| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright 2019 Google LLC |
| */ |
| |
| /* |
| * Refer to Documentation/block/inline-encryption.rst for detailed explanation. |
| */ |
| |
| #define pr_fmt(fmt) "blk-crypto-fallback: " fmt |
| |
| #include <crypto/skcipher.h> |
| #include <linux/blk-crypto.h> |
| #include <linux/blk-crypto-profile.h> |
| #include <linux/blkdev.h> |
| #include <linux/crypto.h> |
| #include <linux/mempool.h> |
| #include <linux/module.h> |
| #include <linux/random.h> |
| #include <linux/scatterlist.h> |
| |
| #include "blk-cgroup.h" |
| #include "blk-crypto-internal.h" |
| |
| static unsigned int num_prealloc_bounce_pg = BIO_MAX_VECS; |
| module_param(num_prealloc_bounce_pg, uint, 0); |
| MODULE_PARM_DESC(num_prealloc_bounce_pg, |
| "Number of preallocated bounce pages for the blk-crypto crypto API fallback"); |
| |
| static unsigned int blk_crypto_num_keyslots = 100; |
| module_param_named(num_keyslots, blk_crypto_num_keyslots, uint, 0); |
| MODULE_PARM_DESC(num_keyslots, |
| "Number of keyslots for the blk-crypto crypto API fallback"); |
| |
| static unsigned int num_prealloc_fallback_crypt_ctxs = 128; |
| module_param(num_prealloc_fallback_crypt_ctxs, uint, 0); |
| MODULE_PARM_DESC(num_prealloc_crypt_fallback_ctxs, |
| "Number of preallocated bio fallback crypto contexts for blk-crypto to use during crypto API fallback"); |
| |
| struct bio_fallback_crypt_ctx { |
| struct bio_crypt_ctx crypt_ctx; |
| /* |
| * Copy of the bvec_iter when this bio was submitted. |
| * We only want to en/decrypt the part of the bio as described by the |
| * bvec_iter upon submission because bio might be split before being |
| * resubmitted |
| */ |
| struct bvec_iter crypt_iter; |
| union { |
| struct { |
| struct work_struct work; |
| struct bio *bio; |
| }; |
| struct { |
| void *bi_private_orig; |
| bio_end_io_t *bi_end_io_orig; |
| }; |
| }; |
| }; |
| |
| static struct kmem_cache *bio_fallback_crypt_ctx_cache; |
| static mempool_t *bio_fallback_crypt_ctx_pool; |
| |
| /* |
| * Allocating a crypto tfm during I/O can deadlock, so we have to preallocate |
| * all of a mode's tfms when that mode starts being used. Since each mode may |
| * need all the keyslots at some point, each mode needs its own tfm for each |
| * keyslot; thus, a keyslot may contain tfms for multiple modes. However, to |
| * match the behavior of real inline encryption hardware (which only supports a |
| * single encryption context per keyslot), we only allow one tfm per keyslot to |
| * be used at a time - the rest of the unused tfms have their keys cleared. |
| */ |
| static DEFINE_MUTEX(tfms_init_lock); |
| static bool tfms_inited[BLK_ENCRYPTION_MODE_MAX]; |
| |
| static struct blk_crypto_fallback_keyslot { |
| enum blk_crypto_mode_num crypto_mode; |
| struct crypto_sync_skcipher *tfms[BLK_ENCRYPTION_MODE_MAX]; |
| } *blk_crypto_keyslots; |
| |
| static struct blk_crypto_profile *blk_crypto_fallback_profile; |
| static struct workqueue_struct *blk_crypto_wq; |
| static mempool_t *blk_crypto_bounce_page_pool; |
| static struct bio_set enc_bio_set; |
| |
| /* |
| * This is the key we set when evicting a keyslot. This *should* be the all 0's |
| * key, but AES-XTS rejects that key, so we use some random bytes instead. |
| */ |
| static u8 blank_key[BLK_CRYPTO_MAX_RAW_KEY_SIZE]; |
| |
| static void blk_crypto_fallback_evict_keyslot(unsigned int slot) |
| { |
| struct blk_crypto_fallback_keyslot *slotp = &blk_crypto_keyslots[slot]; |
| enum blk_crypto_mode_num crypto_mode = slotp->crypto_mode; |
| int err; |
| |
| WARN_ON(slotp->crypto_mode == BLK_ENCRYPTION_MODE_INVALID); |
| |
| /* Clear the key in the skcipher */ |
| err = crypto_sync_skcipher_setkey(slotp->tfms[crypto_mode], blank_key, |
| blk_crypto_modes[crypto_mode].keysize); |
| WARN_ON(err); |
| slotp->crypto_mode = BLK_ENCRYPTION_MODE_INVALID; |
| } |
| |
| static int |
| blk_crypto_fallback_keyslot_program(struct blk_crypto_profile *profile, |
| const struct blk_crypto_key *key, |
| unsigned int slot) |
| { |
| struct blk_crypto_fallback_keyslot *slotp = &blk_crypto_keyslots[slot]; |
| const enum blk_crypto_mode_num crypto_mode = |
| key->crypto_cfg.crypto_mode; |
| int err; |
| |
| if (crypto_mode != slotp->crypto_mode && |
| slotp->crypto_mode != BLK_ENCRYPTION_MODE_INVALID) |
| blk_crypto_fallback_evict_keyslot(slot); |
| |
| slotp->crypto_mode = crypto_mode; |
| err = crypto_sync_skcipher_setkey(slotp->tfms[crypto_mode], key->bytes, |
| key->size); |
| if (err) { |
| blk_crypto_fallback_evict_keyslot(slot); |
| return err; |
| } |
| return 0; |
| } |
| |
| static int blk_crypto_fallback_keyslot_evict(struct blk_crypto_profile *profile, |
| const struct blk_crypto_key *key, |
| unsigned int slot) |
| { |
| blk_crypto_fallback_evict_keyslot(slot); |
| return 0; |
| } |
| |
| static const struct blk_crypto_ll_ops blk_crypto_fallback_ll_ops = { |
| .keyslot_program = blk_crypto_fallback_keyslot_program, |
| .keyslot_evict = blk_crypto_fallback_keyslot_evict, |
| }; |
| |
| static void blk_crypto_fallback_encrypt_endio(struct bio *enc_bio) |
| { |
| struct bio *src_bio = enc_bio->bi_private; |
| struct page **pages = (struct page **)enc_bio->bi_io_vec; |
| struct bio_vec *bv; |
| unsigned int i; |
| |
| /* |
| * Use the same trick as the alloc side to avoid the need for an extra |
| * pages array. |
| */ |
| bio_for_each_bvec_all(bv, enc_bio, i) |
| pages[i] = bv->bv_page; |
| |
| i = mempool_free_bulk(blk_crypto_bounce_page_pool, (void **)pages, |
| enc_bio->bi_vcnt); |
| if (i < enc_bio->bi_vcnt) |
| release_pages(pages + i, enc_bio->bi_vcnt - i); |
| |
| if (enc_bio->bi_status) |
| cmpxchg(&src_bio->bi_status, 0, enc_bio->bi_status); |
| |
| bio_put(enc_bio); |
| bio_endio(src_bio); |
| } |
| |
| #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) |
| |
| static struct bio *blk_crypto_alloc_enc_bio(struct bio *bio_src, |
| unsigned int nr_segs, struct page ***pages_ret) |
| { |
| unsigned int memflags = memalloc_noio_save(); |
| unsigned int nr_allocated; |
| struct page **pages; |
| struct bio *bio; |
| |
| bio = bio_alloc_bioset(bio_src->bi_bdev, nr_segs, bio_src->bi_opf, |
| GFP_NOIO, &enc_bio_set); |
| if (bio_flagged(bio_src, BIO_REMAPPED)) |
| bio_set_flag(bio, BIO_REMAPPED); |
| bio->bi_private = bio_src; |
| bio->bi_end_io = blk_crypto_fallback_encrypt_endio; |
| bio->bi_ioprio = bio_src->bi_ioprio; |
| bio->bi_write_hint = bio_src->bi_write_hint; |
| bio->bi_write_stream = bio_src->bi_write_stream; |
| bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector; |
| bio_clone_blkg_association(bio, bio_src); |
| |
| /* |
| * Move page array up in the allocated memory for the bio vecs as far as |
| * possible so that we can start filling biovecs from the beginning |
| * without overwriting the temporary page array. |
| */ |
| static_assert(PAGE_PTRS_PER_BVEC > 1); |
| pages = (struct page **)bio->bi_io_vec; |
| pages += nr_segs * (PAGE_PTRS_PER_BVEC - 1); |
| |
| /* |
| * Try a bulk allocation first. This could leave random pages in the |
| * array unallocated, but we'll fix that up later in mempool_alloc_bulk. |
| * |
| * Note: alloc_pages_bulk needs the array to be zeroed, as it assumes |
| * any non-zero slot already contains a valid allocation. |
| */ |
| memset(pages, 0, sizeof(struct page *) * nr_segs); |
| nr_allocated = alloc_pages_bulk(GFP_KERNEL, nr_segs, pages); |
| if (nr_allocated < nr_segs) |
| mempool_alloc_bulk(blk_crypto_bounce_page_pool, (void **)pages, |
| nr_segs, nr_allocated); |
| memalloc_noio_restore(memflags); |
| *pages_ret = pages; |
| return bio; |
| } |
| |
| static struct crypto_sync_skcipher * |
| blk_crypto_fallback_tfm(struct blk_crypto_keyslot *slot) |
| { |
| const struct blk_crypto_fallback_keyslot *slotp = |
| &blk_crypto_keyslots[blk_crypto_keyslot_index(slot)]; |
| |
| return slotp->tfms[slotp->crypto_mode]; |
| } |
| |
| union blk_crypto_iv { |
| __le64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE]; |
| u8 bytes[BLK_CRYPTO_MAX_IV_SIZE]; |
| }; |
| |
| static void blk_crypto_dun_to_iv(const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], |
| union blk_crypto_iv *iv) |
| { |
| int i; |
| |
| for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) |
| iv->dun[i] = cpu_to_le64(dun[i]); |
| } |
| |
| static void __blk_crypto_fallback_encrypt_bio(struct bio *src_bio, |
| struct crypto_sync_skcipher *tfm) |
| { |
| struct bio_crypt_ctx *bc = src_bio->bi_crypt_context; |
| int data_unit_size = bc->bc_key->crypto_cfg.data_unit_size; |
| SYNC_SKCIPHER_REQUEST_ON_STACK(ciph_req, tfm); |
| u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE]; |
| struct scatterlist src, dst; |
| union blk_crypto_iv iv; |
| unsigned int nr_enc_pages, enc_idx; |
| struct page **enc_pages; |
| struct bio *enc_bio; |
| unsigned int i; |
| |
| skcipher_request_set_callback(ciph_req, |
| CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, |
| NULL, NULL); |
| |
| memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun)); |
| sg_init_table(&src, 1); |
| sg_init_table(&dst, 1); |
| |
| skcipher_request_set_crypt(ciph_req, &src, &dst, data_unit_size, |
| iv.bytes); |
| |
| /* |
| * Encrypt each page in the source bio. Because the source bio could |
| * have bio_vecs that span more than a single page, but the encrypted |
| * bios are limited to a single page per bio_vec, this can generate |
| * more than a single encrypted bio per source bio. |
| */ |
| new_bio: |
| nr_enc_pages = min(bio_segments(src_bio), BIO_MAX_VECS); |
| enc_bio = blk_crypto_alloc_enc_bio(src_bio, nr_enc_pages, &enc_pages); |
| enc_idx = 0; |
| for (;;) { |
| struct bio_vec src_bv = |
| bio_iter_iovec(src_bio, src_bio->bi_iter); |
| struct page *enc_page = enc_pages[enc_idx]; |
| |
| if (!IS_ALIGNED(src_bv.bv_len | src_bv.bv_offset, |
| data_unit_size)) { |
| enc_bio->bi_status = BLK_STS_INVAL; |
| goto out_free_enc_bio; |
| } |
| |
| __bio_add_page(enc_bio, enc_page, src_bv.bv_len, |
| src_bv.bv_offset); |
| |
| sg_set_page(&src, src_bv.bv_page, data_unit_size, |
| src_bv.bv_offset); |
| sg_set_page(&dst, enc_page, data_unit_size, src_bv.bv_offset); |
| |
| /* |
| * Increment the index now that the encrypted page is added to |
| * the bio. This is important for the error unwind path. |
| */ |
| enc_idx++; |
| |
| /* |
| * Encrypt each data unit in this page. |
| */ |
| for (i = 0; i < src_bv.bv_len; i += data_unit_size) { |
| blk_crypto_dun_to_iv(curr_dun, &iv); |
| if (crypto_skcipher_encrypt(ciph_req)) { |
| enc_bio->bi_status = BLK_STS_IOERR; |
| goto out_free_enc_bio; |
| } |
| bio_crypt_dun_increment(curr_dun, 1); |
| src.offset += data_unit_size; |
| dst.offset += data_unit_size; |
| } |
| |
| bio_advance_iter_single(src_bio, &src_bio->bi_iter, |
| src_bv.bv_len); |
| if (!src_bio->bi_iter.bi_size) |
| break; |
| |
| if (enc_idx == nr_enc_pages) { |
| /* |
| * For each additional encrypted bio submitted, |
| * increment the source bio's remaining count. Each |
| * encrypted bio's completion handler calls bio_endio on |
| * the source bio, so this keeps the source bio from |
| * completing until the last encrypted bio does. |
| */ |
| bio_inc_remaining(src_bio); |
| submit_bio(enc_bio); |
| goto new_bio; |
| } |
| } |
| |
| submit_bio(enc_bio); |
| return; |
| |
| out_free_enc_bio: |
| /* |
| * Add the remaining pages to the bio so that the normal completion path |
| * in blk_crypto_fallback_encrypt_endio frees them. The exact data |
| * layout does not matter for that, so don't bother iterating the source |
| * bio. |
| */ |
| for (; enc_idx < nr_enc_pages; enc_idx++) |
| __bio_add_page(enc_bio, enc_pages[enc_idx], PAGE_SIZE, 0); |
| bio_endio(enc_bio); |
| } |
| |
| /* |
| * The crypto API fallback's encryption routine. |
| * |
| * Allocate one or more bios for encryption, encrypt the input bio using the |
| * crypto API, and submit the encrypted bios. Sets bio->bi_status and |
| * completes the source bio on error |
| */ |
| static void blk_crypto_fallback_encrypt_bio(struct bio *src_bio) |
| { |
| struct bio_crypt_ctx *bc = src_bio->bi_crypt_context; |
| struct blk_crypto_keyslot *slot; |
| blk_status_t status; |
| |
| status = blk_crypto_get_keyslot(blk_crypto_fallback_profile, |
| bc->bc_key, &slot); |
| if (status != BLK_STS_OK) { |
| src_bio->bi_status = status; |
| bio_endio(src_bio); |
| return; |
| } |
| __blk_crypto_fallback_encrypt_bio(src_bio, |
| blk_crypto_fallback_tfm(slot)); |
| blk_crypto_put_keyslot(slot); |
| } |
| |
| static blk_status_t __blk_crypto_fallback_decrypt_bio(struct bio *bio, |
| struct bio_crypt_ctx *bc, struct bvec_iter iter, |
| struct crypto_sync_skcipher *tfm) |
| { |
| SYNC_SKCIPHER_REQUEST_ON_STACK(ciph_req, tfm); |
| u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE]; |
| union blk_crypto_iv iv; |
| struct scatterlist sg; |
| struct bio_vec bv; |
| const int data_unit_size = bc->bc_key->crypto_cfg.data_unit_size; |
| unsigned int i; |
| |
| skcipher_request_set_callback(ciph_req, |
| CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, |
| NULL, NULL); |
| |
| memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun)); |
| sg_init_table(&sg, 1); |
| skcipher_request_set_crypt(ciph_req, &sg, &sg, data_unit_size, |
| iv.bytes); |
| |
| /* Decrypt each segment in the bio */ |
| __bio_for_each_segment(bv, bio, iter, iter) { |
| struct page *page = bv.bv_page; |
| |
| if (!IS_ALIGNED(bv.bv_len | bv.bv_offset, data_unit_size)) |
| return BLK_STS_INVAL; |
| |
| sg_set_page(&sg, page, data_unit_size, bv.bv_offset); |
| |
| /* Decrypt each data unit in the segment */ |
| for (i = 0; i < bv.bv_len; i += data_unit_size) { |
| blk_crypto_dun_to_iv(curr_dun, &iv); |
| if (crypto_skcipher_decrypt(ciph_req)) |
| return BLK_STS_IOERR; |
| bio_crypt_dun_increment(curr_dun, 1); |
| sg.offset += data_unit_size; |
| } |
| } |
| |
| return BLK_STS_OK; |
| } |
| |
| /* |
| * The crypto API fallback's main decryption routine. |
| * |
| * Decrypts input bio in place, and calls bio_endio on the bio. |
| */ |
| static void blk_crypto_fallback_decrypt_bio(struct work_struct *work) |
| { |
| struct bio_fallback_crypt_ctx *f_ctx = |
| container_of(work, struct bio_fallback_crypt_ctx, work); |
| struct bio *bio = f_ctx->bio; |
| struct bio_crypt_ctx *bc = &f_ctx->crypt_ctx; |
| struct blk_crypto_keyslot *slot; |
| blk_status_t status; |
| |
| status = blk_crypto_get_keyslot(blk_crypto_fallback_profile, |
| bc->bc_key, &slot); |
| if (status == BLK_STS_OK) { |
| status = __blk_crypto_fallback_decrypt_bio(bio, bc, |
| f_ctx->crypt_iter, |
| blk_crypto_fallback_tfm(slot)); |
| blk_crypto_put_keyslot(slot); |
| } |
| mempool_free(f_ctx, bio_fallback_crypt_ctx_pool); |
| |
| bio->bi_status = status; |
| bio_endio(bio); |
| } |
| |
| /** |
| * blk_crypto_fallback_decrypt_endio - queue bio for fallback decryption |
| * |
| * @bio: the bio to queue |
| * |
| * Restore bi_private and bi_end_io, and queue the bio for decryption into a |
| * workqueue, since this function will be called from an atomic context. |
| */ |
| static void blk_crypto_fallback_decrypt_endio(struct bio *bio) |
| { |
| struct bio_fallback_crypt_ctx *f_ctx = bio->bi_private; |
| |
| bio->bi_private = f_ctx->bi_private_orig; |
| bio->bi_end_io = f_ctx->bi_end_io_orig; |
| |
| /* If there was an IO error, don't queue for decrypt. */ |
| if (bio->bi_status) { |
| mempool_free(f_ctx, bio_fallback_crypt_ctx_pool); |
| bio_endio(bio); |
| return; |
| } |
| |
| INIT_WORK(&f_ctx->work, blk_crypto_fallback_decrypt_bio); |
| f_ctx->bio = bio; |
| queue_work(blk_crypto_wq, &f_ctx->work); |
| } |
| |
| /** |
| * blk_crypto_fallback_bio_prep - Prepare a bio to use fallback en/decryption |
| * @bio: bio to prepare |
| * |
| * If bio is doing a WRITE operation, allocate one or more bios to contain the |
| * encrypted payload and submit them. |
| * |
| * For a READ operation, mark the bio for decryption by using bi_private and |
| * bi_end_io. |
| * |
| * In either case, this function will make the submitted bio(s) look like |
| * regular bios (i.e. as if no encryption context was ever specified) for the |
| * purposes of the rest of the stack except for blk-integrity (blk-integrity and |
| * blk-crypto are not currently supported together). |
| * |
| * Return: true if @bio should be submitted to the driver by the caller, else |
| * false. Sets bio->bi_status, calls bio_endio and returns false on error. |
| */ |
| bool blk_crypto_fallback_bio_prep(struct bio *bio) |
| { |
| struct bio_crypt_ctx *bc = bio->bi_crypt_context; |
| struct bio_fallback_crypt_ctx *f_ctx; |
| |
| if (WARN_ON_ONCE(!tfms_inited[bc->bc_key->crypto_cfg.crypto_mode])) { |
| /* User didn't call blk_crypto_start_using_key() first */ |
| bio_io_error(bio); |
| return false; |
| } |
| |
| if (!__blk_crypto_cfg_supported(blk_crypto_fallback_profile, |
| &bc->bc_key->crypto_cfg)) { |
| bio->bi_status = BLK_STS_NOTSUPP; |
| bio_endio(bio); |
| return false; |
| } |
| |
| if (bio_data_dir(bio) == WRITE) { |
| blk_crypto_fallback_encrypt_bio(bio); |
| return false; |
| } |
| |
| /* |
| * bio READ case: Set up a f_ctx in the bio's bi_private and set the |
| * bi_end_io appropriately to trigger decryption when the bio is ended. |
| */ |
| f_ctx = mempool_alloc(bio_fallback_crypt_ctx_pool, GFP_NOIO); |
| f_ctx->crypt_ctx = *bc; |
| f_ctx->crypt_iter = bio->bi_iter; |
| f_ctx->bi_private_orig = bio->bi_private; |
| f_ctx->bi_end_io_orig = bio->bi_end_io; |
| bio->bi_private = (void *)f_ctx; |
| bio->bi_end_io = blk_crypto_fallback_decrypt_endio; |
| bio_crypt_free_ctx(bio); |
| |
| return true; |
| } |
| |
| int blk_crypto_fallback_evict_key(const struct blk_crypto_key *key) |
| { |
| return __blk_crypto_evict_key(blk_crypto_fallback_profile, key); |
| } |
| |
| static bool blk_crypto_fallback_inited; |
| static int blk_crypto_fallback_init(void) |
| { |
| int i; |
| int err; |
| |
| if (blk_crypto_fallback_inited) |
| return 0; |
| |
| get_random_bytes(blank_key, sizeof(blank_key)); |
| |
| err = bioset_init(&enc_bio_set, 64, 0, BIOSET_NEED_BVECS); |
| if (err) |
| goto out; |
| |
| /* Dynamic allocation is needed because of lockdep_register_key(). */ |
| blk_crypto_fallback_profile = |
| kzalloc(sizeof(*blk_crypto_fallback_profile), GFP_KERNEL); |
| if (!blk_crypto_fallback_profile) { |
| err = -ENOMEM; |
| goto fail_free_bioset; |
| } |
| |
| err = blk_crypto_profile_init(blk_crypto_fallback_profile, |
| blk_crypto_num_keyslots); |
| if (err) |
| goto fail_free_profile; |
| err = -ENOMEM; |
| |
| blk_crypto_fallback_profile->ll_ops = blk_crypto_fallback_ll_ops; |
| blk_crypto_fallback_profile->max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE; |
| blk_crypto_fallback_profile->key_types_supported = BLK_CRYPTO_KEY_TYPE_RAW; |
| |
| /* All blk-crypto modes have a crypto API fallback. */ |
| for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++) |
| blk_crypto_fallback_profile->modes_supported[i] = 0xFFFFFFFF; |
| blk_crypto_fallback_profile->modes_supported[BLK_ENCRYPTION_MODE_INVALID] = 0; |
| |
| blk_crypto_wq = alloc_workqueue("blk_crypto_wq", |
| WQ_UNBOUND | WQ_HIGHPRI | |
| WQ_MEM_RECLAIM, num_online_cpus()); |
| if (!blk_crypto_wq) |
| goto fail_destroy_profile; |
| |
| blk_crypto_keyslots = kcalloc(blk_crypto_num_keyslots, |
| sizeof(blk_crypto_keyslots[0]), |
| GFP_KERNEL); |
| if (!blk_crypto_keyslots) |
| goto fail_free_wq; |
| |
| blk_crypto_bounce_page_pool = |
| mempool_create_page_pool(num_prealloc_bounce_pg, 0); |
| if (!blk_crypto_bounce_page_pool) |
| goto fail_free_keyslots; |
| |
| bio_fallback_crypt_ctx_cache = KMEM_CACHE(bio_fallback_crypt_ctx, 0); |
| if (!bio_fallback_crypt_ctx_cache) |
| goto fail_free_bounce_page_pool; |
| |
| bio_fallback_crypt_ctx_pool = |
| mempool_create_slab_pool(num_prealloc_fallback_crypt_ctxs, |
| bio_fallback_crypt_ctx_cache); |
| if (!bio_fallback_crypt_ctx_pool) |
| goto fail_free_crypt_ctx_cache; |
| |
| blk_crypto_fallback_inited = true; |
| |
| return 0; |
| fail_free_crypt_ctx_cache: |
| kmem_cache_destroy(bio_fallback_crypt_ctx_cache); |
| fail_free_bounce_page_pool: |
| mempool_destroy(blk_crypto_bounce_page_pool); |
| fail_free_keyslots: |
| kfree(blk_crypto_keyslots); |
| fail_free_wq: |
| destroy_workqueue(blk_crypto_wq); |
| fail_destroy_profile: |
| blk_crypto_profile_destroy(blk_crypto_fallback_profile); |
| fail_free_profile: |
| kfree(blk_crypto_fallback_profile); |
| fail_free_bioset: |
| bioset_exit(&enc_bio_set); |
| out: |
| return err; |
| } |
| |
| /* |
| * Prepare blk-crypto-fallback for the specified crypto mode. |
| * Returns -ENOPKG if the needed crypto API support is missing. |
| */ |
| int blk_crypto_fallback_start_using_mode(enum blk_crypto_mode_num mode_num) |
| { |
| const char *cipher_str = blk_crypto_modes[mode_num].cipher_str; |
| struct blk_crypto_fallback_keyslot *slotp; |
| unsigned int i; |
| int err = 0; |
| |
| /* |
| * Fast path |
| * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num] |
| * for each i are visible before we try to access them. |
| */ |
| if (likely(smp_load_acquire(&tfms_inited[mode_num]))) |
| return 0; |
| |
| mutex_lock(&tfms_init_lock); |
| if (tfms_inited[mode_num]) |
| goto out; |
| |
| err = blk_crypto_fallback_init(); |
| if (err) |
| goto out; |
| |
| for (i = 0; i < blk_crypto_num_keyslots; i++) { |
| slotp = &blk_crypto_keyslots[i]; |
| slotp->tfms[mode_num] = crypto_alloc_sync_skcipher(cipher_str, |
| 0, 0); |
| if (IS_ERR(slotp->tfms[mode_num])) { |
| err = PTR_ERR(slotp->tfms[mode_num]); |
| if (err == -ENOENT) { |
| pr_warn_once("Missing crypto API support for \"%s\"\n", |
| cipher_str); |
| err = -ENOPKG; |
| } |
| slotp->tfms[mode_num] = NULL; |
| goto out_free_tfms; |
| } |
| |
| crypto_sync_skcipher_set_flags(slotp->tfms[mode_num], |
| CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); |
| } |
| |
| /* |
| * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num] |
| * for each i are visible before we set tfms_inited[mode_num]. |
| */ |
| smp_store_release(&tfms_inited[mode_num], true); |
| goto out; |
| |
| out_free_tfms: |
| for (i = 0; i < blk_crypto_num_keyslots; i++) { |
| slotp = &blk_crypto_keyslots[i]; |
| crypto_free_sync_skcipher(slotp->tfms[mode_num]); |
| slotp->tfms[mode_num] = NULL; |
| } |
| out: |
| mutex_unlock(&tfms_init_lock); |
| return err; |
| } |