  | * both the before and after sections. | 
|  | * This is because some failed devices may only affect one | 
|  | * of the two sections, and some non-in_sync devices may | 
|  | * be insync in the section most affected by failed devices. | 
|  | */ | 
|  | static int calc_degraded(struct r10conf *conf) | 
|  | { | 
|  | int degraded, degraded2; | 
|  | int i; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | degraded = 0; | 
|  | /* 'prev' section first */ | 
|  | for (i = 0; i < conf->prev.raid_disks; i++) { | 
|  | struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); | 
|  | if (!rdev || test_bit(Faulty, &rdev->flags)) | 
|  | degraded++; | 
|  | else if (!test_bit(In_sync, &rdev->flags)) | 
|  | /* When we can reduce the number of devices in | 
|  | * an array, this might not contribute to | 
|  | * 'degraded'.  It does now. | 
|  | */ | 
|  | degraded++; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | if (conf->geo.raid_disks == conf->prev.raid_disks) | 
|  | return degraded; | 
|  | rcu_read_lock(); | 
|  | degraded2 = 0; | 
|  | for (i = 0; i < conf->geo.raid_disks; i++) { | 
|  | struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev); | 
|  | if (!rdev || test_bit(Faulty, &rdev->flags)) | 
|  | degraded2++; | 
|  | else if (!test_bit(In_sync, &rdev->flags)) { | 
|  | /* If reshape is increasing the number of devices, | 
|  | * this section has already been recovered, so | 
|  | * it doesn't contribute to degraded. | 
|  | * else it does. | 
|  | */ | 
|  | if (conf->geo.raid_disks <= conf->prev.raid_disks) | 
|  | degraded2++; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | if (degraded2 > degraded) | 
|  | return degraded2; | 
|  | return degraded; | 
|  | } | 
|  |  | 
|  | static int raid10_start_reshape(struct mddev *mddev) | 
|  | { | 
|  | /* A 'reshape' has been requested. This commits | 
|  | * the various 'new' fields and sets MD_RECOVER_RESHAPE | 
|  | * This also checks if there are enough spares and adds them | 
|  | * to the array. | 
|  | * We currently require enough spares to make the final | 
|  | * array non-degraded.  We also require that the difference | 
|  | * between old and new data_offset - on each device - is | 
|  | * enough that we never risk over-writing. | 
|  | */ | 
|  |  | 
|  | unsigned long before_length, after_length; | 
|  | sector_t min_offset_diff = 0; | 
|  | int first = 1; | 
|  | struct geom new; | 
|  | struct r10conf *conf = mddev->private; | 
|  | struct md_rdev *rdev; | 
|  | int spares = 0; | 
|  | int ret; | 
|  |  | 
|  | if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) | 
|  | return -EBUSY; | 
|  |  | 
|  | if (setup_geo(&new, mddev, geo_start) != conf->copies) | 
|  | return -EINVAL; | 
|  |  | 
|  | before_length = ((1 << conf->prev.chunk_shift) * | 
|  | conf->prev.far_copies); | 
|  | after_length = ((1 << conf->geo.chunk_shift) * | 
|  | conf->geo.far_copies); | 
|  |  | 
|  | rdev_for_each(rdev, mddev) { | 
|  | if (!test_bit(In_sync, &rdev->flags) | 
|  | && !test_bit(Faulty, &rdev->flags)) | 
|  | spares++; | 
|  | if (rdev->raid_disk >= 0) { | 
|  | long long diff = (rdev->new_data_offset | 
|  | - rdev->data_offset); | 
|  | if (!mddev->reshape_backwards) | 
|  | diff = -diff; | 
|  | if (diff < 0) | 
|  | diff = 0; | 
|  | if (first || diff < min_offset_diff) | 
|  | min_offset_diff = diff; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (max(before_length, after_length) > min_offset_diff) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (spares < mddev->delta_disks) | 
|  | return -EINVAL; | 
|  |  | 
|  | conf->offset_diff = min_offset_diff; | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | if (conf->mirrors_new) { | 
|  | memcpy(conf->mirrors_new, conf->mirrors, | 
|  | sizeof(struct raid10_info)*conf->prev.raid_disks); | 
|  | smp_mb(); | 
|  | kfree(conf->mirrors_old); | 
|  | conf->mirrors_old = conf->mirrors; | 
|  | conf->mirrors = conf->mirrors_new; | 
|  | conf->mirrors_new = NULL; | 
|  | } | 
|  | setup_geo(&conf->geo, mddev, geo_start); | 
|  | smp_mb(); | 
|  | if (mddev->reshape_backwards) { | 
|  | sector_t size = raid10_size(mddev, 0, 0); | 
|  | if (size < mddev->array_sectors) { | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n", | 
|  | mdname(mddev)); | 
|  | return -EINVAL; | 
|  | } | 
|  | mddev->resync_max_sectors = size; | 
|  | conf->reshape_progress = size; | 
|  | } else | 
|  | conf->reshape_progress = 0; | 
|  | conf->reshape_safe = conf->reshape_progress; | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  |  | 
|  | if (mddev->delta_disks && mddev->bitmap) { | 
|  | ret = bitmap_resize(mddev->bitmap, | 
|  | raid10_size(mddev, 0, | 
|  | conf->geo.raid_disks), | 
|  | 0, 0); | 
|  | if (ret) | 
|  | goto abort; | 
|  | } | 
|  | if (mddev->delta_disks > 0) { | 
|  | rdev_for_each(rdev, mddev) | 
|  | if (rdev->raid_disk < 0 && | 
|  | !test_bit(Faulty, &rdev->flags)) { | 
|  | if (raid10_add_disk(mddev, rdev) == 0) { | 
|  | if (rdev->raid_disk >= | 
|  | conf->prev.raid_disks) | 
|  | set_bit(In_sync, &rdev->flags); | 
|  | else | 
|  | rdev->recovery_offset = 0; | 
|  |  | 
|  | if (sysfs_link_rdev(mddev, rdev)) | 
|  | /* Failure here  is OK */; | 
|  | } | 
|  | } else if (rdev->raid_disk >= conf->prev.raid_disks | 
|  | && !test_bit(Faulty, &rdev->flags)) { | 
|  | /* This is a spare that was manually added */ | 
|  | set_bit(In_sync, &rdev->flags); | 
|  | } | 
|  | } | 
|  | /* When a reshape changes the number of devices, | 
|  | * ->degraded is measured against the larger of the | 
|  | * pre and  post numbers. | 
|  | */ | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | mddev->degraded = calc_degraded(conf); | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | mddev->raid_disks = conf->geo.raid_disks; | 
|  | mddev->reshape_position = conf->reshape_progress; | 
|  | set_bit(MD_CHANGE_DEVS, &mddev->flags); | 
|  |  | 
|  | clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); | 
|  | clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); | 
|  | clear_bit(MD_RECOVERY_DONE, &mddev->recovery); | 
|  | set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); | 
|  | set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); | 
|  |  | 
|  | mddev->sync_thread = md_register_thread(md_do_sync, mddev, | 
|  | "reshape"); | 
|  | if (!mddev->sync_thread) { | 
|  | ret = -EAGAIN; | 
|  | goto abort; | 
|  | } | 
|  | conf->reshape_checkpoint = jiffies; | 
|  | md_wakeup_thread(mddev->sync_thread); | 
|  | md_new_event(mddev); | 
|  | return 0; | 
|  |  | 
|  | abort: | 
|  | mddev->recovery = 0; | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | conf->geo = conf->prev; | 
|  | mddev->raid_disks = conf->geo.raid_disks; | 
|  | rdev_for_each(rdev, mddev) | 
|  | rdev->new_data_offset = rdev->data_offset; | 
|  | smp_wmb(); | 
|  | conf->reshape_progress = MaxSector; | 
|  | conf->reshape_safe = MaxSector; | 
|  | mddev->reshape_position = MaxSector; | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Calculate the last device-address that could contain | 
|  | * any block from the chunk that includes the array-address 's' | 
|  | * and report the next address. | 
|  | * i.e. the address returned will be chunk-aligned and after | 
|  | * any data that is in the chunk containing 's'. | 
|  | */ | 
|  | static sector_t last_dev_address(sector_t s, struct geom *geo) | 
|  | { | 
|  | s = (s | geo->chunk_mask) + 1; | 
|  | s >>= geo->chunk_shift; | 
|  | s *= geo->near_copies; | 
|  | s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks); | 
|  | s *= geo->far_copies; | 
|  | s <<= geo->chunk_shift; | 
|  | return s; | 
|  | } | 
|  |  | 
|  | /* Calculate the first device-address that could contain | 
|  | * any block from the chunk that includes the array-address 's'. | 
|  | * This too will be the start of a chunk | 
|  | */ | 
|  | static sector_t first_dev_address(sector_t s, struct geom *geo) | 
|  | { | 
|  | s >>= geo->chunk_shift; | 
|  | s *= geo->near_copies; | 
|  | sector_div(s, geo->raid_disks); | 
|  | s *= geo->far_copies; | 
|  | s <<= geo->chunk_shift; | 
|  | return s; | 
|  | } | 
|  |  | 
|  | static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, | 
|  | int *skipped) | 
|  | { | 
|  | /* We simply copy at most one chunk (smallest of old and new) | 
|  | * at a time, possibly less if that exceeds RESYNC_PAGES, | 
|  | * or we hit a bad block or something. | 
|  | * This might mean we pause for normal IO in the middle of | 
|  | * a chunk, but that is not a problem as mddev->reshape_position | 
|  | * can record any location. | 
|  | * | 
|  | * If we will want to write to a location that isn't | 
|  | * yet recorded as 'safe' (i.e. in metadata on disk) then | 
|  | * we need to flush all reshape requests and update the metadata. | 
|  | * | 
|  | * When reshaping forwards (e.g. to more devices), we interpret | 
|  | * 'safe' as the earliest block which might not have been copied | 
|  | * down yet.  We divide this by previous stripe size and multiply | 
|  | * by previous stripe length to get lowest device offset that we | 
|  | * cannot write to yet. | 
|  | * We interpret 'sector_nr' as an address that we want to write to. | 
|  | * From this we use last_device_address() to find where we might | 
|  | * write to, and first_device_address on the  'safe' position. | 
|  | * If this 'next' write position is after the 'safe' position, | 
|  | * we must update the metadata to increase the 'safe' position. | 
|  | * | 
|  | * When reshaping backwards, we round in the opposite direction | 
|  | * and perform the reverse test:  next write position must not be | 
|  | * less than current safe position. | 
|  | * | 
|  | * In all this the minimum difference in data offsets | 
|  | * (conf->offset_diff - always positive) allows a bit of slack, | 
|  | * so next can be after 'safe', but not by more than offset_diff | 
|  | * | 
|  | * We need to prepare all the bios here before we start any IO | 
|  | * to ensure the size we choose is acceptable to all devices. | 
|  | * The means one for each copy for write-out and an extra one for | 
|  | * read-in. | 
|  | * We store the read-in bio in ->master_bio and the others in | 
|  | * ->devs[x].bio and ->devs[x].repl_bio. | 
|  | */ | 
|  | struct r10conf *conf = mddev->private; | 
|  | struct r10bio *r10_bio; | 
|  | sector_t next, safe, last; | 
|  | int max_sectors; | 
|  | int nr_sectors; | 
|  | int s; | 
|  | struct md_rdev *rdev; | 
|  | int need_flush = 0; | 
|  | struct bio *blist; | 
|  | struct bio *bio, *read_bio; | 
|  | int sectors_done = 0; | 
|  |  | 
|  | if (sector_nr == 0) { | 
|  | /* If restarting in the middle, skip the initial sectors */ | 
|  | if (mddev->reshape_backwards && | 
|  | conf->reshape_progress < raid10_size(mddev, 0, 0)) { | 
|  | sector_nr = (raid10_size(mddev, 0, 0) | 
|  | - conf->reshape_progress); | 
|  | } else if (!mddev->reshape_backwards && | 
|  | conf->reshape_progress > 0) | 
|  | sector_nr = conf->reshape_progress; | 
|  | if (sector_nr) { | 
|  | mddev->curr_resync_completed = sector_nr; | 
|  | sysfs_notify(&mddev->kobj, NULL, "sync_completed"); | 
|  | *skipped = 1; | 
|  | return sector_nr; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* We don't use sector_nr to track where we are up to | 
|  | * as that doesn't work well for ->reshape_backwards. | 
|  | * So just use ->reshape_progress. | 
|  | */ | 
|  | if (mddev->reshape_backwards) { | 
|  | /* 'next' is the earliest device address that we might | 
|  | * write to for this chunk in the new layout | 
|  | */ | 
|  | next = first_dev_address(conf->reshape_progress - 1, | 
|  | &conf->geo); | 
|  |  | 
|  | /* 'safe' is the last device address that we might read from | 
|  | * in the old layout after a restart | 
|  | */ | 
|  | safe = last_dev_address(conf->reshape_safe - 1, | 
|  | &conf->prev); | 
|  |  | 
|  | if (next + conf->offset_diff < safe) | 
|  | need_flush = 1; | 
|  |  | 
|  | last = conf->reshape_progress - 1; | 
|  | sector_nr = last & ~(sector_t)(conf->geo.chunk_mask | 
|  | & conf->prev.chunk_mask); | 
|  | if (sector_nr + RESYNC_BLOCK_SIZE/512 < last) | 
|  | sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512; | 
|  | } else { | 
|  | /* 'next' is after the last device address that we | 
|  | * might write to for this chunk in the new layout | 
|  | */ | 
|  | next = last_dev_address(conf->reshape_progress, &conf->geo); | 
|  |  | 
|  | /* 'safe' is the earliest device address that we might | 
|  | * read from in the old layout after a restart | 
|  | */ | 
|  | safe = first_dev_address(conf->reshape_safe, &conf->prev); | 
|  |  | 
|  | /* Need to update metadata if 'next' might be beyond 'safe' | 
|  | * as that would possibly corrupt data | 
|  | */ | 
|  | if (next > safe + conf->offset_diff) | 
|  | need_flush = 1; | 
|  |  | 
|  | sector_nr = conf->reshape_progress; | 
|  | last  = sector_nr | (conf->geo.chunk_mask | 
|  | & conf->prev.chunk_mask); | 
|  |  | 
|  | if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last) | 
|  | last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1; | 
|  | } | 
|  |  | 
|  | if (need_flush || | 
|  | time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { | 
|  | /* Need to update reshape_position in metadata */ | 
|  | wait_barrier(conf); | 
|  | mddev->reshape_position = conf->reshape_progress; | 
|  | if (mddev->reshape_backwards) | 
|  | mddev->curr_resync_completed = raid10_size(mddev, 0, 0) | 
|  | - conf->reshape_progress; | 
|  | else | 
|  | mddev->curr_resync_completed = conf->reshape_progress; | 
|  | conf->reshape_checkpoint = jiffies; | 
|  | set_bit(MD_CHANGE_DEVS, &mddev->flags); | 
|  | md_wakeup_thread(mddev->thread); | 
|  | wait_event(mddev->sb_wait, mddev->flags == 0 || | 
|  | test_bit(MD_RECOVERY_INTR, &mddev->recovery)); | 
|  | if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { | 
|  | allow_barrier(conf); | 
|  | return sectors_done; | 
|  | } | 
|  | conf->reshape_safe = mddev->reshape_position; | 
|  | allow_barrier(conf); | 
|  | } | 
|  |  | 
|  | read_more: | 
|  | /* Now schedule reads for blocks from sector_nr to last */ | 
|  | r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); | 
|  | r10_bio->state = 0; | 
|  | raise_barrier(conf, sectors_done != 0); | 
|  | atomic_set(&r10_bio->remaining, 0); | 
|  | r10_bio->mddev = mddev; | 
|  | r10_bio->sector = sector_nr; | 
|  | set_bit(R10BIO_IsReshape, &r10_bio->state); | 
|  | r10_bio->sectors = last - sector_nr + 1; | 
|  | rdev = read_balance(conf, r10_bio, &max_sectors); | 
|  | BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state)); | 
|  |  | 
|  | if (!rdev) { | 
|  | /* Cannot read from here, so need to record bad blocks | 
|  | * on all the target devices. | 
|  | */ | 
|  | // FIXME | 
|  | mempool_free(r10_bio, conf->r10buf_pool); | 
|  | set_bit(MD_RECOVERY_INTR, &mddev->recovery); | 
|  | return sectors_done; | 
|  | } | 
|  |  | 
|  | read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev); | 
|  |  | 
|  | read_bio->bi_bdev = rdev->bdev; | 
|  | read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr | 
|  | + rdev->data_offset); | 
|  | read_bio->bi_private = r10_bio; | 
|  | read_bio->bi_end_io = end_sync_read; | 
|  | read_bio->bi_rw = READ; | 
|  | read_bio->bi_flags &= (~0UL << BIO_RESET_BITS); | 
|  | read_bio->bi_error = 0; | 
|  | read_bio->bi_vcnt = 0; | 
|  | read_bio->bi_iter.bi_size = 0; | 
|  | r10_bio->master_bio = read_bio; | 
|  | r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum; | 
|  |  | 
|  | /* Now find the locations in the new layout */ | 
|  | __raid10_find_phys(&conf->geo, r10_bio); | 
|  |  | 
|  | blist = read_bio; | 
|  | read_bio->bi_next = NULL; | 
|  |  | 
|  | for (s = 0; s < conf->copies*2; s++) { | 
|  | struct bio *b; | 
|  | int d = r10_bio->devs[s/2].devnum; | 
|  | struct md_rdev *rdev2; | 
|  | if (s&1) { | 
|  | rdev2 = conf->mirrors[d].replacement; | 
|  | b = r10_bio->devs[s/2].repl_bio; | 
|  | } else { | 
|  | rdev2 = conf->mirrors[d].rdev; | 
|  | b = r10_bio->devs[s/2].bio; | 
|  | } | 
|  | if (!rdev2 || test_bit(Faulty, &rdev2->flags)) | 
|  | continue; | 
|  |  | 
|  | bio_reset(b); | 
|  | b->bi_bdev = rdev2->bdev; | 
|  | b->bi_iter.bi_sector = r10_bio->devs[s/2].addr + | 
|  | rdev2->new_data_offset; | 
|  | b->bi_private = r10_bio; | 
|  | b->bi_end_io = end_reshape_write; | 
|  | b->bi_rw = WRITE; | 
|  | b->bi_next = blist; | 
|  | blist = b; | 
|  | } | 
|  |  | 
|  | /* Now add as many pages as possible to all of these bios. */ | 
|  |  | 
|  | nr_sectors = 0; | 
|  | for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) { | 
|  | struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page; | 
|  | int len = (max_sectors - s) << 9; | 
|  | if (len > PAGE_SIZE) | 
|  | len = PAGE_SIZE; | 
|  | for (bio = blist; bio ; bio = bio->bi_next) { | 
|  | struct bio *bio2; | 
|  | if (bio_add_page(bio, page, len, 0)) | 
|  | continue; | 
|  |  | 
|  | /* Didn't fit, must stop */ | 
|  | for (bio2 = blist; | 
|  | bio2 && bio2 != bio; | 
|  | bio2 = bio2->bi_next) { | 
|  | /* Remove last page from this bio */ | 
|  | bio2->bi_vcnt--; | 
|  | bio2->bi_iter.bi_size -= len; | 
|  | bio_clear_flag(bio2, BIO_SEG_VALID); | 
|  | } | 
|  | goto bio_full; | 
|  | } | 
|  | sector_nr += len >> 9; | 
|  | nr_sectors += len >> 9; | 
|  | } | 
|  | bio_full: | 
|  | r10_bio->sectors = nr_sectors; | 
|  |  | 
|  | /* Now submit the read */ | 
|  | md_sync_acct(read_bio->bi_bdev, r10_bio->sectors); | 
|  | atomic_inc(&r10_bio->remaining); | 
|  | read_bio->bi_next = NULL; | 
|  | generic_make_request(read_bio); | 
|  | sector_nr += nr_sectors; | 
|  | sectors_done += nr_sectors; | 
|  | if (sector_nr <= last) | 
|  | goto read_more; | 
|  |  | 
|  | /* Now that we have done the whole section we can | 
|  | * update reshape_progress | 
|  | */ | 
|  | if (mddev->reshape_backwards) | 
|  | conf->reshape_progress -= sectors_done; | 
|  | else | 
|  | conf->reshape_progress += sectors_done; | 
|  |  | 
|  | return sectors_done; | 
|  | } | 
|  |  | 
|  | static void end_reshape_request(struct r10bio *r10_bio); | 
|  | static int handle_reshape_read_error(struct mddev *mddev, | 
|  | struct r10bio *r10_bio); | 
|  | static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio) | 
|  | { | 
|  | /* Reshape read completed.  Hopefully we have a block | 
|  | * to write out. | 
|  | * If we got a read error then we do sync 1-page reads from | 
|  | * elsewhere until we find the data - or give up. | 
|  | */ | 
|  | struct r10conf *conf = mddev->private; | 
|  | int s; | 
|  |  | 
|  | if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) | 
|  | if (handle_reshape_read_error(mddev, r10_bio) < 0) { | 
|  | /* Reshape has been aborted */ | 
|  | md_done_sync(mddev, r10_bio->sectors, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* We definitely have the data in the pages, schedule the | 
|  | * writes. | 
|  | */ | 
|  | atomic_set(&r10_bio->remaining, 1); | 
|  | for (s = 0; s < conf->copies*2; s++) { | 
|  | struct bio *b; | 
|  | int d = r10_bio->devs[s/2].devnum; | 
|  | struct md_rdev *rdev; | 
|  | if (s&1) { | 
|  | rdev = conf->mirrors[d].replacement; | 
|  | b = r10_bio->devs[s/2].repl_bio; | 
|  | } else { | 
|  | rdev = conf->mirrors[d].rdev; | 
|  | b = r10_bio->devs[s/2].bio; | 
|  | } | 
|  | if (!rdev || test_bit(Faulty, &rdev->flags)) | 
|  | continue; | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | md_sync_acct(b->bi_bdev, r10_bio->sectors); | 
|  | atomic_inc(&r10_bio->remaining); | 
|  | b->bi_next = NULL; | 
|  | generic_make_request(b); | 
|  | } | 
|  | end_reshape_request(r10_bio); | 
|  | } | 
|  |  | 
|  | static void end_reshape(struct r10conf *conf) | 
|  | { | 
|  | if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) | 
|  | return; | 
|  |  | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | conf->prev = conf->geo; | 
|  | md_finish_reshape(conf->mddev); | 
|  | smp_wmb(); | 
|  | conf->reshape_progress = MaxSector; | 
|  | conf->reshape_safe = MaxSector; | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  |  | 
|  | /* read-ahead size must cover two whole stripes, which is | 
|  | * 2 * (datadisks) * chunksize where 'n' is the number of raid devices | 
|  | */ | 
|  | if (conf->mddev->queue) { | 
|  | int stripe = conf->geo.raid_disks * | 
|  | ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE); | 
|  | stripe /= conf->geo.near_copies; | 
|  | if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) | 
|  | conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; | 
|  | } | 
|  | conf->fullsync = 0; | 
|  | } | 
|  |  | 
|  | static int handle_reshape_read_error(struct mddev *mddev, | 
|  | struct r10bio *r10_bio) | 
|  | { | 
|  | /* Use sync reads to get the blocks from somewhere else */ | 
|  | int sectors = r10_bio->sectors; | 
|  | struct r10conf *conf = mddev->private; | 
|  | struct { | 
|  | struct r10bio r10_bio; | 
|  | struct r10dev devs[conf->copies]; | 
|  | } on_stack; | 
|  | struct r10bio *r10b = &on_stack.r10_bio; | 
|  | int slot = 0; | 
|  | int idx = 0; | 
|  | struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec; | 
|  |  | 
|  | r10b->sector = r10_bio->sector; | 
|  | __raid10_find_phys(&conf->prev, r10b); | 
|  |  | 
|  | while (sectors) { | 
|  | int s = sectors; | 
|  | int success = 0; | 
|  | int first_slot = slot; | 
|  |  | 
|  | if (s > (PAGE_SIZE >> 9)) | 
|  | s = PAGE_SIZE >> 9; | 
|  |  | 
|  | while (!success) { | 
|  | int d = r10b->devs[slot].devnum; | 
|  | struct md_rdev *rdev = conf->mirrors[d].rdev; | 
|  | sector_t addr; | 
|  | if (rdev == NULL || | 
|  | test_bit(Faulty, &rdev->flags) || | 
|  | !test_bit(In_sync, &rdev->flags)) | 
|  | goto failed; | 
|  |  | 
|  | addr = r10b->devs[slot].addr + idx * PAGE_SIZE; | 
|  | success = sync_page_io(rdev, | 
|  | addr, | 
|  | s << 9, | 
|  | bvec[idx].bv_page, | 
|  | READ, false); | 
|  | if (success) | 
|  | break; | 
|  | failed: | 
|  | slot++; | 
|  | if (slot >= conf->copies) | 
|  | slot = 0; | 
|  | if (slot == first_slot) | 
|  | break; | 
|  | } | 
|  | if (!success) { | 
|  | /* couldn't read this block, must give up */ | 
|  | set_bit(MD_RECOVERY_INTR, | 
|  | &mddev->recovery); | 
|  | return -EIO; | 
|  | } | 
|  | sectors -= s; | 
|  | idx++; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void end_reshape_write(struct bio *bio) | 
|  | { | 
|  | struct r10bio *r10_bio = bio->bi_private; | 
|  | struct mddev *mddev = r10_bio->mddev; | 
|  | struct r10conf *conf = mddev->private; | 
|  | int d; | 
|  | int slot; | 
|  | int repl; | 
|  | struct md_rdev *rdev = NULL; | 
|  |  | 
|  | d = find_bio_disk(conf, r10_bio, bio, &slot, &repl); | 
|  | if (repl) | 
|  | rdev = conf->mirrors[d].replacement; | 
|  | if (!rdev) { | 
|  | smp_mb(); | 
|  | rdev = conf->mirrors[d].rdev; | 
|  | } | 
|  |  | 
|  | if (bio->bi_error) { | 
|  | /* FIXME should record badblock */ | 
|  | md_error(mddev, rdev); | 
|  | } | 
|  |  | 
|  | rdev_dec_pending(rdev, mddev); | 
|  | end_reshape_request(r10_bio); | 
|  | } | 
|  |  | 
|  | static void end_reshape_request(struct r10bio *r10_bio) | 
|  | { | 
|  | if (!atomic_dec_and_test(&r10_bio->remaining)) | 
|  | return; | 
|  | md_done_sync(r10_bio->mddev, r10_bio->sectors, 1); | 
|  | bio_put(r10_bio->master_bio); | 
|  | put_buf(r10_bio); | 
|  | } | 
|  |  | 
|  | static void raid10_finish_reshape(struct mddev *mddev) | 
|  | { | 
|  | struct r10conf *conf = mddev->private; | 
|  |  | 
|  | if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) | 
|  | return; | 
|  |  | 
|  | if (mddev->delta_disks > 0) { | 
|  | sector_t size = raid10_size(mddev, 0, 0); | 
|  | md_set_array_sectors(mddev, size); | 
|  | if (mddev->recovery_cp > mddev->resync_max_sectors) { | 
|  | mddev->recovery_cp = mddev->resync_max_sectors; | 
|  | set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); | 
|  | } | 
|  | mddev->resync_max_sectors = size; | 
|  | set_capacity(mddev->gendisk, mddev->array_sectors); | 
|  | revalidate_disk(mddev->gendisk); | 
|  | } else { | 
|  | int d; | 
|  | for (d = conf->geo.raid_disks ; | 
|  | d < conf->geo.raid_disks - mddev->delta_disks; | 
|  | d++) { | 
|  | struct md_rdev *rdev = conf->mirrors[d].rdev; | 
|  | if (rdev) | 
|  | clear_bit(In_sync, &rdev->flags); | 
|  | rdev = conf->mirrors[d].replacement; | 
|  | if (rdev) | 
|  | clear_bit(In_sync, &rdev->flags); | 
|  | } | 
|  | } | 
|  | mddev->layout = mddev->new_layout; | 
|  | mddev->chunk_sectors = 1 << conf->geo.chunk_shift; | 
|  | mddev->reshape_position = MaxSector; | 
|  | mddev->delta_disks = 0; | 
|  | mddev->reshape_backwards = 0; | 
|  | } | 
|  |  | 
|  | static struct md_personality raid10_personality = | 
|  | { | 
|  | .name		= "raid10", | 
|  | .level		= 10, | 
|  | .owner		= THIS_MODULE, | 
|  | .make_request	= make_request, | 
|  | .run		= run, | 
|  | .free		= raid10_free, | 
|  | .status		= status, | 
|  | .error_handler	= error, | 
|  | .hot_add_disk	= raid10_add_disk, | 
|  | .hot_remove_disk= raid10_remove_disk, | 
|  | .spare_active	= raid10_spare_active, | 
|  | .sync_request	= sync_request, | 
|  | .quiesce	= raid10_quiesce, | 
|  | .size		= raid10_size, | 
|  | .resize		= raid10_resize, | 
|  | .takeover	= raid10_takeover, | 
|  | .check_reshape	= raid10_check_reshape, | 
|  | .start_reshape	= raid10_start_reshape, | 
|  | .finish_reshape	= raid10_finish_reshape, | 
|  | .congested	= raid10_congested, | 
|  | }; | 
|  |  | 
|  | static int __init raid_init(void) | 
|  | { | 
|  | return register_md_personality(&raid10_personality); | 
|  | } | 
|  |  | 
|  | static void raid_exit(void) | 
|  | { | 
|  | unregister_md_personality(&raid10_personality); | 
|  | } | 
|  |  | 
|  | module_init(raid_init); | 
|  | module_exit(raid_exit); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); | 
|  | MODULE_ALIAS("md-personality-9"); /* RAID10 */ | 
|  | MODULE_ALIAS("md-raid10"); | 
|  | MODULE_ALIAS("md-level-10"); | 
|  |  | 
|  | module_param(max_queued_requests, int, S_IRUGO|S_IWUSR); |