|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | #undef DEBUG | 
|  |  | 
|  | /* | 
|  | * ARM performance counter support. | 
|  | * | 
|  | * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles | 
|  | * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com> | 
|  | * | 
|  | * This code is based on the sparc64 perf event code, which is in turn based | 
|  | * on the x86 code. | 
|  | */ | 
|  | #define pr_fmt(fmt) "hw perfevents: " fmt | 
|  |  | 
|  | #include <linux/bitmap.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/cpu_pm.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/perf/arm_pmu.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/sched/clock.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/irqdesc.h> | 
|  |  | 
|  | #include <asm/irq_regs.h> | 
|  |  | 
|  | static int armpmu_count_irq_users(const int irq); | 
|  |  | 
|  | struct pmu_irq_ops { | 
|  | void (*enable_pmuirq)(unsigned int irq); | 
|  | void (*disable_pmuirq)(unsigned int irq); | 
|  | void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid); | 
|  | }; | 
|  |  | 
|  | static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid) | 
|  | { | 
|  | free_irq(irq, per_cpu_ptr(devid, cpu)); | 
|  | } | 
|  |  | 
|  | static const struct pmu_irq_ops pmuirq_ops = { | 
|  | .enable_pmuirq = enable_irq, | 
|  | .disable_pmuirq = disable_irq_nosync, | 
|  | .free_pmuirq = armpmu_free_pmuirq | 
|  | }; | 
|  |  | 
|  | static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid) | 
|  | { | 
|  | free_nmi(irq, per_cpu_ptr(devid, cpu)); | 
|  | } | 
|  |  | 
|  | static const struct pmu_irq_ops pmunmi_ops = { | 
|  | .enable_pmuirq = enable_nmi, | 
|  | .disable_pmuirq = disable_nmi_nosync, | 
|  | .free_pmuirq = armpmu_free_pmunmi | 
|  | }; | 
|  |  | 
|  | static void armpmu_enable_percpu_pmuirq(unsigned int irq) | 
|  | { | 
|  | enable_percpu_irq(irq, IRQ_TYPE_NONE); | 
|  | } | 
|  |  | 
|  | static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu, | 
|  | void __percpu *devid) | 
|  | { | 
|  | if (armpmu_count_irq_users(irq) == 1) | 
|  | free_percpu_irq(irq, devid); | 
|  | } | 
|  |  | 
|  | static const struct pmu_irq_ops percpu_pmuirq_ops = { | 
|  | .enable_pmuirq = armpmu_enable_percpu_pmuirq, | 
|  | .disable_pmuirq = disable_percpu_irq, | 
|  | .free_pmuirq = armpmu_free_percpu_pmuirq | 
|  | }; | 
|  |  | 
|  | static void armpmu_enable_percpu_pmunmi(unsigned int irq) | 
|  | { | 
|  | if (!prepare_percpu_nmi(irq)) | 
|  | enable_percpu_nmi(irq, IRQ_TYPE_NONE); | 
|  | } | 
|  |  | 
|  | static void armpmu_disable_percpu_pmunmi(unsigned int irq) | 
|  | { | 
|  | disable_percpu_nmi(irq); | 
|  | teardown_percpu_nmi(irq); | 
|  | } | 
|  |  | 
|  | static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu, | 
|  | void __percpu *devid) | 
|  | { | 
|  | if (armpmu_count_irq_users(irq) == 1) | 
|  | free_percpu_nmi(irq, devid); | 
|  | } | 
|  |  | 
|  | static const struct pmu_irq_ops percpu_pmunmi_ops = { | 
|  | .enable_pmuirq = armpmu_enable_percpu_pmunmi, | 
|  | .disable_pmuirq = armpmu_disable_percpu_pmunmi, | 
|  | .free_pmuirq = armpmu_free_percpu_pmunmi | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu); | 
|  | static DEFINE_PER_CPU(int, cpu_irq); | 
|  | static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops); | 
|  |  | 
|  | static bool has_nmi; | 
|  |  | 
|  | static inline u64 arm_pmu_event_max_period(struct perf_event *event) | 
|  | { | 
|  | if (event->hw.flags & ARMPMU_EVT_64BIT) | 
|  | return GENMASK_ULL(63, 0); | 
|  | else | 
|  | return GENMASK_ULL(31, 0); | 
|  | } | 
|  |  | 
|  | static int | 
|  | armpmu_map_cache_event(const unsigned (*cache_map) | 
|  | [PERF_COUNT_HW_CACHE_MAX] | 
|  | [PERF_COUNT_HW_CACHE_OP_MAX] | 
|  | [PERF_COUNT_HW_CACHE_RESULT_MAX], | 
|  | u64 config) | 
|  | { | 
|  | unsigned int cache_type, cache_op, cache_result, ret; | 
|  |  | 
|  | cache_type = (config >>  0) & 0xff; | 
|  | if (cache_type >= PERF_COUNT_HW_CACHE_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | cache_op = (config >>  8) & 0xff; | 
|  | if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | cache_result = (config >> 16) & 0xff; | 
|  | if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!cache_map) | 
|  | return -ENOENT; | 
|  |  | 
|  | ret = (int)(*cache_map)[cache_type][cache_op][cache_result]; | 
|  |  | 
|  | if (ret == CACHE_OP_UNSUPPORTED) | 
|  | return -ENOENT; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config) | 
|  | { | 
|  | int mapping; | 
|  |  | 
|  | if (config >= PERF_COUNT_HW_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!event_map) | 
|  | return -ENOENT; | 
|  |  | 
|  | mapping = (*event_map)[config]; | 
|  | return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping; | 
|  | } | 
|  |  | 
|  | static int | 
|  | armpmu_map_raw_event(u32 raw_event_mask, u64 config) | 
|  | { | 
|  | return (int)(config & raw_event_mask); | 
|  | } | 
|  |  | 
|  | int | 
|  | armpmu_map_event(struct perf_event *event, | 
|  | const unsigned (*event_map)[PERF_COUNT_HW_MAX], | 
|  | const unsigned (*cache_map) | 
|  | [PERF_COUNT_HW_CACHE_MAX] | 
|  | [PERF_COUNT_HW_CACHE_OP_MAX] | 
|  | [PERF_COUNT_HW_CACHE_RESULT_MAX], | 
|  | u32 raw_event_mask) | 
|  | { | 
|  | u64 config = event->attr.config; | 
|  | int type = event->attr.type; | 
|  |  | 
|  | if (type == event->pmu->type) | 
|  | return armpmu_map_raw_event(raw_event_mask, config); | 
|  |  | 
|  | switch (type) { | 
|  | case PERF_TYPE_HARDWARE: | 
|  | return armpmu_map_hw_event(event_map, config); | 
|  | case PERF_TYPE_HW_CACHE: | 
|  | return armpmu_map_cache_event(cache_map, config); | 
|  | case PERF_TYPE_RAW: | 
|  | return armpmu_map_raw_event(raw_event_mask, config); | 
|  | } | 
|  |  | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | int armpmu_event_set_period(struct perf_event *event) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | s64 left = local64_read(&hwc->period_left); | 
|  | s64 period = hwc->sample_period; | 
|  | u64 max_period; | 
|  | int ret = 0; | 
|  |  | 
|  | max_period = arm_pmu_event_max_period(event); | 
|  | if (unlikely(left <= -period)) { | 
|  | left = period; | 
|  | local64_set(&hwc->period_left, left); | 
|  | hwc->last_period = period; | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | if (unlikely(left <= 0)) { | 
|  | left += period; | 
|  | local64_set(&hwc->period_left, left); | 
|  | hwc->last_period = period; | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Limit the maximum period to prevent the counter value | 
|  | * from overtaking the one we are about to program. In | 
|  | * effect we are reducing max_period to account for | 
|  | * interrupt latency (and we are being very conservative). | 
|  | */ | 
|  | if (left > (max_period >> 1)) | 
|  | left = (max_period >> 1); | 
|  |  | 
|  | local64_set(&hwc->prev_count, (u64)-left); | 
|  |  | 
|  | armpmu->write_counter(event, (u64)(-left) & max_period); | 
|  |  | 
|  | perf_event_update_userpage(event); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | u64 armpmu_event_update(struct perf_event *event) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | u64 delta, prev_raw_count, new_raw_count; | 
|  | u64 max_period = arm_pmu_event_max_period(event); | 
|  |  | 
|  | again: | 
|  | prev_raw_count = local64_read(&hwc->prev_count); | 
|  | new_raw_count = armpmu->read_counter(event); | 
|  |  | 
|  | if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, | 
|  | new_raw_count) != prev_raw_count) | 
|  | goto again; | 
|  |  | 
|  | delta = (new_raw_count - prev_raw_count) & max_period; | 
|  |  | 
|  | local64_add(delta, &event->count); | 
|  | local64_sub(delta, &hwc->period_left); | 
|  |  | 
|  | return new_raw_count; | 
|  | } | 
|  |  | 
|  | static void | 
|  | armpmu_read(struct perf_event *event) | 
|  | { | 
|  | armpmu_event_update(event); | 
|  | } | 
|  |  | 
|  | static void | 
|  | armpmu_stop(struct perf_event *event, int flags) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  |  | 
|  | /* | 
|  | * ARM pmu always has to update the counter, so ignore | 
|  | * PERF_EF_UPDATE, see comments in armpmu_start(). | 
|  | */ | 
|  | if (!(hwc->state & PERF_HES_STOPPED)) { | 
|  | armpmu->disable(event); | 
|  | armpmu_event_update(event); | 
|  | hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void armpmu_start(struct perf_event *event, int flags) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  |  | 
|  | /* | 
|  | * ARM pmu always has to reprogram the period, so ignore | 
|  | * PERF_EF_RELOAD, see the comment below. | 
|  | */ | 
|  | if (flags & PERF_EF_RELOAD) | 
|  | WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); | 
|  |  | 
|  | hwc->state = 0; | 
|  | /* | 
|  | * Set the period again. Some counters can't be stopped, so when we | 
|  | * were stopped we simply disabled the IRQ source and the counter | 
|  | * may have been left counting. If we don't do this step then we may | 
|  | * get an interrupt too soon or *way* too late if the overflow has | 
|  | * happened since disabling. | 
|  | */ | 
|  | armpmu_event_set_period(event); | 
|  | armpmu->enable(event); | 
|  | } | 
|  |  | 
|  | static void | 
|  | armpmu_del(struct perf_event *event, int flags) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | int idx = hwc->idx; | 
|  |  | 
|  | armpmu_stop(event, PERF_EF_UPDATE); | 
|  | hw_events->events[idx] = NULL; | 
|  | armpmu->clear_event_idx(hw_events, event); | 
|  | perf_event_update_userpage(event); | 
|  | /* Clear the allocated counter */ | 
|  | hwc->idx = -1; | 
|  | } | 
|  |  | 
|  | static int | 
|  | armpmu_add(struct perf_event *event, int flags) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | int idx; | 
|  |  | 
|  | /* An event following a process won't be stopped earlier */ | 
|  | if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) | 
|  | return -ENOENT; | 
|  |  | 
|  | /* If we don't have a space for the counter then finish early. */ | 
|  | idx = armpmu->get_event_idx(hw_events, event); | 
|  | if (idx < 0) | 
|  | return idx; | 
|  |  | 
|  | /* | 
|  | * If there is an event in the counter we are going to use then make | 
|  | * sure it is disabled. | 
|  | */ | 
|  | event->hw.idx = idx; | 
|  | armpmu->disable(event); | 
|  | hw_events->events[idx] = event; | 
|  |  | 
|  | hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; | 
|  | if (flags & PERF_EF_START) | 
|  | armpmu_start(event, PERF_EF_RELOAD); | 
|  |  | 
|  | /* Propagate our changes to the userspace mapping. */ | 
|  | perf_event_update_userpage(event); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events, | 
|  | struct perf_event *event) | 
|  | { | 
|  | struct arm_pmu *armpmu; | 
|  |  | 
|  | if (is_software_event(event)) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The | 
|  | * core perf code won't check that the pmu->ctx == leader->ctx | 
|  | * until after pmu->event_init(event). | 
|  | */ | 
|  | if (event->pmu != pmu) | 
|  | return 0; | 
|  |  | 
|  | if (event->state < PERF_EVENT_STATE_OFF) | 
|  | return 1; | 
|  |  | 
|  | if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec) | 
|  | return 1; | 
|  |  | 
|  | armpmu = to_arm_pmu(event->pmu); | 
|  | return armpmu->get_event_idx(hw_events, event) >= 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | validate_group(struct perf_event *event) | 
|  | { | 
|  | struct perf_event *sibling, *leader = event->group_leader; | 
|  | struct pmu_hw_events fake_pmu; | 
|  |  | 
|  | /* | 
|  | * Initialise the fake PMU. We only need to populate the | 
|  | * used_mask for the purposes of validation. | 
|  | */ | 
|  | memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask)); | 
|  |  | 
|  | if (!validate_event(event->pmu, &fake_pmu, leader)) | 
|  | return -EINVAL; | 
|  |  | 
|  | for_each_sibling_event(sibling, leader) { | 
|  | if (!validate_event(event->pmu, &fake_pmu, sibling)) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!validate_event(event->pmu, &fake_pmu, event)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static irqreturn_t armpmu_dispatch_irq(int irq, void *dev) | 
|  | { | 
|  | struct arm_pmu *armpmu; | 
|  | int ret; | 
|  | u64 start_clock, finish_clock; | 
|  |  | 
|  | /* | 
|  | * we request the IRQ with a (possibly percpu) struct arm_pmu**, but | 
|  | * the handlers expect a struct arm_pmu*. The percpu_irq framework will | 
|  | * do any necessary shifting, we just need to perform the first | 
|  | * dereference. | 
|  | */ | 
|  | armpmu = *(void **)dev; | 
|  | if (WARN_ON_ONCE(!armpmu)) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | start_clock = sched_clock(); | 
|  | ret = armpmu->handle_irq(armpmu); | 
|  | finish_clock = sched_clock(); | 
|  |  | 
|  | perf_sample_event_took(finish_clock - start_clock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | __hw_perf_event_init(struct perf_event *event) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | int mapping; | 
|  |  | 
|  | hwc->flags = 0; | 
|  | mapping = armpmu->map_event(event); | 
|  |  | 
|  | if (mapping < 0) { | 
|  | pr_debug("event %x:%llx not supported\n", event->attr.type, | 
|  | event->attr.config); | 
|  | return mapping; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We don't assign an index until we actually place the event onto | 
|  | * hardware. Use -1 to signify that we haven't decided where to put it | 
|  | * yet. For SMP systems, each core has it's own PMU so we can't do any | 
|  | * clever allocation or constraints checking at this point. | 
|  | */ | 
|  | hwc->idx		= -1; | 
|  | hwc->config_base	= 0; | 
|  | hwc->config		= 0; | 
|  | hwc->event_base		= 0; | 
|  |  | 
|  | /* | 
|  | * Check whether we need to exclude the counter from certain modes. | 
|  | */ | 
|  | if (armpmu->set_event_filter && | 
|  | armpmu->set_event_filter(hwc, &event->attr)) { | 
|  | pr_debug("ARM performance counters do not support " | 
|  | "mode exclusion\n"); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Store the event encoding into the config_base field. | 
|  | */ | 
|  | hwc->config_base	    |= (unsigned long)mapping; | 
|  |  | 
|  | if (!is_sampling_event(event)) { | 
|  | /* | 
|  | * For non-sampling runs, limit the sample_period to half | 
|  | * of the counter width. That way, the new counter value | 
|  | * is far less likely to overtake the previous one unless | 
|  | * you have some serious IRQ latency issues. | 
|  | */ | 
|  | hwc->sample_period  = arm_pmu_event_max_period(event) >> 1; | 
|  | hwc->last_period    = hwc->sample_period; | 
|  | local64_set(&hwc->period_left, hwc->sample_period); | 
|  | } | 
|  |  | 
|  | if (event->group_leader != event) { | 
|  | if (validate_group(event) != 0) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int armpmu_event_init(struct perf_event *event) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  |  | 
|  | /* | 
|  | * Reject CPU-affine events for CPUs that are of a different class to | 
|  | * that which this PMU handles. Process-following events (where | 
|  | * event->cpu == -1) can be migrated between CPUs, and thus we have to | 
|  | * reject them later (in armpmu_add) if they're scheduled on a | 
|  | * different class of CPU. | 
|  | */ | 
|  | if (event->cpu != -1 && | 
|  | !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus)) | 
|  | return -ENOENT; | 
|  |  | 
|  | /* does not support taken branch sampling */ | 
|  | if (has_branch_stack(event)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (armpmu->map_event(event) == -ENOENT) | 
|  | return -ENOENT; | 
|  |  | 
|  | return __hw_perf_event_init(event); | 
|  | } | 
|  |  | 
|  | static void armpmu_enable(struct pmu *pmu) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(pmu); | 
|  | struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); | 
|  | int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events); | 
|  |  | 
|  | /* For task-bound events we may be called on other CPUs */ | 
|  | if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) | 
|  | return; | 
|  |  | 
|  | if (enabled) | 
|  | armpmu->start(armpmu); | 
|  | } | 
|  |  | 
|  | static void armpmu_disable(struct pmu *pmu) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(pmu); | 
|  |  | 
|  | /* For task-bound events we may be called on other CPUs */ | 
|  | if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) | 
|  | return; | 
|  |  | 
|  | armpmu->stop(armpmu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In heterogeneous systems, events are specific to a particular | 
|  | * microarchitecture, and aren't suitable for another. Thus, only match CPUs of | 
|  | * the same microarchitecture. | 
|  | */ | 
|  | static int armpmu_filter_match(struct perf_event *event) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); | 
|  | unsigned int cpu = smp_processor_id(); | 
|  | int ret; | 
|  |  | 
|  | ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus); | 
|  | if (ret && armpmu->filter_match) | 
|  | return armpmu->filter_match(event); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t cpus_show(struct device *dev, | 
|  | struct device_attribute *attr, char *buf) | 
|  | { | 
|  | struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev)); | 
|  | return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus); | 
|  | } | 
|  |  | 
|  | static DEVICE_ATTR_RO(cpus); | 
|  |  | 
|  | static struct attribute *armpmu_common_attrs[] = { | 
|  | &dev_attr_cpus.attr, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static const struct attribute_group armpmu_common_attr_group = { | 
|  | .attrs = armpmu_common_attrs, | 
|  | }; | 
|  |  | 
|  | static int armpmu_count_irq_users(const int irq) | 
|  | { | 
|  | int cpu, count = 0; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | if (per_cpu(cpu_irq, cpu) == irq) | 
|  | count++; | 
|  | } | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq) | 
|  | { | 
|  | const struct pmu_irq_ops *ops = NULL; | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | if (per_cpu(cpu_irq, cpu) != irq) | 
|  | continue; | 
|  |  | 
|  | ops = per_cpu(cpu_irq_ops, cpu); | 
|  | if (ops) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ops; | 
|  | } | 
|  |  | 
|  | void armpmu_free_irq(int irq, int cpu) | 
|  | { | 
|  | if (per_cpu(cpu_irq, cpu) == 0) | 
|  | return; | 
|  | if (WARN_ON(irq != per_cpu(cpu_irq, cpu))) | 
|  | return; | 
|  |  | 
|  | per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu); | 
|  |  | 
|  | per_cpu(cpu_irq, cpu) = 0; | 
|  | per_cpu(cpu_irq_ops, cpu) = NULL; | 
|  | } | 
|  |  | 
|  | int armpmu_request_irq(int irq, int cpu) | 
|  | { | 
|  | int err = 0; | 
|  | const irq_handler_t handler = armpmu_dispatch_irq; | 
|  | const struct pmu_irq_ops *irq_ops; | 
|  |  | 
|  | if (!irq) | 
|  | return 0; | 
|  |  | 
|  | if (!irq_is_percpu_devid(irq)) { | 
|  | unsigned long irq_flags; | 
|  |  | 
|  | err = irq_force_affinity(irq, cpumask_of(cpu)); | 
|  |  | 
|  | if (err && num_possible_cpus() > 1) { | 
|  | pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n", | 
|  | irq, cpu); | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | irq_flags = IRQF_PERCPU | | 
|  | IRQF_NOBALANCING | IRQF_NO_AUTOEN | | 
|  | IRQF_NO_THREAD; | 
|  |  | 
|  | err = request_nmi(irq, handler, irq_flags, "arm-pmu", | 
|  | per_cpu_ptr(&cpu_armpmu, cpu)); | 
|  |  | 
|  | /* If cannot get an NMI, get a normal interrupt */ | 
|  | if (err) { | 
|  | err = request_irq(irq, handler, irq_flags, "arm-pmu", | 
|  | per_cpu_ptr(&cpu_armpmu, cpu)); | 
|  | irq_ops = &pmuirq_ops; | 
|  | } else { | 
|  | has_nmi = true; | 
|  | irq_ops = &pmunmi_ops; | 
|  | } | 
|  | } else if (armpmu_count_irq_users(irq) == 0) { | 
|  | err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu); | 
|  |  | 
|  | /* If cannot get an NMI, get a normal interrupt */ | 
|  | if (err) { | 
|  | err = request_percpu_irq(irq, handler, "arm-pmu", | 
|  | &cpu_armpmu); | 
|  | irq_ops = &percpu_pmuirq_ops; | 
|  | } else { | 
|  | has_nmi = true; | 
|  | irq_ops = &percpu_pmunmi_ops; | 
|  | } | 
|  | } else { | 
|  | /* Per cpudevid irq was already requested by another CPU */ | 
|  | irq_ops = armpmu_find_irq_ops(irq); | 
|  |  | 
|  | if (WARN_ON(!irq_ops)) | 
|  | err = -EINVAL; | 
|  | } | 
|  |  | 
|  | if (err) | 
|  | goto err_out; | 
|  |  | 
|  | per_cpu(cpu_irq, cpu) = irq; | 
|  | per_cpu(cpu_irq_ops, cpu) = irq_ops; | 
|  | return 0; | 
|  |  | 
|  | err_out: | 
|  | pr_err("unable to request IRQ%d for ARM PMU counters\n", irq); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu) | 
|  | { | 
|  | struct pmu_hw_events __percpu *hw_events = pmu->hw_events; | 
|  | return per_cpu(hw_events->irq, cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * PMU hardware loses all context when a CPU goes offline. | 
|  | * When a CPU is hotplugged back in, since some hardware registers are | 
|  | * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading | 
|  | * junk values out of them. | 
|  | */ | 
|  | static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node) | 
|  | { | 
|  | struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node); | 
|  | int irq; | 
|  |  | 
|  | if (!cpumask_test_cpu(cpu, &pmu->supported_cpus)) | 
|  | return 0; | 
|  | if (pmu->reset) | 
|  | pmu->reset(pmu); | 
|  |  | 
|  | per_cpu(cpu_armpmu, cpu) = pmu; | 
|  |  | 
|  | irq = armpmu_get_cpu_irq(pmu, cpu); | 
|  | if (irq) | 
|  | per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node) | 
|  | { | 
|  | struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node); | 
|  | int irq; | 
|  |  | 
|  | if (!cpumask_test_cpu(cpu, &pmu->supported_cpus)) | 
|  | return 0; | 
|  |  | 
|  | irq = armpmu_get_cpu_irq(pmu, cpu); | 
|  | if (irq) | 
|  | per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq); | 
|  |  | 
|  | per_cpu(cpu_armpmu, cpu) = NULL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CPU_PM | 
|  | static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd) | 
|  | { | 
|  | struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); | 
|  | struct perf_event *event; | 
|  | int idx; | 
|  |  | 
|  | for (idx = 0; idx < armpmu->num_events; idx++) { | 
|  | event = hw_events->events[idx]; | 
|  | if (!event) | 
|  | continue; | 
|  |  | 
|  | switch (cmd) { | 
|  | case CPU_PM_ENTER: | 
|  | /* | 
|  | * Stop and update the counter | 
|  | */ | 
|  | armpmu_stop(event, PERF_EF_UPDATE); | 
|  | break; | 
|  | case CPU_PM_EXIT: | 
|  | case CPU_PM_ENTER_FAILED: | 
|  | /* | 
|  | * Restore and enable the counter. | 
|  | * armpmu_start() indirectly calls | 
|  | * | 
|  | * perf_event_update_userpage() | 
|  | * | 
|  | * that requires RCU read locking to be functional, | 
|  | * wrap the call within RCU_NONIDLE to make the | 
|  | * RCU subsystem aware this cpu is not idle from | 
|  | * an RCU perspective for the armpmu_start() call | 
|  | * duration. | 
|  | */ | 
|  | RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD)); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd, | 
|  | void *v) | 
|  | { | 
|  | struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb); | 
|  | struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); | 
|  | int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events); | 
|  |  | 
|  | if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) | 
|  | return NOTIFY_DONE; | 
|  |  | 
|  | /* | 
|  | * Always reset the PMU registers on power-up even if | 
|  | * there are no events running. | 
|  | */ | 
|  | if (cmd == CPU_PM_EXIT && armpmu->reset) | 
|  | armpmu->reset(armpmu); | 
|  |  | 
|  | if (!enabled) | 
|  | return NOTIFY_OK; | 
|  |  | 
|  | switch (cmd) { | 
|  | case CPU_PM_ENTER: | 
|  | armpmu->stop(armpmu); | 
|  | cpu_pm_pmu_setup(armpmu, cmd); | 
|  | break; | 
|  | case CPU_PM_EXIT: | 
|  | case CPU_PM_ENTER_FAILED: | 
|  | cpu_pm_pmu_setup(armpmu, cmd); | 
|  | armpmu->start(armpmu); | 
|  | break; | 
|  | default: | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  |  | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) | 
|  | { | 
|  | cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify; | 
|  | return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb); | 
|  | } | 
|  |  | 
|  | static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) | 
|  | { | 
|  | cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb); | 
|  | } | 
|  | #else | 
|  | static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; } | 
|  | static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { } | 
|  | #endif | 
|  |  | 
|  | static int cpu_pmu_init(struct arm_pmu *cpu_pmu) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING, | 
|  | &cpu_pmu->node); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | err = cpu_pm_pmu_register(cpu_pmu); | 
|  | if (err) | 
|  | goto out_unregister; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_unregister: | 
|  | cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, | 
|  | &cpu_pmu->node); | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu) | 
|  | { | 
|  | cpu_pm_pmu_unregister(cpu_pmu); | 
|  | cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, | 
|  | &cpu_pmu->node); | 
|  | } | 
|  |  | 
|  | static struct arm_pmu *__armpmu_alloc(gfp_t flags) | 
|  | { | 
|  | struct arm_pmu *pmu; | 
|  | int cpu; | 
|  |  | 
|  | pmu = kzalloc(sizeof(*pmu), flags); | 
|  | if (!pmu) | 
|  | goto out; | 
|  |  | 
|  | pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags); | 
|  | if (!pmu->hw_events) { | 
|  | pr_info("failed to allocate per-cpu PMU data.\n"); | 
|  | goto out_free_pmu; | 
|  | } | 
|  |  | 
|  | pmu->pmu = (struct pmu) { | 
|  | .pmu_enable	= armpmu_enable, | 
|  | .pmu_disable	= armpmu_disable, | 
|  | .event_init	= armpmu_event_init, | 
|  | .add		= armpmu_add, | 
|  | .del		= armpmu_del, | 
|  | .start		= armpmu_start, | 
|  | .stop		= armpmu_stop, | 
|  | .read		= armpmu_read, | 
|  | .filter_match	= armpmu_filter_match, | 
|  | .attr_groups	= pmu->attr_groups, | 
|  | /* | 
|  | * This is a CPU PMU potentially in a heterogeneous | 
|  | * configuration (e.g. big.LITTLE). This is not an uncore PMU, | 
|  | * and we have taken ctx sharing into account (e.g. with our | 
|  | * pmu::filter_match callback and pmu::event_init group | 
|  | * validation). | 
|  | */ | 
|  | .capabilities	= PERF_PMU_CAP_HETEROGENEOUS_CPUS, | 
|  | }; | 
|  |  | 
|  | pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] = | 
|  | &armpmu_common_attr_group; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct pmu_hw_events *events; | 
|  |  | 
|  | events = per_cpu_ptr(pmu->hw_events, cpu); | 
|  | raw_spin_lock_init(&events->pmu_lock); | 
|  | events->percpu_pmu = pmu; | 
|  | } | 
|  |  | 
|  | return pmu; | 
|  |  | 
|  | out_free_pmu: | 
|  | kfree(pmu); | 
|  | out: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | struct arm_pmu *armpmu_alloc(void) | 
|  | { | 
|  | return __armpmu_alloc(GFP_KERNEL); | 
|  | } | 
|  |  | 
|  | struct arm_pmu *armpmu_alloc_atomic(void) | 
|  | { | 
|  | return __armpmu_alloc(GFP_ATOMIC); | 
|  | } | 
|  |  | 
|  |  | 
|  | void armpmu_free(struct arm_pmu *pmu) | 
|  | { | 
|  | free_percpu(pmu->hw_events); | 
|  | kfree(pmu); | 
|  | } | 
|  |  | 
|  | int armpmu_register(struct arm_pmu *pmu) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = cpu_pmu_init(pmu); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (!pmu->set_event_filter) | 
|  | pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE; | 
|  |  | 
|  | ret = perf_pmu_register(&pmu->pmu, pmu->name, -1); | 
|  | if (ret) | 
|  | goto out_destroy; | 
|  |  | 
|  | pr_info("enabled with %s PMU driver, %d counters available%s\n", | 
|  | pmu->name, pmu->num_events, | 
|  | has_nmi ? ", using NMIs" : ""); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_destroy: | 
|  | cpu_pmu_destroy(pmu); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int arm_pmu_hp_init(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING, | 
|  | "perf/arm/pmu:starting", | 
|  | arm_perf_starting_cpu, | 
|  | arm_perf_teardown_cpu); | 
|  | if (ret) | 
|  | pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n", | 
|  | ret); | 
|  | return ret; | 
|  | } | 
|  | subsys_initcall(arm_pmu_hp_init); |