|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * This implements the various checks for CONFIG_HARDENED_USERCOPY*, | 
|  | * which are designed to protect kernel memory from needless exposure | 
|  | * and overwrite under many unintended conditions. This code is based | 
|  | * on PAX_USERCOPY, which is: | 
|  | * | 
|  | * Copyright (C) 2001-2016 PaX Team, Bradley Spengler, Open Source | 
|  | * Security Inc. | 
|  | */ | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/task.h> | 
|  | #include <linux/sched/task_stack.h> | 
|  | #include <linux/thread_info.h> | 
|  | #include <linux/atomic.h> | 
|  | #include <linux/jump_label.h> | 
|  | #include <asm/sections.h> | 
|  |  | 
|  | /* | 
|  | * Checks if a given pointer and length is contained by the current | 
|  | * stack frame (if possible). | 
|  | * | 
|  | * Returns: | 
|  | *	NOT_STACK: not at all on the stack | 
|  | *	GOOD_FRAME: fully within a valid stack frame | 
|  | *	GOOD_STACK: fully on the stack (when can't do frame-checking) | 
|  | *	BAD_STACK: error condition (invalid stack position or bad stack frame) | 
|  | */ | 
|  | static noinline int check_stack_object(const void *obj, unsigned long len) | 
|  | { | 
|  | const void * const stack = task_stack_page(current); | 
|  | const void * const stackend = stack + THREAD_SIZE; | 
|  | int ret; | 
|  |  | 
|  | /* Object is not on the stack at all. */ | 
|  | if (obj + len <= stack || stackend <= obj) | 
|  | return NOT_STACK; | 
|  |  | 
|  | /* | 
|  | * Reject: object partially overlaps the stack (passing the | 
|  | * the check above means at least one end is within the stack, | 
|  | * so if this check fails, the other end is outside the stack). | 
|  | */ | 
|  | if (obj < stack || stackend < obj + len) | 
|  | return BAD_STACK; | 
|  |  | 
|  | /* Check if object is safely within a valid frame. */ | 
|  | ret = arch_within_stack_frames(stack, stackend, obj, len); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return GOOD_STACK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If these functions are reached, then CONFIG_HARDENED_USERCOPY has found | 
|  | * an unexpected state during a copy_from_user() or copy_to_user() call. | 
|  | * There are several checks being performed on the buffer by the | 
|  | * __check_object_size() function. Normal stack buffer usage should never | 
|  | * trip the checks, and kernel text addressing will always trip the check. | 
|  | * For cache objects, it is checking that only the whitelisted range of | 
|  | * bytes for a given cache is being accessed (via the cache's usersize and | 
|  | * useroffset fields). To adjust a cache whitelist, use the usercopy-aware | 
|  | * kmem_cache_create_usercopy() function to create the cache (and | 
|  | * carefully audit the whitelist range). | 
|  | */ | 
|  | void usercopy_warn(const char *name, const char *detail, bool to_user, | 
|  | unsigned long offset, unsigned long len) | 
|  | { | 
|  | WARN_ONCE(1, "Bad or missing usercopy whitelist? Kernel memory %s attempt detected %s %s%s%s%s (offset %lu, size %lu)!\n", | 
|  | to_user ? "exposure" : "overwrite", | 
|  | to_user ? "from" : "to", | 
|  | name ? : "unknown?!", | 
|  | detail ? " '" : "", detail ? : "", detail ? "'" : "", | 
|  | offset, len); | 
|  | } | 
|  |  | 
|  | void __noreturn usercopy_abort(const char *name, const char *detail, | 
|  | bool to_user, unsigned long offset, | 
|  | unsigned long len) | 
|  | { | 
|  | pr_emerg("Kernel memory %s attempt detected %s %s%s%s%s (offset %lu, size %lu)!\n", | 
|  | to_user ? "exposure" : "overwrite", | 
|  | to_user ? "from" : "to", | 
|  | name ? : "unknown?!", | 
|  | detail ? " '" : "", detail ? : "", detail ? "'" : "", | 
|  | offset, len); | 
|  |  | 
|  | /* | 
|  | * For greater effect, it would be nice to do do_group_exit(), | 
|  | * but BUG() actually hooks all the lock-breaking and per-arch | 
|  | * Oops code, so that is used here instead. | 
|  | */ | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* Returns true if any portion of [ptr,ptr+n) over laps with [low,high). */ | 
|  | static bool overlaps(const unsigned long ptr, unsigned long n, | 
|  | unsigned long low, unsigned long high) | 
|  | { | 
|  | const unsigned long check_low = ptr; | 
|  | unsigned long check_high = check_low + n; | 
|  |  | 
|  | /* Does not overlap if entirely above or entirely below. */ | 
|  | if (check_low >= high || check_high <= low) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Is this address range in the kernel text area? */ | 
|  | static inline void check_kernel_text_object(const unsigned long ptr, | 
|  | unsigned long n, bool to_user) | 
|  | { | 
|  | unsigned long textlow = (unsigned long)_stext; | 
|  | unsigned long texthigh = (unsigned long)_etext; | 
|  | unsigned long textlow_linear, texthigh_linear; | 
|  |  | 
|  | if (overlaps(ptr, n, textlow, texthigh)) | 
|  | usercopy_abort("kernel text", NULL, to_user, ptr - textlow, n); | 
|  |  | 
|  | /* | 
|  | * Some architectures have virtual memory mappings with a secondary | 
|  | * mapping of the kernel text, i.e. there is more than one virtual | 
|  | * kernel address that points to the kernel image. It is usually | 
|  | * when there is a separate linear physical memory mapping, in that | 
|  | * __pa() is not just the reverse of __va(). This can be detected | 
|  | * and checked: | 
|  | */ | 
|  | textlow_linear = (unsigned long)lm_alias(textlow); | 
|  | /* No different mapping: we're done. */ | 
|  | if (textlow_linear == textlow) | 
|  | return; | 
|  |  | 
|  | /* Check the secondary mapping... */ | 
|  | texthigh_linear = (unsigned long)lm_alias(texthigh); | 
|  | if (overlaps(ptr, n, textlow_linear, texthigh_linear)) | 
|  | usercopy_abort("linear kernel text", NULL, to_user, | 
|  | ptr - textlow_linear, n); | 
|  | } | 
|  |  | 
|  | static inline void check_bogus_address(const unsigned long ptr, unsigned long n, | 
|  | bool to_user) | 
|  | { | 
|  | /* Reject if object wraps past end of memory. */ | 
|  | if (ptr + (n - 1) < ptr) | 
|  | usercopy_abort("wrapped address", NULL, to_user, 0, ptr + n); | 
|  |  | 
|  | /* Reject if NULL or ZERO-allocation. */ | 
|  | if (ZERO_OR_NULL_PTR(ptr)) | 
|  | usercopy_abort("null address", NULL, to_user, ptr, n); | 
|  | } | 
|  |  | 
|  | /* Checks for allocs that are marked in some way as spanning multiple pages. */ | 
|  | static inline void check_page_span(const void *ptr, unsigned long n, | 
|  | struct page *page, bool to_user) | 
|  | { | 
|  | #ifdef CONFIG_HARDENED_USERCOPY_PAGESPAN | 
|  | const void *end = ptr + n - 1; | 
|  | struct page *endpage; | 
|  | bool is_reserved, is_cma; | 
|  |  | 
|  | /* | 
|  | * Sometimes the kernel data regions are not marked Reserved (see | 
|  | * check below). And sometimes [_sdata,_edata) does not cover | 
|  | * rodata and/or bss, so check each range explicitly. | 
|  | */ | 
|  |  | 
|  | /* Allow reads of kernel rodata region (if not marked as Reserved). */ | 
|  | if (ptr >= (const void *)__start_rodata && | 
|  | end <= (const void *)__end_rodata) { | 
|  | if (!to_user) | 
|  | usercopy_abort("rodata", NULL, to_user, 0, n); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Allow kernel data region (if not marked as Reserved). */ | 
|  | if (ptr >= (const void *)_sdata && end <= (const void *)_edata) | 
|  | return; | 
|  |  | 
|  | /* Allow kernel bss region (if not marked as Reserved). */ | 
|  | if (ptr >= (const void *)__bss_start && | 
|  | end <= (const void *)__bss_stop) | 
|  | return; | 
|  |  | 
|  | /* Is the object wholly within one base page? */ | 
|  | if (likely(((unsigned long)ptr & (unsigned long)PAGE_MASK) == | 
|  | ((unsigned long)end & (unsigned long)PAGE_MASK))) | 
|  | return; | 
|  |  | 
|  | /* Allow if fully inside the same compound (__GFP_COMP) page. */ | 
|  | endpage = virt_to_head_page(end); | 
|  | if (likely(endpage == page)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Reject if range is entirely either Reserved (i.e. special or | 
|  | * device memory), or CMA. Otherwise, reject since the object spans | 
|  | * several independently allocated pages. | 
|  | */ | 
|  | is_reserved = PageReserved(page); | 
|  | is_cma = is_migrate_cma_page(page); | 
|  | if (!is_reserved && !is_cma) | 
|  | usercopy_abort("spans multiple pages", NULL, to_user, 0, n); | 
|  |  | 
|  | for (ptr += PAGE_SIZE; ptr <= end; ptr += PAGE_SIZE) { | 
|  | page = virt_to_head_page(ptr); | 
|  | if (is_reserved && !PageReserved(page)) | 
|  | usercopy_abort("spans Reserved and non-Reserved pages", | 
|  | NULL, to_user, 0, n); | 
|  | if (is_cma && !is_migrate_cma_page(page)) | 
|  | usercopy_abort("spans CMA and non-CMA pages", NULL, | 
|  | to_user, 0, n); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void check_heap_object(const void *ptr, unsigned long n, | 
|  | bool to_user) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | if (!virt_addr_valid(ptr)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * When CONFIG_HIGHMEM=y, kmap_to_page() will give either the | 
|  | * highmem page or fallback to virt_to_page(). The following | 
|  | * is effectively a highmem-aware virt_to_head_page(). | 
|  | */ | 
|  | page = compound_head(kmap_to_page((void *)ptr)); | 
|  |  | 
|  | if (PageSlab(page)) { | 
|  | /* Check slab allocator for flags and size. */ | 
|  | __check_heap_object(ptr, n, page, to_user); | 
|  | } else { | 
|  | /* Verify object does not incorrectly span multiple pages. */ | 
|  | check_page_span(ptr, n, page, to_user); | 
|  | } | 
|  | } | 
|  |  | 
|  | static DEFINE_STATIC_KEY_FALSE_RO(bypass_usercopy_checks); | 
|  |  | 
|  | /* | 
|  | * Validates that the given object is: | 
|  | * - not bogus address | 
|  | * - fully contained by stack (or stack frame, when available) | 
|  | * - fully within SLAB object (or object whitelist area, when available) | 
|  | * - not in kernel text | 
|  | */ | 
|  | void __check_object_size(const void *ptr, unsigned long n, bool to_user) | 
|  | { | 
|  | if (static_branch_unlikely(&bypass_usercopy_checks)) | 
|  | return; | 
|  |  | 
|  | /* Skip all tests if size is zero. */ | 
|  | if (!n) | 
|  | return; | 
|  |  | 
|  | /* Check for invalid addresses. */ | 
|  | check_bogus_address((const unsigned long)ptr, n, to_user); | 
|  |  | 
|  | /* Check for bad stack object. */ | 
|  | switch (check_stack_object(ptr, n)) { | 
|  | case NOT_STACK: | 
|  | /* Object is not touching the current process stack. */ | 
|  | break; | 
|  | case GOOD_FRAME: | 
|  | case GOOD_STACK: | 
|  | /* | 
|  | * Object is either in the correct frame (when it | 
|  | * is possible to check) or just generally on the | 
|  | * process stack (when frame checking not available). | 
|  | */ | 
|  | return; | 
|  | default: | 
|  | usercopy_abort("process stack", NULL, to_user, 0, n); | 
|  | } | 
|  |  | 
|  | /* Check for bad heap object. */ | 
|  | check_heap_object(ptr, n, to_user); | 
|  |  | 
|  | /* Check for object in kernel to avoid text exposure. */ | 
|  | check_kernel_text_object((const unsigned long)ptr, n, to_user); | 
|  | } | 
|  | EXPORT_SYMBOL(__check_object_size); | 
|  |  | 
|  | static bool enable_checks __initdata = true; | 
|  |  | 
|  | static int __init parse_hardened_usercopy(char *str) | 
|  | { | 
|  | return strtobool(str, &enable_checks); | 
|  | } | 
|  |  | 
|  | __setup("hardened_usercopy=", parse_hardened_usercopy); | 
|  |  | 
|  | static int __init set_hardened_usercopy(void) | 
|  | { | 
|  | if (enable_checks == false) | 
|  | static_branch_enable(&bypass_usercopy_checks); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | late_initcall(set_hardened_usercopy); |