|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | #include <linux/init.h> | 
|  | #include <linux/clocksource.h> | 
|  | #include <linux/clockchips.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/irq.h> | 
|  |  | 
|  | #include <linux/clk.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/of_address.h> | 
|  | #include <linux/of_irq.h> | 
|  | #include <linux/sched_clock.h> | 
|  | #include <linux/syscore_ops.h> | 
|  | #include <soc/at91/atmel_tcb.h> | 
|  |  | 
|  |  | 
|  | /* | 
|  | * We're configured to use a specific TC block, one that's not hooked | 
|  | * up to external hardware, to provide a time solution: | 
|  | * | 
|  | *   - Two channels combine to create a free-running 32 bit counter | 
|  | *     with a base rate of 5+ MHz, packaged as a clocksource (with | 
|  | *     resolution better than 200 nsec). | 
|  | *   - Some chips support 32 bit counter. A single channel is used for | 
|  | *     this 32 bit free-running counter. the second channel is not used. | 
|  | * | 
|  | *   - The third channel may be used to provide a clockevent source, used in | 
|  | *   either periodic or oneshot mode. For 16-bit counter its runs at 32 KiHZ, | 
|  | *   and can handle delays of up to two seconds. For 32-bit counters, it runs at | 
|  | *   the same rate as the clocksource | 
|  | * | 
|  | * REVISIT behavior during system suspend states... we should disable | 
|  | * all clocks and save the power.  Easily done for clockevent devices, | 
|  | * but clocksources won't necessarily get the needed notifications. | 
|  | * For deeper system sleep states, this will be mandatory... | 
|  | */ | 
|  |  | 
|  | static void __iomem *tcaddr; | 
|  | static struct | 
|  | { | 
|  | u32 cmr; | 
|  | u32 imr; | 
|  | u32 rc; | 
|  | bool clken; | 
|  | } tcb_cache[3]; | 
|  | static u32 bmr_cache; | 
|  |  | 
|  | static const u8 atmel_tcb_divisors[] = { 2, 8, 32, 128 }; | 
|  |  | 
|  | static u64 tc_get_cycles(struct clocksource *cs) | 
|  | { | 
|  | unsigned long	flags; | 
|  | u32		lower, upper; | 
|  |  | 
|  | raw_local_irq_save(flags); | 
|  | do { | 
|  | upper = readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV)); | 
|  | lower = readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV)); | 
|  | } while (upper != readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV))); | 
|  |  | 
|  | raw_local_irq_restore(flags); | 
|  | return (upper << 16) | lower; | 
|  | } | 
|  |  | 
|  | static u64 tc_get_cycles32(struct clocksource *cs) | 
|  | { | 
|  | return readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV)); | 
|  | } | 
|  |  | 
|  | static void tc_clksrc_suspend(struct clocksource *cs) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) { | 
|  | tcb_cache[i].cmr = readl(tcaddr + ATMEL_TC_REG(i, CMR)); | 
|  | tcb_cache[i].imr = readl(tcaddr + ATMEL_TC_REG(i, IMR)); | 
|  | tcb_cache[i].rc = readl(tcaddr + ATMEL_TC_REG(i, RC)); | 
|  | tcb_cache[i].clken = !!(readl(tcaddr + ATMEL_TC_REG(i, SR)) & | 
|  | ATMEL_TC_CLKSTA); | 
|  | } | 
|  |  | 
|  | bmr_cache = readl(tcaddr + ATMEL_TC_BMR); | 
|  | } | 
|  |  | 
|  | static void tc_clksrc_resume(struct clocksource *cs) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) { | 
|  | /* Restore registers for the channel, RA and RB are not used  */ | 
|  | writel(tcb_cache[i].cmr, tcaddr + ATMEL_TC_REG(i, CMR)); | 
|  | writel(tcb_cache[i].rc, tcaddr + ATMEL_TC_REG(i, RC)); | 
|  | writel(0, tcaddr + ATMEL_TC_REG(i, RA)); | 
|  | writel(0, tcaddr + ATMEL_TC_REG(i, RB)); | 
|  | /* Disable all the interrupts */ | 
|  | writel(0xff, tcaddr + ATMEL_TC_REG(i, IDR)); | 
|  | /* Reenable interrupts that were enabled before suspending */ | 
|  | writel(tcb_cache[i].imr, tcaddr + ATMEL_TC_REG(i, IER)); | 
|  | /* Start the clock if it was used */ | 
|  | if (tcb_cache[i].clken) | 
|  | writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(i, CCR)); | 
|  | } | 
|  |  | 
|  | /* Dual channel, chain channels */ | 
|  | writel(bmr_cache, tcaddr + ATMEL_TC_BMR); | 
|  | /* Finally, trigger all the channels*/ | 
|  | writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR); | 
|  | } | 
|  |  | 
|  | static struct clocksource clksrc = { | 
|  | .rating         = 200, | 
|  | .read           = tc_get_cycles, | 
|  | .mask           = CLOCKSOURCE_MASK(32), | 
|  | .flags		= CLOCK_SOURCE_IS_CONTINUOUS, | 
|  | .suspend	= tc_clksrc_suspend, | 
|  | .resume		= tc_clksrc_resume, | 
|  | }; | 
|  |  | 
|  | static u64 notrace tc_sched_clock_read(void) | 
|  | { | 
|  | return tc_get_cycles(&clksrc); | 
|  | } | 
|  |  | 
|  | static u64 notrace tc_sched_clock_read32(void) | 
|  | { | 
|  | return tc_get_cycles32(&clksrc); | 
|  | } | 
|  |  | 
|  | static struct delay_timer tc_delay_timer; | 
|  |  | 
|  | static unsigned long tc_delay_timer_read(void) | 
|  | { | 
|  | return tc_get_cycles(&clksrc); | 
|  | } | 
|  |  | 
|  | static unsigned long notrace tc_delay_timer_read32(void) | 
|  | { | 
|  | return tc_get_cycles32(&clksrc); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_GENERIC_CLOCKEVENTS | 
|  |  | 
|  | struct tc_clkevt_device { | 
|  | struct clock_event_device	clkevt; | 
|  | struct clk			*clk; | 
|  | u32				rate; | 
|  | void __iomem			*regs; | 
|  | }; | 
|  |  | 
|  | static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt) | 
|  | { | 
|  | return container_of(clkevt, struct tc_clkevt_device, clkevt); | 
|  | } | 
|  |  | 
|  | static u32 timer_clock; | 
|  |  | 
|  | static int tc_shutdown(struct clock_event_device *d) | 
|  | { | 
|  | struct tc_clkevt_device *tcd = to_tc_clkevt(d); | 
|  | void __iomem		*regs = tcd->regs; | 
|  |  | 
|  | writel(0xff, regs + ATMEL_TC_REG(2, IDR)); | 
|  | writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR)); | 
|  | if (!clockevent_state_detached(d)) | 
|  | clk_disable(tcd->clk); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int tc_set_oneshot(struct clock_event_device *d) | 
|  | { | 
|  | struct tc_clkevt_device *tcd = to_tc_clkevt(d); | 
|  | void __iomem		*regs = tcd->regs; | 
|  |  | 
|  | if (clockevent_state_oneshot(d) || clockevent_state_periodic(d)) | 
|  | tc_shutdown(d); | 
|  |  | 
|  | clk_enable(tcd->clk); | 
|  |  | 
|  | /* count up to RC, then irq and stop */ | 
|  | writel(timer_clock | ATMEL_TC_CPCSTOP | ATMEL_TC_WAVE | | 
|  | ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR)); | 
|  | writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER)); | 
|  |  | 
|  | /* set_next_event() configures and starts the timer */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int tc_set_periodic(struct clock_event_device *d) | 
|  | { | 
|  | struct tc_clkevt_device *tcd = to_tc_clkevt(d); | 
|  | void __iomem		*regs = tcd->regs; | 
|  |  | 
|  | if (clockevent_state_oneshot(d) || clockevent_state_periodic(d)) | 
|  | tc_shutdown(d); | 
|  |  | 
|  | /* By not making the gentime core emulate periodic mode on top | 
|  | * of oneshot, we get lower overhead and improved accuracy. | 
|  | */ | 
|  | clk_enable(tcd->clk); | 
|  |  | 
|  | /* count up to RC, then irq and restart */ | 
|  | writel(timer_clock | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO, | 
|  | regs + ATMEL_TC_REG(2, CMR)); | 
|  | writel((tcd->rate + HZ / 2) / HZ, tcaddr + ATMEL_TC_REG(2, RC)); | 
|  |  | 
|  | /* Enable clock and interrupts on RC compare */ | 
|  | writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER)); | 
|  |  | 
|  | /* go go gadget! */ | 
|  | writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, regs + | 
|  | ATMEL_TC_REG(2, CCR)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int tc_next_event(unsigned long delta, struct clock_event_device *d) | 
|  | { | 
|  | writel_relaxed(delta, tcaddr + ATMEL_TC_REG(2, RC)); | 
|  |  | 
|  | /* go go gadget! */ | 
|  | writel_relaxed(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, | 
|  | tcaddr + ATMEL_TC_REG(2, CCR)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct tc_clkevt_device clkevt = { | 
|  | .clkevt	= { | 
|  | .features		= CLOCK_EVT_FEAT_PERIODIC | | 
|  | CLOCK_EVT_FEAT_ONESHOT, | 
|  | /* Should be lower than at91rm9200's system timer */ | 
|  | .rating			= 125, | 
|  | .set_next_event		= tc_next_event, | 
|  | .set_state_shutdown	= tc_shutdown, | 
|  | .set_state_periodic	= tc_set_periodic, | 
|  | .set_state_oneshot	= tc_set_oneshot, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static irqreturn_t ch2_irq(int irq, void *handle) | 
|  | { | 
|  | struct tc_clkevt_device	*dev = handle; | 
|  | unsigned int		sr; | 
|  |  | 
|  | sr = readl_relaxed(dev->regs + ATMEL_TC_REG(2, SR)); | 
|  | if (sr & ATMEL_TC_CPCS) { | 
|  | dev->clkevt.event_handler(&dev->clkevt); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | return IRQ_NONE; | 
|  | } | 
|  |  | 
|  | static int __init setup_clkevents(struct atmel_tc *tc, int divisor_idx) | 
|  | { | 
|  | int ret; | 
|  | struct clk *t2_clk = tc->clk[2]; | 
|  | int irq = tc->irq[2]; | 
|  | int bits = tc->tcb_config->counter_width; | 
|  |  | 
|  | /* try to enable t2 clk to avoid future errors in mode change */ | 
|  | ret = clk_prepare_enable(t2_clk); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | clkevt.regs = tc->regs; | 
|  | clkevt.clk = t2_clk; | 
|  |  | 
|  | if (bits == 32) { | 
|  | timer_clock = divisor_idx; | 
|  | clkevt.rate = clk_get_rate(t2_clk) / atmel_tcb_divisors[divisor_idx]; | 
|  | } else { | 
|  | ret = clk_prepare_enable(tc->slow_clk); | 
|  | if (ret) { | 
|  | clk_disable_unprepare(t2_clk); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | clkevt.rate = clk_get_rate(tc->slow_clk); | 
|  | timer_clock = ATMEL_TC_TIMER_CLOCK5; | 
|  | } | 
|  |  | 
|  | clk_disable(t2_clk); | 
|  |  | 
|  | clkevt.clkevt.cpumask = cpumask_of(0); | 
|  |  | 
|  | ret = request_irq(irq, ch2_irq, IRQF_TIMER, "tc_clkevt", &clkevt); | 
|  | if (ret) { | 
|  | clk_unprepare(t2_clk); | 
|  | if (bits != 32) | 
|  | clk_disable_unprepare(tc->slow_clk); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | clockevents_config_and_register(&clkevt.clkevt, clkevt.rate, 1, BIT(bits) - 1); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #else /* !CONFIG_GENERIC_CLOCKEVENTS */ | 
|  |  | 
|  | static int __init setup_clkevents(struct atmel_tc *tc, int divisor_idx) | 
|  | { | 
|  | /* NOTHING */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx) | 
|  | { | 
|  | /* channel 0:  waveform mode, input mclk/8, clock TIOA0 on overflow */ | 
|  | writel(mck_divisor_idx			/* likely divide-by-8 */ | 
|  | | ATMEL_TC_WAVE | 
|  | | ATMEL_TC_WAVESEL_UP		/* free-run */ | 
|  | | ATMEL_TC_ACPA_SET		/* TIOA0 rises at 0 */ | 
|  | | ATMEL_TC_ACPC_CLEAR,		/* (duty cycle 50%) */ | 
|  | tcaddr + ATMEL_TC_REG(0, CMR)); | 
|  | writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA)); | 
|  | writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC)); | 
|  | writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */ | 
|  | writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR)); | 
|  |  | 
|  | /* channel 1:  waveform mode, input TIOA0 */ | 
|  | writel(ATMEL_TC_XC1			/* input: TIOA0 */ | 
|  | | ATMEL_TC_WAVE | 
|  | | ATMEL_TC_WAVESEL_UP,		/* free-run */ | 
|  | tcaddr + ATMEL_TC_REG(1, CMR)); | 
|  | writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR));	/* no irqs */ | 
|  | writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR)); | 
|  |  | 
|  | /* chain channel 0 to channel 1*/ | 
|  | writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR); | 
|  | /* then reset all the timers */ | 
|  | writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR); | 
|  | } | 
|  |  | 
|  | static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx) | 
|  | { | 
|  | /* channel 0:  waveform mode, input mclk/8 */ | 
|  | writel(mck_divisor_idx			/* likely divide-by-8 */ | 
|  | | ATMEL_TC_WAVE | 
|  | | ATMEL_TC_WAVESEL_UP,		/* free-run */ | 
|  | tcaddr + ATMEL_TC_REG(0, CMR)); | 
|  | writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));	/* no irqs */ | 
|  | writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR)); | 
|  |  | 
|  | /* then reset all the timers */ | 
|  | writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR); | 
|  | } | 
|  |  | 
|  | static struct atmel_tcb_config tcb_rm9200_config = { | 
|  | .counter_width = 16, | 
|  | }; | 
|  |  | 
|  | static struct atmel_tcb_config tcb_sam9x5_config = { | 
|  | .counter_width = 32, | 
|  | }; | 
|  |  | 
|  | static struct atmel_tcb_config tcb_sama5d2_config = { | 
|  | .counter_width = 32, | 
|  | .has_gclk = 1, | 
|  | }; | 
|  |  | 
|  | static const struct of_device_id atmel_tcb_of_match[] = { | 
|  | { .compatible = "atmel,at91rm9200-tcb", .data = &tcb_rm9200_config, }, | 
|  | { .compatible = "atmel,at91sam9x5-tcb", .data = &tcb_sam9x5_config, }, | 
|  | { .compatible = "atmel,sama5d2-tcb", .data = &tcb_sama5d2_config, }, | 
|  | { /* sentinel */ } | 
|  | }; | 
|  |  | 
|  | static int __init tcb_clksrc_init(struct device_node *node) | 
|  | { | 
|  | struct atmel_tc tc; | 
|  | struct clk *t0_clk; | 
|  | const struct of_device_id *match; | 
|  | u64 (*tc_sched_clock)(void); | 
|  | u32 rate, divided_rate = 0; | 
|  | int best_divisor_idx = -1; | 
|  | int bits; | 
|  | int i; | 
|  | int ret; | 
|  |  | 
|  | /* Protect against multiple calls */ | 
|  | if (tcaddr) | 
|  | return 0; | 
|  |  | 
|  | tc.regs = of_iomap(node->parent, 0); | 
|  | if (!tc.regs) | 
|  | return -ENXIO; | 
|  |  | 
|  | t0_clk = of_clk_get_by_name(node->parent, "t0_clk"); | 
|  | if (IS_ERR(t0_clk)) | 
|  | return PTR_ERR(t0_clk); | 
|  |  | 
|  | tc.slow_clk = of_clk_get_by_name(node->parent, "slow_clk"); | 
|  | if (IS_ERR(tc.slow_clk)) | 
|  | return PTR_ERR(tc.slow_clk); | 
|  |  | 
|  | tc.clk[0] = t0_clk; | 
|  | tc.clk[1] = of_clk_get_by_name(node->parent, "t1_clk"); | 
|  | if (IS_ERR(tc.clk[1])) | 
|  | tc.clk[1] = t0_clk; | 
|  | tc.clk[2] = of_clk_get_by_name(node->parent, "t2_clk"); | 
|  | if (IS_ERR(tc.clk[2])) | 
|  | tc.clk[2] = t0_clk; | 
|  |  | 
|  | tc.irq[2] = of_irq_get(node->parent, 2); | 
|  | if (tc.irq[2] <= 0) { | 
|  | tc.irq[2] = of_irq_get(node->parent, 0); | 
|  | if (tc.irq[2] <= 0) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | match = of_match_node(atmel_tcb_of_match, node->parent); | 
|  | if (!match) | 
|  | return -ENODEV; | 
|  |  | 
|  | tc.tcb_config = match->data; | 
|  | bits = tc.tcb_config->counter_width; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(tc.irq); i++) | 
|  | writel(ATMEL_TC_ALL_IRQ, tc.regs + ATMEL_TC_REG(i, IDR)); | 
|  |  | 
|  | ret = clk_prepare_enable(t0_clk); | 
|  | if (ret) { | 
|  | pr_debug("can't enable T0 clk\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* How fast will we be counting?  Pick something over 5 MHz.  */ | 
|  | rate = (u32) clk_get_rate(t0_clk); | 
|  | i = 0; | 
|  | if (tc.tcb_config->has_gclk) | 
|  | i = 1; | 
|  | for (; i < ARRAY_SIZE(atmel_tcb_divisors); i++) { | 
|  | unsigned divisor = atmel_tcb_divisors[i]; | 
|  | unsigned tmp; | 
|  |  | 
|  | tmp = rate / divisor; | 
|  | pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp); | 
|  | if ((best_divisor_idx >= 0) && (tmp < 5 * 1000 * 1000)) | 
|  | break; | 
|  | divided_rate = tmp; | 
|  | best_divisor_idx = i; | 
|  | } | 
|  |  | 
|  | clksrc.name = kbasename(node->parent->full_name); | 
|  | clkevt.clkevt.name = kbasename(node->parent->full_name); | 
|  | pr_debug("%s at %d.%03d MHz\n", clksrc.name, divided_rate / 1000000, | 
|  | ((divided_rate % 1000000) + 500) / 1000); | 
|  |  | 
|  | tcaddr = tc.regs; | 
|  |  | 
|  | if (bits == 32) { | 
|  | /* use appropriate function to read 32 bit counter */ | 
|  | clksrc.read = tc_get_cycles32; | 
|  | /* setup only channel 0 */ | 
|  | tcb_setup_single_chan(&tc, best_divisor_idx); | 
|  | tc_sched_clock = tc_sched_clock_read32; | 
|  | tc_delay_timer.read_current_timer = tc_delay_timer_read32; | 
|  | } else { | 
|  | /* we have three clocks no matter what the | 
|  | * underlying platform supports. | 
|  | */ | 
|  | ret = clk_prepare_enable(tc.clk[1]); | 
|  | if (ret) { | 
|  | pr_debug("can't enable T1 clk\n"); | 
|  | goto err_disable_t0; | 
|  | } | 
|  | /* setup both channel 0 & 1 */ | 
|  | tcb_setup_dual_chan(&tc, best_divisor_idx); | 
|  | tc_sched_clock = tc_sched_clock_read; | 
|  | tc_delay_timer.read_current_timer = tc_delay_timer_read; | 
|  | } | 
|  |  | 
|  | /* and away we go! */ | 
|  | ret = clocksource_register_hz(&clksrc, divided_rate); | 
|  | if (ret) | 
|  | goto err_disable_t1; | 
|  |  | 
|  | /* channel 2:  periodic and oneshot timer support */ | 
|  | ret = setup_clkevents(&tc, best_divisor_idx); | 
|  | if (ret) | 
|  | goto err_unregister_clksrc; | 
|  |  | 
|  | sched_clock_register(tc_sched_clock, 32, divided_rate); | 
|  |  | 
|  | tc_delay_timer.freq = divided_rate; | 
|  | register_current_timer_delay(&tc_delay_timer); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_unregister_clksrc: | 
|  | clocksource_unregister(&clksrc); | 
|  |  | 
|  | err_disable_t1: | 
|  | if (bits != 32) | 
|  | clk_disable_unprepare(tc.clk[1]); | 
|  |  | 
|  | err_disable_t0: | 
|  | clk_disable_unprepare(t0_clk); | 
|  |  | 
|  | tcaddr = NULL; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | TIMER_OF_DECLARE(atmel_tcb_clksrc, "atmel,tcb-timer", tcb_clksrc_init); |