blob: a331b061dbf4d3a34b1ecd140d974ffff768581d [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2019 Google LLC
*/
/*
* Refer to Documentation/block/inline-encryption.rst for detailed explanation.
*/
#define pr_fmt(fmt) "blk-crypto-fallback: " fmt
#include <crypto/skcipher.h>
#include <linux/blk-crypto.h>
#include <linux/blk-crypto-profile.h>
#include <linux/blkdev.h>
#include <linux/crypto.h>
#include <linux/mempool.h>
#include <linux/module.h>
#include <linux/random.h>
#include <linux/scatterlist.h>
#include "blk-cgroup.h"
#include "blk-crypto-internal.h"
static unsigned int num_prealloc_bounce_pg = BIO_MAX_VECS;
module_param(num_prealloc_bounce_pg, uint, 0);
MODULE_PARM_DESC(num_prealloc_bounce_pg,
"Number of preallocated bounce pages for the blk-crypto crypto API fallback");
static unsigned int blk_crypto_num_keyslots = 100;
module_param_named(num_keyslots, blk_crypto_num_keyslots, uint, 0);
MODULE_PARM_DESC(num_keyslots,
"Number of keyslots for the blk-crypto crypto API fallback");
static unsigned int num_prealloc_fallback_crypt_ctxs = 128;
module_param(num_prealloc_fallback_crypt_ctxs, uint, 0);
MODULE_PARM_DESC(num_prealloc_crypt_fallback_ctxs,
"Number of preallocated bio fallback crypto contexts for blk-crypto to use during crypto API fallback");
struct bio_fallback_crypt_ctx {
struct bio_crypt_ctx crypt_ctx;
/*
* Copy of the bvec_iter when this bio was submitted.
* We only want to en/decrypt the part of the bio as described by the
* bvec_iter upon submission because bio might be split before being
* resubmitted
*/
struct bvec_iter crypt_iter;
union {
struct {
struct work_struct work;
struct bio *bio;
};
struct {
void *bi_private_orig;
bio_end_io_t *bi_end_io_orig;
};
};
};
static struct kmem_cache *bio_fallback_crypt_ctx_cache;
static mempool_t *bio_fallback_crypt_ctx_pool;
/*
* Allocating a crypto tfm during I/O can deadlock, so we have to preallocate
* all of a mode's tfms when that mode starts being used. Since each mode may
* need all the keyslots at some point, each mode needs its own tfm for each
* keyslot; thus, a keyslot may contain tfms for multiple modes. However, to
* match the behavior of real inline encryption hardware (which only supports a
* single encryption context per keyslot), we only allow one tfm per keyslot to
* be used at a time - the rest of the unused tfms have their keys cleared.
*/
static DEFINE_MUTEX(tfms_init_lock);
static bool tfms_inited[BLK_ENCRYPTION_MODE_MAX];
static struct blk_crypto_fallback_keyslot {
enum blk_crypto_mode_num crypto_mode;
struct crypto_sync_skcipher *tfms[BLK_ENCRYPTION_MODE_MAX];
} *blk_crypto_keyslots;
static struct blk_crypto_profile *blk_crypto_fallback_profile;
static struct workqueue_struct *blk_crypto_wq;
static mempool_t *blk_crypto_bounce_page_pool;
static struct bio_set enc_bio_set;
/*
* This is the key we set when evicting a keyslot. This *should* be the all 0's
* key, but AES-XTS rejects that key, so we use some random bytes instead.
*/
static u8 blank_key[BLK_CRYPTO_MAX_RAW_KEY_SIZE];
static void blk_crypto_fallback_evict_keyslot(unsigned int slot)
{
struct blk_crypto_fallback_keyslot *slotp = &blk_crypto_keyslots[slot];
enum blk_crypto_mode_num crypto_mode = slotp->crypto_mode;
int err;
WARN_ON(slotp->crypto_mode == BLK_ENCRYPTION_MODE_INVALID);
/* Clear the key in the skcipher */
err = crypto_sync_skcipher_setkey(slotp->tfms[crypto_mode], blank_key,
blk_crypto_modes[crypto_mode].keysize);
WARN_ON(err);
slotp->crypto_mode = BLK_ENCRYPTION_MODE_INVALID;
}
static int
blk_crypto_fallback_keyslot_program(struct blk_crypto_profile *profile,
const struct blk_crypto_key *key,
unsigned int slot)
{
struct blk_crypto_fallback_keyslot *slotp = &blk_crypto_keyslots[slot];
const enum blk_crypto_mode_num crypto_mode =
key->crypto_cfg.crypto_mode;
int err;
if (crypto_mode != slotp->crypto_mode &&
slotp->crypto_mode != BLK_ENCRYPTION_MODE_INVALID)
blk_crypto_fallback_evict_keyslot(slot);
slotp->crypto_mode = crypto_mode;
err = crypto_sync_skcipher_setkey(slotp->tfms[crypto_mode], key->bytes,
key->size);
if (err) {
blk_crypto_fallback_evict_keyslot(slot);
return err;
}
return 0;
}
static int blk_crypto_fallback_keyslot_evict(struct blk_crypto_profile *profile,
const struct blk_crypto_key *key,
unsigned int slot)
{
blk_crypto_fallback_evict_keyslot(slot);
return 0;
}
static const struct blk_crypto_ll_ops blk_crypto_fallback_ll_ops = {
.keyslot_program = blk_crypto_fallback_keyslot_program,
.keyslot_evict = blk_crypto_fallback_keyslot_evict,
};
static void blk_crypto_fallback_encrypt_endio(struct bio *enc_bio)
{
struct bio *src_bio = enc_bio->bi_private;
struct page **pages = (struct page **)enc_bio->bi_io_vec;
struct bio_vec *bv;
unsigned int i;
/*
* Use the same trick as the alloc side to avoid the need for an extra
* pages array.
*/
bio_for_each_bvec_all(bv, enc_bio, i)
pages[i] = bv->bv_page;
i = mempool_free_bulk(blk_crypto_bounce_page_pool, (void **)pages,
enc_bio->bi_vcnt);
if (i < enc_bio->bi_vcnt)
release_pages(pages + i, enc_bio->bi_vcnt - i);
if (enc_bio->bi_status)
cmpxchg(&src_bio->bi_status, 0, enc_bio->bi_status);
bio_put(enc_bio);
bio_endio(src_bio);
}
#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
static struct bio *blk_crypto_alloc_enc_bio(struct bio *bio_src,
unsigned int nr_segs, struct page ***pages_ret)
{
unsigned int memflags = memalloc_noio_save();
unsigned int nr_allocated;
struct page **pages;
struct bio *bio;
bio = bio_alloc_bioset(bio_src->bi_bdev, nr_segs, bio_src->bi_opf,
GFP_NOIO, &enc_bio_set);
if (bio_flagged(bio_src, BIO_REMAPPED))
bio_set_flag(bio, BIO_REMAPPED);
bio->bi_private = bio_src;
bio->bi_end_io = blk_crypto_fallback_encrypt_endio;
bio->bi_ioprio = bio_src->bi_ioprio;
bio->bi_write_hint = bio_src->bi_write_hint;
bio->bi_write_stream = bio_src->bi_write_stream;
bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
bio_clone_blkg_association(bio, bio_src);
/*
* Move page array up in the allocated memory for the bio vecs as far as
* possible so that we can start filling biovecs from the beginning
* without overwriting the temporary page array.
*/
static_assert(PAGE_PTRS_PER_BVEC > 1);
pages = (struct page **)bio->bi_io_vec;
pages += nr_segs * (PAGE_PTRS_PER_BVEC - 1);
/*
* Try a bulk allocation first. This could leave random pages in the
* array unallocated, but we'll fix that up later in mempool_alloc_bulk.
*
* Note: alloc_pages_bulk needs the array to be zeroed, as it assumes
* any non-zero slot already contains a valid allocation.
*/
memset(pages, 0, sizeof(struct page *) * nr_segs);
nr_allocated = alloc_pages_bulk(GFP_KERNEL, nr_segs, pages);
if (nr_allocated < nr_segs)
mempool_alloc_bulk(blk_crypto_bounce_page_pool, (void **)pages,
nr_segs, nr_allocated);
memalloc_noio_restore(memflags);
*pages_ret = pages;
return bio;
}
static struct crypto_sync_skcipher *
blk_crypto_fallback_tfm(struct blk_crypto_keyslot *slot)
{
const struct blk_crypto_fallback_keyslot *slotp =
&blk_crypto_keyslots[blk_crypto_keyslot_index(slot)];
return slotp->tfms[slotp->crypto_mode];
}
union blk_crypto_iv {
__le64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
u8 bytes[BLK_CRYPTO_MAX_IV_SIZE];
};
static void blk_crypto_dun_to_iv(const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
union blk_crypto_iv *iv)
{
int i;
for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++)
iv->dun[i] = cpu_to_le64(dun[i]);
}
static void __blk_crypto_fallback_encrypt_bio(struct bio *src_bio,
struct crypto_sync_skcipher *tfm)
{
struct bio_crypt_ctx *bc = src_bio->bi_crypt_context;
int data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
SYNC_SKCIPHER_REQUEST_ON_STACK(ciph_req, tfm);
u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
struct scatterlist src, dst;
union blk_crypto_iv iv;
unsigned int nr_enc_pages, enc_idx;
struct page **enc_pages;
struct bio *enc_bio;
unsigned int i;
skcipher_request_set_callback(ciph_req,
CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
NULL, NULL);
memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
sg_init_table(&src, 1);
sg_init_table(&dst, 1);
skcipher_request_set_crypt(ciph_req, &src, &dst, data_unit_size,
iv.bytes);
/*
* Encrypt each page in the source bio. Because the source bio could
* have bio_vecs that span more than a single page, but the encrypted
* bios are limited to a single page per bio_vec, this can generate
* more than a single encrypted bio per source bio.
*/
new_bio:
nr_enc_pages = min(bio_segments(src_bio), BIO_MAX_VECS);
enc_bio = blk_crypto_alloc_enc_bio(src_bio, nr_enc_pages, &enc_pages);
enc_idx = 0;
for (;;) {
struct bio_vec src_bv =
bio_iter_iovec(src_bio, src_bio->bi_iter);
struct page *enc_page = enc_pages[enc_idx];
if (!IS_ALIGNED(src_bv.bv_len | src_bv.bv_offset,
data_unit_size)) {
enc_bio->bi_status = BLK_STS_INVAL;
goto out_free_enc_bio;
}
__bio_add_page(enc_bio, enc_page, src_bv.bv_len,
src_bv.bv_offset);
sg_set_page(&src, src_bv.bv_page, data_unit_size,
src_bv.bv_offset);
sg_set_page(&dst, enc_page, data_unit_size, src_bv.bv_offset);
/*
* Increment the index now that the encrypted page is added to
* the bio. This is important for the error unwind path.
*/
enc_idx++;
/*
* Encrypt each data unit in this page.
*/
for (i = 0; i < src_bv.bv_len; i += data_unit_size) {
blk_crypto_dun_to_iv(curr_dun, &iv);
if (crypto_skcipher_encrypt(ciph_req)) {
enc_bio->bi_status = BLK_STS_IOERR;
goto out_free_enc_bio;
}
bio_crypt_dun_increment(curr_dun, 1);
src.offset += data_unit_size;
dst.offset += data_unit_size;
}
bio_advance_iter_single(src_bio, &src_bio->bi_iter,
src_bv.bv_len);
if (!src_bio->bi_iter.bi_size)
break;
if (enc_idx == nr_enc_pages) {
/*
* For each additional encrypted bio submitted,
* increment the source bio's remaining count. Each
* encrypted bio's completion handler calls bio_endio on
* the source bio, so this keeps the source bio from
* completing until the last encrypted bio does.
*/
bio_inc_remaining(src_bio);
submit_bio(enc_bio);
goto new_bio;
}
}
submit_bio(enc_bio);
return;
out_free_enc_bio:
/*
* Add the remaining pages to the bio so that the normal completion path
* in blk_crypto_fallback_encrypt_endio frees them. The exact data
* layout does not matter for that, so don't bother iterating the source
* bio.
*/
for (; enc_idx < nr_enc_pages; enc_idx++)
__bio_add_page(enc_bio, enc_pages[enc_idx], PAGE_SIZE, 0);
bio_endio(enc_bio);
}
/*
* The crypto API fallback's encryption routine.
*
* Allocate one or more bios for encryption, encrypt the input bio using the
* crypto API, and submit the encrypted bios. Sets bio->bi_status and
* completes the source bio on error
*/
static void blk_crypto_fallback_encrypt_bio(struct bio *src_bio)
{
struct bio_crypt_ctx *bc = src_bio->bi_crypt_context;
struct blk_crypto_keyslot *slot;
blk_status_t status;
status = blk_crypto_get_keyslot(blk_crypto_fallback_profile,
bc->bc_key, &slot);
if (status != BLK_STS_OK) {
src_bio->bi_status = status;
bio_endio(src_bio);
return;
}
__blk_crypto_fallback_encrypt_bio(src_bio,
blk_crypto_fallback_tfm(slot));
blk_crypto_put_keyslot(slot);
}
static blk_status_t __blk_crypto_fallback_decrypt_bio(struct bio *bio,
struct bio_crypt_ctx *bc, struct bvec_iter iter,
struct crypto_sync_skcipher *tfm)
{
SYNC_SKCIPHER_REQUEST_ON_STACK(ciph_req, tfm);
u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
union blk_crypto_iv iv;
struct scatterlist sg;
struct bio_vec bv;
const int data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
unsigned int i;
skcipher_request_set_callback(ciph_req,
CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
NULL, NULL);
memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
sg_init_table(&sg, 1);
skcipher_request_set_crypt(ciph_req, &sg, &sg, data_unit_size,
iv.bytes);
/* Decrypt each segment in the bio */
__bio_for_each_segment(bv, bio, iter, iter) {
struct page *page = bv.bv_page;
if (!IS_ALIGNED(bv.bv_len | bv.bv_offset, data_unit_size))
return BLK_STS_INVAL;
sg_set_page(&sg, page, data_unit_size, bv.bv_offset);
/* Decrypt each data unit in the segment */
for (i = 0; i < bv.bv_len; i += data_unit_size) {
blk_crypto_dun_to_iv(curr_dun, &iv);
if (crypto_skcipher_decrypt(ciph_req))
return BLK_STS_IOERR;
bio_crypt_dun_increment(curr_dun, 1);
sg.offset += data_unit_size;
}
}
return BLK_STS_OK;
}
/*
* The crypto API fallback's main decryption routine.
*
* Decrypts input bio in place, and calls bio_endio on the bio.
*/
static void blk_crypto_fallback_decrypt_bio(struct work_struct *work)
{
struct bio_fallback_crypt_ctx *f_ctx =
container_of(work, struct bio_fallback_crypt_ctx, work);
struct bio *bio = f_ctx->bio;
struct bio_crypt_ctx *bc = &f_ctx->crypt_ctx;
struct blk_crypto_keyslot *slot;
blk_status_t status;
status = blk_crypto_get_keyslot(blk_crypto_fallback_profile,
bc->bc_key, &slot);
if (status == BLK_STS_OK) {
status = __blk_crypto_fallback_decrypt_bio(bio, bc,
f_ctx->crypt_iter,
blk_crypto_fallback_tfm(slot));
blk_crypto_put_keyslot(slot);
}
mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
bio->bi_status = status;
bio_endio(bio);
}
/**
* blk_crypto_fallback_decrypt_endio - queue bio for fallback decryption
*
* @bio: the bio to queue
*
* Restore bi_private and bi_end_io, and queue the bio for decryption into a
* workqueue, since this function will be called from an atomic context.
*/
static void blk_crypto_fallback_decrypt_endio(struct bio *bio)
{
struct bio_fallback_crypt_ctx *f_ctx = bio->bi_private;
bio->bi_private = f_ctx->bi_private_orig;
bio->bi_end_io = f_ctx->bi_end_io_orig;
/* If there was an IO error, don't queue for decrypt. */
if (bio->bi_status) {
mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
bio_endio(bio);
return;
}
INIT_WORK(&f_ctx->work, blk_crypto_fallback_decrypt_bio);
f_ctx->bio = bio;
queue_work(blk_crypto_wq, &f_ctx->work);
}
/**
* blk_crypto_fallback_bio_prep - Prepare a bio to use fallback en/decryption
* @bio: bio to prepare
*
* If bio is doing a WRITE operation, allocate one or more bios to contain the
* encrypted payload and submit them.
*
* For a READ operation, mark the bio for decryption by using bi_private and
* bi_end_io.
*
* In either case, this function will make the submitted bio(s) look like
* regular bios (i.e. as if no encryption context was ever specified) for the
* purposes of the rest of the stack except for blk-integrity (blk-integrity and
* blk-crypto are not currently supported together).
*
* Return: true if @bio should be submitted to the driver by the caller, else
* false. Sets bio->bi_status, calls bio_endio and returns false on error.
*/
bool blk_crypto_fallback_bio_prep(struct bio *bio)
{
struct bio_crypt_ctx *bc = bio->bi_crypt_context;
struct bio_fallback_crypt_ctx *f_ctx;
if (WARN_ON_ONCE(!tfms_inited[bc->bc_key->crypto_cfg.crypto_mode])) {
/* User didn't call blk_crypto_start_using_key() first */
bio_io_error(bio);
return false;
}
if (!__blk_crypto_cfg_supported(blk_crypto_fallback_profile,
&bc->bc_key->crypto_cfg)) {
bio->bi_status = BLK_STS_NOTSUPP;
bio_endio(bio);
return false;
}
if (bio_data_dir(bio) == WRITE) {
blk_crypto_fallback_encrypt_bio(bio);
return false;
}
/*
* bio READ case: Set up a f_ctx in the bio's bi_private and set the
* bi_end_io appropriately to trigger decryption when the bio is ended.
*/
f_ctx = mempool_alloc(bio_fallback_crypt_ctx_pool, GFP_NOIO);
f_ctx->crypt_ctx = *bc;
f_ctx->crypt_iter = bio->bi_iter;
f_ctx->bi_private_orig = bio->bi_private;
f_ctx->bi_end_io_orig = bio->bi_end_io;
bio->bi_private = (void *)f_ctx;
bio->bi_end_io = blk_crypto_fallback_decrypt_endio;
bio_crypt_free_ctx(bio);
return true;
}
int blk_crypto_fallback_evict_key(const struct blk_crypto_key *key)
{
return __blk_crypto_evict_key(blk_crypto_fallback_profile, key);
}
static bool blk_crypto_fallback_inited;
static int blk_crypto_fallback_init(void)
{
int i;
int err;
if (blk_crypto_fallback_inited)
return 0;
get_random_bytes(blank_key, sizeof(blank_key));
err = bioset_init(&enc_bio_set, 64, 0, BIOSET_NEED_BVECS);
if (err)
goto out;
/* Dynamic allocation is needed because of lockdep_register_key(). */
blk_crypto_fallback_profile =
kzalloc(sizeof(*blk_crypto_fallback_profile), GFP_KERNEL);
if (!blk_crypto_fallback_profile) {
err = -ENOMEM;
goto fail_free_bioset;
}
err = blk_crypto_profile_init(blk_crypto_fallback_profile,
blk_crypto_num_keyslots);
if (err)
goto fail_free_profile;
err = -ENOMEM;
blk_crypto_fallback_profile->ll_ops = blk_crypto_fallback_ll_ops;
blk_crypto_fallback_profile->max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE;
blk_crypto_fallback_profile->key_types_supported = BLK_CRYPTO_KEY_TYPE_RAW;
/* All blk-crypto modes have a crypto API fallback. */
for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++)
blk_crypto_fallback_profile->modes_supported[i] = 0xFFFFFFFF;
blk_crypto_fallback_profile->modes_supported[BLK_ENCRYPTION_MODE_INVALID] = 0;
blk_crypto_wq = alloc_workqueue("blk_crypto_wq",
WQ_UNBOUND | WQ_HIGHPRI |
WQ_MEM_RECLAIM, num_online_cpus());
if (!blk_crypto_wq)
goto fail_destroy_profile;
blk_crypto_keyslots = kcalloc(blk_crypto_num_keyslots,
sizeof(blk_crypto_keyslots[0]),
GFP_KERNEL);
if (!blk_crypto_keyslots)
goto fail_free_wq;
blk_crypto_bounce_page_pool =
mempool_create_page_pool(num_prealloc_bounce_pg, 0);
if (!blk_crypto_bounce_page_pool)
goto fail_free_keyslots;
bio_fallback_crypt_ctx_cache = KMEM_CACHE(bio_fallback_crypt_ctx, 0);
if (!bio_fallback_crypt_ctx_cache)
goto fail_free_bounce_page_pool;
bio_fallback_crypt_ctx_pool =
mempool_create_slab_pool(num_prealloc_fallback_crypt_ctxs,
bio_fallback_crypt_ctx_cache);
if (!bio_fallback_crypt_ctx_pool)
goto fail_free_crypt_ctx_cache;
blk_crypto_fallback_inited = true;
return 0;
fail_free_crypt_ctx_cache:
kmem_cache_destroy(bio_fallback_crypt_ctx_cache);
fail_free_bounce_page_pool:
mempool_destroy(blk_crypto_bounce_page_pool);
fail_free_keyslots:
kfree(blk_crypto_keyslots);
fail_free_wq:
destroy_workqueue(blk_crypto_wq);
fail_destroy_profile:
blk_crypto_profile_destroy(blk_crypto_fallback_profile);
fail_free_profile:
kfree(blk_crypto_fallback_profile);
fail_free_bioset:
bioset_exit(&enc_bio_set);
out:
return err;
}
/*
* Prepare blk-crypto-fallback for the specified crypto mode.
* Returns -ENOPKG if the needed crypto API support is missing.
*/
int blk_crypto_fallback_start_using_mode(enum blk_crypto_mode_num mode_num)
{
const char *cipher_str = blk_crypto_modes[mode_num].cipher_str;
struct blk_crypto_fallback_keyslot *slotp;
unsigned int i;
int err = 0;
/*
* Fast path
* Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
* for each i are visible before we try to access them.
*/
if (likely(smp_load_acquire(&tfms_inited[mode_num])))
return 0;
mutex_lock(&tfms_init_lock);
if (tfms_inited[mode_num])
goto out;
err = blk_crypto_fallback_init();
if (err)
goto out;
for (i = 0; i < blk_crypto_num_keyslots; i++) {
slotp = &blk_crypto_keyslots[i];
slotp->tfms[mode_num] = crypto_alloc_sync_skcipher(cipher_str,
0, 0);
if (IS_ERR(slotp->tfms[mode_num])) {
err = PTR_ERR(slotp->tfms[mode_num]);
if (err == -ENOENT) {
pr_warn_once("Missing crypto API support for \"%s\"\n",
cipher_str);
err = -ENOPKG;
}
slotp->tfms[mode_num] = NULL;
goto out_free_tfms;
}
crypto_sync_skcipher_set_flags(slotp->tfms[mode_num],
CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
}
/*
* Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
* for each i are visible before we set tfms_inited[mode_num].
*/
smp_store_release(&tfms_inited[mode_num], true);
goto out;
out_free_tfms:
for (i = 0; i < blk_crypto_num_keyslots; i++) {
slotp = &blk_crypto_keyslots[i];
crypto_free_sync_skcipher(slotp->tfms[mode_num]);
slotp->tfms[mode_num] = NULL;
}
out:
mutex_unlock(&tfms_init_lock);
return err;
}